В. В. Коротаев, В. Л. Мусяков

ЭНЕРГЕТИЧЕСКИЙ РАСЧЕТ ОЭП

УЧЕБНОЕ ПОСОБИЕ ПО КУРСОВОМУ И ДИПЛОМНОМУ ПРОЕКТИРОВАНИЮ

САНКТ-ПЕТЕРБУРГ 2006

Министерство образования и науки Российской Федерации Федеральное агентство по образованию

САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

Кафедра оптико-электронных приборов и систем

В. В. Коротаев, В. Л. Мусяков

ЭНЕРГЕТИЧЕСКИЙ РАСЧЕТ ОЭП

Учебное пособие по курсовому и дипломному проектированию

Санкт-Петербург 2006

УДК 621.383

Коротаев В. В., Мусяков В. Л. Энергетический расчет ОЭП / Учебное пособие по курсовому и дипломному проектированию. - СПб: СПб ГУ ИТМО, 2006, 44 с.

Пособие предназначено для студентов факультета оптикоинформационных систем и технологий СПб ГУ ИТМО, обучающихся по специальности 200203 — «Оптико-электронные приборы и системы» и выполняющих курсовые работы, курсовые проекты, УИРС и ВКР, а также бакалавров и магистров по направлению 200200 — «Оптотехника», выполняющих УИРС и НИРС.

Пособие содержит краткие теоретические сведения и описывает порядок и содержание основных этапов энергетического расчета типовых оптико-электронных приборов, также набор a заданий, преподаватели могут использовать для практических занятий и в качестве домашних заданий, а студенты – при самостоятельной работе для подготовки к выполнению курсовых работ и проектов, УИРС, НИРС и ВКР. Содержание пособия соответствует материалам, излагаемым в дисциплинах «Оптические и оптико-электронные приборы и системы», «Источники и приемники излучения», «Измерительные ОЭС». В пособии приведен список литературы для желающих более глубоко ознакомиться с излагаемыми сведениями.

Список литературы - 11 наименований.

Утверждено к печати Советом факультета оптико-информационных систем и технологий, протокол №6 от 13.06.06.

© Санкт-Петербургский государственный университет информационных технологий, механики и оптики

2006

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ	4
СОКРАЩЕНИЯ	5
ТЕРМИНЫ И ИХ ОБОЗНАЧЕНИЯ	6
ОПТИЧЕСКИЕ СХЕМЫ ОПТИКО-ЭЛЕКТРОНЫХ ПРИБОРОВ И ВАРИАНТЫ ЗАДАНИЙ САМОСТОЯТЕЛЬНОЙ РАБОТЫ	ДЛЯ 10
ПОРЯДОК ВЫПОЛНЕНИЯ ЭНЕРГЕТИЧЕСКОГО РАСЧЕТА	17
1. РАСЧЕТ ПОТОКА ИЗЛУЧЕНИЯ, ПАДАЮЩЕГО НА	
ФОТОЧУВСТВИТЕЛЬНЫЙ ЭЛЕМЕНТ ПРИЕМНИКА ОПТИЧЕСКОГО	
излучения	17
1.1. Оптическая схема коллиматора (прожектора)	17
2. РАСЧЕТ ИНТЕГРАЛЬНОЙ ЧУВСТВИТЕЛЬНОСТИ ПРИЕМНИКА	
ОПТИЧЕСКОГО ИЗЛУЧЕНИЯ К ИЗЛУЧЕНИЮ ИСТОЧНИКА	25
3. РАСЧЕТ ПЕРЕМЕННОЙ СОСТАВЛЯЮЩЕЙ СИГНАЛА И ВЕЛИЧИНЫ	
ПОСТОЯННОЙ СОСТАВЛЯЮЩЕЙ ТОКА НА ВЫХОДЕ ПРИЕМНИКА	
ОПТИЧЕСКОГО ИЗЛУЧЕНИЯ	28
4. РАСЧЁТ НАПРЯЖЕНИЯ И ТОКА ШУМА ПРИЕМНИКА ОПТИЧЕСКОГО	
ИЗЛУЧЕНИЯ В ЗАДАННОЙ ПОЛОСЕ ЧАСТОТ ЭЛЕКТРОННОГО ТРАКТА	30
5. РАСЧЁТ ПОРОГА ЧУВСТВИТЕЛЬНОСТИ И ОБНАРУЖИТЕЛЬНОЙ	
СПОСОБНОСТИ ПРИЕМНИКА ОПТИЧЕСКОГО ИЗЛУЧЕНИЯ ПО ОТНОШЕН	ию
К ИЗЛУЧЕНИЮ ЗАДАННОГО ИСТОЧНИКА	32
6. РАСЧЁТ ОСНОВНЫХ СОСТАВЛЯЮЩИХ ШУМОВОЙ ПОГРЕШНОСТИ	
ОПТИКО-ЭЛЕКТРОННОГО ПРИБОРА И ОТНОШЕНИЯ СИГНАЛ/ШУМ В	
ЗАДАННОЙ ПОЛОСЕ ЧАСТОТ ЭЛЕКТРОННОГО ТРАКТА	33
7. РАСЧЕТ ШУМОВОЙ ПОГРЕШНОСТИ ОПТИКО-ЭЛЕКТРОННЫХ СИСТЕ	EM
ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ	37
ЛИТЕРАТУРА	41
ПРИЛОЖЕНИЕ 1. ЗНАЧЕНИЯ ФУНКЦИИ ПЛАНКА Y = F(X)	42
ПРИЛОЖЕНИЕ 2. ОТНОСИТЕЛЬНАЯ СПЕКТРАЛЬНАЯ	
СВЕТОВАЯ ЭФФЕКТИВНОСТЬ МОНОХРОМАТИЧЕСКОГО	
ИЗЛУЧЕНИЯ ЛЛЯ ЛНЕВНОГО ЗРЕНИЯ	43

ВВЕДЕНИЕ

Основные принципы и методика энергетического расчета оптикоэлектронного прибора (ОЭП) излагаются в нескольких дисциплинах, читаемых студентам специальности 200203 «Оптико-электронные приборы и системы», а также бакалаврам по направлению «Оптотехника»: «Оптические и оптико-электронные приборы и системы», «Источники и приемники излучения», «Измерительные ОЭС».

Цель данного пособия заключается в том, чтобы разъяснить студентам выполнение основных этапов энергетического расчета, представляющих для них, как показывает практика, большие трудности.

В пособии изложены методика расчета потока излучения, поступающего на приемник оптического излучения для двух типов оптических схем ОЭП: коллимационной схемы и схемы пирометра (фотометра); порядок пересчета справочных параметров приемника оптического излучения в параметры для излучения реального источника излучения; порядок расчета шумов приемника оптического излучения и шумовой погрешности для двух типов ОЭП.

В пособии приведены также варианты заданий для выполнения энергетических расчетов во время самостоятельной работы студентов.

СОКРАЩЕНИЯ

ИД – излучающий диод

ИИ – источник излучения

ОЭП – оптико-электронный прибор

ОЭСИТ – оптико-электронная система измерения температуры

ПОИ – приемник оптического излучения

СД – синхронный детектор

СКЗ – среднее квадратическое значение

ФЧЭ – фоточувствительный элемент

ЧТ – черное тело

ТЕРМИНЫ И ИХ ОБОЗНАЧЕНИЯ

Абсолютная спектральная характеристика чувствительности $\Pi OH - S_{\lambda}(\lambda)$

Амплитуда переменной составляющей потока излучения – Ф.

Амплитуда переменной составляющей фототока – I_{\sim}

Амплитуда переменной составляющей напряжения фотосигнала – U_{\sim}

Вольтовая чувствительность $\Pi O \mathcal{U} - S_U$

Время установления нормированной переходной характеристики (постоянная времени) $\Pi O U - \tau_{\Pi O U}$

Входная ёмкость предварительного усилителя – $C_{\text{в}}$

Геометрическая фоточувствительная площадь $\Pi O H - A_{du}$

Диаметр входного зрачка объектива – $D_{\text{об}}$

Диаметр выходного зрачка объектива – $D'_{\text{об}}$

Диаметр зрачка объектива — D_{oo}

Диаметр излучающей поверхности ИИ - D_{ucm}

Диаметр изображения излучающей поверхности ИИ - D_{us}

Диаметр области пространства изображений с постоянной облученностью $-D_n$

Диаметр полевой диафрагмы – $D_{\Pi \Pi}$

Дистанция формирования пучка – p_0

Длина волны – λ

Емкость инерционного контура — C_{κ}

Емкость монтажа – $C_{\rm m}$

Емкость Π ОИ – C_{Π}

Заднее фокусное расстояние объектива -f'

Задний апертурный угол объектива – $\sigma'_{A'}$

Заряд электрона – е

Интегральная вольтовая чувствительность – $S_{U_{\text{инт}}}$

Интегральная токовая чувствительность – $S_{I_{\text{ИНТ}}}$

Интегральная чувствительность ПОИ к излучению паспортного ИИ в энергетических величинах – $S^{\rm I}_{_{_{_{_{\!\!MHT},}}}e}$

Коэффициент использования излучения заданного ИИ глазом (к.п.д. глаза) — $\kappa^{II}_{\ \ \Gamma}$

Коэффициент использования излучения заданного ИИ заданным ПОИ – κ^{II}

Коэффициент использования излучения паспортного ИИ глазом (к.п.д. глаза) – $\kappa^{\rm I}_{_{\rm I}}$

Коэффициент использования излучения паспортного ИИ заданным $\Pi O H - \kappa^{J}$

Коэффициент использования контрастного черного излучателя – $\xi_{\mathrm{ЧT}}$

Коэффициент пропускания атмосферы — $\tau_{\rm A}$

Коэффициент пропускания оптической системы коллиматора — $\tau_{\rm K}$

Коэффициент пропускания оптической системы приёмного устройства – τ_{Π}

Коэффициент теплового излучения – $\varepsilon_{\lambda}(\lambda,T)$

Относительное спектральное распределение потока излучения паспортного ИИ – $\phi^{\rm I}_{e,\lambda}(\lambda)$

Коэффициент усиления фотоумножителя по току – $M_{\Phi \mathrm{Y}}$

Круговая частота модуляции — $\omega_{\scriptscriptstyle M}$

Максимальное значение спектральной плотности энергетической светимости ${
m 4T}-M^{
m o}_{e,\lambda,max}$

Максимальное значение спектральной чувствительности – $S_{\lambda.max}$

Мощность излучения ИД – $P_{\rm ИД}$

Напряжение дробового шума ПОИ в заданной полосе частот – $U_{\text{ш.др.}\Pi\text{OИ}.\Delta f}$

Напряжение дробового шума фототока $\Pi \text{OM} - U_{\text{ш.др.}\Pi \text{OM}.} \Delta f.$ эфф.I

Напряжение теплового шума ПОИ в заданной полосе частот – $U_{\text{ш.т.}\Pi\text{OИ},\Delta\text{f}}$

Напряжение токового шума ПОИ в заданной полосе частот – $U_{\text{ш.І.ПОИ.<math>\Delta f}}$

Напряжение шума Π ОИ – U_{III}

Нормированный закон модуляции сигнала -f(t)

Облучённость — E_e

Облучённость на оптической оси — E_{e0}

Обнаружительная способность – D

Обнаружительная способность ПОИ к излучению паспортного ИИ в световых величинах – $D^I_{\ \nu}$

Обнаружительная способность ПОИ к излучению паспортного ИИ в энергетических величинах – $D^{\rm I}_{\ e}$

Общий ток ПОИ – $I_{oбщ}$

Относительная спектральная плотность энергетической светимости ЧТ $-m_{e\lambda}^{o}(\lambda)$

Относительная спектральная характеристика чувствительности – $s_{\lambda}(\lambda)$

Относительная или логарифмическая спектральная ширина полосы пропускания $\Pi O U - (\Delta \ln \lambda)_{ad}$

Относительное спектральное распределение потока излучения паспортного ИИ – $\phi^{\rm I}_{e,\lambda}(\lambda)$

Отношение сигнал/шум - μ

Переднее фокусное расстояние объектива -f

Площадь входного зрачка объектива – A_{ob}

Площадь входного зрачка объектива приёмного устройства – A_2

Площадь выходного зрачка объектива коллиматора — A_1

Площадь излучающей поверхности ИД – $A_{\rm ИЛ}$

Площадь излучающей поверхности ИИ – A_{ucm}

Площадь изображения излучающей поверхности ИИ – A_{us}

Пощадь излучающей поверхности ${
m 4T}-A_{
m 4T}$

Площадь полевой диафрагмы – $A_{\Pi \Pi}$

Порог чувствительности ПОИ в единичной полосе частот – Φ_{n1}

Порог чувствительности ПОИ в заданной полосе частот – $\Phi_{\rm n}$

Порог чувствительности ПОИ к излучению паспортного ИИ в заданной полосе частот в световых величинах – $\Phi^{\rm I}_{\, {\scriptscriptstyle
m I}, \nu}$

Порог чувствительности ПОИ к излучению паспортного ИИ в заданной полосе частот энергетических (Вт) величинах – $\Phi^{\rm I}_{\rm п.e}$

Постоянная времени инерционного контура – τ_{κ}

Постоянная составляющая потока излучения — $\Phi_{=}$

Постоянная составляющая тока — \overline{I}

Постоянная Стефана-Больцмана – о

Поток излучения от фоновых засветок от окружающих объектов – $\Phi_{\phi \text{она}}$

Поток излучения, падающий на ПОИ - $\Phi_{\Pi O H}$

Поток излучения — Φ_e

Распределение облучённости — $E_e(y)$

Pасстояние – l

Расстояние от оптической системы до изображения – a'

Расстояние от оптической системы до предмета – a

Светимость или энергетическая светимость ИД – $M_{\rm ИД}$

Световой поток – Φ_{v}

Сила света или излучения ИД – $I_{\rm ИЛ}$

СКЗ шумовой погрешности измерения фототока – $\sigma_{\text{ш.}i}$

СКЗ шумовой составляющей погрешности измерения температуры – $\sigma_{\scriptscriptstyle \mathrm{T}}$

Сопротивление нагрузки – $R_{\scriptscriptstyle H}$

Сопротивление ПОИ – $R_{\Pi O \Pi}$

Спектральная плотность мощности (дисперсия) белого шума – N

Спектральная плотность облученности — $E_{e,\lambda}$

Спектральная плотность потока излучения – $\Phi_{e,\lambda}$

Спектральная плотность энергетической светимости – $M_{e\lambda}$

Спектральная плотность энергетической светимости черного тела – $M^{\circ}_{e,\lambda}$

Спектральная плотность энергетической яркости – $L_{e.\lambda}$

Спектральное распределение потока излучения — $\Phi_{e,\lambda}(\lambda)$

Спектральный коэффициент пропускания – $\tau(\lambda)$

Спектральный коэффициент теплового излучения объекта – $\varepsilon(\lambda)$

Среднее значение потока излучения – $\Phi_{c=}$

Средняя квадратическая погрешность измерения амплитуды сигнала – $\sigma_{\!\scriptscriptstyle
m III}$

Суммарный ток шума ПОИ с учетом дробового шума фототока — $I_{\text{ш.ПОИ.}\Delta f \ni \varphi \varphi . \Sigma}$

Суммарное напряжение шума ПОИ с учетом дробового шума фототока — $U_{\text{ш.ПОИ},\Delta f \ni \Phi \Phi, \Sigma}$

Темновой ток – $I_{\scriptscriptstyle \mathrm{T}}$

Температура объекта — T

Ток дробового шума ПОИ в заданной полосе частот – $I_{\text{ш.др.}\Pi\text{OИ}.\Delta\text{f}}$

Ток дробового шума фототока $\Pi \text{OM} - I_{\text{ш.др.}\Pi \text{OM}. \Delta f. эфф.}I$

Ток сигнала на выходе ПОИ - $I_{\rm c}$

Ток теплового шума ПОИ в заданной полосе частот – $I_{\text{ш.т.}\Pi\text{OИ}.\Delta\text{f}}$

Ток токового шума ПОИ в заданной полосе частот – $I_{\text{ш.I.ПОИ.}\Delta f}$

Ток фотокатода – $I_{\Phi K}$

Ток шума ПОИ – $I_{\rm m}$

Токовая чувствительность $\Pi O \mathcal{U} - S_I$

Точка формирования пучка — M_0

Угловое поле объектива – 2ω

Угол излучения ИД – Θ

Угол между оптической осью и линией от центра выходного зрачка до рассматриваемой точки – β'

Удельная обнаружительная способность $\Pi O \mathcal{U} - D^*$

Удельная энергия сигнала за время измерения $T_{\rm u}-e_0$

Удельный порог чувствительности – Φ_{Π}

Фототок – I_{ϕ}

Частота модуляции $-f_{\text{мод}}$

Энергетическая светимость ЧТ при данной температуре $T-M_e{}^o$

Энергетическая яркость источника — L_e

Эффективная шумовая полоса частот - $\Delta f_{\circ \varphi \varphi}$

Эффективная шумовая полоса частот, при которой производилась аттестация $\Pi O H - \Delta f_{9 \varphi \varphi}$ пасп

Яркость излучающего диода – $L_{\rm ИД}$

ОПТИЧЕСКИЕ СХЕМЫ ОПТИКО-ЭЛЕКТРОНЫХ ПРИБОРОВ И ВАРИАНТЫ ЗАДАНИЙ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

Рассматривается два типа оптических схем.

В первом случае источник излучения (ИИ) удалён на значительное расстояние (рис. 1). Приёмное устройство состоит из объектива (Об), расположенного в фокальной плоскости модулятора (М) и приёмника оптического излучения (ПОИ), перед которым расположена диафрагма (Д). Сигнал с ПОИ усиливается в предварительном усилителе (ПУ1) и усилителе мощности (У1) и поступает на вход синхронного детектора (СД). Для получения опорного сигнала использованы излучающий диод (ИД) и приемник опорного сигнала (ПОИ ОС).

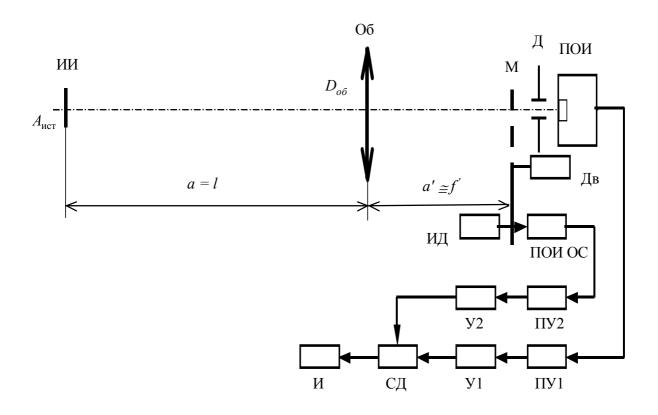


Рис. 1. Структурная схема пирометра (фотометра): ИИ – источник излучения; Об – объектив; М – модулятор; Дв – двигатель; Д – диафрагма; ПОИ – приемник оптического излучения; ИД – излучающий диод; ПОИ ОС – приемник опорного сигнала; ПУ – предварительные усилители; У – усилители мощности; СД – синхронный детектор; И – индикатор

Опорный сигнал с ПОИ ОС усиливается в предварительном усилителе (ПУ2) и усилителе мощности (У2) и поступает на второй вход синхронного детектора (СД). С выхода СД сигнал поступает на индикатор (И), на котором отображается результат измерения.

Во втором случае оптическая схема прибора состоит из коллиматора (прожектора) и приёмного устройства (рис. 2). Коллиматор (прожектор) состоит из объектива (Of_1) и расположенного в его фокальной плоскости ИИ. Излучение ИИ модулируется, например, по цепи питания (внутренняя модуляция) или за счёт внешних модуляторов. Приёмное устройство состоит из объектива (Of_2) и ПОИ.

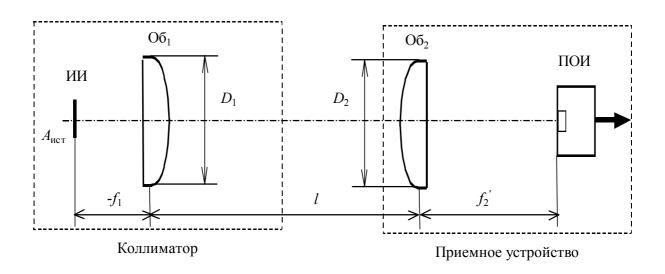


Рис. 2. Схема коллиматора и приемного устройства: ИИ - источник излучения; Ob_1 , Ob_2 - объективы коллиматора и приемного устройства; IOU - приемник оптического излучения; Aucm - площадь излучающей поверхности IUI; $-f_1$, f_2 ' - переднее и заднее фокусные расстояния объективов коллиматора и приемного устройства; l - расстояние между коллиматором и приемным устройством $(l >> -f_1$; $l >> f_2$ '); D_1 , D_2 - диаметры выходного и входного зрачков объективов коллиматора и приемного устройства

Типы оптических систем, их параметры, а также марки ИИ и ПОИ для различных вариантов приведены в табл. 1 и табл. 2.

		ИИ			
No	ЧТ с	T, K		ПОИ	Оптическая схема
вар.	a	б	ИД		по рисунку
1	1000	1500	-	БП2-3А	1
2	-	-	АЛ103А	ФД-9К	2
3	1500	1600	-	НБГ-1	1
4	-	-	АЛ115А	ФД-28КП	2
5	2000	1700	-	ФР1-3	1
6	-	-	АЛ107А	ФД-5Г	2
7	3500	1800	-	ФД-4Г	1
8	-	ı	АЛ108А	ФД-20-30К	2
9	4000	1900	-	ФД-11К	1
10	-	-	АЛ106А	Ф-5	2
11	4500	2000	-	ФД-20-32К	1
12	-	-	АЛ116А	ФД-3А	2
13	5000	2200	-	Ф-6	1
14	-	-	АЛ102А	ФД-1	2
15	5500	2300	-	Ф-9	1
16	-	ı	АЛ341В	Ф-21	2
17	6000	2400	-	Ф-1	1
18	-	ı	АЛ341Д	ЦГ-3	2
19	7000	2500	-	Ф-14	1
20	-	ı	АЛ341А	СЦВ-4	2
21	8000	2600	-	Ф-6	1
22	-	-	АЛ102В	Ф-22	2
23	9000	2700	-	Ф-2	1
24	-	-	АЛ119А	ФД-11К	2
25	10000	2800	-	Ф-9	1

Для упрощения расчетов спектральные коэффициенты пропускания среды и оптической системы для заданий в табл. 1 будем считать не зависящими от длины волны: $\tau(\lambda) = 1$.

$N_{\underline{0}}$	Параметры		Дистан	ция <i>l</i> ,	Диаметр $D_{\text{ист}}$ или площадь		
вар.	ОПТИ	ческо	й сист	емы	M	-	$A_{\scriptscriptstyle ext{ iny ucr}}$ излучающей
	$-f_1$,	D_1 ,	f_2' ,	D_2 ,	a	б	поверхности ИИ
	MM	MM	MM	MM			
1	-	1	50	30	1000	100	300 мм
2	100	30	70	40	5	ı	3 mm^2
1	-	ı	90	40	900	200	200 мм
2	150	60	100	50	6	-	3 mm^2
1	-	-	110	50	800	300	250 мм
2	200	80	120	60	7	-	3 mm^2
1	-	-	130	60	700	400	400 мм
2	300	100	140	50	8	-	3 mm^2
1	-	-	150	70	600	500	150 мм
2	100	50	50	20	9	-	12 mm ²
1	-	-	60	20	5000	600	1000 мм
2	150	70	70	30	10	-	3 mm^2
1	-	-	80	40	6000	700	200 мм
2	200	100	90	40	12	-	$0.3 \times 0.3 \text{ mm}^2$
1	-	-	100	40	7000	800	300 мм
2	300	150	110	50	14	-	12 mm ²
1	-	=	120	50	8000	900	300 мм
2	100	40	130	50	16	-	12 mm ²
1	-	-	140	50	9000	1000	200 мм
2	150	80	150	60	20	-	12 mm ²
1	-	ı	100	60	10000	1100	100 мм
2	200	120	170	60	24	-	$0.3 \times 0.3 \text{ mm}^2$
1	-	-	180	60	11000	1200	50 мм
2	300	170	60	30	30	-	3 mm ²
1	-	-	100	30	12000	1300	100 мм

Таблица 2.

вар. °C. мм мм мм мм мм 1 200-500 ФРО-Х1-142 30 60 1 2 300-600 ФСГ-28РТА 40 80 1 3 400-700 ФСГ-23А1 30 70 1 4 500-800 ФДО-119 40 90 1 5 600-900 ФР1-3 50 100 1 6 700-1000 ФД-5Г 40 80 1 7 800-1100 ФД-11К 30 70 1 8 900-1200 ФД-3А 40 90 1 9 1000-1300 ФД-9К 40 100 2 10 1100-1400 ФД-28КП 30 80 2 12 1300-1700 ФД-28КП 30 80 2 14 1500-1900 ФД-9К 20 50 2 15 1600-2000 ФД-9К 20	№	Диапазон температур,	ПОИ	D_{BX} ,	f ["] ,	l,
1 200-500 ФРО-X1-142 30 60 1 2 300-600 ФСГ-28РТА 40 80 1 3 400-700 ФСГ-223А1 30 70 1 4 500-800 ФДО-119 40 90 1 5 600-900 ФР1-3 50 100 1 6 700-1000 ФД-5Г 40 80 1 7 800-1100 ФД-11К 30 70 1 8 900-1200 ФД-3A 40 90 1 9 1000-1300 ФД-9K 40 100 2 10 1100-1400 ФД-9K 40 100 2 11 1200-1500 ФД-28КП 30 80 2 12 1300-1700 ФД-9K 20 50 2 15 1600-2000 ФД-9K 20 50 2 15 1600-2000 ФД-21КП 30 80	вар.				MM	
2 300-600 ФСГ-28РТА 40 80 1 3 400-700 ФСГ-223A1 30 70 1 4 500-800 ФДО-119 40 90 1 5 600-900 ФР1-3 50 100 1 6 700-1000 ФД-5Г 40 80 1 7 800-1100 ФД-11К 30 70 1 8 900-1200 ФД-3A 40 90 1 9 1000-1300 ФД-9K 40 100 2 10 1100-1400 ФД-2 30 60 2 11 1200-1500 ФД-28КП 30 80 2 12 1300-1700 ФД-9K 20 50 2 14 1500-1900 ФД-9K 20 50 2 15 1600-2000 Ф-1 20 60 2 16 1700-2100 ФД-21КП 30 80	1					
3 400-700 ФСГ-223A1 30 70 1 4 500-800 ФДО-119 40 90 1 5 600-900 ФР1-3 50 100 1 6 700-1000 ФД-5Г 40 80 1 7 800-1100 ФД-11К 30 70 1 8 900-1200 ФД-3A 40 90 1 9 1000-1300 ФД-9К 40 100 2 10 1100-1400 ФД-9К 40 100 2 11 1200-1500 ФД-28КП 30 80 2 12 1300-1700 ФД-1 40 100 2 14 1500-1900 ФД-9К 20 50 2 15 1600-2000 Ф-1 20 60 2 15 1600-2000 ФД-21КП 30 80 2 17 1800-2200 Ф-2 30 70 3 18 1900-2300 ФД-24К 40 80 3 <td>1</td> <td>200-500</td> <td>ФРО-Х1-142</td> <td>30</td> <td>60</td> <td>1</td>	1	200-500	ФРО-Х1-142	30	60	1
4 500-800 ФДО-119 40 90 1 5 600-900 ФР1-3 50 100 1 6 700-1000 ФД-5Г 40 80 1 7 800-1100 ФД-11К 30 70 1 8 900-1200 ФД-3A 40 90 1 9 1000-1300 ФД-9К 40 100 2 10 1100-1400 ФД-9К 40 100 2 11 1200-1500 ФД-9К 40 100 2 12 1300-1700 ФД-28КП 30 80 2 12 1300-1700 ФД-9К 20 50 2 14 1500-1900 ФД-9К 20 50 2 15 1600-2000 Ф-1 20 60 2 16 1700-2100 ФД-21КП 30 80 2 17 1800-2200 Ф-2 30 70 3 18 1900-2300 ФД-24К 40 80 3 <td>2</td> <td>300-600</td> <td>ФСГ-28РТА</td> <td>40</td> <td>80</td> <td>1</td>	2	300-600	ФСГ-28РТА	40	80	1
5 600-900 ФР1-3 50 100 1 6 700-1000 ФД-5Г 40 80 1 7 800-1100 ФД-11К 30 70 1 8 900-1200 ФД-3A 40 90 1 9 1000-1300 ФД-9К 40 100 2 10 1100-1400 ФД-9К 40 100 2 11 1200-1500 ФД-28КП 30 80 2 12 1300-1700 ФД-28КП 30 80 2 12 1300-1700 ФД-9K 20 50 2 14 1500-1900 ФД-9K 20 50 2 15 1600-2000 Ф-1 20 60 2 16 1700-2100 ФД-21КП 30 80 2 17 1800-2200 Ф-2 30 70 3 18 1900-2300 ФД-21КП 30 60	3	400-700	ФСГ-223А1	30	70	1
6 700-1000 ФД-5Г 40 80 1 7 800-1100 ФД-11К 30 70 1 8 900-1200 ФД-3A 40 90 1 9 1000-1300 ФД-9К 40 100 2 10 1100-1400 ФД-9К 40 100 2 11 1200-1500 ФД-28КП 30 80 2 12 1300-1700 ФД-1 40 100 2 13 1400-1800 Ф-5 40 90 2 14 1500-1900 ФД-9К 20 50 2 15 1600-2000 Ф-1 20 60 2 16 1700-2100 ФД-21КП 30 80 2 17 1800-2200 Ф-2 30 70 3 18 1900-2300 ФД-24К 40 80 3 19 2000-2500 Ф-3 40 90 5 20 2100-2600 ФД-21КП 30 70 5 <td>4</td> <td>500-800</td> <td>ФДО-119</td> <td>40</td> <td>90</td> <td>1</td>	4	500-800	ФДО-119	40	90	1
7 800-1100 ФД-11К 30 70 1 8 900-1200 ФД-3A 40 90 1 9 1000-1300 ФД-9К 40 100 2 10 1100-1400 ФД-9К 40 100 2 11 1200-1500 ФД-28КП 30 80 2 12 1300-1700 ФД-1 40 100 2 13 1400-1800 Ф-5 40 90 2 14 1500-1900 ФД-9К 20 50 2 15 1600-2000 Ф-1 20 60 2 16 1700-2100 ФД-21КП 30 80 2 17 1800-2200 Ф-2 30 70 3 18 1900-2300 ФД-24К 40 80 3 19 2000-2500 Ф-3 40 90 5 20 2100-2600 ФД-21 30 70 5 22 2300-2800 ФД-25 20 50 5 <td>5</td> <td>600-900</td> <td>ФР1-3</td> <td>50</td> <td>100</td> <td>1</td>	5	600-900	ФР1-3	50	100	1
8 900-1200 ФД-3A 40 90 1 9 1000-1300 ФД-9К 40 100 2 10 1100-1400 ФД-9К 40 100 2 11 1200-1500 ФД-28КП 30 80 2 12 1300-1700 ФД-1 40 100 2 13 1400-1800 Ф-5 40 90 2 14 1500-1900 ФД-9К 20 50 2 15 1600-2000 Ф-1 20 60 2 16 1700-2100 ФД-21КП 30 80 2 17 1800-2200 Ф-2 30 70 3 18 1900-2300 ФД-24К 40 80 3 19 2000-2500 Ф-3 40 90 5 20 2100-2600 ФДК-227 30 60 5 21 2200-2700 Ф-4 30 70 5 22 2300-2800 ФД-256 20 50 5 </td <td>6</td> <td>700-1000</td> <td>ФД-5Г</td> <td>40</td> <td>80</td> <td>1</td>	6	700-1000	ФД-5Г	40	80	1
9 1000-1300 ФД-9К 40 100 2 10 1100-1400 ФД-2 30 60 2 11 1200-1500 ФД-28КП 30 80 2 12 1300-1700 ФД-1 40 100 2 13 1400-1800 Ф-5 40 90 2 14 1500-1900 ФД-9К 20 50 2 15 1600-2000 Ф-1 20 60 2 16 1700-2100 ФД-21КП 30 80 2 17 1800-2200 Ф-2 30 70 3 18 1900-2300 ФД-24К 40 80 3 19 2000-2500 Ф-3 40 90 5 20 2100-2600 ФДК-227 30 60 5 21 2200-2700 Ф-4 30 70 5 22 2300-2800 ФД-256 20 50 5 23 30-40 ФРО-X1-142 50 150 4	7	800-1100	ФД-11К	30	70	1
10 1100-1400 ФД-2 30 60 2 11 1200-1500 ФД-28КП 30 80 2 12 1300-1700 ФД-1 40 100 2 13 1400-1800 Ф-5 40 90 2 14 1500-1900 ФД-9К 20 50 2 15 1600-2000 Ф-1 20 60 2 16 1700-2100 ФД-21КП 30 80 2 17 1800-2200 Ф-2 30 70 3 18 1900-2300 ФД-24К 40 80 3 19 2000-2500 Ф-3 40 90 5 20 2100-2600 ФДК-227 30 60 5 21 2200-2700 Ф-4 30 70 5 22 2300-2800 ФД-256 20 50 5 23 30-40 ФРО-X1-142 50 150	8	900-1200	ФД-3А	40	90	1
11 1200-1500 ФД-28КП 30 80 2 12 1300-1700 ФД-1 40 100 2 13 1400-1800 Ф-5 40 90 2 14 1500-1900 ФД-9К 20 50 2 15 1600-2000 Ф-1 20 60 2 16 1700-2100 ФД-21КП 30 80 2 17 1800-2200 Ф-2 30 70 3 18 1900-2300 ФД-24К 40 80 3 19 2000-2500 Ф-3 40 90 5 20 2100-2600 ФДК-227 30 60 5 21 2200-2700 Ф-4 30 70 5 22 2300-2800 ФД-256 20 50 5 23 30-40 ФРО-X1-142 50 150 4 24 100-150 ФСГ-28РТА 30 70 <td>9</td> <td>1000-1300</td> <td>ФД-9К</td> <td>40</td> <td>100</td> <td>2</td>	9	1000-1300	ФД-9К	40	100	2
11 1200-1500 ФД-28КП 30 80 2 12 1300-1700 ФД-1 40 100 2 13 1400-1800 Ф-5 40 90 2 14 1500-1900 ФД-9К 20 50 2 15 1600-2000 Ф-1 20 60 2 16 1700-2100 ФД-21КП 30 80 2 17 1800-2200 Ф-2 30 70 3 18 1900-2300 ФД-24К 40 80 3 19 2000-2500 Ф-3 40 90 5 20 2100-2600 ФДК-227 30 60 5 21 2200-2700 Ф-4 30 70 5 22 2300-2800 ФД-256 20 50 5 23 30-40 ФРО-X1-142 50 150 4 24 100-150 ФСГ-28РТА 30 70 <td>10</td> <td>1100-1400</td> <td>ФД-2</td> <td>30</td> <td>60</td> <td>2</td>	10	1100-1400	ФД-2	30	60	2
14 1500-1900 ФД-9К 20 50 2 15 1600-2000 Ф-1 20 60 2 16 1700-2100 ФД-21КП 30 80 2 17 1800-2200 Ф-2 30 70 3 18 1900-2300 ФД-24К 40 80 3 19 2000-2500 Ф-3 40 90 5 20 2100-2600 ФДК-227 30 60 5 21 2200-2700 Ф-4 30 70 5 22 2300-2800 ФД-256 20 50 5 23 30-40 ФРО-X1-142 50 150 4 24 100-150 ФСГ-28РТА 30 70 4 25 200-400 ФУО-614-1 50 100 4 26 300-500 ФУО-613 40 90 3 27 400-600 ФУО-612 40 80 3 28 500-700 ФУМ-611-11 30 70 2<	11	1200-1500	ФД-28КП	30	80	2
14 1500-1900 ФД-9К 20 50 2 15 1600-2000 Ф-1 20 60 2 16 1700-2100 ФД-21КП 30 80 2 17 1800-2200 Ф-2 30 70 3 18 1900-2300 ФД-24К 40 80 3 19 2000-2500 Ф-3 40 90 5 20 2100-2600 ФДК-227 30 60 5 21 2200-2700 Ф-4 30 70 5 22 2300-2800 ФД-256 20 50 5 23 30-40 ФРО-X1-142 50 150 4 24 100-150 ФСГ-28РТА 30 70 4 25 200-400 ФУО-614-1 50 100 4 26 300-500 ФУО-613 40 90 3 27 400-600 ФУО-612 40 80 3 28 500-700 ФУМ-611-11 30 70 2<	12	1300-1700	ФД-1	40	100	2
18 1900-2300 ФД-24К 40 80 3 19 2000-2500 Ф-3 40 90 5 20 2100-2600 ФДК-227 30 60 5 21 2200-2700 Ф-4 30 70 5 22 2300-2800 ФД-256 20 50 5 23 30-40 ФРО-X1-142 50 150 4 24 100-150 ФСГ-28РТА 30 70 4 25 200-400 ФУО-614-1 50 100 4 26 300-500 ФУО-613 40 90 3 27 400-600 ФУО-612 40 80 3 28 500-700 ФУМ-611-11 30 70 3 29 600-800 ФУЛ-611-4 30 70 2 30 700-900 ФД-5Г 40 100 2 31 800-1000 ФД-5Г 40 100 2 32 900-1100 ФД-21КП 30 70 <t< td=""><td>13</td><td>1400-1800</td><td>Ф-5</td><td>40</td><td>90</td><td>2</td></t<>	13	1400-1800	Ф-5	40	90	2
18 1900-2300 ФД-24К 40 80 3 19 2000-2500 Ф-3 40 90 5 20 2100-2600 ФДК-227 30 60 5 21 2200-2700 Ф-4 30 70 5 22 2300-2800 ФД-256 20 50 5 23 30-40 ФРО-X1-142 50 150 4 24 100-150 ФСГ-28РТА 30 70 4 25 200-400 ФУО-614-1 50 100 4 26 300-500 ФУО-613 40 90 3 27 400-600 ФУО-612 40 80 3 28 500-700 ФУМ-611-11 30 70 3 29 600-800 ФУЛ-611-4 30 70 2 30 700-900 ФД-5Г 40 100 2 31 800-1000 ФД-5Г 40 100 2 32 900-1100 ФД-21КП 30 70 <t< td=""><td>14</td><td>1500-1900</td><td>ФД-9К</td><td>20</td><td>50</td><td>2</td></t<>	14	1500-1900	ФД-9К	20	50	2
18 1900-2300 ФД-24К 40 80 3 19 2000-2500 Ф-3 40 90 5 20 2100-2600 ФДК-227 30 60 5 21 2200-2700 Ф-4 30 70 5 22 2300-2800 ФД-256 20 50 5 23 30-40 ФРО-X1-142 50 150 4 24 100-150 ФСГ-28РТА 30 70 4 25 200-400 ФУО-614-1 50 100 4 26 300-500 ФУО-613 40 90 3 27 400-600 ФУО-612 40 80 3 28 500-700 ФУМ-611-11 30 70 3 29 600-800 ФУЛ-611-4 30 70 2 30 700-900 ФД-5Г 40 100 2 31 800-1000 ФД-5Г 40 100 2 32 900-1100 ФД-21КП 30 70 <t< td=""><td>15</td><td>1600-2000</td><td>Ф-1</td><td>20</td><td>60</td><td>2</td></t<>	15	1600-2000	Ф-1	20	60	2
18 1900-2300 ФД-24К 40 80 3 19 2000-2500 Ф-3 40 90 5 20 2100-2600 ФДК-227 30 60 5 21 2200-2700 Ф-4 30 70 5 22 2300-2800 ФД-256 20 50 5 23 30-40 ФРО-X1-142 50 150 4 24 100-150 ФСГ-28РТА 30 70 4 25 200-400 ФУО-614-1 50 100 4 26 300-500 ФУО-613 40 90 3 27 400-600 ФУО-612 40 80 3 28 500-700 ФУМ-611-11 30 70 3 29 600-800 ФУЛ-611-4 30 70 2 30 700-900 ФД-5Г 40 100 2 31 800-1000 ФД-5Г 40 100 2 32 900-1100 ФД-21КП 30 70 <t< td=""><td>16</td><td>1700-2100</td><td>ФД-21КП</td><td>30</td><td>80</td><td>2</td></t<>	16	1700-2100	ФД-21КП	30	80	2
18 1900-2300 ФД-24К 40 80 3 19 2000-2500 Ф-3 40 90 5 20 2100-2600 ФДК-227 30 60 5 21 2200-2700 Ф-4 30 70 5 22 2300-2800 ФД-256 20 50 5 23 30-40 ФРО-X1-142 50 150 4 24 100-150 ФСГ-28РТА 30 70 4 25 200-400 ФУО-614-1 50 100 4 26 300-500 ФУО-613 40 90 3 27 400-600 ФУО-612 40 80 3 28 500-700 ФУМ-611-11 30 70 3 29 600-800 ФУЛ-611-4 30 70 2 30 700-900 ФД-5Г 40 100 2 31 800-1000 ФД-5Г 40 100 2 32 900-1100 ФД-21КП 30 70 <t< td=""><td>17</td><td>1800-2200</td><td>Ф-2</td><td>30</td><td>70</td><td>3</td></t<>	17	1800-2200	Ф-2	30	70	3
19 2000-2500 Ф-3 40 90 5 20 2100-2600 ФДК-227 30 60 5 21 2200-2700 Ф-4 30 70 5 22 2300-2800 ФД-256 20 50 5 23 30-40 ФРО-X1-142 50 150 4 24 100-150 ФСГ-28РТА 30 70 4 25 200-400 ФУО-614-1 50 100 4 26 300-500 ФУО-613 40 90 3 27 400-600 ФУМ-611-11 30 70 3 28 500-700 ФУМ-611-11 30 70 3 29 600-800 ФУЛ-611-4 30 70 2 30 700-900 ФД-11К 40 90 2 31 800-1000 ФД-5Г 40 100 2 32 900-1100 ФД-21КП 30 70 1	18	1900-2300	ФД-24К	40	80	3
20 2100-2600 ФДК-227 30 60 5 21 2200-2700 Ф-4 30 70 5 22 2300-2800 ФД-256 20 50 5 23 30-40 ФРО-X1-142 50 150 4 24 100-150 ФСГ-28РТА 30 70 4 25 200-400 ФУО-614-1 50 100 4 26 300-500 ФУО-613 40 90 3 27 400-600 ФУО-612 40 80 3 28 500-700 ФУМ-611-11 30 70 3 29 600-800 ФУЛ-611-4 30 70 2 30 700-900 ФД-11К 40 90 2 31 800-1000 ФД-5Г 40 100 2 32 900-1100 ФД-21КП 30 70 1 33 1000-1200 ФД-4Г 30 70 1	19	2000-2500	Ф-3	40	90	5
22 2300-2800 ФД-256 20 50 5 23 30-40 ФРО-X1-142 50 150 4 24 100-150 ФСГ-28РТА 30 70 4 25 200-400 ФУО-614-1 50 100 4 26 300-500 ФУО-613 40 90 3 27 400-600 ФУО-612 40 80 3 28 500-700 ФУМ-611-11 30 70 3 29 600-800 ФУЛ-611-4 30 70 2 30 700-900 ФД-11К 40 90 2 31 800-1000 ФД-5Г 40 100 2 32 900-1100 ФД-21КП 30 70 1 33 1000-1200 ФД-4Г 30 70 1	20	2100-2600	ФДК-227	30	60	5
22 2300-2800 ФД-256 20 50 5 23 30-40 ФРО-X1-142 50 150 4 24 100-150 ФСГ-28РТА 30 70 4 25 200-400 ФУО-614-1 50 100 4 26 300-500 ФУО-613 40 90 3 27 400-600 ФУО-612 40 80 3 28 500-700 ФУМ-611-11 30 70 3 29 600-800 ФУЛ-611-4 30 70 2 30 700-900 ФД-11К 40 90 2 31 800-1000 ФД-5Г 40 100 2 32 900-1100 ФД-21КП 30 70 1 33 1000-1200 ФД-4Г 30 70 1	21	2200-2700	Ф-4	30	70	5
24 100-150 ФСГ-28РТА 30 70 4 25 200-400 ФУО-614-1 50 100 4 26 300-500 ФУО-613 40 90 3 27 400-600 ФУО-612 40 80 3 28 500-700 ФУМ-611-11 30 70 3 29 600-800 ФУЛ-611-4 30 70 2 30 700-900 ФД-11К 40 90 2 31 800-1000 ФД-5Г 40 100 2 32 900-1100 ФД-21КП 30 80 1 33 1000-1200 ФД-4Г 30 70 1	22	2300-2800	ФД-256	20	50	5
25 200-400 ФУО-614-1 50 100 4 26 300-500 ФУО-613 40 90 3 27 400-600 ФУО-612 40 80 3 28 500-700 ФУМ-611-11 30 70 3 29 600-800 ФУЛ-611-4 30 70 2 30 700-900 ФД-11К 40 90 2 31 800-1000 ФД-5Г 40 100 2 32 900-1100 ФД-21КП 30 80 1 33 1000-1200 ФД-4Г 30 70 1	23	30-40	ФРО-Х1-142	50	150	4
26 300-500 ФУО-613 40 90 3 27 400-600 ФУО-612 40 80 3 28 500-700 ФУМ-611-11 30 70 3 29 600-800 ФУЛ-611-4 30 70 2 30 700-900 ФД-11К 40 90 2 31 800-1000 ФД-5Г 40 100 2 32 900-1100 ФД-21КП 30 80 1 33 1000-1200 ФД-4Г 30 70 1	24	100-150	ФСГ-28РТА	30	70	4
27 400-600 ФУО-612 40 80 3 28 500-700 ФУМ-611-11 30 70 3 29 600-800 ФУЛ-611-4 30 70 2 30 700-900 ФД-11К 40 90 2 31 800-1000 ФД-5Г 40 100 2 32 900-1100 ФД-21КП 30 80 1 33 1000-1200 ФД-4Г 30 70 1	25	200-400	ФУО-614-1	50	100	4
27 400-600 ФУО-612 40 80 3 28 500-700 ФУМ-611-11 30 70 3 29 600-800 ФУЛ-611-4 30 70 2 30 700-900 ФД-11К 40 90 2 31 800-1000 ФД-5Г 40 100 2 32 900-1100 ФД-21КП 30 80 1 33 1000-1200 ФД-4Г 30 70 1	26	300-500	ФУО-613	40	90	3
32 900-1100 ФД-21КП 30 80 1 33 1000-1200 ФД-4Г 30 70 1	27	400-600	ФУО-612	40	80	3
32 900-1100 ФД-21КП 30 80 1 33 1000-1200 ФД-4Г 30 70 1	28	500-700	ФУМ-611-11	30	70	3
32 900-1100 ФД-21КП 30 80 1 33 1000-1200 ФД-4Г 30 70 1	29	600-800	ФУЛ-611-4	30	70	2
32 900-1100 ФД-21КП 30 80 1 33 1000-1200 ФД-4Г 30 70 1	30	700-900	ФД-11К	40	90	2
33 1000-1200 ФД-4Г 30 70 1	31	800-1000	ФД-5Г	40	100	
	32	900-1100	ФД-21КП	30	80	1
	33	1000-1200	ФД-4Г	30	70	1
34 1100-1300 ФД-256 40 80 1	34	1100-1300	ФД-256	40	80	1

Показатели визирования $P = D_{\Pi \text{Д}}/s$ ', где $D_{\Pi \text{Д}}$ — диаметр полевой диафргмы, а s' — задний отрезок, в табл. 2 следует выбрать из ряда 1/5; 1/10; 1/16; 1/20; 1/25; 1/40; 1/70; 1/100. Коэффициенты пропускания среды и оптической системы для заданий в табл. 2 считать зависящими от длины волны.

Таблица 2 (продолжение).

№	t arm,	Влажность f ,	Метеорологичес-	
вар.	°C	%	кая дальность	Примечания
			видимости, м	
1	0	70	200	Материал оптической
2	10	80	50	системы выбрать:
3	20	90	400	1) для t от 100 до 600 °C -
4	30	70	50	флюорит (Са F ₂);
5	0	80	1000	спектральный диапазон
6	10	90	50	пропускания -
7	20	70	500	$\Delta \lambda = 0.49.0 \text{ MKM};$
8	30	80	50	при толщине d = 2 мм
9	0	90	4000	$\tau = 0.92;$
10	10	70	50	
11	20	80	1500	2) для t от 400 до 2000 °C -
12	30	90	50	кварцевое стекло КИ;
13	0	70	1500	спектральный диапазон
14	10	80	50	пропускания -
15	20	90	2000	$\Delta \lambda = 0.43.5 \text{ MKM};$
16	30	70	50	
17	0	80	2500	3) для t от 900 до 3500 °C -
18	10	90	50	оптическое стекло К8;
19	20	70	1500	спектральный диапазон
20	30	80	50	пропускания -
21	0	90	2000	$\Delta \lambda = 0.42.5$ MKM.
22	10	70	50	
23	20	80	2000	
24	30	90	50	
25	0	70	2000	
26	10	80	50	
27	20	90	1500	
28	30	70	50	
29	0	80	2000	
30	10	90	50	
31	20	70	1500	
32	30	80	50	
33	0	90	2000	
34	10	70	50	

Частоту модуляции потока излучения заданного ИИ $f_{\text{мод}}$ и эффективную шумовую полосу частот электронного тракта приемного устройства $\Delta f_{\text{эфф}}$ считать равными: для тепловых ПОИ $f_{\text{мод}}=12$ Гц и $\Delta f_{\text{эфф}}=2$ Гц, для ПОИ на основе фотоэффекта $f_{\text{мод}}=1000$ Гц и $\Delta f_{\text{эфф}}=200$ Гц.

В процессе выполнения энергетического расчета надлежит выполнить следующее:

- 1. Рассчитать поток излучения, падающий на фоточувствительный элемент ПОИ при заданных параметрах оптической системы и ИИ.
- 2. Рассчитать интегральную токовую или вольтовую чувствительность заданного ПОИ к излучению заданного ИИ в энергетических величинах (A/BT, B/BT).
- 3. Рассчитать амплитуду переменной составляющей сигнала и величину постоянной составляющей тока на выходе ПОИ.
- 4. Рассчитать напряжение или ток шума ПОИ в заданной полосе частот электронного тракта.
- 5. Рассчитать порог чувствительности или обнаружительную способность ПОИ по отношению к излучению заданного ИИ на основании имеющихся справочных данных.
- 6. Рассчитать основные составляющие шумовой погрешности ОЭП и отношение сигнал/шум в заданной полосе частот электронного тракта.
- 7. Рассчитать шумовую погрешность измерения пирометра.

ПОРЯДОК ВЫПОЛНЕНИЯ ЭНЕРГЕТИЧЕСКОГО РАСЧЕТА

1. Расчет потока излучения, падающего на фоточувствительный элемент приемника оптического излучения

1.1. Оптическая схема коллиматора (прожектора)

На рис. 3. показана структура пучка лучей коллиматора (прожектора), выполненного в виде объектива Об $_1$ и ИИ, расположенного в его фокальной плоскости [10].

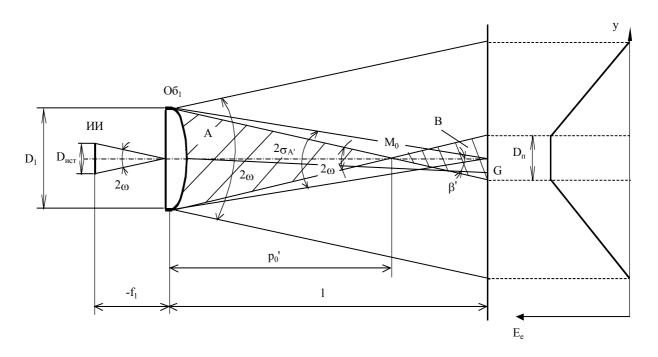


Рис. 3. Структура пучка лучей коллиматора (прожектора):

III - источник излучения; Ob_1 - объектив коллиматора (прожектора); l - расстояние от выходного зрачка объектива до рассматриваемого сечения пучка; D_1 - диаметр выходного зрачка объектива; IIOII - приемник оптического излучения; D_{ucm} - диаметр излучающей поверхности III; - f_1 - переднее фокусное расстояние объектива; p_0 - дистанция формирования пучка; M_0 - точка формирования пучка; D_n - диаметр области с постоянной облученностью; 2ω - угловое поле объектива; $\sigma'_{A'}$ - задний апертурный угол объектива

Рассмотрим распределение облучённости $E_e(y)$ в сечении пучка лучей, перпендикулярном оптической оси и находящемся на расстоянии l от выходного зрачка объектива. Пусть яркость ИИ по его излучающей поверхности постоянна, аберрации оптической системы отсутствуют, дисперсия объектива не влияет на световой пучок. Пусть диаметр

излучающей поверхности равен $D_{\text{ист}}$, фокусное расстояние объектива коллиматора (прожектора) — $(-f_1)$, диаметр выходного зрачка объектива — D_1 . Тогда угловое поле объектива и расходимость пучка лучей коллиматора (прожектора) при $D_{\text{ист}} << (-f_1)$:

$$2 \cdot \omega = 2 \cdot \operatorname{arctg}\left(\frac{D_{\text{MCT}}}{-2 \cdot f_1}\right) \approx \frac{D_{\text{MCT}}}{-f_1} , \qquad (1.1)$$

а дистанция формирования пучка лучей коллиматора (прожектора):

$$p_0' = \frac{D_1}{2 \cdot \lg \omega} \approx \frac{D_1}{D_{\text{MCT}}} \cdot (-f_1) \quad . \tag{1.2}$$

Точка M_0 , лежащая на оптической оси коллиматора (прожектора) и удалённая от его выходного зрачка на расстояние p'_0 , называется **точкой формирования пучка** лучей коллиматора.

Облучённость, создаваемая коллиматором (прожектором) в точках, лежащих на оптической оси [7]:

$$E_{e0} = \pi \cdot L_e \cdot \tau_{K} \cdot \tau_{A} \cdot \sin^2 \sigma_{A'} , \qquad (1.3)$$

где $L_{\rm e}$ — энергетическая яркость ИИ; $\tau_{\rm K}$, $\tau_{\rm A}$ — коэффициенты пропускания оптической системы коллиматора (прожектора) и атмосферы; $\sigma'_{\rm A'}$ — апертурный угол коллиматора (прожектора) со стороны пространства изображений (задний апертурный угол).

Величина заднего апертурного угла коллиматора (прожектора) для точек, лежащих на оптической оси, определяется расстоянием l до выходного зрачка:

при
$$l > p'_0$$

$$\sigma'_{A} = \operatorname{arctg} \frac{D_1}{2 \cdot l} , \qquad (1.4)$$

при
$$l \le p'_0$$

$$\sigma'_A = \omega = \operatorname{arctg} \frac{D_{\text{ист}}}{-2 \cdot f_1} \approx \frac{D_{\text{ист}}}{-2 \cdot f_1} \ . \tag{1.5}$$

При отсутствии виньетирования ИИ объективом коллиматора (прожектора) для внеосевой точки G облучённость равна [7]:

$$E_{e\beta'} = E_{e0} \cdot \cos^4 \beta', \tag{1.6}$$

где β' – угол между оптической осью и линией от центра выходного зрачка до точки G. При малых углах β' облучённость $E_{e\beta'}$ можно считать постоянной.

Рассмотрим влияние виньетирования на изменение облучённости. В заштрихованной зоне A на рис. 3 виньетирование ИИ оправой объектива коллиматора (прожектора) отсутствует, поэтому облучённость в пределах этой зоны постоянна.

Из выражений (1.3) и (1.5) следует, что в зоне A:

$$E_{e0} \approx \pi \cdot \tau_{\rm K} \cdot \tau_{\rm A} \cdot L_e \cdot \left(\frac{D_{\rm MCT}}{-2 \cdot f_1}\right)^2$$
 (1.7)

Следовательно, облучённость E_{e0} не зависит от расстояния l до данного сечения.

В заштрихованной зоне B величина виньетирования не равна нулю, но в пределах круга диаметром $D_{\rm n}$, перпендикулярного оптической оси, она постоянна, поэтому и облучённость в пределах этого круга тоже постоянна.

Из выражений (1.3) и (1.4) следует, что в зоне B:

$$E_{e0} \approx \pi \cdot \tau_{\rm K} \cdot \tau_{\rm A} \cdot L_e \cdot \left(\frac{D_1}{2 \cdot l}\right)^2$$
 (1.8)

За пределами заштрихованных зон A и B величина виньетирования изменяется, и облучённость монотонно уменьшается до нуля. Из рис. 3 следует, что диаметры пятен равномерной облучённости для зон A и B:

$$D_{\text{IIA}} = D_1 - \left(\frac{D_{\text{UCT}}}{-f_1}\right) \cdot l, \qquad D_{\text{IIB}} = \left(\frac{D_{\text{UCT}}}{-f_1}\right) \cdot l - D_1 \quad . \tag{1.9}$$

Определим поток излучения, падающий на ПОИ в оптической системе, изображенной на рис. 2.

Рассмотрим случай, когда входной зрачок объектива приемного устройства находится в заштрихованной зоне A в пределах пятна равномерной облученности (рис. 3).

В этом случае расходимость пучка лучей относительно мала, и термин "коллиматор" является более подходящим по сравнению с термином "прожектор".

Будем предполагать такое построение оптической системы приемного устройства, при котором потери энергии излучения возникают только на границах раздела сред и в самих средах, то есть отсутствуют потери на диафрагмах. Это означает также, что размер пятна засветки меньше размера чувствительной площадки ПОИ.

Из (1.7) следует, что в этом случае поток излучения на ПОИ будет равен:

$$\Phi_e = \pi \cdot \tau_{\mathrm{K}} \cdot \tau_{\mathrm{A}} \cdot \tau_{\mathrm{\Pi}} \cdot L_e \cdot \left(\frac{D_{\mathrm{MCT}}}{-2 \cdot f_1}\right)^2 \cdot A_2 = \tau \cdot L_e \cdot \frac{A_{\mathrm{MCT}} \cdot A_2}{f_1^2}, \quad (1.10)$$

где $\tau_{\text{п}}$ — коэффициент пропускания оптической системы приёмного устройства; τ — коэффициент пропускания среды и оптических систем; $A_{\text{ист}}$ — площадь излучающей поверхности ИИ; A_2 — площадь входного зрачка объектива приёмного устройства.

Рассмотрим случай, когда входной зрачок объектива приемного устройства находится в заштрихованной зоне B в пределах пятна равномерной облученности (рис. 3).

В этом случае расходимость пучка лучей относительно велика, и термин "прожектор" является более подходящим по сравнению с термином "коллиматор".

Будем предполагать такое построение оптической системы приемного устройства, при котором потери энергии излучения возникают только на границах раздела сред и в самих средах, то есть отсутствуют потери на диафрагмах. Это означает также, что размер пятна засветки меньше размера чувствительной площадки ПОИ.

Из (1.8) следует, что в этом случае поток излучения на ПОИ будет равен:

$$\Phi_e = \pi \cdot \tau_{\mathbf{K}} \cdot \tau_{\mathbf{A}} \cdot \tau_{\mathbf{\Pi}} \cdot L_e \cdot \left(\frac{D_1}{2 \cdot l}\right)^2 \cdot A_2 = \tau \cdot L_e \cdot \frac{A_1 \cdot A_2}{l^2} \quad , \tag{1.11}$$

где A_1 – площадь выходного зрачка объектива коллиматора.

Яркость ИИ в виде черного тела (ЧТ) следует определить, исходя из того, что пространственное распределение излучение ЧТ подчиняется закону Ламберта. Поэтому [2, 9]:

$$L_{e} = \frac{M_{e}^{\circ}}{\pi} = \frac{\Phi_{e}}{\pi \cdot A_{ur}} , \qquad (1.12)$$

где M_e $^{\circ}$ – энергетическая светимость ЧТ при данной температуре T; Φ_e – поток излучения ЧТ; $A_{\mbox{\tiny чт}}$ – площадь излучающей поверхности ЧТ.

Для ИД можно приближённо считать, что в пределах угла излучения Θ излучение распределено по закону Ламберта, а за пределами этого угла яркость $L_{\rm ИД}$ равна нулю [2, 9]. Тогда яркость ИД в пределах угла Θ :

$$L_{\text{ид}} = \frac{M_{\text{ид}}}{\pi \cdot \sin^2 \Theta} = \frac{P_{\text{ид}}}{\pi \cdot A_{\text{ил}} \cdot \sin^2 \Theta}; \qquad L_{\text{ид}} = \frac{I_{\text{ид}}}{A_{\text{ил}}}, \qquad (1.13)$$

где $M_{\rm ИД}$ — светимость или энергетическая светимость ИД; $P_{\rm ИД}$ — мощность излучения ИД; $A_{\rm ИД}$ — площадь излучающей поверхности ИД; $I_{\rm ИД}$ — сила света или излучения ИД.

1.2. Оптическая схема пирометра (фотометра)

Рассмотрим особенности расчета потока излучения, падающего на фоточувствительный элемент ПОИ, для оптической схемы пирометра или фотометра (рис. 1). Для этой схемы и для заданий в табл. 2 коэффициент пропускания среды и оптической системы будем считать зависящим от длины волны.

Спектральная плотность облученности, создаваемая источником излучения и оптической системой, находящейся в воздушной среде, в точке на элементарной площадке, перпендикулярной оптической оси:

$$E_{e_{\lambda}} = \tau(\lambda)\pi L_{e_{\lambda}}(\lambda)\sin^2\sigma'_{A'}, \qquad (1.14)$$

где $\tau(\lambda)$ — спектральный коэффициент пропускания среды и оптической системы пирометра; $L_{\rm e.\lambda}(\lambda)$ — спектральная плотность энергетической яркости источника в соответствующей точке; $\sigma_{\rm A'}$ — задний апертурный угол оптической системы в пространстве изображений.

Для точек, лежащих на оптической оси, при малой толщине линз объектива:

$$\sin \sigma_{A'} \approx \sigma'_{A'} = tg \sigma'_{A'} = \frac{D'_{o\delta}}{2a'} \cong \frac{D_{o\delta}}{2a'} , \qquad (1.15)$$

где D'_{o6} и D_{o6} - диаметры выходного и входного зрачков объектива (при линейном увеличении в зрачках β_{ρ} = 1 их диаметры равны: D_{o6} = D'_{o6}); a' – расстояние от задней главной точки объектива до осевой точки изображения источника.

Если расстояние от источника до объектива l >> f', где f' – фокусное расстояние объектива, то $a' \approx f'$.

Для ламбертовского излучателя (черного тела) по следствию из закона Ламберта (1.12) получаем из (1.15) и (1.16), что спектральная плотность облученности в точке изображения:

$$E_{e_{\lambda}} \approx \tau(\lambda)\varepsilon(\lambda)(\lambda)M_{e\lambda}^{o}(\lambda,T)\frac{D_{o\delta}^{2}}{4(a')^{2}} = \tau(\lambda)\varepsilon(\lambda)M_{e\lambda}^{o}(\lambda,T)\frac{A_{o\delta}}{\pi(a')^{2}}, \qquad (1.16)$$

где $\varepsilon(\lambda)$ — спектральный коэффициент теплового излучения объекта; $M^{\circ}_{e\lambda}$ — спектральная плотность энергетической светимости черного тела при температуре объекта; $A_{\circ \delta}$ — площадь входного зрачка объектива.

Можно показать, что последнее выражение справедливо также и для оптических систем, имеющих форму входного зрачка, отличную от круглой (квадратную, кольцевую).

Показания пирометра не должны зависеть от размера объекта и от расстояния до него, поэтому угловое поле пирометра в пространстве предметов 200 должно быть меньше углового размера объекта:

$$2\omega = 2\omega' \approx \frac{D_{\Pi / I}}{a'} < \frac{D_{ucm}}{a} = \frac{D_{ucm}}{l} , \qquad (1.17)$$

где $D_{\Pi \Pi}$ — диаметр полевой диафрагмы, установленной перед фоточувствительным элементом (ФЧЭ) ПОИ, или (при отсутствии диафрагмы) диаметр ФЧЭ; $D_{\text{ист}}$ — диаметр излучающей поверхности ИИ.

Спектральная плотность потока излучения от равнояркого объекта (ЧТ) в пределах линейного поля пирометра в пространстве изображений из (1.16):

$$\Phi_{e\lambda} = E_{e\lambda}(\lambda) A_{\Pi \Pi} = M^{o}_{e\lambda}(\lambda, T) \varepsilon(\lambda) \tau(\lambda) \frac{A_{o\delta} A_{\Pi \Pi}}{\pi(a')^{2}}, \tag{1.18}$$

Если угловое поле прибора (например, фотометра) больше углового размера объекта:

$$2\omega = 2\omega' \approx \frac{D_{\Pi\Pi}}{a'} > \frac{D_{ucm}}{a} = \frac{D_{ucm}}{l} , \qquad (1.19)$$

то диаметр изображения источника:

$$D_{us} = D_{ucm} \frac{a'}{a},\tag{1.20}$$

а соотношение площадей источника и его изображения:

$$A_{us} = A_{ucm} \left(\frac{a'}{a}\right)^2. \tag{1.21}$$

В этом случае спектральная плотность потока излучения, создающего изображение равнояркого по площади объекта из (1.16) и (1.21):

$$\Phi_{e\lambda} = E_{e\lambda}(\lambda) A_{us} = \tau(\lambda) L_{e\lambda}(\lambda, T) \frac{A_{ucm} A_{o\delta}}{a^2} . \tag{1.22}$$

Для серого ламбертовского излучателя по следствию из закона Ламберта (1.12) формула (1.22) примет вид:

$$\Phi_{e\lambda} = \varepsilon (\lambda) \tau(\lambda) M_{e\lambda}^{o} (\lambda, T) \frac{A_{ucm} A_{o\delta}}{\pi a^{2}}$$
 (1.23)

Рассмотрим расчет потока излучения, проходящего через полевую диафрагму и падающего на чувствительную площадку ПОИ.

Пусть ИИ представляет собой равнояркую площадку диаметром $D_{\text{ист}}$, тогда изображение ИИ в плоскости полевой диафрагмы имеет диаметр

$$D_{\text{\tiny MS}} = D_{\text{\tiny MCT}} \frac{a'}{a} \ . \tag{1.24}$$

Соотношение площадей ИИ и его изображения имеет вид:

$$A_{\text{\tiny H3}} = A_{\text{\tiny MCT}} \left(\frac{a'}{a}\right)^2 \,, \tag{1.25}$$

где $A_{\text{ист}}$ и $A_{\text{из}}$ – площади ИИ и его изображения соответственно.

При расчете потока излучения, проходящего через полевую диафрагму, следует иметь в виду два возможных случая:

- 1) диаметр полевой диафрагмы $D_{\Pi \text{Д}}$ больше диаметра изображения ИИ $D_{\text{из}}$ ($D_{\Pi \text{Д}} >> D_{\text{из}}$), то есть угловое поле прибора больше углового размера ИИ;
- 2) диаметр полевой диафрагмы $D_{\Pi \text{Д}}$ меньше диаметра изображения ИИ $D_{\text{из}}$ ($D_{\Pi \text{Д}} << D_{\text{из}}$), то есть угловое поле прибора меньше углового размера ИИ.

Рассмотрим первый случай ($D_{\Pi \Pi} > D_{\text{из}}$).

В этом случае угловое поле прибора 2ω больше углового размера ИИ:

$$2\omega = 2\omega' \approx \frac{D_{\text{пд}}}{a'} > \frac{D_{\text{ист}}}{a} = \frac{D_{\text{ист}}}{l} , \qquad (1.26)$$

где $D_{\text{ист}}$ – диаметр источника излучения.

Из (1.20) и (1.21) следует, что спектральная плотность потока излучения от равнояркого ИИ:

$$\Phi_{e\lambda}(\lambda) = E_{e\lambda}(\lambda) A_{\text{H3}} = \tau(\lambda) L_{e\lambda}(\lambda) \frac{A_{\text{of}} A_{\text{H3}}}{(a')^2} , \qquad (1.27)$$

Из (1.21) следует, что

$$\Phi_{e\lambda}(\lambda) = \tau(\lambda) L_{e\lambda}(\lambda) \frac{A_{o6} A_{\text{HCT}}}{a^2} = \tau(\lambda) L_{e\lambda}(\lambda) \frac{A_{\text{HCT}} A_{o6}}{l^2} . \tag{1.28}$$

Последнее выражение справедливо как для оптических систем, имеющих форму входного зрачка, отличную от круглой (квадратную, кольцевую), так и для ИИ, имеющих произвольную форму.

Рассматриваемые малоразмерные ИИ часто описываются величиной спектральной плотности силы излучения $I_{e\lambda}(\lambda)$. Для малых ИИ $L_{e\lambda}(\lambda) = I_{e\lambda}(\lambda)/A_{\text{HCT}}$, поэтому

$$\Phi_{e\lambda}(\lambda) = \tau (\lambda) I_{e\lambda}(\lambda) \frac{A_{o\delta}}{I^2} . \tag{1.29}$$

Если излучатель ламбертовский, то из (1.28):

$$\Phi_{e\lambda}(\lambda) = \tau(\lambda) M_{e\lambda}(\lambda) \frac{A_{o6} A_{\text{\tiny MCT}}}{\pi \cdot a^2} = \tau(\lambda) M_{e\lambda}(\lambda) \frac{A_{\text{\tiny MCT}} A_{o6}}{\pi \cdot l^2} , \qquad (1.30)$$

где $M_{e\lambda}(\lambda)$ - спектральная плотность энергетической светимости ИИ.

Для тепловых ИИ:

$$\Phi_{e\lambda}(\lambda) = \varepsilon(\lambda) \ \tau(\lambda) \ M_{e\lambda}^{o}(\lambda) \ \frac{A_{o\delta} A_{\text{\tiny HCT}}}{\pi \cdot a^2} = \varepsilon(\lambda) \ \tau(\lambda) \ M_{e\lambda}^{o}(\lambda) \ \frac{A_{\text{\tiny HCT}} A_{o\delta}}{\pi \cdot l^2} \ , \qquad (1.31)$$

где $\varepsilon(\lambda)$ — спектральный коэффициент теплового излучения объекта; $M_{e\lambda}^o(\lambda)$ - спектральная плотность энергетической светимости черного тела при температуре объекта.

Рассмотрим второй случай ($D_{\Pi \Pi} < D_{\text{из}}$).

В этом случае угловое поле прибора 2ω меньше углового размера ИИ:

$$2\omega = 2\omega' \approx \frac{D_{\Pi\Pi}}{a'} < \frac{D_{\text{\tiny MCT}}}{a} = \frac{D_{\text{\tiny MCT}}}{l} . \tag{1.32}$$

Из (1.20) и (1.23) следует, что спектральная плотность потока излучения от равнояркого ИИ:

$$\Phi_{e\lambda}(\lambda) = E_{e\lambda}(\lambda) A_{\Pi \Pi} = \tau(\lambda) L_{e\lambda}(\lambda) \frac{A_{o\delta} A_{\Pi \Pi}}{(a')^2} . \qquad (1.33)$$

При a >> f' и a' ≈ f' получим:

$$\Phi_{e\lambda}(\lambda) = \tau(\lambda) L_{e\lambda}(\lambda) \frac{A_{\text{of}} A_{\text{пд}}}{(f')^2} . \tag{1.34}$$

Если излучатель ламбертовский, то:

$$\Phi_{e\lambda}(\lambda) = \tau(\lambda) M_{e\lambda}(\lambda) \frac{A_{06} A_{\Pi \Pi}}{\pi \cdot (f')^2} . \qquad (1.35)$$

Для тепловых ИИ:

$$\Phi_{e\lambda}(\lambda) = \varepsilon_{\lambda}(\lambda) \ \tau_{\lambda}(\lambda) \ M_{e\lambda}^{o}(\lambda) \ \frac{A_{\text{of}} A_{\text{пд}}}{\pi \cdot (f')^{2}} \quad . \tag{1.36}$$

2. Расчет интегральной чувствительности приемника оптического излучения к излучению источника

При использовании приведенных в литературе [1, 3, 9] значений параметров ПОИ следует обратить внимание на вид ИИ, по которому производилась аттестация ПОИ. Если сведения о паспортном ИИ не приведены, то можно считать, что ПОИ аттестован по источнику типа А.

Спектральное распределение энергетической светимости источника типа A считать совпадающим с излучением ЧТ с температурой $T=2856~{
m K}.$

Порядок выполнения расчётов:

- 1. Построить на миллиметровой бумаге (1 лист) графики следующих зависимостей (рекомендуется масштаб по оси абсцисс 1 мкм 10 см, масштаб по оси ординат 1...10 мм):
- а) относительного спектрального распределения энергетической светимости $m_{e,\lambda}^{\rm I}(\lambda)$ паспортного ИИ в диапазоне от 0 до $3\lambda_{max}$; при расчёте воспользоваться единой изотермической кривой (приведенной функцией Планка) [Приложение 1];
- б) относительного спектрального распределения энергетической светимости $m^{II}_{e,\lambda}(\lambda)$ заданного ИИ ЧТ в диапазоне от 0 до $3\lambda_{max}$ или светодиода [2, 9];
- в) относительной спектральной световой эффективности монохроматического излучения для дневного зрения $V(\lambda)$ [Приложение 2];
- г) относительной спектральной характеристики чувствительности заданного ПОИ $S(\lambda)$ [3, 9].
- 2. Рассчитать величины коэффициентов использования κ^{I} и κ^{II} излучения паспортного (I) и заданного (II) ИИ заданным ПОИ, а также коэффициенты использования κ^{I}_{Γ} и κ^{II}_{Γ} излучения паспортного и заданного ИИ глазом (к.п.д. глаза), если параметры ПОИ заданы в световых величинах [3]:

$$\kappa^{\mathrm{I}} = \frac{\int_{0}^{\infty} m_{e,\lambda}^{\mathrm{I}}(\lambda) \cdot \tau(\lambda) \cdot S(\lambda) \cdot d\lambda}{\int_{0}^{\infty} m_{e,\lambda}^{\mathrm{I}}(\lambda) \cdot \tau(\lambda) \cdot d\lambda} = \frac{\sum_{i=1}^{k} m_{e,\lambda_{i}}^{\mathrm{I}} \cdot S_{\lambda_{i}}}{\sum_{i=1}^{k} m_{e,\lambda_{i}}^{\mathrm{I}}};$$
(2.1)

$$\kappa^{\mathrm{II}} = \frac{\int\limits_{0}^{\infty} m_{e,\lambda}^{\mathrm{II}}(\lambda) \cdot \tau(\lambda) \cdot S(\lambda) \cdot d\lambda}{\int\limits_{0}^{\infty} m_{e,\lambda}^{\mathrm{II}}(\lambda) \cdot \tau(\lambda) \cdot d\lambda} = \frac{\sum\limits_{i=1}^{k} m_{e,\lambda_{i}}^{\mathrm{II}} \cdot S_{\lambda_{i}}}{\sum\limits_{i=1}^{k} m_{e,\lambda_{i}}^{\mathrm{II}}} ; \qquad (2.2)$$

$$\kappa_{\Gamma}^{I} = \frac{\int_{0.38}^{0.78} m_{e,\lambda}^{I}(\lambda) \cdot \tau(\lambda) \cdot V(\lambda) \cdot d\lambda}{\int_{0}^{\infty} m_{e,\lambda}^{I}(\lambda) \cdot \tau(\lambda) \cdot d\lambda} = \frac{\sum_{i=1}^{k} m_{e,\lambda_{i}}^{I} \cdot V_{\lambda_{i}}}{\sum_{i=1}^{k} m_{e,\lambda_{i}}^{I}};$$
(2.3)

$$\kappa_{\Gamma}^{\text{II}} = \frac{\int_{0.38}^{0.78} m_{e,\lambda}^{\text{II}}(\lambda) \cdot \tau(\lambda) \cdot V(\lambda) \cdot d\lambda}{\int_{0}^{\infty} m_{e,\lambda}^{\text{II}}(\lambda) \cdot \tau(\lambda) \cdot d\lambda} = \frac{\sum_{i=1}^{k} m_{e,\lambda_{i}}^{\text{II}} \cdot V_{\lambda_{i}}}{\sum_{i=1}^{k} m_{e,\lambda_{i}}^{\text{II}}} .$$
(2.4)

Шаг интегрирования принять не менее 0,1мкм. Ход расчёта отразить в табл. 3.

Таблица 3 К расчёту коэффициентов использования излучения паспортного (I) и заданного (II) ИИ заданным ПОИ

λ_{i} , MKM	$m^{ m I}_{ m e\lambda i}$	$m^{\mathrm{II}}_{\mathrm{e}\lambda\mathrm{i}}$	$S_{\lambda i}$	$V_{\lambda \mathrm{i}}$	$m^{\rm I}_{\rm e\lambda i} S_{\lambda i}$	$m^{\mathrm{II}}_{\mathrm{e}\lambda\mathrm{i}}S_{\lambda\mathrm{i}}$	$m^{ m I}_{ m e\lambda i} V_{ m \lambda i}$	$m^{\rm II}_{\rm e\lambda i} V_{ m \lambda I}$
λ_1								
λ_2								
λ_k								
	k .	k .			k S	k .	k .	k .
	<u>∠</u> <i>i</i> =1	<u>∠</u> <i>i</i> =1			<u>∠</u> <i>i</i> =1	<u>Z</u> i=1	<u>Z</u> i=1	<u>Z</u> i=1

3. Рассчитать величину интегральной токовой или вольтовой чувствительности заданного ПОИ к излучению заданного ИИ в энергетических величинах (A/BT, B/BT) [1, 2, 3, 9]:

$$S_{\text{инт},e}^{\text{II}} = S_{\text{инт},v}^{\text{I}} \cdot 683 \cdot \kappa_{r}^{\text{I}} \cdot \frac{\kappa^{\text{II}}}{\kappa^{\text{I}}}$$
 (2.5)

или

$$S_{\text{инт},e}^{\text{II}} = S_{\text{инт},e}^{\text{I}} \cdot \frac{\kappa^{\text{II}}}{\kappa^{\text{I}}},\tag{2.6}$$

где $S^{\rm I}_{\rm инт,\; \nu}$ — интегральная чувствительность ПОИ к излучению паспортного ИИ в световых величинах; $S^{\rm I}_{\rm инт,\; e}$ — интегральная чувствительность ПОИ к излучению паспортного ИИ в энергетических величинах.

4. Если параметры ИИ были заданы в световых величинах и был рассчитан световой поток Φ_{ν} , падающий на ПОИ, то необходимо рассчитать соответствующий поток излучения:

$$\Phi_e = \frac{\Phi_v}{683 \cdot \kappa_r^{\text{II}}}.$$
 (2.7)

3. Расчет переменной составляющей сигнала и величины постоянной составляющей тока на выходе приемника оптического излучения

При синусоидальной модуляции поток излучения, падающий на ПОИ, описывается выражением:

$$\Phi_{\Pi O M} = \Phi_{=} + \Phi_{\sim} \sin \omega t, \tag{3.1}$$

где Φ_- – постоянная составляющая потока излучения; Φ_- – амплитуда переменной составляющей потока излучения (рис. 4).

Постоянная составляющая потока излучения может быть обусловлена наличием фоновых засветок от окружающих объектов $\Phi_{\text{фона}}$, а также средним значением потока излучения исследуемого ИИ $\Phi_{\text{c}=}$.

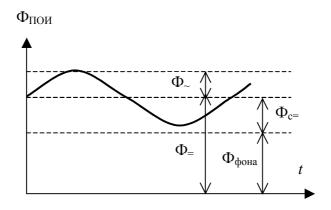


Рис. 4. Составляющие потока излучения на входе ПОИ

Если излучение фона отсутствует или пренебрежимо мало, а глубина модуляции исследуемого излучения составляет 100%, то

$$\Phi_{c} = \Phi_{\sim} = \Phi_{\Pi O H} / 2$$
 (3.2)

Поток излучения, падающий на ПОИ, обуславливает возникновение тока, проходящего через ПОИ и называемого фототоком:

$$I_{ob} = \Phi_{\Pi O M} \cdot S_{I} , \qquad (3.3)$$

где S_I – токовая чувствительность ПОИ.

Фототок I_{ϕ} складывается с темновым током ПОИ $I_{\text{\tiny T}}$, а обе эти составляющие образуют общий ток ПОИ (рис. 5):

$$I_{\text{общ}} = I_{\text{T}} + I_{\phi} . \tag{3.4}$$

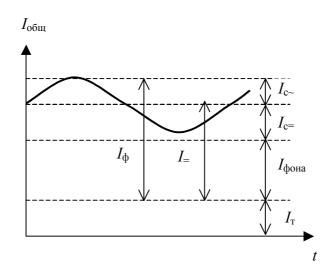


Рис. 5. К расчету тока на выходе ПОИ

При синусоидальной модуляции потока излучения с круговой частотой $\omega_{\scriptscriptstyle M}$

$$I_{\text{обш}}(t) = I_{\text{T}} + \Phi_{\text{-}} \cdot S_{\text{I}} + \Phi_{\text{\sim}} \cdot S_{\text{I}} \cdot \sin \omega_{\text{M}} t. \qquad (3.5)$$

Темновой ток $I_{\scriptscriptstyle \rm T}$ и постоянная составляющая фототока $I_{\scriptscriptstyle \rm =} \Phi_{\scriptscriptstyle -} \cdot S_{\rm I}$ образуют постоянную составляющую тока:

$$\overline{I} = I_{\rm T} + I_{\rm H} = I_{\rm T} + \Phi_{\rm H} \cdot S_{\rm I}$$
 (3.6)

Амплитуда переменных составляющих фототока и напряжения фотосигнала:

$$I_{\sim} = \Phi_{\sim} \cdot S_{\rm I}$$
; $U_{\sim} = \Phi_{\sim} \cdot S_{\rm u} = \Phi_{\sim} \cdot S_{\rm I} \cdot R_{\rm H}$, (3.7)

где $S_{\rm u}$ — вольтовая чувствительность ПОИ; $R_{\rm h}$ — сопротивление нагрузки ПОИ.

Амплитуда переменной составляющей сигнала (напряжения или тока) определяется только излучением ИИ, а величина постоянной составляющей общего тока \bar{I} зависит от множества внешних факторов: изменения уровня фона, изменений темнового тока, которые могут быть обусловлены изменением температуры ПОИ и т. д. Исходя из изложенного, для передачи информации в ОЭП используются, как правило, только модулированные потоки излучения, либо осуществляется модуляция исследуемых потоков излучения.

При полихроматическом ИИ (черное или серое тело) или квазимонохроматическом ИИ (полупроводниковый излучающий диод) и

селективном ПОИ ток сигнала на его выходе будет определяться формулой:

$$I_{c} = \int_{\lambda=0}^{\infty} \Phi_{e\lambda}(\lambda) \cdot S_{\lambda}(\lambda) \cdot \tau(\lambda) \cdot d\lambda, \qquad (3.8)$$

где $\Phi_{e,\lambda}(\lambda)$ - спектральное распределение потока излучения на ПОИ; $S_{\lambda}(\lambda)$ – абсолютная спектральная характеристика чувствительности ПОИ; $\tau(\lambda)$ – спектральный коэффициент пропускания среды распространения и оптической системы.

4. Расчёт напряжения и тока шума приемника оптического излучения в заданной полосе частот электронного тракта

Кроме переменной составляющей фототока на выходе ПОИ всегда присутствуют флюктуации общего тока, называемые шумами. Шумы существуют как при наличии, так и при отсутствии фотосигнала, так как они обусловлены физическими процессами, происходящими в ПОИ.

Наличие шумов затрудняет обнаружение слабых сигналов, а также приводит к погрешности измерения параметров сигнала: амплитуды, частоты, фазы, времени появления импульсов излучения.

Шумы характеризуются средними квадратическими значениями (СКЗ) флуктуации общего тока ПОИ в заданной полосе частот $I_{\rm m}$ или СКЗ флуктуации напряжения $U_{\rm m}$ на заданной нагрузке в цепи ПОИ в заданной полосе частот.

В справочной литературе и в паспортах ПОИ приводят один из следующих параметров, характеризующих шумы ПОИ: порог чувствительности Φ_{Π} в заданной полосе частот; порог чувствительности в единичной полосе частот $\Phi_{\Pi 1}$; удельный порог чувствительности Φ_{Π}^{*} ; обнаружительную способность D; удельную обнаружительную способность D^{*} .

Из определений перечисленных параметров следует, что СКЗ напряжения или тока шума ПОИ в заданной полосе частот $\Delta f_{\rm эфф}$ электронного тракта на частоте $f_{\rm пасп}$, на которой проводилась аттестация ПОИ, может быть найдено с помощью следующих выражений:

$$\begin{split} I_{IIII IIONAf \ \ni \phi \phi} &= \varPhi_n \cdot S_{I, \ uhm} \cdot \sqrt{\frac{\Delta f_{\ni \phi \phi}}{\Delta f_{\ni \phi \phi \ nacn}}} = \frac{1}{D} \cdot S_{I, \ uhm} \cdot \sqrt{\frac{\Delta f_{\ni \phi \phi}}{\Delta f_{\ni \phi \phi \ nacn}}} = \\ &= \varPhi_n^* \cdot S_{I, \ uhm} \cdot \sqrt{A_{\phi^{_{I}}} \cdot \Delta f_{\ni \phi \phi}} = \frac{1}{D^*} \cdot S_{I, \ uhm} \cdot \sqrt{A_{\phi^{_{I}}} \cdot \Delta f_{\ni \phi \phi}} = \\ &= \varPhi_{nI} \cdot S_{I, \ uhm} \cdot \sqrt{\Delta f_{\ni \phi \phi}} \;, \end{split} \tag{4.2}$$

где $\Delta f_{\rm 9\varphi\varphi}$ — эффективная шумовая полоса частот электронного тракта разрабатываемого прибора; $\Delta f_{\rm 9\varphi\varphi}$ пасп — эффективная шумовая полоса частот электронного тракта установки, на которой производилась аттестация ПОИ; $A_{\varphi q}$ — геометрическая фоточувствительная площадь ПОИ.

Стандарты рекомендуют производить аттестацию ПОИ на внутреннем фотоэффекте при частоте модуляции сигнала $f_{\text{мод}} = 800$ Гц, а ПОИ на внешнем фотоэффекте — при $f_{\text{мод}} = 1000$ Гц. Рекомендуется выбирать $\Delta f_{\text{эфф пасп}} = 0,2 \cdot f_{\text{мод}}$. Эти рекомендации действуют в тех случаях, когда ТУ на конкретные типы ПОИ не предусматривает иных значений $f_{\text{мод}}$ и $\Delta f_{\text{эфф пасп}}$.

При использовании выражений (4.1) и (4.2) следует подставлять значения интегральной вольтовой $S_{U_{\text{ИНТ}}}$ и токовой $S_{I_{\text{ИНТ}}}$ чувствительности, а также шумовых параметров ПОИ по отношению к излучению одного, например, паспортного ИИ.

В справочниках отсутствуют сведения о шумовых параметрах некоторых ПОИ. Приблизительную их оценку можно получить, воспользовавшись известными теоретическими формулами для расчёта составляющих шумов соответствующих типов ПОИ.

Основными составляющими шумов фоторезисторов является токовый, генерационно-рекомбинационный и тепловой шумы.

Токовый шум (1/f—шум) обусловлен технологией изготовления фоточувствительного слоя, состоянием поверхности, качеством контактов и токами утечки. СКЗ тока и напряжения токового шума в узкой области частот Δf описываются выражениями [3]:

$$I_{\text{III} I \text{ ПОИ } \Delta f} = \sqrt{\frac{A \cdot \bar{I}^2}{f} \cdot \Delta f}, \qquad U_{\text{III} I \text{ ПОИ } \Delta f} = \sqrt{\frac{A \cdot \bar{I}^2 \cdot R_{\text{ПОИ}}^2}{f} \cdot \Delta f}, \qquad (4.3)$$

где A - постоянная, зависящая от материала ПОИ ($A=3\cdot10^{-12}...3\cdot10^{-7}$; для сернисто-свинцовых фоторезисторов $A\approx10^{-11}$); $\bar{\rm I}$ – среднее значение тока ПОИ, определяемое формулой (27-3.6); f – среднее значение частоты в полосе частот; $R_{\rm ПОИ}$ – сопротивление ПОИ.

Теоретический расчёт генерационно-рекомбинационного шума не представляется возможным, так как не известны такие параметры, как

время жизни носителей $\tau_{\rm H}$, концентрация носителей n, объём фотослоя V для конкретных типов ПОИ.

Тепловой шум возникает вследствие хаотического движения свободных электронов в ПОИ. Спектр теплового шума — равномерный (белый). СКЗ шума в полосе частот $\Delta f_{\rm эфф}$ можно рассчитать по формуле Найквиста [3]:

$$\begin{split} I_{\text{\tiny III.T. \PiOM.}\Delta f.9 \varphi \varphi} &= \sqrt{\frac{4 \cdot k \cdot T_{\text{\tiny \PiOM}}}{R_{\text{\tiny \PiOM}}} \cdot \Delta f_{9 \varphi \varphi}} \;, \\ U_{\text{\tiny III.T. \PiOM.}\Delta f.9 \varphi \varphi} &= \sqrt{4 \cdot k \cdot T_{\text{\tiny \PiOM}} \cdot R_{\text{\tiny HOM}} \cdot \Delta f_{9 \varphi \varphi}} \;\;, \end{split} \tag{4.4}$$

где k — постоянная Больцмана (k = 1,38·10⁻²³ Дж·К⁻¹); $T_{\Pi O \Pi}$ — температура ПОИ; $R_{\Pi O \Pi}$ — сопротивление ПОИ.

Основными составляющими шума фотодиода являются токовый, дробовый и тепловой шумы.

Токовый шум сказывается в основном на низких частотах ($f \approx 1 \text{ к}\Gamma\text{ц}$).

Дробовый шум возникает вследствие флюктуаций во времени числа электронов, образующих электрический ток. СКЗ дробового шума в полосе частот $\Delta f_{3\phi\phi}$:

$$\begin{split} I_{\text{III ДР ПОИ $\Delta f \ 9 \varphi \varphi}} &= \sqrt{2 \cdot e \cdot \bar{I} \cdot \Delta f_{9 \varphi \varphi}} \;, \\ U_{\text{III ДР ПОИ $\Delta f \ 9 \varphi \varphi}} &= \sqrt{2 \cdot e \cdot \bar{I} \cdot R_{\text{H}}^2 \cdot \Delta f_{9 \varphi \varphi}} \;, \end{split} \tag{4.5}$$$$

где e – заряд электрона (e = 1,6·10⁻¹⁹ Кл); \overline{I} – среднее значение тока ПОИ.

Основной составляющей шума электронов вакуумных фотоэлементов и фотоумножителей является дробовый шум, который для электровакуумных фотоэлементов рассчитывается по формуле (4.5), а для фотоумножителей, с учётом влияния динодов:

$$I_{\text{III } \text{JIP } \Phi \text{Y } \Delta f \text{ } \text{9} \Phi \Phi} = \sqrt{2 \cdot e \cdot \bar{I}_{\Phi \text{K}} \cdot M_{\Phi \text{Y}}^2 \cdot (1+B) \cdot \Delta f_{\text{9} \Phi}} \quad , \tag{4.6}$$

где $I_{\Phi K}$ — суммарный ток фотокатода; $M_{\Phi Y}$ — коэффициент усиления фотоумножителя по току; (1+B) — коэффициент, учитывающий увеличение дробового шума за счёт динодного умножения (B=0,3...4, а для фотоумножителей с электростатической фокусировкой B=1,5).

5. Расчёт порога чувствительности и обнаружительной способности приемника оптического излучения по отношению к излучению заданного источника

Шумовые параметры ПОИ приводятся в паспортах и справочниках, как правило, по отношению к излучению того же ИИ, что и чувствительность.

Величины порога чувствительности или обнаружительной способности заданного ПОИ к излучению заданного ИИ в полосе частот, при которой производилась аттестация ПОИ, в энергетических величинах (Вт, Вт⁻¹) равны [3]:

$$\Phi_{\Pi e}^{II} = \Phi_{\Pi v}^{I} \frac{\kappa^{I}}{683 \cdot \kappa_{\Gamma}^{I} \cdot \kappa^{II}}, \qquad \Phi_{\Pi e}^{II} = \Phi_{\Pi e}^{I} \frac{\kappa^{I}}{\kappa^{II}}, \qquad (5.1)$$

$$D_{e}^{II} = D_{v}^{I} 683 \kappa_{\Gamma}^{I} (\kappa^{II}/\kappa^{I}); \qquad D_{e}^{II} = D_{e}^{I} (\kappa^{II}/\kappa^{I}), \qquad (5.1)$$

где $\Phi^{\rm I}_{\rm nv}$ и $\Phi^{\rm I}_{\rm ne}$ — порог чувствительности ПОИ к излучению паспортного ИИ в полосе частот, при которой производилась аттестация ПОИ, в световых (лм) и энергетических (Вт) величинах соответственно; $D^{\rm I}_{\rm v}$ и $D^{\rm I}_{\rm e}$ — обнаружительная способность ПОИ к излучению паспортного ИИ в полосе частот, при которой производилась аттестация ПОИ, в световых (лм⁻¹) и энергетических (Вт⁻¹) величинах соответственно. Аналогично выглядят формулы для расчёта порога чувствительности в единичной полосе частот $\Phi^{\rm II}_{\rm nle}$ (Вт·Гц^{-1/2}), удельного порога чувствительности $\Phi^{\rm *II}_{\rm ne}$ (Вт·Гц^{-1/2}·см⁻¹), а также удельной обнаружительной способности $D^{\rm *II}_{\rm e}$ (Вт·Гц^{-1/2}·см⁻¹).

Порог чувствительности ПОИ по отношению к излучению заданного ИИ в заданной полосе частот электронного тракта может быть найден из соотношений:

$$\Phi^{\rm II}_{\rm ne\ \Delta f' \Rightarrow \varphi \varphi} = \Phi^{\rm II}_{\rm ne} \left(\Delta f'_{\Rightarrow \varphi \varphi} \ / \ \Delta f'_{\Rightarrow \varphi \varphi \ \rm nacn} \right)^{1/2} = \left(1 / \ D^{\rm II}_{\rm e} \right) \left(\Delta f'_{\Rightarrow \varphi \varphi} \ / \ \Delta f'_{\Rightarrow \varphi \varphi \ \rm nacn} \right)^{1/2} \ . \ (5.2)$$

6. Расчёт основных составляющих шумовой погрешности оптико-электронного прибора и отношения сигнал/шум в заданной полосе частот электронного тракта

Шумовая погрешность ОЭП определяется не только собственными шумами ПОИ, но и наличием внешних засветок, схемой включения ПОИ, шумами сопротивления нагрузки и первых каскадов предварительного усилителя.

В качестве примера рассмотрим схемы включения ПОИ и предварительный усилитель на основе полевого транзистора, представленный на рис. 6.

Сопротивление нагрузки $R_{\rm H}$, как правило, выбирают равным темновому сопротивлению ПОИ $R_{\rm T}$, если $R_{\rm T} \leq 2$ МОм, или принимают $R_{\rm H}{=}2$ МОм, если $R_{\rm T} > 2$ МОм (для фотодиодов, фотоэлементов, фотоумножителей). Пироэлектрические ПОИ и полупроводниковые болометры включаются в цепь с сопротивлением нагрузки до 50...200 МОм.



Рис. 6. Схемы включения ПОИ и предварительный усилитель на полевом транзисторе: а - фоторезистор; б - фотодиод в фотодиодном режиме; в - фотодиод в фотогальваническом режиме; г - фотоэлемент

При выборе сопротивления нагрузки следует учитывать также постоянную времени $T_{\rm K}$ инерционного контура, образованного сопротивлением нагрузки $R_{\rm H}$ и ёмкостью инерционного контура $C_{\rm K}$, образованного ёмкостью ПОИ $C_{\rm H}$, ёмкостью монтажа $C_{\rm M}$ и входной ёмкостью предварительного усилителя $C_{\rm B}$:

$$T_{\rm r} = R_{\rm v} C_{\rm r} = R_{\rm v} (C_{\rm g} + C_{\rm g} + C_{\rm d})$$
 (6.1)

Ёмкость монтажа $C_{\rm M}=(1...5)$ пФ, ёмкость полевого транзистора $C_{\rm B}=(2...10)$ пФ. При таких параметрах и невысокой частоте модуляции ($f_{\rm M}<<10$ кГц) инерционность системы в ряде случаев определяется временем установления нормированной переходной характеристики (постоянной времени) ПОИ $\tau_{\rm пои}$.

Постоянные времени фоторезисторов и фотодиодов приводятся в справочной литературе [1, 3], а постоянные времени фотоумножителей ($\tau_{\rm dy} \approx 1...5$ нс) и фотоэлементов ($\tau_{\rm dy} \approx 10^{-12}$ с) пренебрежимо малы.

С учётом изложенных соображений сопротивление нагрузки $R_{\rm H}$ и постоянная времени $\tau_{\rm пои}$ должны удовлетворять условиям:

$$R_{\rm H} \le 0.1/(C_{\rm K} f_{\rm M}) , \quad \tau_{\rm \PiOH} \le 0.1/f_{\rm M} .$$
 (6.2)

Шумовые параметры ПОИ, приведённые в паспортах и справочниках, не учитывают тех составляющих шума, которые обусловлены конкретными условиями работы ПОИ в ОЭП. В частности, паспортные параметры не содержат величину дробового шума фототока. Дробовый шум фототока фотодиодов и электровакуумных фотоэлементов:

$$I_{\text{III.,др.,\PiOH.}\Delta f. \circ \varphi \varphi.I} = \sqrt{2eI_{\underline{-}}\Delta f_{\vartheta \varphi \varphi}} = \sqrt{2e\Phi_{\underline{-}}S_{I.\text{UHT}}^{II}\Delta f_{\vartheta \varphi \varphi}} \quad ; \tag{6.3}$$

$$U_{\text{III.,др.,\PiOH.}\Delta f.\, 3\varphi\varphi.I} = \sqrt{2eI_{=}R_{H}^{2}\Delta f_{3\varphi\varphi}} = \sqrt{2e\Phi_{=}S_{I.\,\text{UHT}}^{II}R_{H}^{2}\Delta f_{3\varphi\varphi}} \quad , \tag{6.4}$$

где e — заряд электрона (e = 1,6·10⁻¹⁹ Кл); $R_{\rm H}$ — сопротивление нагрузки ПОИ. Здесь следует использовать величину чувствительности ПОИ $S^{\rm II}_{\rm I,\; инт}$ к падающему на него в данном ОЭП излучению заданного ИИ.

Суммарные значения тока и напряжения шума ПОИ с учетом дробового шума фототока:

$$I_{\text{ш.ПОИ. $\Delta f.} \Rightarrow \varphi \varphi.\Sigma} = \sqrt{I_{\text{ш.ПОИ.}\Delta f.}^2 \Rightarrow \varphi \varphi} + I_{\text{ш.,}qp.\PiOИ.\Delta f.}^2 \Rightarrow \varphi \varphi.I$; (6.5)$$

$$U_{\text{III.}\Pi\text{OM.}\Delta f.\Rightarrow \varphi\varphi,\Sigma} = \sqrt{U_{\text{III.}\Pi\text{OM.}\Delta f.\Rightarrow \varphi\varphi}^2 + U_{\text{III.}\Pi\text{OM.}\Delta f.\Rightarrow \varphi\varphi,I}^2} \quad . \tag{6.6}$$

Аналогично можно учесть и другие составляющие шума для условий конкретной задачи.

Кроме собственных шумов ПОИ при расчете ОЭП следует учитывать тепловой шум резистора нагрузки $R_{\rm H}$ и шум активного элемента предварительного усилителя.

СКЗ теплового шума резистора нагрузки в полосе частот $\Delta f_{\theta \varphi \varphi}$:

$$I_{\text{III T RH } \Delta f \text{ } 9 \varphi \varphi} = \sqrt{\frac{4kT_{n}}{R_{n}} \Delta f_{9 \varphi \varphi}} \quad ; \quad U_{\text{III T RH } \Delta f \text{ } 9 \varphi \varphi} = \sqrt{4kT_{n}R_{n}\Delta f_{9 \varphi \varphi}} \quad , \tag{6.7}$$

где k - постоянная Больцмана ($k=1,38\cdot10^{-23}$ Дж·К⁻¹); $T_{\rm H}$ - температура резистора нагрузки; $R_{\rm H}$ - сопротивление резистора нагрузки.

Величина шума активного элемента предварительного усилителя $I_{\text{ш ПУ }\Delta f \ 9 \varphi \varphi}$ может быть взята в справочниках на соответствующие элементы электронной техники. При этом следует учитывать схему его включения.

Для полевых транзисторов характерной составляющей является тепловой шум канала, который характеризуется эквивалентным шумовым сопротивлением:

$$R_{\rm III} = 2/(3S_{\rm IIT})$$
, (6.8)

где $S_{\Pi T}$ — крутизна вольтамперной характеристики полевого транзистора (типовое ее значение — $S_{\Pi T}$ = (1...3)·10⁻³ A/B).

СКЗ напряжения шума полевого транзистора в полосе частот $\Delta f_{3\varphi\varphi}$, приведенное к его входу:

$$I_{\text{m} \,\Pi T \,\Delta f \, 9 \phi \phi} = \sqrt{\frac{4kT_{\Pi T}R_{u}}{R_{u}^{2}}\Delta f_{9 \phi \phi}} \quad ; \qquad U_{\text{m} \,\Pi T \,\Delta f \, 9 \phi \phi} = \sqrt{4kT_{\Pi T}R_{u}\Delta f_{9 \phi \phi}} \quad , \tag{6.9}$$

где $T_{\Pi \Gamma}$ – температура полевого транзистора.

Суммарное значение тока и напряжения шума ПОИ, входной цепи и предварительного усилителя в эффективной полосе частот $\Delta f_{\text{эфф}}$ электронного тракта:

$$I_{\text{m} \Sigma \Delta f \ \text{s} \phi \phi} = \sqrt{I_{\text{m} \Pi \text{OM}}^2 \Delta f \ \text{s} \phi \phi \Sigma} + I_{\text{m} \Pi \text{R} \text{H}}^2 \Delta f \ \text{s} \phi \phi} + I_{\text{m} \Pi \text{V}}^2 \Delta f \ \text{s} \phi \phi} \quad ; \tag{6.10}$$

$$U_{\text{m} \Sigma \Delta f \ 9 \phi \phi} = \sqrt{U_{\text{m} \Pi O M \Delta f \ 9 \phi \phi}^2 + U_{\text{m} \pi R \text{H} \Delta f \ 9 \phi \phi}^2 + U_{\text{m} \Pi Y \Delta f \ 9 \phi \phi}^2} . \tag{6.11}$$

Пользуясь рассчитанными ранее значениями амплитуд переменных составляющих потока излучения Φ_{\sim} , фототока I_{\sim} и напряжения фотосигнала U_{\sim} , а также порога чувствительности ПОИ $\Phi^{\rm II}_{\rm ne \ \Delta f \ 9 \varphi \varphi}$ по отношению к излучению заданного ИИ в заданной полосе частот электронного тракта и тока шума $I_{\rm III \ \Sigma \ \Delta f \ 9 \varphi \varphi}$ или напряжения шума $U_{\rm III \ \Sigma \ \Delta f \ 9 \varphi \varphi}$, можно рассчитать отношения сигнал/шум без учета ($\mu_{\rm nou}$) и с учетом ($\mu_{\rm \Sigma}$) влияния шумов входной цепи и предварительного усилителя:

$$\mu_{\Pi O H} = \frac{\Phi_{\tilde{\mu}}}{\Phi_{\text{ne } \Delta f \ 3 \varphi \varphi}^{II}} ; \qquad \mu_{\Sigma} = \frac{I_{\tilde{\mu}}}{I_{\text{Im } \Sigma \Delta f \ 3 \varphi \varphi}} = \frac{U_{\tilde{\mu}}}{U_{\text{Im } \Sigma \Delta f \ 3 \varphi \varphi}} . \tag{6.12}$$

Спектральная плотность мощности (дисперсия) белого шума ПОИ, входной цепи и предварительного усилителя в полосе частот $\Delta f_{3\Phi\Phi}$:

$$N = \frac{\bar{I}_{\text{II} \Sigma \Delta f \Rightarrow \varphi \varphi}^2}{\Delta f_{\Rightarrow \varphi \varphi}} . \tag{6.13}$$

При оптимальной по критерию максимума правдоподобия обработке сигнала средняя квадратическая погрешность измерения амплитуды сигнала с детерминированной начальной фазой на фоне нормального белого шума:

$$\sigma_{\text{III}} = \sqrt{\frac{N_0}{2e_0}} , \qquad (6.14)$$

где e_0 – удельная энергия сигнала за время измерения $T_{\rm u}$;

$$e_0 = \int_0^\infty f^2(t)dt \; ; \tag{6.15}$$

f(t) — нормированный закон модуляции сигнала. При синусоидальной модуляции

$$e_0 = T_{\text{\tiny M}} / 2 \; ; \; \sigma_{\text{\tiny III}} = \sqrt{\frac{N_0}{T_u}} \; .$$
 (6.16)

При модуляции в виде прямоугольных импульсов со скважностью, равной 2:

$$e_0 = T_{\text{\tiny M}}; \ \sigma_{\text{\tiny MI}} = \sqrt{\frac{N_{_0}}{2T_{_u}}} \ .$$
 (6.17)

7. Расчет шумовой погрешности оптико-электронных систем измерения температуры

Ток сигнала на выходе ПОИ в оптико-электронной системе измерения температуры (ОЭСИТ) в соответствии с (1.18):

$$I_{c} = \int_{\lambda=0}^{\infty} \Phi_{e\lambda}(\lambda) \cdot S_{\lambda}(\lambda) \cdot d\lambda =$$

$$= M_{e\lambda \max}^{o} \cdot \frac{A_{o\delta} A_{\pi\pi}}{\pi \cdot (a')^{2}} \cdot S_{\lambda \max} \cdot \int_{\lambda=0}^{\infty} m_{e\lambda}^{o}(\lambda, T) \cdot \varepsilon(\lambda) \cdot \tau(\lambda) \cdot s_{\lambda}(\lambda) d\lambda, \qquad (7.1)$$

где $S_{\lambda}(\lambda)$, $s_{\lambda}(\lambda)$ и $S_{\lambda \max}$ — абсолютная спектральная характеристика чувствительности, относительная спектральная характеристика чувствительности и максимальное значение спектральной чувствительности соответственно; $S_{\lambda}(\lambda) = S_{\lambda \max} \ s_{\lambda}(\lambda)$; $m^{\circ}_{e\lambda}(\lambda)$, $M^{\circ}_{e\lambda} \ \max$ — относительная спектральная плотность энергетической светимости ЧТ и максимальное значение ее спектральной плотности соответственно; T — температура объекта.

Здесь полагалось, что температура объекта не влияет на его коэффициент теплового излучения. В противном случае следует рассматривать зависимость $\varepsilon_{\lambda}(\lambda, T)$.

Из выражения (7.1) следует, что особенностью ОЭСИТ, то есть пирометров, тепловизоров и т. д., является существенно нелинейная зависимость величины сигнала $I_{\rm c}$ от измеряемого параметра — температуры T.

Для определения шумовой погрешности измерения температуры продифференцируем формулу (7.1) по температуре:

$$\frac{\partial I_{c}}{\partial T} = \frac{A_{o6} A_{\Pi \Pi}}{\pi \cdot (a')^{2}} \cdot S_{\lambda \max} \cdot \int_{\lambda=0}^{\infty} \frac{\partial M_{e\lambda}^{o}(\lambda, T)}{\partial T} \cdot \varepsilon_{\lambda}(\lambda) \cdot \tau_{\lambda}(\lambda) \cdot s_{\lambda}(\lambda) d\lambda , \qquad (7.2)$$

Для упрощения расчетов заменим формулу Планка формулой Вина, что справедливо для $\lambda T < 5000$ мкм·К с погрешностью, не превышающей 5%:

$$M_{e\lambda}^{o}(\lambda, T) = C_1 \lambda^{-5} \exp\left(-\frac{C_2}{\lambda T}\right),$$
 (7.3)

где $C_1 = 3,7415 \cdot 10^{16} \text{ Br·м}^2$; $C_2 = 1,43879 \cdot 10^{-2} \text{ м·K}$.

При такой аппроксимации:

$$\frac{\partial M_{e\lambda}^{o}(\lambda, T)}{\partial T} = \frac{C_2 M_{e\lambda}^{o}(\lambda T)}{\lambda T^2} . \tag{7.4}$$

Используя второй закон Вина ($M_{e,\lambda,max}^0 = C_{\lambda} \cdot T^5$, где $C_{\lambda}' = 1,315 \cdot 10^{-5} \,\mathrm{Bt/(m^3 \cdot K^5)} = 1,315 \cdot 10^{-15} \,\mathrm{Bt/(cm^2 \cdot mkm \cdot K^5)}$), получим, что ток сигнала на выходе ПОИ:

$$I_{c} = C'_{\lambda} \cdot T^{5} \cdot \frac{A_{o6} A_{n\pi}}{\pi \cdot (a')^{2}} \cdot S_{\lambda \max} \cdot \int_{\lambda=0}^{\infty} m_{e\lambda}(\lambda, T) \cdot \varepsilon(\lambda) \cdot \tau(\lambda) \cdot s_{\lambda}(\lambda) d\lambda . \tag{7.5}$$

Максимальное значение монохроматической чувствительности ПОИ:

$$S_{\lambda \max} = \frac{S_{uhm}^{I}}{\kappa_{HOM}^{I}} , \qquad (7.6)$$

где $S^{I}_{\text{инт}}$ – интегральная чувствительность ПОИ к излучению паспортного (эталонного) ИИ; $\kappa^{I}_{\Pi O U}$ – коэффициент использования ПОИ излучения паспортного ИИ;

$$\kappa_{\Pi O U}^{I} = \frac{\int_{0}^{\infty} \varphi^{I}_{e \lambda}(\lambda) s_{\lambda}(\lambda) d\lambda}{\int_{0}^{\infty} \varphi^{I}_{e \lambda}(\lambda) d\lambda} ; \qquad (7.7)$$

 $\phi^I_{\ e\lambda}(\lambda)$ - относительное спектральное распределение потока излучения паспортного ИИ.

Для серого излучателя ($\epsilon(\lambda) = \epsilon = const$) и неселективной оптики ($\tau(\lambda) = \tau = const$) из (7.5) получим:

$$I_{c} = C'_{\lambda} \cdot T^{5} \cdot \varepsilon \cdot \tau \cdot \frac{A_{o6} A_{n\pi}}{\pi \cdot (a')^{2}} \cdot S_{\lambda \max} \cdot \int_{\lambda=0}^{\infty} m_{e\lambda}(\lambda, T) \cdot S_{\lambda}(\lambda) d\lambda . \tag{7.8}$$

Изменение сигнала на выходе ПОИ, обусловленное малым изменением температуры:

$$\begin{split} &\Delta I_{c} = \left(\frac{\partial I_{c}}{\partial T}\right) \Delta T = \\ &= \left\{ \left[\frac{C_{2}}{T^{2}} M_{e.\lambda.\,\text{max}}^{0} \right] \frac{A_{o\delta} A_{\Pi J I}}{\pi (a')^{2}} S_{\lambda.\,\text{max}} \int_{\lambda=0}^{\infty} \frac{m_{e.\lambda}^{0}(\lambda, T)}{\lambda} \cdot \varepsilon(\lambda) \cdot \tau(\lambda) \cdot s_{\lambda}(\lambda) d\lambda \right\} \Delta T = \\ &= \left\{ \left[\frac{C_{2}}{T^{2}} C_{\lambda}^{'} T^{5} \right] \frac{A_{o\delta} A_{\Pi J I}}{\pi (a')^{2}} S_{\lambda.\,\text{max}} \int_{\lambda=0}^{\infty} \frac{m_{e.\lambda}^{0}(\lambda, T)}{\lambda} \cdot \varepsilon(\lambda) \cdot \tau(\lambda) \cdot s_{\lambda}(\lambda) d\lambda \right\} \Delta T \end{split}$$

Если коэффициенты $\varepsilon(\lambda) = \varepsilon = \text{const}$ и $\tau(\lambda) = \tau = \text{const}$, то:

$$\Delta I_{c} = \left\{ \varepsilon \tau \left[C_{2} C_{\lambda}^{'} T^{3} \right] \frac{A_{o\delta} A_{\Pi \Pi}}{\pi (a')^{2}} S_{\lambda. \max} \int_{\lambda=0}^{\infty} \frac{m_{e.\lambda}^{0}(\lambda, T)}{\lambda} s_{\lambda}(\lambda) d\lambda \right\} \Delta T . \tag{7.10}$$

Произведение в формуле (7.10):

$$C_2C'_{\lambda} = 1,44\cdot10^4 \,[\text{MKM}\cdot\text{K}]\cdot1,315\cdot10^{-15} \,[\text{BT/(cm}^2\cdot\text{MKM}\cdot\text{K}^5] = 18,936\cdot10^{-12} \,[\text{BT/cm}^2\cdot\text{K}^4] = 0,835\cdot(4\sigma) \,,$$
 (7.11)

где σ – постоянная Стефана-Больцмана; σ = 5,67·10⁻¹² BT/(см²·K⁴) . Интеграл в выражении (7.10)

$$\left(\Delta \ln \lambda\right)_{\vartheta\phi} = \int_{\lambda=0}^{\infty} \frac{m_{e\lambda}^{o}(\lambda)s_{\lambda}(\lambda)}{\lambda} d\lambda = \int_{0}^{\infty} m_{e\lambda}^{o}(\lambda)s_{\lambda}(\lambda)d(\ln \lambda)$$
 (7.12)

называется относительной или логарифмической спектральной шириной полосы пропускания ПОИ, а произведение

$$\xi_{qT} = 0.835 \left(\Delta \ln \lambda\right)_{ad} \tag{7.13}$$

называется коэффициентом использования контрастного черного излучателя.

Следовательно, выражение (7.10) можно представить в виде:

$$\xi_{AYT} = \left\{ \varepsilon \tau \left[0.835 \left(4\sigma T^3 \right) \right] \frac{A_{oo} A_{\Pi \Pi}}{\pi (a')^2} S_{\lambda \max} \left(\Delta \ln \lambda \right)_{\vartheta \phi} \right\} \Delta T . \tag{7.14}$$

На основании изложенного СКЗ шумовой составляющей погрешности измерения температуры:

$$\sigma_{m} = \frac{\sigma_{w.i}}{K_{n}K_{f} \frac{A_{o\delta}A_{\Pi \Pi}}{\pi(a')^{2}} \left[C_{2}C_{\lambda}^{'}T^{3}\right] S_{\lambda.\max} \int_{\lambda=0}^{\infty} \frac{m_{e.\lambda}^{0}(\lambda)\varepsilon(\lambda)\tau(\lambda)s_{\lambda}(\lambda)}{\lambda} d\lambda}, \quad (7.15)$$

или для серого излучателя ($\varepsilon(\lambda) = \varepsilon = \text{const}$) и неселективной оптики ($\tau(\lambda) = \tau = \text{const}$):

$$\sigma_{m} = \frac{\sigma_{uui}}{\left[0.835\left(4\sigma T^{3}\right)\right]\varepsilon\tau \frac{A_{oo}A_{\Pi Z}}{\pi(a')^{2}}S_{\lambda \max}\int_{\lambda=0}^{\infty} \frac{m_{e\lambda}^{o}(\lambda)s_{\lambda}(\lambda)}{\lambda}d\lambda},$$
(7.16)

а с учетом введенных обозначений (35-7.12):

$$\sigma_{m} = \frac{\sigma_{ui}}{\left[0.82\left(4\sigma T^{3}\right)\right]\varepsilon\tau \frac{A_{o\delta}A_{\Pi II}}{\pi(a')^{2}}S_{\lambda \max}\left(\Delta \ln \lambda\right)_{9\phi}},\tag{7.17}$$

где $\sigma_{\text{ш.i}}$ – СКЗ шумовой погрешности измерения фототока.

Литература

- 1. Аксененко М.Д., Бараночников М.Л. Приёмники оптического излучения. Справочник. М.: Радио и связь, 1987.
- 2. Ишанин Г.Г., Козлов В.В. Источники излучения: Уч. пособие. СПб.: СпбГУ ИТМО, 2004.
- 3. Ишанин Г.Г., Панков Э.Д., Челибанов В.П. Приёмники излучения: Уч. пособие для студентов вузов. СПб. : Папирус, 2003.
- 4. Коротаев В.В., Мусяков В.Л. Методические указания к курсовой работе по курсу "Источники и приемники излучения". Л. : ЛИТМО, 1991. 26 с.
- 5. Криксунов Л.З. Справочник по основам инфракрасной техники. М.: Сов. радио, 1978.
- 6. Мирошников М.М. Теоретические основы оптико-электронных приборов. Л. : Машиностроение, 1977.
- 7. Теория оптических систем. Учебник для вузов / Б.Н. Бегунов, Н.П. Заказнов, С.И. Кирюшин, В.И. Кузичев. М. : Машиностроение, 1981.
- 8. Эпштейн М.И. Измерения оптического излучения в электронике. М.: Энергатомиздат, 1990.
- 9. Юшин А.М. Оптоэлектронные приборы и их зарубежные аналоги : Справочник : В 5-ти т. М. : РадиоСофт, 2003.
- 10.9 Кушенков Ю.Г. Проектирование оптико-электронных приборов. М. : Логос, 2000.
- 11. Якушенков Ю.Г. Теория и расчёт оптико-электронных приборов : Учебник для вузов. М. : Логос, 2004.

ПРИЛОЖЕНИЕ 1. ЗНАЧЕНИЯ ФУНКЦИИ ПЛАНКА y = f(x)

x	v	x	v	X	v	x	v
0,10	4,70.10-15	0,66	0,615	1,29	0,867	1,94	0,434
0,15	7,91.10-9	0,67	0,638	1,30	0,860	1,96	0,424
0,20	$7,37 \cdot 10^{-6}$	0,68	0,661	1,31	0,852	1,98	0,415
0,21	1,88·10 ⁻⁵	0,69	0,683	1,32	0,845	2,00	0,405
0,21	4,37·10 ⁻⁵	0,70	0,704	1,33	0,838	2,05	0,383
0,23	9,31.10 ⁻⁵	0,70	0,725	1,34	0,830	2,10	0,362
0,23	$1,85 \cdot 10^{-4}$	0,71	0,745	1,35	0,820	2,10	0,341
0,24		0,72	0,743	1,36	0,820	2,13	0,323
0,25	$3,45\cdot10^{-4}$	0,73	0,783	1,30	0,813		0,325
	$6,10\cdot10^{-4}$		•	-		2,25	-
0,27	$1,02 \cdot 10^{-3}$	0,75	0,801	1,38	0,800	2,30	0,289
0,28	$1,62 \cdot 10^{-3}$	0,76	0,817	1,39	0,793	2,35	0,273
0,29	$2,54 \cdot 10^{-3}$	0,77	0,834	1,40	0,785	2,40	0,258
0,30	$3,80\cdot10^{-3}$	0,78	0,849	1,41	0,778	2,45	0,245
0,31	$5,50\cdot10^{-3}$	0,79	0,862	1,42	0,770	2,50	0,232
0,32	$7,74\cdot10^{-3}$	0,80	0,877	1,43	0,763	2,55	0,220
0,33	0,0106	0,81	0,890	1,44	0,755	2,60	0,208
0,34	0,0142	0,82	0,903	1,45	0,748	2,65	0,198
0,35	0,0187	0,83	0,914	1,46	0,740	2,70	0,187
0,36	0,0241	0,84	0,925	1,47	0,733	2,75	0,178
0,37	0,0305	0,85	0,934	1,48	0,725	2,80	0,169
0,38	0,0380	0,86	0,943	1,49	0,718	2,85	0,161
0,39	0,0467	0,87	0,952	1,50	0,710	2,90	0,153
0,40	0,0565	0,88	0,959	1,51	0,703	3,00	0,138
0,41	0,0665	0,89	0,966	1,52	0,696	3,10	0,126
0,42 0,43	0,0800 0,0936	0,90 0,92	0,972 0,983	1,53 1,54	0,688 0,681	3,20 3,30	0,114 0,104
0,43	0,108	0,92	0,983	1,55	0,674	3,40	0,104
0,44	0,108	0,94	0,996	1,56	0,667	3,50	0,0947
0,46	0,124	0,98	0,999	1,57	0,659	3,60	0,0300
0,47	0,160	1,00	1,000	1,58	0,652	3,70	0,0726
0,48	0,180	1,02	0,999	1,59	0,645	3,80	0,0667
0,49	0,200	1,04	0,996	1,60	0,638	3,90	0,0614
0,50	0,222	1,06	0,992	1,62	0,624	4,00	0,0565
0,51	0,244	1,08	0,986	1,64	0,610	4,50	0,0383
0,52	0,267	1,10	0,979	1,66	0,597	5,00	0,0268
0,53	0,291	1,12	0,970	1,68	0,580	6,00	0,0142
0,54	0,315	1,14	0,961	1,70	0,571	7,00	$8,20\cdot10^{-3}$
0,55	0,339	1,16	0,951	1,72	0,558	8,00	$5,05\cdot10^{-3}$
0,56	0,365	1,18	0,940	1,74	0,546	9,00	$3,27\cdot10^{-3}$
0,57	0,390	1,20	0,928	1,76	0,534	10,0	$2,20\cdot10^{-3}$
0,58	0,415	1,21	0,921	1,78	0,522	20,0	$1,6.10^{-4}$
0,59	0,441	1,22	0,915	1,80	0,510	30,0	$3,2\cdot10^{-5}$
0,60	0,466	1,23	0,908	1,82	0,498	40,0	$1,0.10^{-5}$
0,61	0,492	1,24	0,902	1,84	0,487	50,0	$4,3 \cdot 10^{-6}$
0,62	0,517	1,25	0,895	1,86	0,476	∞ ∞	0
0,63	0,542	1,26	0,888	1,88	0,465	_	_
0,64	0,567	1,27	0,881	1,90	0,455	_	_
0,65	0,615	1,28	0,874	1,92	0,444	_	-

ПРИЛОЖЕНИЕ 2. ОТНОСИТЕЛЬНАЯ СПЕКТРАЛЬНАЯ СВЕТОВАЯ ЭФФЕКТИВНОСТЬ МОНОХРОМАТИЧЕСКОГО ИЗЛУЧЕНИЯ ДЛЯ ДНЕВНОГО ЗРЕНИЯ

λ, нм	300	400	500	600	700
0	-	0,0004	0,323	0,631	0,0041
10	-	0012	503	503	0021
20	-	0040	710	381	00105
30	-	0116	862	265	00052
40	-	023	954	175	00025
50	-	038	995	107	00012
60	-	060	995	061	00006
70	-	091	952	032	00003
80	0,000039	139	870	017	000015
90	00012	208	757	0082	-

История кафедры оптико-электронных приборов и систем (ОЭПиС) началась в 1936 году с организации в ЛИТМО кафедры военных оптических приборов. Первым заведующим

кафедрой стал профессор К.Е. Солодилов.

Кафедра существовала под следующими названиями:

- с 1936 по 1958 год кафедра военных оптических приборов (в годы Великой Отечественной войны кафедра была эвакуирована и временно объединена с кафедрой оптико-механических приборов);
 - с 1958 по 1967 год кафедра специальных оптических приборов;
 - с 1967 по 1992 год кафедра оптико-электронных приборов;
- с 1992 года кафедра оптико-электронных приборов и систем. Кафедру возглавляли:
 - с 1936 по 1942 год профессор К.Е. Солодилов;
 - с 1945 по 1946 год профессор М.А. Резунов;
 - с 1947 по 1972 год профессор С.Т. Цуккерман;
- с 1972 по 1992 год заслуженный деятель науки и техники РСФСР, профессор Л.Ф. Порфирьев;
- с 1992 года по настоящее время заслуженный деятель науки РФ, профессор Э.Д. Панков.

Трудом нескольких поколений сотрудников кафедры ОЭПиС в результате большой научно-исследовательской и научно-методической работы сформировалась современная система подготовки дипломированных специалистов по специальности 200203 - "Оптико-электронные приборы и системы" по специализациям:

200203.01 — оптико-электронные информационно-измерительные и следящие приборы и системы;

200203.02 – оптико-электронные методы и средства экологического мониторинга;

200203.27 — оптико-электронные приборы и системы обработки видеоинфрмации.

Сегодня ОЭПиС кафедра ЭТО 7 учебных лабораторий, компьютерный класс c выходом В Internet И, прежде высококвалифицированный преподавательский коллектив, в котором 6 профессоров, докторов наук и 7 доцентов, кандидатов наук.

По результатам научных работ сотрудниками кафедры ОЭПиС выпущено в свет 15 монографий, 25 учебников и учебных пособий. На кафедре подготовлено 14 докторов наук, а также более 115 кандидатов наук. На разработки кафедры получены авторские свидетельства СССР и патенты Российской Федерации на более чем 200 изобретений. За все время существования кафедры подготовлено более 3000 инженеров.