Министерство образования Российской Федерации Санкт-Петербургский государственный университет низкотемпературных и пищевых технологий

Утверждено
учебно-
методическим
советом университе
та
" <u> </u>
Γ.
Председатель
Первый проректор
Е.И.
Борзенко

Рабочая программа дисциплины «Теоретическая механика» для студентов специальностей 270300, 270500 270800, 270900, 271100 факультета заочного обучения и экстерната

Факультет заочного обучения и экстерната Кафедра теоретической механики

Санкт-Петербург 2003

УДК 531(075)

Федорова Л.А., Агапова Л.А. Рабочая программа дисциплины «Теоре-тическая механика», для студентов спец. 270300, 270500 270800, 270900, 271100 факультета заочного обучения и экстерната / Под ред. В.А. Арета. — СПб.: СПбГУНиПТ, 2003. — 16 с.

В рабочей программе представлен краткий обзор дисциплины теоретической механики по разделам: статика, кинематика, динамика; даны вопросы для самопроверки и общие методические указания по изучению этой дисциплины.

Рецензент

Доктор техн. наук, проф. Л.Н. Корниенко

Одобрена к изданию методической комиссией факультета заочного обучения и экстерната

© Санкт-Петербургский государственный университет низкотемпературных и пищевых технологий, 2003

ВВЕДЕНИЕ

Механика — это наука о механическом движении и механическом взаимодействии материальных тел.

Термин «механика» был введен древнегреческим философом Аристотелем (384—322 гг. до н. э.) и в переводе с греческого означает «сооружение», «машина», «изобретение». Законы и выводы механики имеют огромное практическое значение для создания машин, механизмов, автоматов, самых различных сооружений.

Теоретическая механика является одной из важнейших дисциплин; она необходима для последующего изучения общеинженерных и специальных дисциплин (таких, как сопротивление материалов, теория машин и механизмов, детали машин, механизация и автоматизация производства и др.).

Теоретическая механика представляет собой дисциплину, развивающую и организующую мышление студентов. Она устанавливает надежный мост между техникой и математикой. Абстрактная математика «оживает» в курсе теоретической механики, и студенты, решая самые различные задачи техники методами механики, учатся самостоятельно схематизировать механические явления. В курсе механики студенты обучаются решать задачи техники в первом приближении на основании законов, принципов, теорем и выводов теоретической механики. Выбирают для решения этих задач необходимый математический аппарат, т. е. конкретные задачи техники облекают в абстрактную математическую форму. Не случайно изучение курса теоретической механики происходит по мере прохождения курсов высшей математики и физики.

Именно в курсе теоретической механики происходит осмысление и усвоение обширного курса высшей математики. Для студента весьма важно понимать физическую сущность изучаемых явлений и уметь пользоваться математическими методами при решении самых разнообразных теоретических и практических задач современной техники, в особенности задач, связанных с расчетом различных сооружений, с проектированием, производством и эксплуатацией всевозможных машин, механизмов, оборудования, автоматов, двигателей и т. п.

Теоретическая механика — это раздел механики, в котором изучают законы и общие свойства движения механических систем. Механическое движение есть изменение с течением времени взаимного положения в пространстве материальных тел или частей данного тела.

Для того, чтобы установить законы движения, общие для всех материальных тел, теоретическая механика прибегает к приему схематизации явлений. Но, наблюдая какое-нибудь явление, мы не имеем возможности сразу охватить его во всем многообразии. Поэтому приходится выделять в наблюдаемом явлении главные черты, отвлекаясь (абстрагируясь) от того, что является менее существенным, второстепенным. Так, например, абстрагируясь от свойств всякого физического тела изменять свою форму (деформироваться), приходят к понятию абсолютно твердого тела. К такого же рода упрощенным моделям относятся понятия материальной точки¹, идеальной жидкости и т. п.

После того как задача решена в первом приближении при принятых упрощающих условиях, делают следующий шаг в приближении к действительности, т. е. переходят к решению более сложной задачи с учетом тех свойств материальных тел, которые не были учтены в первом приближении. Такой путь исследования от простого к сложному имеет широкое применение в теоретической механике. Например, после того как изучены законы равновесия абсолютно твердого тела, переходят к изучению равновесия деформируемых тел. Точно так же после изучения законов движения идеальной жидкости переходят к решению более сложной задачи движения с учетом внутреннего трения и т. д.

Следует отметить, что упрощенная схема (модель), которой мы заменяем в теоретической механике реальное тело, зависит не только от его свойств, но и от характера тех вопросов, на которые мы хотим получить ответ. Действительно, в различных задачах механики одно и то же материальное тело может быть принято и за материальную точку, и за абсолютно твердое тело. Так, например, при изучении движения Земли вокруг Солнца можно Землю принять за материальную точку (вследствие малости размеров Земли по сравнению с протяжённостью её орбиты можно считать, что все частицы Земли про-

¹ Материальная точка – это точка, имеющая массу. За материальную точку принимают тело, размерами которого можно пренебречь.

ходят в этом движении одинаковое расстояние). Но при изучении вращения Земли вокруг оси уже нельзя принимать Землю за материальную точку, так как ее частицы, находящиеся на разном расстоянии от оси, проходят в этом движении разные расстояния.

За материальную точку можно принять любое материальное тело в случае его поступательного движения, т. е. такого движения, при котором все точки тела движутся совершенно одинаково.

Итак, абстрагирование от геометрических размеров тела приводит к важному понятию теоретической механики — понятию материальной точки.

Введение в теоретическую механику условных материальных объектов (например, материальной точки, абсолютно твердого тела) чрезвычайно упрощает проводимые в ней исследования. Без этих абстракций нельзя было бы установить общие для всех тел законы движения. Установив эти законы, мы можем применять их к конкретным реальным телам.

Первоисточником основных понятий и законов при зарождении механики явились непосредственные наблюдения, опыт и производственная деятельность человека.

Механика развивалась в связи с запросами и потребностями техники и производства. Используя данные новых опытов и наблюдений, применяя методы математического анализа, механика создала свои обширные теории.

Курс теоретической механики делится на три раздела: *статику, кинематику и динамику*.

Статикой называется раздел механики, в котором изучаются условия равновесия механических систем под действием сил, а также рассматриваются операции преобразования систем сил в эквивалентные им системы.

Кинематикой называется раздел механики, в котором изучаются движения материальных тел без учета их масс и действующих на них сил, т. е. движущиеся объекты рассматриваются как геометрические точки или тела.

Динамикой называется раздел механики, в котором изучаются движения механических систем под действием сил.

РАБОЧАЯ ПРОГРАММА

Раздел 1. Статика

Тема 1. Введение в статику

Система сходящихся сил. Предмет статики. Основные понятия статики: абсолютно твердое тело, материальная точка, сила, эквивалентные и уравновешенные системы сил, равнодействующая, силы внешние и внутренние. Аксиомы статики. Связи и реакции связей. Опорные устройства и их реакции.

Силы, сходящиеся в одной точке. Геометрический способ нахождения равнодействующей. Условие равновесия системы сходящихся сил в геометрической форме.

Теорема о равновесии трех непараллельных сил. Проекции сил на ось и на плоскость. Нахождение равнодействующей по методу проекций. Уравнения равновесия плоской системы сходящихся сил. Статически определенные и неопределенные задачи.

Тема 2. Теория пар сил, лежащих в одной плоскости

Пара сил и ее момент. Момент силы относительно точки. Теоремы о парах сил. Условия равновесия пар.

Тема 3. Плоская система сил

Приведение силы к заданному центру. Приведение произвольной плоской системы сил к данному центру. Главный вектор и главный момент. Возможные случаи приведения. Теорема Вариньона. Условия и уравнения равновесия произвольной плоской системы сил.

Раздел 2. Кинематика

Тема 1. Кинематика точки

Векторный способ определения движения точки. Траектория точки. Понятие скорости точки. Скорость как производная от радиуса-вектора точки по времени. Понятие ускорения точки. Ускорение как производная от вектора скорости по времени.

Координатный способ определения движения точки. Нахождение траектории движущейся точки в этом случае. Проекции скорости на неподвижные оси декартовых координат. Формулы, определяю-

щие численное значение и направление скорости по ее проекциям на оси декартовых координат; формулы, определяющие численное значение и направление ускорения.

Естественный способ определения движения точки. Уравнение движения точки по данной траектории. Численное значение и направление скорости. Касательное и нормальное ускорения точки.

Тема 2. Простейшие движения твердого тела

Поступательное движение твердого тела. Теорема о траекториях, скоростях и ускорениях точек тела при поступательном движении.

Вращательное движение твердого тела. Уравнение вращательного движения твердого тела вокруг неподвижной оси. Угловая скорость и угловое ускорение тела. Равномерное и равнопеременное вращение твердого тела. Траектории, скорости и ускорения точек тведого тела, вращающегося вокруг неподвижной оси.

Раздел 3. Динамика

Тема 1. Введение в динамику

Предмет динамики. Основные законы механики (законы Гали-лея–Ньютона).

Тема 2. Дифференциальные уравнения движения материальной точки в декартовых координатах

Дифференциальные уравнения движения материальной точки. Две основные задачи динамики точки. Примеры интегрирования дифференциальных уравнений движения материальной точки в простейших случаях. Определение постоянных интегрирования по начальным условиям движения.

Тема 3. Общие теоремы динамики точки

Две меры механического движения: количество движения и кинетическая энергия материальной точки. Импульс силы. Теоремы об изменении количества движения материальной точки в векторной и координатной формах. Момент количества движения материальной точки относительно неподвижного центра и относительно неподвижной оси.

Теорема об изменении момента количества движения материальной точки относительно центра и относительно оси.

Работа постоянной силы на прямолинейном перемещении. Элементарная работа силы и работа переменной силы на конечном криволинейном перемещении. Аналитическое выражение элементарной работы. Работа силы тяжести. Теорема об изменении кинетической энергии материальной точки.

Тема 4. Динамика системы

Механическая система. Активные силы и реакции связей. Силы внешние и внутренние. Осевые моменты инерции твердого тела, радиус инерции. Примеры вычисления моментов инерции тел в простейших случаях.

Количество движения системы. Теорема об изменении количества движения системы в векторной и координатной формах. Сохранение количества движения системы или его проекции на данную ось. Центр масс системы. Теорема о движении центра масс системы. Следствия из теоремы. Кинетический момент системы относительно центра и осей, проходящих через центр; кинетический момент вращающегося твердого тела относительно оси вращения. Теорема об изменении кинетического момента системы в векторной и координатной формах. Сохранение кинетического момента системы относительно данного центра или оси.

Дифференциальное уравнение вращения твердого тела вокруг неподвижной оси. Кинетическая энергия системы. Кинетическая энергия твердого тела при поступательном и вращательном движениях. Теорема об изменении кинетической энергии системы.

ОСНОВНЫЕ ВОПРОСЫ ПО РАЗДЕЛАМ КУРСА

Вопросы для самопроверки по статике

- 1. Какое тело называется абсолютно твердым?
- 2. Какими тремя факторами определяется сила, действующая на твердое тело?
 - 3. Какая сила называется равнодействующей данной системы сил?
 - 4. В чем состоит принцип «затвердевания»?
 - 5. Какое тело называется несвободным? Что называется связью?
 - 6. Что называется силой реакции связи?
 - 7. В чем состоит принцип освобождаемости от связей?
- 8. Перечислите основные типы опор (связей), для которых линии действия реакций известны.
 - 9. Что называется проекцией силы на ось и на плоскость?
- 10. Каковы условия и уравнения равновесия системы сходящихся сил?
- 11. При каком условии три непараллельные силы, приложенные к твердому телу, уравновешиваются?
- 12. Что называется парой сил? Чем можно уравновесить пару сил?
- 13. Что называется моментом силы относительно точки? Как определяется знак этого момента?
 - 14. В каком случае момент силы относительно точки равен нулю?
 - 15. Сформулируйте теоремы о парах сил.
- 16. В чем разница между главным вектором и равнодействующей? В каком случае главный вектор является равнодействующей данной системы сил?
 - 17. Каковы уравнения равновесия плоской системы сил?

Вопросы для самопроверки по кинематике

- 1. Что значит задать движение точки? Какие способы задания движения точки существуют, и в чем состоит каждый из этих способов?
- 2. Что называется законом или уравнением движения точки по данной траектории?
- 3. Какая существует зависимость между радиусом-вектором движущейся точки и вектором скорости этой точки?

- 4. Какая существует зависимость между вектором скорости и вектором ускорения точки?
- 5. Как определяется траектория точки из уравнений движения в декартовых координатах?
- 6. Чему равны проекции скорости точки на оси декартовых координат?
- 7. Чему равны проекции ускорения точки на оси декартовых координат?
 - 8. Что характеризуют касательное и нормальное ускорения точки?
 - 9. Какое движение твердого тела называется поступательным?
- 10. По каким формулам определяется величина угловой скорости и углового ускорения твердого тела, вращающегося вокруг неподвижной оси?
- 11. Какое вращение твердого тела называется равномерным и какое равнопеременным?
- 12. Как выражается зависимость между угловой скоростью вращающегося тела и линейной скоростью какой-либо точки этого тела?
- 13. Как выражаются вращательное и осестремительное (центростремительное) ускорения точки твердого тела, вращающегося вокруг неподвижной оси?

Вопросы для самопроверки по динамике

- 1. Напишите дифференциальные уравнения движения материальной точки в декартовых координатах.
- 2. Как определяются произвольные постоянные при интегрировании дифференциальных уравнений движения материальной точки?
- 3. Что называется количеством движения материальной точки? Импульсом силы?
- 4. Сформулируйте теорему о количестве движения материальной точки.
- 5. Как выражается теорема о моменте количества движения материальной точки относительно неподвижной оси?
- 6. В каком случае момент количества движения материальной точки относительно данного центра остается постоянным?
 - 7. Что называется элементарной работой?
 - 8. Как выражается работа силы на конечном перемещении?
 - 9. Что называется кинетической энергией материальной точки?

- 10. Что называется механической системой (системой точек)?
- 11. Какие классификации сил, действующих на систему, применяются в динамике системы?
- 12. Сформулируйте теорему о кинетической энергии материальной точки.
 - 13. Что называется количеством движения системы?
 - 14. Сформулируйте теорему о количестве движения системы.
- 15. Почему главный вектор внутренних сил системы всегда равен нулю?
- 16. В каком случае количество движения системы остается постоянным?
 - 17. Что называется центром масс (инерции) системы?
- 18. Как выражается количество движения системы через количество движения ее центра масс?
 - 19. Сформулируйте теорему о движении центра масс системы.
- 20. Что называется кинетическим моментом системы относительно центра или неподвижной оси?
- 21. Как выражается кинетический момент вращающегося твердого тела относительно оси вращения?
- 22. Что называется моментом инерции твердого тела относительно данной оси?
- 23. Что называется радиусом инерции твердого тела относительно данной оси?
- 24. Напишите дифференциальное уравнение вращательного движения твердого тела вокруг неподвижной оси.
 - 25. Что называется кинетической энергией системы?
- 26. Чему равна кинетическая энергия твердого тела в поступательном движении и во вращении его вокруг неподвижной оси?
 - 27. Сформулируйте теорему о кинетической энергии системы.

ОБЩИЕ МЕТОДИЧЕСКИЕ УКАЗАНИЯ

При изучении дисциплины «Теоретическая механика» рекомендуется придерживаться следующего порядка:

1. Прочитав по учебнику соответствующий материал, необходимо в нем тщательно разобраться, понять предлагаемые формулировки и доказательства теорем. Следует помнить, что аксиомы, основные законы механики являются исходными предпосылками для всех дальнейших выводов. Из этих аксиом, законов при помощи строгих математических рассуждений и вычислений делаются все дальнейшие выводы. Поэтому сначала рекомендуется изучение аксиом, законов данного раздела, а затем — анализ физической сущности теоретических результатов. Особенно важно усвоить идеи и логику выводов. Полезно задавать себе вопросы: каков физический смысл данной теоремы? Зачем она нужна? Каков физический смысл величин, входящих в уравнения? В каких единицах измеряются эти величины? Для решения каких задач они применяются? и т. п.

После изучения каждого параграфа полезно написать, не заглядывая в книгу, формулировки определений и теорем, сравнить их с формулировками, данными в учебнике.

Нельзя заучивать наизусть без достаточного понимания какоенибудь определение или теорему.

Изучение курса должно происходить по принципу: *сначала – понимание, а потом – запоминание*.

2. Необходимо не только понять предлагаемое в учебнике доказательство, но и уметь самостоятельно доказать теорему. После изучения каждой темы рекомендуется составлять краткий конспект.

Для твердого усвоения материала рекомендуется брать видоизмененный чертеж (рисунок), а не тот, который приведен в учебнике. Таким путем можно избежать чисто механического запоминания и более глубоко уяснить смысл теоремы.

3. Основательно изучив теоретические положения данной темы программы, нужно переходить к решению задач, относящихся к этой теме. Для этого необходимо подробно разобрать имеющиеся в учебнике примеры.

Приступая к самостоятельному решению задач, необходимо основательно усвоить, понять условие задачи, проиллюстрировать задачу соответствующим рисунком или чертежом. *Нельзя решать задачу, не поняв ее условия*. Чертеж или рисунок для решения задачи

следует делать аккуратно, придерживаясь масштаба, ибо небрежно сделанный чертеж часто ведет к ошибкам.

Подлинное знание курса теоретической механики определяется не количеством выученных теорем, формул, а умением применять эти теоремы на практике. Поэтому в основе овладения теоретической механикой лежит последовательное сочетание изучения теории с решением конкретных задач механики.

- 4. Заканчивая изучение какой-либо темы программы, нужно ответить на все вопросы для самопроверки, что особенно важно при подготовке к сдаче зачета. Умение дать самостоятельно, не заглядывая в учебник, правильные ответы на эти вопросы свидетельствует об успешном усвоении курса.
- 5. Выполнение контрольной работы должно явиться заключительным этапом изучения соответствующего раздела курса. Поэтому к контрольной работе следует приступить лишь после того как изучен теоретический материал, разобраны примеры и задачи по учебнику. Выполнение контрольной работы способствует закреплению теоретического материала курса и выработке у студентов навыков самостоятельной работы и творческого подхода к решению сначала простейших, а затем и более сложных задач.
- 6. Перед сдачей зачета студент предъявляет преподавателю две проверенные и зачтенные контрольные работы.

При сдаче зачёта студент должен показать знание основных тем курса, доказательств теорем и формулировок аксиом, умение решать задачи по всем разделам механики. Особое внимание следует уделить решению задач на равновесие тел под действием произвольной плоской системы сил и исследование поступательного и вращательного движения тела. Студент должен ответить на все вопросы, связанные с решением задач контрольных работ.

Для изучения курса теоретической механики студент должен обладать следующими математическими знаниями:

• Для изучения курса статики необходимо: свободно обращаться с тригонометрическими функциями и уметь решать прямоугольные треугольники; из теории косоугольных треугольников необходимо знать теоремы синусов и косинусов; из аналитической геометрии — метод координат на плоскости; по векторной алгебре — теорию проекций, разложение вектора по координатным осям, сложение и

вычитание векторов, скалярное и векторное умножение векторов, основные свойства скалярного и векторного произведений.

- Для изучения кинематики студент должен знать теорию пределов и уметь свободно дифференцировать функции одного переменного, строить их графики и находить экстремальные значения; иметь представление о кривизне кривой и радиусе кривизны; из аналитической геометрии знать основные сведения по теории кривых второго порядка.
- Для изучения динамики студент должен уметь находить неопределенные и определенные интегралы простейших функций; уметь интегрировать дифференциальные уравнения первого порядка с разделяющими переменными и линейные однородные уравнения второго порядка с постоянными коэффициентами.

СПИСОК ЛИТЕРАТУРЫ

Основной

- 1. **Яблонский А.А., Никифорова В.М.** Курс теоретической механики. Ч. 1. М.: Высш. шк., 1985. 368 с.
- 2. **Яблонский А.А.** Курс теоретической механики. Ч. 2. М.: Высш. шк., 1985. 532 с.

Дополнительный

- 3. **Бать М.И., Джанелидзе Г.Ю., Кельзон А.С.** Теоретическая механика в примерах и задачах. Ч. 1. М.: Физматгиз, 1964. 484 с.
- 4. **Бать М.И., Джанелидзе Г.Ю., Кельзон А.С.** Теоретическая механика в примерах и задачах. Ч. 2. М.: Физматгиз, 1968. 624 с.
- 5. Сборник заданий для курсовых работ по теоретической механике: Учеб. пособие для технических вузов / А.А. Яблонский, С.С. Норейко, С.А. Вольфсон и др.; Под ред. А.А. Яблонского. 4-е изд., перераб. и доп. М.: Высш. шк., 1985. 367 с.

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	1
РАБОЧАЯ ПРОГРАММА	7
Раздел 1. Статика	7
Раздел 2. Кинематика	7
Раздел 3. Динамика	8
ОСНОВНЫЕ ВОПРОСЫ ПО РАЗДЕЛАМ КУРСА	10
ОБЩИЕ МЕТОДИЧЕСКИЕ УКАЗАНИЯ	12
СПИСОК ЛИТЕРАТУРЫ	15

Агапова Лидия Анатольевна Федорова Людмила Анатольевна

Рабочая программа дисциплины «Теоретическая механика» для студентов специальностей 270300, 270500 270800, 270900, 271100 факультета заочного обучения и экстерната

Редактор Л.Г. Лебедева Корректор Н.И. Михайлова

Подписано в печать 27.12.2003. Формат 60×84 1/16. Печать офсетная. Усл. печ. л. 0,93. Печ. л. 1,00. Уч.-изд. л. 0,88 Тираж 200 экз. Заказ № С 99

СПбГУНиПТ. 191002, Санкт-Петербург, ул. Ломоносова, 9 ИПЦ СПбГУНиПТ. 191002, Санкт-Петербург, ул. Ломоносова, 9