МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

ИНСТИТУТ ХОЛОДА И БИОТЕХНОЛОГИЙ

Т.Е. Бурова

ХИМИЯ ВКУСА, ЦВЕТА И АРОМАТА

Учебно-методическое пособие

Санкт-Петербург 2014 **Бурова Т.Е.** Химия вкуса, цвета и аромата: Учеб.-метод. пособие / Под ред. А.Л. Ишевского. – СПб.: НИУ ИТМО; ИХиБТ, 2014. – 28 с.

Изложены цели, основные задачи и содержание дисциплины «Химия вкуса, цвета и аромата». Приведены контрольные вопросы для проверки знаний. В конце учебнометодического пособия дан список литературы.

Учебно-методическое пособие предназначено для самостоятельной работы магистрантов направления 260100 Продукты питания из растительного сырья.

Рецензент: кандидат техн. наук Р.А. Диденко

Рекомендовано к печати редакционно-издательским советом Института холода и биотехнологий

В 2009 году Университет стал победителем многоэтапного конкурса, в результате которого определены 12 ведущих университетов России, «Национальный которым присвоена категория исследовательский Министерством Российской университет». образования науки Федерации была утверждена программа его развития на 2009–2018 годы. В 2011 году Университет получил наименование «Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики».

© Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики, 2014

ВВЕДЕНИЕ

Целью преподавания дисциплины «Химия вкуса, цвета и аромата» является расширение и углубление знаний магистрантов в области формирования цвета, вкуса и аромата в сырье растительного происхождения и пищевых продуктах на его основе.

Задача курса — формирование специалистов, знающих истоки появления цветовых, вкусовых и ароматических характеристик у растительного сырья; способных оценивать и целенаправленно управлять изменением этих характеристик при изготовлении пищевых продуктов.

Курс базируется на знаниях, полученных при изучении предшествующих дисциплин химического и технологического профиля, что способствует более эффективному усвоению новых знаний.

Полученные знания магистранты должны использовать при изложении теоретических вопросов своей научной работы; выборе режимов технологической обработки и хранения растительного сырья и продуктов питания; факторов, определяющих качество готового продукта; учете взаимосвязи технологических процессов, оборудования и экономики производства; оценке эффективности технологических схем производства.

В учебно-методическом пособии предусмотрена самостоятельная работа магистрантов с учебной и научной литературой, электронными источниками информации для более глубокого освоения знаний по дисциплине «Химия вкуса, цвета и аромата».

РАЗДЕЛ 1. ХИМИЯ ЦВЕТА

Тема 1.1. Природа цвета

Значение цвета в группе органолептических характеристик растительного сырья и пищевых продуктов.

Характеристика солнечного спектра: волновая и корпускулярная природа солнечного света, основные и производные цвета, хроматические и ахроматические цвета.

Механизм возникновения цвета у металлов, неорганических и органических молекул.

Структурные особенности органических молекул, связанные с появлением цвета, наличие хромофорных и ауксохромных группировок. Влияние условий среды на изменение цвета: изменение кислотности и температуры среды, образование комплексных соединений с катионами металлов.

Характеристика воспринимаемого цвета: цветовой тон, насыщенность, светлота или яркость.

Контрольные вопросы

- 1. Какова роль цвета при определении органолептических характеристик растительного сырья и пищевых продуктов?
 - 2. Какова природа солнечного света?
- 3. Дайте характеристику основных и производных цветов солнечного спектра.
- 4. Чем обусловлено появление хроматических и ахроматических цветов?
- 5. С чем связаны интенсивность поглощения света и появление окраски у веществ?
- 6. Какое влияние на цвет вещества оказывают хромофорные и ауксохромные группировки?
- 7. Приведите примеры изменения цвета вещества с изменением условий среды.
 - 8. Что такое цветовой ион?
 - 9. Охарактеризуйте понятие «насыщенность цвета».
 - 10. Что такое яркость или светлота цвета?

Тема 1.2. **Красящие вещества растений Жирорастворимые пигменты**

Специфические органоиды растительной клетки — пластиды. Строение и основные типы пластид: хлоропласты, хромопласты, лей-копласты; онтогенез пластид.

Зеленые пигменты растений – хлорофиллы: состав и строение их молекул, роль в жизни растительного организма.

Липохромные пигменты – каротиноиды. Классификация и химическое строение каротиноидов.

Основные каротиноиды высших растений – каротины и ксантофиллы: основные представители, особенности строения, окраска.

Контрольные вопросы

- 1. Каково строение пластид? Какую роль они играют в жизни растений?
 - 2. Как изменяют пластиды в процессе онтогенеза?
- 3. С чем связано появление зеленой окраски молекулы хлорофилла?
- 4. Какие красящие вещества растений можно отнести к группе каротиноидов?
 - 5. Как можно классифицировать каротиноды?
 - 6. Каково химическое строение каротиноидов?
 - 7. Расскажите о наиболее известном представителе каротинов.
 - 8. Дайте краткую характеристику ксантофиллов.

Тема 1.3. **Красящие вещества растений Флавоноидные пигменты**

Классификация фенольных соединений и их краткая характеристика: мономеры, C_6 – C_1 -соединения, C_6 – C_3 -соединения, C_6 – C_3 -соединения, полифенолы.

Фенольные соединений, придающие желтую окраску: флавоны, флавонолы, халконы и ауроны.

«Растительные хамелеоны» — антоцианы, их строение и свойства. Основные агликоны антоцианов: пеларгонидин, цианидин, дельфинидин, пеонидин, петунидин, мальвидин.

Факторы, влияющие на изменение окраски антоцианов: структура антоцианов (количество и расположение гидроксильных групп); природа металла, образующего комплекс с антоцианидином; изменение кислотности среды; понижение температуры; обеспечение растений минеральными веществами; смешение антоцианов с флавонами, каротиноидами, образование комплексов с различными органическими веществами (танинами, галловой кислотой, дубильными веществами и др.).

Красящие вещества столовой свеклы – бетацианины и бетаксантины.

Полимерные фенольные соединения: дубильные вещества (гидролизуемые и конденсированные), лигнины и меланины.

Контрольные вопросы

- 1. Приведите классификацию фенольных соединений. Какова их роль в жизни растений?
- 2. Расскажите о фенольных соединениях, придающих растениям желтую окраску.
 - 3. Каково строение и свойства антоцианов?
 - 4. Что такое агликон? Охарактеризуйте агликоны антоцианов.
- 5. Перечислите факторы, влияющие на изменение окраски антоцианов
- 6. Как на изменение окраски влияет структура антоцианов и кислотность среды?
 - 7. Каково отличие бетацианина и бетаксантина от антоцианов?
- 8. Какие полимерные фенольные соединения участвуют в образовании окраски?
- 9. Расскажите о гидролизуемых и негидролизуемых дубильных веществах.

Литература: 8, 15, 18–22, 24–26, 28, 30, 33–35, 42, 44, 45.

РАЗДЕЛ 2. ХИМИЯ ВКУСА И АРОМАТА

Тема 2.1. Природа вкуса

Основные вкусовые ощущения человека. Чистые и смешанные вкусы веществ.

Строение вкусового анализатора.

Факторы, влияющие на появление разного вкуса у вещества: концентрация вещества; структурные изменения вещества в результате мутаротации; таутомерные превращения.

Исследование механизма вкусового ощущения: возникновение электрических импульсов при взаимодействии вещества с вкусовыми анализаторами; роль «белков-привратников» в контролировании и регулировании подхода молекул к рецепторному центру.

Контрольные вопросы

- 1. Охарактеризуйте основные вкусовые ощущения. Что такое чистый и смешанный вкус?
 - 2. Какое строение имеет вкусовой анализатор?
- 3. Расскажите о вкусовых областях языка, определенных на основании физиологических данных.
 - 4. Как влияет концентрация вещества на его вкус?
- 5. Приведите пример изменения вкуса вещества в результате его мутаротации.
- 6. Как происходит возникновение электрического импульса при взаимодействии вещества с рецепторным центром?
 - 7. Какова функция «белков-привратников»?

Тема 2.2. Природа запаха

Основные группы запахов: камфорный, резкий, цветочный, мятный, эфирный, мускусный, гнилостный.

Строение обонятельного эпителия.

Факторы, влияющие на формирование запаха: летучесть соединений, длина углеводородной цепи, наличие и расположение функциональных групп и др.

Взаимодействие одоранта с обонятельным рецептором. Механизмы возникновения запаха: взаимодействие одоранта с β-каротиноидами жгутиков обонятельных рецепторов; возникновение комплекса одоранта с белками клеток, чувствительных к запаху.

Зависимость запаха вещества от его характеристических низкочастотных полос в ИК-спектре.

Контрольные вопросы

- 1. Назовите основные первичные запахи, различаемые человеком. Приведите примеры этих запахов.
 - 2. Какое строение имеет обонятельный эпителий?
- 3. Какие факторы влияют на появление запаха у вещества? Приведите примеры.
- 4. Как происходит взаимодействие одоранта с β-каротиноидами жгутиков обонятельных рецепторов?
- 5. Приведите доказательства образования комплекса одоранта с белками рецепторных клеток.
- 6. Объясните наличие корреляции между спектральными характеристиками и запахом.

Литература: 6, 15, 16, 18–21, 24–26, 28, 30, 34, 35, 42, 44, 45.

РАЗДЕЛ 3. ИЗМЕНЕНИЕ ЦВЕТА, ВКУСА И АРОМАТА В ПРОЦЕССЕ СОЗРЕВАНИЯ, ХРАНЕНИЯ И ТЕХНОЛОГИЧЕСКОЙ ОБРАБОТКИ РАСТИТЕЛЬНОГО СЫРЬЯ

Тема 3.1. **Изменение цвета при созревании, хранении** и технологической обработке растительного сырья

Изменения в окраске в результате разрушения хлорофилла (зеленого пигмента), синтеза каротиноидов (желтых и оранжевых) и пигментированных фенольных соединений (антоцианов).

Изменение окраски зеленых овощей при термической обработке (бланширование, варка), образование феофитина. Факторы, способствующие сохранению цвета: продолжительность тепловой обработки, концентрация органических кислот в продукте и варочной среде, добавление в варочную среду пищевой соды, варка в жесткой воде.

Изменение белой окраски овощей при термической обработке, причины этих изменений: изменение содержащихся в овощах флавоновых гликозидов, несахарным компонентом (агликоном) которых являются оксипроизводные флавона или флавонола, относящиеся к группе фенольных соединений; взаимодействие оксипроизводных флавона с солями железа; ферментативные процессы, протекающие с

участием различных полифенольных соединений; реакция меланоидинообразования.

Изменение овощей с красно-фиолетовой окраской, причины изменений: потери антоцианов при бланшировании и варке в воде за счет их растворимости; влияние температуры, кислотности среды, контакта с кислородом, ионами металлов.

Использование флавоноидных пигментов: в качестве препаратов, обладающих Р-витаминной активностью, бактериостатическим действием и антиоксидантными свойствами; в качестве натуральных пищевых красителей.

Влияние различных видов технологической обработки на сохраняемость каротиноидов: бланширование, варка, стерилизация, сушка. Пути сохранения каротиноидов в продуктах питания: проведение кулинарной обработки в присутствии жиров; изготовление соков с мякотью; проведение сушки овощей в вакуум-сушилках. Изготовление натуральных пищевых красителей (каротин, ликопин, кроцетин и др.).

Влияние замораживания и хранения в замороженном состоянии на изменение цвета растительного сырья и плодоовощной продукции: изменение растительных пигментов, процесс потемнения.

Контрольные вопросы

- 1. Как происходит изменение окраски плодов и овощей при их созревании?
- 2. Почему образование феофитина из хлорофилла наблюдается при термической обработке растительного сырья?
- 3. Перечислите факторы, влияющие на сохранение зеленой окраски растительного сырья?
 - 4. Каков химизм образования хлорофиллина?
- 5. Каковы причины изменения белой окраски овощей при термической обработке?
- 6. В чем причины потемнения мякоти сырого и вареного картофеля?
- 7. В чем причины потерь антоциановых пигментов при термической обработке?
- 8. В чем заключается Р-витаминное действие на организм человека? Назовите плоды и ягоды, содержащие в своем составе Рактивные вещества.

- 9. Приведите примеры использования природных флавоноидов в качестве антиоксидантов.
- 10. Какое антоциансодержащее сырье используется для получения натуральных пищевых красителей?
- 11. Почему потери каротиноидов при бланшировании и варке овощей практически отсутствуют, а при стерилизации и сушке они достаточно велики?
- 12. Каковы пути сохранения каротиноидов в продуктах питания?
- 13. Какое влияние оказывает замораживание на изменение цвета плодов и овощей?
- 14. Как можно предотвратить развитие процесса потемнения растительного сырья?

Тема 3.2. Изменение вкуса и аромата при созревании, старении и термической обработке плодов и овощей

Процесс созревания плодов и овощей, степени зрелости: съемная, потребительская, физиологическая.

Изменение вкуса при созревании и старении: изменение содержания сахаров, органических кислот, сахарокислотного коэффициента (объективного показателя вкуса); развитие «загара» при старении плодов.

Увеличение содержания ароматических веществ и изменение их состава вследствие активного протекания метаболических процессов, новообразования ферментов и нарушения целостности мембран при созревании плодов и овощей. Представители ароматических веществ растительного сырья. Эфирные масла растений, фитонциды.

Влияние на формирование вкуса и аромата изменения фенольных соединений: оксибензойных кислот (протокатеховой, ванилиновой, галловой и др.); окислительных превращений катехинов; флавоновых гликозидов (кемпферола, кверцетина, лимонина, нарингина, гесперидина); дубильных веществ.

Изменение вкуса и аромата при термической обработке: бланширование и варка — потери водорастворимых компонентов за счет выщелачивания, улетучивание ароматических веществ и эфирных масел; пассерование — сохранение жирорастворимых красящих и ароматических веществ, эфирных масел. Влияние замораживания на изменение вкуса и аромата растительного сырья и плодоовощной продукции: ослабление естественного вкуса и аромата в результате нарушения сопряженности ферментативных окислительно-восстановительных процессов и преобладания окислительных процессов над восстановительными; снижение суммы ароматобразующих веществ (ароматического числа); изменение состава летучих ароматических веществ; окисление эфирных масел кислородом воздуха.

Контрольные вопросы

- 1. Охарактеризуйте различные степени зрелости плодов и овощей.
- 2. Расскажите о влиянии различных углеводов на вкус плодо-овощного сырья.
- 3. Какие органические кислоты наиболее распространены в растительном сырье и продукции? Как они влияют на формирование вкуса?
 - 4. Как можно рассчитать объективный показатель вкуса?
 - 5. Чем обусловлено развитие «загара» при старении плодов?
- 6. Дайте краткую характеристику ароматических веществ, эфирных масел и фитонцидов растительного сырья.
- 7. Как изменяются количество и состав ароматических веществ овощей и плодов при созревании?
- 8. Какое влияние на формирование вкуса и аромата растительного сырья оказывают фенольные вещества?
- 9. Чем обусловлены высокие потери вкусоароматических компонентов при бланшировании и варке?
- 10. Каким образом можно существенно сократить потери вкусоароматических веществ при термической обработке?
- 11. Чем обусловлено негативное влияние замораживания на изменение вкуса и аромата растительного сырья и плодоовощной продукции?

Тема 3.3. **Формирование цвета, вкуса и аромата пива, безалкогольных и спиртных напитков**

Сырье для производства пива, его влияние на цвет, вкус и аромат получаемого продукта.

Влияние технологической обработки солода на цвет пива: сушка, обжарка, варка.

Формирование вкуса и аромата пива и факторы, их обусловливающие: качество сырья и условия его хранения; замачивание и проращивание при солодоращении; сушка свежеприготовленного солода и его хранение; дробление и затирание солода; кипячение сусла; брожение; созревание, стабилизация и упаковка готового пива.

Основные вкусоароматические компоненты пива.

Сырье для производства безалкогольных напитков. Формирование цвета, вкуса и аромата при их изготовлении.

Технология производства плодово-ягодных вин. Зависимость цвета, вкуса и аромата от качества используемого сырья. Пути повышения выхода сока и пигментов для улучшения цветности вина. Образование вкусо-ароматических соединений: органических кислот (уксусной, яблочной), высших спиртов (фенилэтанола), сложных эфиров (этилацетата); карбонильных соединений (диацетила и альдегидов, например, ацетальдегида). Влияние яблочно-молочного брожения на формирование вкуса и аромата. Роль соединений серы.

Химический состав вкусовых и ароматических соединений вина.

Контрольные вопросы

- 1. Какое сырье используют для изготовления пива, и как оно влияет на цвет и вкусоароматические показатели готового продукта?
- 2. Какие технологические операции обусловливают формирование цвета пива?
 - 3. Факторы, влияющие на формирование вкуса и аромата пива.
- 4. Дайте характеристику основных вкусоароматических компонентов пива.
- 5. За счет чего образуется цвет, вкус и аромат при изготовлении безалкогольных напитков?
- 6. Какое сырье используется при изготовлении плодовоягодных вин?
- 7. Меры повышения выхода сока и красящих веществ из растительного сырья.
- 8. Какие группы соединений участвуют в образовании вкуса и аромата вин?
 - 9. Влияние соединений серы на вкус и аромат вина.

10. Расскажите об основных вкусовых и ароматических соединениях спиртных напитков.

Тема 3.4. Роль реакции Майяра (меланоидинообразования) в формировании цвета, вкуса и аромата пищевых продуктов

Сущность реакции меланоидинообразования — взаимодействие аминогрупп аминокислот с гликозидными гидроксилами сахаров. Характерные признаки реакции Майяра: потемнение продукта в результате образования трудно- или нерастворимых в воде темноокрашенных соединений, снижение количества редуцирующих сахаров и азота аминогрупп, появление ароматобразующих веществ.

Влияние факторов на протекание реакции Майяра: характер аминокислоты; структура сахара; кислотность, влажность и температура среды; наличие ионов металлов.

Роль меланоидинообразования в процессах переработки пищевого сырья и формировании качества готовых продуктов. Влияние реакции Майяра на потемнение фруктовых соков при хранении; образование хрустящей корочки, вкуса и аромата при выпекании хлеба и хлебо-булочных изделий; образование цвета и аромата при «томлении» красного солода и затора в пивоварении; формирование цвета, вкуса и аромата при изготовлении вина, коньяка, шампанского; потемнение сахарного сиропа при упаривании; производство чая и т.д.

Регулирование реакции меланоидинообразования в технологическом процессе для снижения ее негативного влияния.

Контрольные вопросы

- 1. В чем заключается сущность реакции Майяра? Каковы ее основные этапы?
- 2. На каком этапе реакции меланоидинообразования появляются важные ароматические компоненты?
- 3. Какие факторы оказывают влияние на протекание реакции Майяра?
- 4. Приведите пример технологического процесса с участием реакции меланоидинообразования.

- 5. Какое негативное влияние оказывает реакция меланоидино-образования на продукты питания?
 - 6. Можно ли контролировать реакцию Майяра? Каким образом?

Литература: 1-4, 6-11, 15, 18-20, 23-28, 30, 33-35, 38-45.

РАЗДЕЛ 4. **ВЛИЯНИЕ ПИЩЕВЫХ ДОБАВОК НА ЦВЕТ, ВКУС И АРОМАТ ПИЩЕВЫХ ПРОДУКТОВ**

Тема 4.1. Пищевые добавки

Общие сведения о пищевых добавках: определения, классификация.

Общие подходы к подбору технологических добавок. Безопасность применения пищевых добавок.

Контрольные вопросы

- 1. Каковы основные цели введения пищевых добавок в пищевые продукты?
 - 2. Охарактеризуйте функциональные классы пищевых добавок.
- 3. Каковы причины широкого использования пищевых добавок производителями продуктов питания?
 - 4. Расскажите о цифровой кодификации пищевых добавок.
 - 5. Расскажите о безопасности пищевых добавок.

Тема 4.2. Пищевые красители

Общие сведения о пищевых красителях: терминология, назначение; классификация пищевых красителей по происхождению; токсическая безопасность и аллергенность пищевых красителей.

Применение пищевых красителей в странах Европейского союза и США.

Пищевые красители в России: регламентация применения, разрешенные и неразрешенные пищевые красители. Срок годности, срок хранения и условия хранения пищевых красителей. Государственная регистрация красителей. Синтетические пищевые красители: классификация; химия и метаболизм; колористические характеристики и растворимость; стабильность по отношению к кислотности среды, нагреванию, свету, щелочам, кислотам, консервантам. Применение синтетических пищевых красителей.

Натуральные пищевые красители и их синтетические аналоги: ассортимент, токсическая безопасность, пищевая ценность, классификации (по химической природе; по цвету, придаваемому пищевым продуктам; по выпускаемой форме).

Неорганические пищевые красители: классификация, рекомендации по применению.

Цветокорректирующие материалы.

Контрольные вопросы

- 1. Дайте характеристику основных терминов пищевых красителей.
- 2. Какова цель использования пищевых красителей в технологии продуктов питания?
- 3. Расскажите о классификации пищевых красителей по происхождению.
 - 4. Токсическая безопасность пищевых красителей.
- 5. Особенности применения пищевых красителей в странах Европейского союза и США.
 - 6. Регламентация применения пищевых красителей в России.
- 7. Расскажите о классификации синтетических пищевых красителей.
- 8. Дайте характеристику синтетических красителей как химических соединений.
 - 9. Применение синтетических пищевых красителей.
 - 10. Приведите ассортимент натуральных красителей.
- 11. Каким образом можно классифицировать натуральные пищевые красители?
 - 12. Какова пищевая ценность натуральных красителей?
 - 13. Охарактеризуйте неорганические пищевые красители.
- 14. С какой целью применяют цветокорректирующие материалы?

Тема 4.3. **Вещества, влияющие на вкус и аромат пищевых продуктов**

Факторы, определяющие вкус и аромат продуктов питания.

Добавки, влияющие на вкус пищевых продуктов: подсластители, регулирующие рН пищевых систем (пищевые кислоты).

Общие сведения об ароматизаторах. Основные термины и определения. Назначение ароматизаторов.

Классификация ароматизаторов: по назначению, по типу применяемых вкусоароматических веществ, по форме выпуска.

Безопасность ароматизаторов. Контролируемые показатели безопасности и качества ароматизаторов. Требования безопасности при работе с ароматизаторами.

Сырье для производства ароматизаторов. Вкусоароматические вещества: классификация по вкусоароматическим свойствам и химическим группам.

Вкусоароматические препараты и натуральные вкусоароматические вещества из растительного сырья: термины и определения; определение типов вкусоароматических препаратов.

Натуральные источники ароматизаторов растительного происхождения: общая характеристика ассортимента растительного сырья; краткая характеристика некоторых видов растительного сырья.

Вкусоароматические препараты из сырья животного происхождения.

Вкусоароматические препараты и натуральные вкусоароматические вещества биотехнологического происхождения.

Технологические ароматизаторы. Применение и безопасность технологических ароматизаторов.

Технология ароматизаторов: разработка композиционных ароматизаторов; общая схема получения ароматизаторов. Технология жидких и сухих ароматизаторов.

Применение ароматизаторов при производстве продуктов питания.

Пищевые добавки, усиливающие и модифицирующие вкус и аромат.

Контрольные вопросы

1. Какие факторы влияют на формирование вкуса и аромата пищевых продуктов?

- 2. Дайте краткую характеристику основных веществ, влияющих на вкус продуктов.
 - 3. Приведите основные термины ароматических веществ.
 - 4. Какова цель применения ароматизаторов?
 - 5. Расскажите о классификации ароматизаторов.
- 6. Каким образом контролируются безопасность и качество ароматизаторов?
- 7. Согласно каким вкусоароматическим свойствам классифицируют ароматизаторы?
- 8. Классы каких химических соединений принимают участие в формировании аромата?
- 9. Дайте характеристику растительного сырья, используемого для получения вкусоароматических препаратов и натуральных вкусоароматических веществ.
- 10. Какое сырье животного происхождения используется для изготовления вкусоароматических препаратов?
- 11. Расскажите о вкусоароматических препаратах и натуральных вкусоароматических веществах биотехнологического происхождения.
 - 12. С какой целью применяются технологические ароматизаторы?
 - 13. Какова схема производства ароматизаторов?
- 14. В чем заключается получение сухих ароматизаторов методом капсулирования?
- 15. Приведите пример применения ароматизаторов при производстве продуктов питания.
- 16. Охарактеризуйте пищевые добавки, усиливающие и модифицирующие вкус и аромат продуктов питания.

Литература: 5, 6, 12–14, 17, 23, 26, 29, 31, 32, 36–38, 45.

РАЗДЕЛ 5. ВЫПОЛНЕНИЕ ДОМАШНЕГО ЗАДАНИЯ

Домашнее задание, согласно выбранным магистрантами темам, выполняется в виде реферата.

Структурными элементами реферата являются:

- титульный лист;
- содержание реферата;
- библиографический список.

Титульный лист является первой страницей реферата. Образец его оформления приведен в приложении 1.

Содержание включает все структурные элементы реферата с указанием номеров страниц:

- введение;
- содержание реферата;
- заключение.

Объем реферата должен составлять не менее 15...20 печатных листов. Текст реферата печатается через 1,5 интервала, кегль 14; поля: справа -15 мм, слева -30 мм, сверху и снизу -20 мм.

По тексту реферата должны быть расставлены ссылки на использованную литературу.

Таблицы и рисунки, приведенные в реферате, должны иметь название и сквозную нумерацию. Текст таблицы печатается через 1 интервал, кегль 12. Таблицы и рисунки желательно не разрывать и умещать на одной странице.

Реферат должен быть написан грамотно, аккуратно.

Заключение содержит краткие выводы по материалам реферата.

Библиографический список включает сведения обо всех источниках, использованных для оформления отчета. Образец оформления литературных источников приведен в приложении 2.

Обязательно использование не менее 5 отечественных и не менее 3 иностранных источников, опубликованных в последние 10 лет. Обязательно использование электронных баз данных.

Процедура защиты реферата заключается в выступлении с устной презентацией результатов с последующим групповым обсуждением.

Критерии оценивания

- соответствие содержания заявленной теме, отсутствие в тексте отступлений от темы;
- соответствие целям и задачам дисциплины;
- логичность и последовательность в изложении материала;
- способность к работе с литературными источниками, Интернетресурсами, справочной и энциклопедической литературой;
- объем исследованной литературы и других источников информации;
- обоснованность выводов;

- правильность оформления (соответствие стандарту, структурная упорядоченность, ссылки, цитаты, таблицы и т.д.);
- соблюдение объема, шрифтов, интервалов (соответствие оформления правилам компьютерного набора текста).

Темы рефератов

- 1. Применение натуральных красителей в пищевой технологии.
- 2. Роль меланоидинообразования в процессах переработки пищевого сырья и формировании качества готовых продуктов.
 - 3. Основные вкусоароматические компоненты пива.
 - 4. Зеленые пигменты растений хлорофиллы.
- 5. Влияние технологической обработки на изменение вкуса и аромата растительного сырья и плодоовощной продукции.
- 6. Применение ароматизаторов при производстве продуктов питания.
 - 7. Применение синтетических пищевых красителей.
- 8. Технология производства плодово-ягодных вин. Зависимость цвета, вкуса и аромата от качества используемого сырья.
- 9. Изменение цвета, вкуса и аромата при созревании и старении плодов.
- 10. Факторы, обусловливающие формирование аромата у продуктов питания.
 - 11. Безопасность пищевых красителей и ароматизаторов.
- 12. Участие каротиноидов и пигментированных фенольных соединений в формировании цвета плодов и овощей.
- 13. Классификация и пищевая ценность натуральных пищевых красителей.
- 14. Регулирование реакции меланоидинообразования в технологическом процессе для снижения ее негативного влияния.
- 15. Пищевые добавки, усиливающие и модифицирующие вкус и аромат.
- 16. Вкусоароматические препараты из сырья животного происхождения.
- 17. Формирование цвета, вкуса и аромата при изготовлении безалкогольных напитков.
 - 18. Химический состав вкусовых и ароматических соединений вина.
 - 19. Получение сухих ароматизаторов методом капсулирования.
- 20. Формирование вкуса и аромата пива и факторы, их обусловливающие.

СПИСОК ЛИТЕРАТУРЫ

- 1. Алмаши Э., Эрдели Л., Шарой Т. Быстрое замораживание пищевых продуктов. М.: Лег. и пищ. пром-сть, 1981. 408 с.
- 2. **Ауэрман Л.Я.** Технология хлебопекарного производства: Учеб. 9-е изд., доп. и перераб. /Под общ. ред. Л.И. Пучковой. СПб.: Профессия, 2002. 416 с.
- 3. **Бобкова Л.П.** Методика определения потемнения картофеля // Консервная и овощесушильная промышленность. 1974. № 8. С. 39–40.
- 4. **Бокучава М.А., Пруидзе Г.Н., Ульянова М.С.** Биохимия производства растительных красителей. Тбилиси: «Мецниереба», 1976. 97 с.
- 5. **Болотов В.М., Нечаев А.П., Сарафанова Л.А.** Пищевые красители: классификация, свойства, анализ, применение. СПб.: ГИОРД, 2008.
- 6. **Брухман Э.-Э.** Прикладная биохимия / Пер. с нем. В.Л. Кретовича. М.: Лег. и пищ. пром-сть, 1981. 296 с.
- 7. **Бэмфорт Ч.** Новое в пивоварении / Пер. с англ. И.С. Горожанкиной, Е.С. Боровиковой. СПб.: Профессия, 2007. 520 с.
- 8. **Бэртон У.Г.** Физиология созревания и хранения продовольственных культур / Пер. с англ. под ред. Н.В. Обручевой. М.: Агропромиздат, 1985.
- 9. **ГОСТ 25555.0–82**. Методы переработки плодов и овощей. Методы определения титруемой кислотности.
- 10. ГОСТ 8756.13–87. Продукты переработки плодов и овощей. Методы определения сахаров.
- 11. **ГОСТ 28562–90**. Продукты переработки плодов и овощей. Рефрактометрический метод определения растворимых сухих веществ.
- 12. ГОСТ Р 52177–2003. Ароматизаторы пищевые. Общие технические условия.
- 13. ГОСТ Р 52464–2005. Добавки вкусоароматические и ароматизаторы пищевые. Термины и определения.
- 14. ГОСТ Р 52499–2005. Добавки пищевые. Термины и определения.
- 15. **Гребинский С.О.** Биохимия растений. Львов: Выща шк., 1975. 280 с.

- 16. **Гудман М., Морхауз Ф.** Органические молекулы в действии / Пер. с англ. М.П. Тетериной; Под ред. А.П. Пурмаля. М.: Мир, 1977. 336 с.
- 17. **Кацерикова Н.В., Позняковский В.Н.** Натуральные пищевые красители. Новосибирск: ЭКОР, 1999.
- 18. Киселева Т.Ф., Помозова В.А., Гореньков Э.С. Технология консервирования: Учеб. пособие. СПб.: Проспект Науки, 2011. 416 с.
- 19. **Кретович В.Л.** Биохимия растений: Учеб. для биол. факультетов ун-тов. M.: Высш. шк., 1980. 445 с.
- 20. Холодильная технология пищевых продуктов. Ч. III. Биохимические и физико-химические основы: Учеб. для вузов / В.Е. Куцакова, А.В. Бараненко, Т.Е Бурова, М.И. Кременевская. СПб.: ГИОРД, 2011. 272 с.
- 21. **Лебедев С.И.** Физиология растений. 2-е изд., доп. и перераб. М.: Колос, 1982. 463 с.
- 22. **Лебедева Т.С., Сытник К.М.** Пигменты растительного мира. Киев: Наукова думка, 1986. 88 с.
- 23. **Ли Э., Пигготт Дж.** Спиртные напитки: Особенности брожения и производства / Пер. с англ. под общ. ред. А.Л. Панасюка. СПб.: Профессия, 2006. 552 с.
- 24. **Метлицкий Л.В.** Основы биохимии плодов и овощей. М.: Экономика, 1976. 349 с.
- 25. Парамонова Т.Н. Экспресс-методы оценки качества продовольственных товаров. М.: Экономика, 1988. 111 с.
- 26. Пищевая химия /А.П. Нечаев, С.Е. Траубенберг, А.А. Кочетков и др. / Под ред. А.П. Нечаева. 5-е изд., испр. и доп. СПб.: ГИОРД, 2012.-672 с.
- 27. **Плешков Б.П.** Практикум по биохимии растений. 3-е изд., доп. и перераб. М.: Агропромиздат, 1985. 255 с.
- 28. Экспертиза свежих плодов и овощей: Учеб. пособие/Т.В. Плотникова, В.М. Позняковский, Т.В. Ларина, Л.Г. Елисеева. Новосибирск: Изд-во Сиб. ун-та, 2001.-302 с.
- 29. **Позняковский В.М.** Экспертиза пищевых концентратов. Качество и безопасность: Учеб.-справ. Пособие. 3-е изд., испр. Новосибирск: Изд-во Сиб. ун-та, 2004. 224 с. (Экспертиза пищевых продуктов и продовольственного сырья).
- 30. **Рогожин В.В.** Биохимия растений: Учеб. СПб.: ГИОРД, 2012. 432 с.

- 31. **Сарафанова Л.А.** Пищевые добавки. Энциклопедия. СПб.: ГИОРД, 2004. 808 с.
- 32. **Синельников С., Соломоник Т., Лазерсон И.** Специи, приправы, пряности. Придай жизни вкус. М.: ЗАО Центрполиграф, 2005. 349 с.
- 33. **Скорикова Ю.Г.** Полифенолы плодов и ягод и формирование цвета продуктов. М.: Пищ. пром-сть, 1973. 232 с.
- 34. **Скрипников Ю.Г.** Производство плодово-ягодных вин и соков: Учеб. М.: Колос, 1983. 256 с.
- 35. **Скрипников Ю.Г.** Технология переработки плодов и ягод. М.: Агропромиздат, 1988. 287 с.
- 36. **Смирнов Е.В.** Пищевые ароматизаторы: Справочник. СПб.: Изд-во «Профессия», 2008. 736 с.
- 37. **Смирнов Е.В.** Пищевые красители: Справочник. СПб.: Изд-во «Профессия», 2009. 352 с.
- 38. Стин Д.П., Эшхерст Ф.Р. Газированные безалкогольные напитки: рецептуры и производство / Пер. с англ. Т.О. Зверевич. СПб.: Профессия, 2008. 416 с.
- 39. Флауменбаум Б.Л., Танчев С.С., Гришин М.А. Основы консервирования пищевых продуктов. М.: Агропромиздат, 1986. 494 с.
- 40. **Цоцоашвили И.И., Бокучава М.А.** Химия и технология чая: Учеб. для студентов высш. учеб. заведений. М.: Агропромиздат, 1989. 391 с.
- 41. **Шапиро М.С., Трайнина Г.Г.** Лабораторный контроль в предприятиях общественного питания. Л.: Госторгиздат, 1962. 392 c.
- 42. **Шобингер У.** Фруктовые и овощные соки: научные основы и технологии /Пер. с нем. под общ. ред. А.Ю. Колеснова, Н.Ф. Берестеня и А.В. Орещенко. СПб.: Профессия, 2004. 640 с.
- 43. **Щеглов Н.Г.** Технология консервирования плодов и овощей: Учеб.-практ. пособие. М.: Палеотип, Дашков и К°, 2002. 380 с.
- 44. **Якушкина Н.И.** Физиология растений: Учеб. пособие для студентов биол. спец. высш. пед. учеб. заведений. 2-е изд., перераб. М.: Просвещение, 1993. 335 с.
 - 45. Ресурсы Интернета.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

ИНСТИТУТ ХОЛОДА И БИОТЕХНОЛОГИЙ

Факультет пищевых технологий

Кафедра технологии мясных, рыбных продуктов и консервирования холодом

РЕФЕРАТ

(указать тему реферата)

Выполнил: студент(ка) группы

Фамилия, инициалы

Проверил: Ф.И.О. преподавателя

Санкт-Петербург 20__г.

Образец оформления литературных источников

Пример оформления ссылки на книгу:

- фамилия и инициалы автора (авторов);
- название книги;
- место издания;
- название издательства;
- год издания;
- количество страниц.

Смирнов Е.В. Пищевые красители: Справочник. – СПб.: Профессия, $2009.-352\ c.$

Пример оформления ссылки на журнальную статью:

- фамилия и инициалы автора (авторов);
- название статьи;
- название журнала;
- год выпуска;
- номер выпуска;
- номера страниц, на которых изложен материал статьи.

Бобренева И.В. К вопросу о функциональных продуктах питания // Мясная индустрия. 2002. № 11. С. 12–14.

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	3
РАЗДЕЛ 1. ХИМИЯ ЦВЕТА 4	4
РАЗДЕЛ 2. ХИМИЯ ВКУСА И АРОМАТА 6	6
РАЗДЕЛ 3. ИЗМЕНЕНИЕ ЦВЕТА, ВКУСА И АРОМАТА В ПРОЦЕССЕ СОЗРЕВАНИЯ,	
ХРАНЕНИЯ И ТЕХНОЛОГИЧЕСКОЙ ОБРАБОТКИ	
РАСТИТЕЛЬНОГО СЫРЬЯ	8
РАЗДЕЛ 4. ВЛИЯНИЕ ПИЩЕВЫХ ДОБАВОК	
НА ЦВЕТ, ВКУС И АРОМАТ ПИЩЕВЫХ ПРОДУКТОВ14	4
РАЗДЕЛ 5. ВЫПОЛНЕНИЕ ДОМАШНЕГО ЗАДАНИЯ17	7
СПИСОК ЛИТЕРАТУРЫ20	0
ПРИПОЖЕНИЯ 27	3

В 2009 году Университет стал победителем многоэтапного конкурса, в результате которого определены 12 ведущих университетов России, категория «Национальный которым присвоена исследовательский Министерством университет». образования Российской науки Федерации была утверждена программа его развития на 2009–2018 годы. В 2011 году Университет получил наименование «Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики».

ИНСТИТУТ ХОЛОДА И БИОТЕХНОЛОГИЙ

Институт холода и биотехнологий является преемником Санкт-Петербургского государственного университета низкотемпературных и пищевых технологий (СПбГУНиПТ), который в ходе реорганизации (приказ Министерства образования и науки Российской Федерации № 2209 от 17 августа 2011г.) в январе 2012 года был присоединен к Санкт-Петербургскому национальному исследовательскому университету информационных технологий, механики и оптики.

Созданный 31 мая 1931года институт стал крупнейшим образовательным и научным центром, одним их ведущих вузов страны в области холодильной, криогенной техники, технологий и в экономике пищевых производств.

В институте обучается более 6500 студентов и аспирантов. Коллектив преподавателей и сотрудников составляет около 900 человек, из них 82 доктора наук, профессора; реализуется более 40 образовательных программ.

Действуют 6 факультетов:

- холодильной техники;
- пищевой инженерии и автоматизации;
- пищевых технологий;
- криогенной техники и кондиционирования;
- экономики и экологического менеджмента;
- заочного обучения.

За годы существования вуза сформировались известные во всем мире научные и педагогические школы. В настоящее время фундаментальные и прикладные исследования проводятся по 20 основным научным направлениям: научные основы холодильных машин и термотрансформаторов; повышение эффективности холодильных установок; газодинамика и компрессоростроение; совершенствование процессов, машин и аппаратов криогенной техники; теплофизика; теплофизическое приборостроение; машины, аппараты и системы кондиционирования; хладостойкие стали; проблемы прочности при низких температурах; твердотельные преобразователи энергии; холодильная обработка и хранение пищевых продуктов; тепломассоперенос в пищевой промышленности; технология молока и молочных продуктов; физико-химические, биохимические и микробиологические основы переработки пищевого сырья; пищевая технология продуктов из растительного сырья; физико-химическая механика и тепло-и массообмен; методы управления технологическими процессами; техника пищевых производств и торговли; промышленная экология; от экологической теории к практике инновационного управления предприятием.

В институте создан информационно-технологический комплекс, включающий в себя технопарк, инжиниринговый центр, проектно-конструкторское бюро, центр компетенции «Холодильщик», научнообразовательную лабораторию инновационных технологий. На предприятиях холодильной, пищевых отраслей реализовано около тысячи крупных проектов, разработанных учеными и преподавателями института.

Ежегодно проводятся международные научные конференции, семинары, конференции научно-технического творчества молодежи.

Издаются журнал «Вестник Международной академии холода» и электронные научные журналы «Холодильная техника и кондиционирование», «Процессы и аппараты пищевых производств», «Экономика и экологический менеджмент».

В вузе ведется подготовка кадров высшей квалификации в аспирантуре и докторантуре по 11 специальностям.

Действуют два диссертационных совета, которые принимают к защите докторские и кандидатские диссертации.

Вуз является активным участником мирового рынка образовательных и научных услуг.

www.ihbt.edu.ru www.gunipt.edu.ru

Бурова Татьяна Евгеньевна

ХИМИЯ ВКУСА, ЦВЕТА И АРОМАТА

Учебно-методическое пособие

Ответственный редактор Т.Г. Смирнова

Титульный редактор Р.А. Сафарова

Компьютерная верстка Д.Е. Мышковский

> Дизайн обложки Н.А. Потехина

Печатается в авторской редакции

Подписано в печать 23.01.2014. Формат 60×84 1/16 Усл. печ. л. 1,63 Печ. л. 1,75 Уч.-изд. л. 1,56 Тираж 20 экз. Заказ № С 3а

НИУ ИТМО. 197101, Санкт-Петербург, Кронверкский пр., 49 ИИК ИХиБТ. 191002, Санкт-Петербург, ул. Ломоносова, 9

Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики 197101, Санкт-Петербург, Кронверкский пр., 49 Институт холода и биотехнологий 191002, Санкт-Петербург, ул. Ломоносова, 9

