#### МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

# САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

#### ИНСТИТУТ ХОЛОДА И БИОТЕХНОЛОГИЙ



Р.А. Фёдорова, Е.В. Соболева

# ИЗГОТОВЛЕНИЕ И АНАЛИЗ КАЧЕСТВА КОНДИТЕРСКИХ ИЗДЕЛИЙ Часть I

Учебно-методическое пособие



Санкт-Петербург 2013 **Фёдорова Р.А., Соболева Е.В.** Изготовление и анализ качества кондитерских изделий. Часть І: Учеб.-метод. пособие. – СПб.: НИУ ИТМО; ИХиБТ, 2013. – 22 с.

Данное пособие составлено на основании Государственного образовательного стандарта высшего профессионального образования ГОС 3 и предназначено для бакалавров очной и заочной форм обучения дисциплине «Технология хлеба, кондитерских и макаронных изделий».

Подробно описан порядок выполнения лабораторных работ для бакалавров по профилю «Технология хлеба, кондитерских и макаронных изделий» направления 260100 Продукты питания из растительного сырья.

Рецензент: кандидат техн. наук, доц. А.Г. Буткарев

Рекомендовано к печати редакционно-издательским советом Института холода и биотехнологий



В 2009 году Университет стал победителем многоэтапного конкурса, в результате которого определены 12 ведущих университетов России, исследовательский присвоена «Национальный которым категория Министерством университет». образования науки Российской Федерации была утверждена программа его развития на 2009–2018 годы. В 2011 году Университет получил наименование «Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики».

© Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики, 2013

### **ВВЕДЕНИЕ**

Будущий инженер-технолог кондитерского производства должен быть специалистом, имеющим широкий технологический кругозор, хорошо разбираться в сущности реальных процессов переработки сырья и полуфабрикатов в готовые кондитерские изделия. Производство кондитерских изделий базируется на закономерностях физики, химии, реологии кондитерских масс и других науках, поскольку каждый технологический процесс является совокупностью физических, химических и других воздействий на сырье и полуфабрикаты.

Курсу «Технология хлеба, кондитерских и макаронных изделий» предшествует обучение по химическим дисциплинам: неорганическая, аналитическая и органическая химия, биохимия, физическая и коллоидная химия, физика, а также курсы «Машины и аппараты пищевых производств», «Общая технология отрасли» и др.

Цель обучения – дать студентам знания технологии изготовления кондитерских изделий. Следует учесть, что выработка масс кондитерских изделий однородной структуры базируется на единых математических уравнениях. При таком подходе достигается большая увязка общих и специальных дисциплин, кругозор студентов расширяется, в результате чего они становятся более подготовленными к использованию АСУ ТП на производстве.

Кроме технологических процессов необходимо знать соответствующее оборудование, что делает более понятными технологические связи процессов.

Из предыдущих курсов обучения студенты получили необходимые знания о сырье, используемом в технологии сахаристых изделий, о его химическом составе, физико-химических свойствах, пищевой ценности. Напомним, что к основному сырью относятся сахар, патока, какао тертое, тертые ядра орехов, какао-масло, масло сливочное, молоко сгущенное, пюре яблочное, подварки, пектин и др.; к дополнительному сырью – красители, эссенции, сухие духи, кислоты и др.

Перед студентами стоят задачи изучить:

 сущность химических и физических процессов приготовления кондитерских масс и дать их математическое описание, достаточное для использования автоматизированных систем при управлении технологическими процессами;

- технологию изготовления карамели, шоколада, конфет, ириса, пастильно-мармеладных изделий, халвы и т. д.;
  - способы упаковывания и условия хранения кондитерских изделий;
     знать:
- нетрадиционные виды сырья, используемые в кондитерской промышленности;
- расчет и пересчет рецептур при замене сырья, а также технологический анализ расхода сырья;
  - методы оценки качества готовой продукции;
  - пищевую и энергетическую ценность кондитерских изделий.

#### ЛАБОРАТОРНАЯ РАБОТА № 1

## Расчет рецептуры карамели на патоке Изготовление сахаро-паточного сиропа и карамели

Содержанием работы является расчет норм сырья для леденцовой карамели на патоке в соответствии с унифицированной рецептурой, а также изготовление из рассчитанного количества сырья карамельного сиропа, карамельной массы и готовых изделий (табл. 1).

Таблица 1

Расчет рецептуры карамели на патоке «Монпансье леденцовое» (открытое)

| Сырье       | Содержание сухих | Общий рас<br>на 1 | •         | Общий расход сырья на изготовление карамели из 100 г сахара, г |           |  |
|-------------|------------------|-------------------|-----------|----------------------------------------------------------------|-----------|--|
|             | веществ, %       | в натуре          | в сухих   | в натуре                                                       | в сухих   |  |
|             |                  |                   | веществах |                                                                | веществах |  |
| Сахар-песок | 99,85            | 713,2             | 712,1     | 100,0                                                          | 99,85     |  |
| Патока      | 78,00            | 356,6             | 278,1     |                                                                |           |  |
| Кислота     | 98,0             | 10,0              | 9,8       |                                                                |           |  |
| лимонная    |                  |                   |           |                                                                |           |  |
| Эссенция    | _                | 4,0               | _         | -<br>Рассчитать                                                |           |  |
| фруктовая   |                  |                   |           |                                                                |           |  |
| или ягодная |                  |                   |           |                                                                |           |  |
| Краска      | _                | 0,2               | _         |                                                                |           |  |
| Итого       | _                | 1084,01           | 1000,0    |                                                                |           |  |
| Выход       | 98,5             | 0,0               | 985,0     |                                                                |           |  |

Содержание сухих веществ в патоке без разведения следует определить рефрактометрическим методом с учетом поправок.

Рецептуру карамели рассчитать на 100 г сахара с учетом истинного содержания сухих веществ в патоке. Рассчитать выход карамели, принимая в расчет рецептурные потери сухих веществ.

#### Приготовление карамели на патоке. Анализ карамели

Взвесить расчетное количество сырья. Сахар растворить в 25–30 мл воды при нагревании в чашке. В раствор добавить патоку и уварить до содержания 80–82 % сухих веществ, осуществляя контроль рефрактометрическим методом. Отобрать пробу карамельного сиропа (около 10 г) с целью определения содержания редуцирующих сахаров. Далее уварить сироп до карамельной массы, ведя температурный контроль за увариванием. Конечная температура 150 °C.

Горячую карамельную массу при температуре 108 °C вылить на мраморную плиту, во избежание прилипания предварительно смазанную растительным маслом. Для определения растекаемости замерить по линейке взаимно перпендикулярные диаметры полученного круга.

На поверхности массы быстро и равномерно распределить кислоту (лимонную или виннокаменную) и эссенцию, тщательно провести проминку массы шпателем с целью полного удаления воздушных пузырей, равномерного распределения добавок и получения необходимой толщины пласта (0,5–0,8 см). При температуре массы 75–80 °С провести формование карамели (монпансьейные вальцы нужно предварительно смазать растительным маслом). После охлаждения карамель взвесить для определения количественного ее выхода, сравнить полученный выход с рецептурным. Проследить за факторами, влияющими на выход. Карамель подвергнуть анализу по всем показателям (см. лабораторную работу № 3).

Написать отчет о проделанной работе.

## Вопросы для самопроверки

- 1. Каков химический состав патоки, используемой для изготовления карамели, и механизм ее действия как антикристаллизатора?
- 2. Обосновать рецептуру карамели на патоке. Как производится расчет рецептуры карамели?

- 3. Обосновать технологические режимы изготовления карамели на патоке.
  - 4. Получение карамельных масс.
  - 5. Определение понятия карамели. Виды карамели.
- 6. Изменения реологических характеристик карамельных масс в зависимости от температуры.

#### ЛАБОРАТОРНАЯ РАБОТА № 2

## Расчет рецептуры карамели на инвертном сиропе Изготовление сахаро-инвертного сиропа и карамели

Цель работы — приготовление инвертного сиропа, в связи с чем для инверсии провести предварительный расчет расхода соляной кислоты 10 %-й концентрации и расчет количества соды для нейтрализации кислоты; определить содержание влаги и редуцирующих веществ в инвертном сиропе; рассчитать рецептуру карамели на инвертном сиропе (на 100 г сахара) и выход карамели.

#### Приготовление инвертного сиропа

Приготовить при температуре 90 °C и в течение 30 мин инвертный сироп 70–80 %-й концентрации, подвергнув инверсии 80 %-й раствор сахарозы (сахар-песок) с добавлением к массе сахара 0,2 % HCl 10 %-й концентрации.

Готовый инвертный сироп необходимо охладить и нейтрализовать кислоту 10 %-м раствором питьевой соды при постоянном перемешивании, чтобы предотвратить образование темноокрашенных продуктов разложения фруктозы, которая очень чувствительна к щелочным средам.

Полученный инвертный сироп должен иметь слабокислую реакцию во избежание разложения сахаров, поэтому количество соды, необходимой для нейтрализации кислоты, уменьшают на 10 % (часть соляной кислоты вступает в реакцию с минеральными веществами, содержащимися в сахаре).

Расчет количества соды ведут по уравнению

$$HCl + NaHCO_3 = NaCl + H_2O + CO_2$$

Охлаждение инвертного сиропа необходимо, так как хранение его при высокой температуре вызывает сильное потемнение в связи с разложением фруктозы при температуре ниже 100 °C.

Для получения инвертного сиропа 50 г сахара растворяют в 12,5 г воды при нагревании в фарфоровой чашке. В полученный сахарный раствор при температуре 90 °С вливают кислоту и при этой же температуре проводят инверсию сахарозы в течение 30 мин. Инвертный сироп по окончании инверсии необходимо сразу охладить до 65 °С и нейтрализовать питьевой содой (10 %-м раствором) при тщательном перемешивании. В инвертном сиропе рефрактометрическим методом определяют влажность и содержание редуцирующих веществ.

#### Расчет рецептуры карамели. Изготовление и анализ карамели

Рецептуру карамели рассчитывают на 100 г сахара. Количество инвертного сиропа вычисляют по формуле

$$X = \frac{100aS}{(100 - b)(A - a)},$$

где X — количество инвертного сиропа, г; a — содержание инвертного сахара, допускаемое в карамельном сиропе (14 %); S — дозировка сахара, г; b — влажность карамельного сиропа (14—16 %); A — содержание инвертного сахара в инвертном сиропе, определяемое анализом, %.

Метод приготовления карамели на инвертном сиропе аналогичен таковому с использованием патоки, однако температура массы в конце упаривания должна быть на 10 °C выше (160 °C).

Написать отчет о проделанной работе.

## Вопросы для самопроверки

- 1. Как рассчитывают рецептуру карамели на инвертном сиропе?
- 2. Как рассчитать количество соляной кислоты и двууглекислой соды для приготовления инвертного сиропа?
  - 3. Каков принцип приготовления инвертного сиропа?
- 4. В чем состоит механизм действия инвертного сиропа как антикристаллизатора?

- 5. Выгодно или нет заменять патоку инвертным сиропом и почему?
- 6. Как рассчитывают массу инвертного сахара в рецептуре карамельного сиропа?

#### ЛАБОРАТОРНАЯ РАБОТА № 3

# Определение физико-химических и органолептических показателей карамельных сиропов и карамели

Определение массовой доли влаги рефрактометрическим методом

Для приготовления 50 %-го раствора в бюксе с палочкой и крышкой или стаканчике на технохимических весах взвесить 5 г предварительно измельченной в ступке карамели, добавить градуированной пипеткой 5 мл дистиллированной воды, растворить навеску при подогревании на водяной бане (температура не выше 70 °С). После охлаждения раствора бюксу взвесить и добавить необходимое количество воды (пока раствор не будет весить 10 г). После этого каплю раствора нанести стеклянной палочкой на призму рефрактометра и по шкале определить в процентах содержание сухих веществ в растворе. Призму рефрактометра предварительно выдержать при температуре 20 °С.

Содержание сухих веществ в карамели (без учета поправок на температуру, поправки на углеводы патоки и инвертного сиропа) рассчитать по формуле

$$X=\frac{nb}{g},$$

где n — показания процентной шкалы рефрактометра при 20 °C; b — масса раствора навески, г; g — навеска карамели, г.

Коэффициент преломления растворов сухих веществ зависит от температуры, поэтому в случае отклонения температуры раствора от 20 °C необходимо ввести температурную поправку, определив ее по табл. 1 приложения. При температуре выше 20 °C величину поправки следует прибавить, а при температуре ниже 20 °C-вычесть из найденного количества СВ.

При установлении влажности карамели, приготовленной на одной патоке или с добавлением инвертного сиропа, находят общую поправку к

количеству видимых СВ, определяемых рефрактометром. Она равна алгебраической сумме двух поправок. Поправку прибавляют к найденному рефрактометром проценту СВ (см. прил., табл. 2).

В случае высокого содержания патоки в карамели поправка отрицательна. Если в карамели много инверта и мало патоки, поправка положительна.

В целях определения влажности карамели необходимо из содержания в ней сухих веществ (СВ), найденных по рефрактометру, учесть поправки на температуру и СВ патоки и инвертного сиропа (прил., табл. 2, 3).

Инверсия сахарозы может происходить также за счет увеличения содержания редуцирующих веществ. Оно равно 5 %.

При расчете поправок принято: содержание сухих веществ в патоке -78 %; в инвертном сиропе -80–85 %. Увеличение содержания PB за счет инверсии сахарозы принято равным 3 %.

# Определение содержания редуцирующих веществ методом титрования щелочного раствора меди раствором инвертного сиропа

Метод предложен Лейном и Эйноном. В качестве индикатора в конце реакции используется метиленовый синий. Редуцирующий сахар придает темно-синюю окраску фиолетовой жидкости. При нагревании инвертный сахар вступает в реакцию с фелинговой жидкостью, постепенно обесцвечивает ее с выделением закиси меди ярко-красного цвета. Окраска закиси меди затрудняет установление конца реакции, поэтому используется метиленовый синий. Инвертный сахар после восстановления фелинговой жидкости восстанавливает метиленовый синий до образования бесцветного лейкосоединения и обесцвечивания раствора.

Для приготовления стандартного раствора инертного сахара навеску химически чистой сахарозы или сахара-рафинада массой 1,9 г, выдержанную в эксикаторе в течение трех суток, растворяют в воде, переносят в мерную колбу на 200 мл. Количество воды, затраченное на растворение и перенесение навески, должно быть около 100 мл.

К раствору добавляют 7–8 мл концентрированной соляной кислоты (плотностью 1,19). В водяную баню, нагретую приблизительно до температуры 80 °C, ставят колбу с погруженным в нее термометром. В тече-

ние 2–3 мин температуру жидкости доводят до 60–70 °C и при этой температуре выдерживают раствор ровно 5 мин, после чего содержимое колбы немедленно охлаждают под струей холодной воды до комнатной температуры и нейтрализуют раствором щелочи (25–30 %-й концентрации), прибавив 1–2 капли метилового оранжевого (зона перехода окраски рН 3,1–4,4). После этого раствор в колбе разбавляют водой до метки и взбалтывают. В 1 мл приготовленного стандартного раствора содержится 0,01 г инвертного сахара.

При установлении титра фелинговой жидкости в коническую колбу емкостью 100 мл отмеривают пипетками по 10 мл жидкости Фелинг 1 и Фелинг 2, добавляют из пипетки 10 мл воды и из бюретки с Z-образным наконечником вливают 8,5—9 мл стандартного раствора инвертного сахара, нагревают до кипения, кипятят ровно 1 мин. Не прерывая кипячения, вносят три капли метиленового синего и титруют тем же раствором инвертного сахара до исчезновения синей окраски.

Суммарное число миллилитров влитого в колбу раствора инвертного сахара, умноженное на 0,01, покажет, скольким граммам сахара (редуцирующего сахара) соответствуют 20 мл щелочного раствора меди.

Приготовить раствор карамели, в 100 мл которого содержалось бы не более 0,8 г редуцирующих веществ.

Величину навески д определить по формуле

$$g=\frac{aV}{p}$$
,

где a — допустимое содержание определяемого сахара в 100 мл приготовленного раствора, г; V — объем мерной колбы, взятой для приготовления раствора навески, мл; p — предполагаемое содержание редуцирующих веществ в исследуемом продукте, % (в карамельной массе 17—20 %, в карамельном сиропе 12—14 %).

Предварительно измельченную в ступке навеску карамели, взятую с точностью до 0,01 г, растворить в стаканчике с дистиллированной водой при температуре 65 °C, перенести в мерную колбу емкостью 100 мл, охладить, довести до метки и хорошо перемешать.

В полученном растворе карамели определить содержание редуцирующих сахаров по нижеприведенной методике.

В коническую колбу емкостью 100—150 мл пипетками отмерить по 10 мл жидкости Фелинг 1 и Фелинг 2 и раствор карамели (сироп), нагреть при взбалтывании до кипения, кипятить 1 мин. Не прерывая кипячения, прибавить 3 капли метиленового синего и дотитровать из бюретки стандартным раствором инертного сахара до исчезновения синего окрашивания.

Количество редуцирующих веществ X (в %) определить по формуле

$$X = \frac{0,01(n-m)100\cdot100}{10g} = \frac{10(n-m)}{g},$$

где n — объем стандартного раствора инвертного сахара, затраченный на 20 мл щелочного раствора меди, мл; m — количество стандартного раствора инвертного сахара, затраченного при дотитровывании, мл; g — навеска продукта,  $\Gamma$ ; 10 — количество инвертного сахара в 1 см $^3$  стандартного раствора, мг.

#### Растекаемость карамельной массы

Этот показатель является косвенной характеристикой вязкости и зависит от рецептуры карамели. Вязкость влияет на стойкость карамельной массы к засахариванию и на технологический процесс ее обработки. Карамельная патока, особенно низкоосахаренная, вследствие высокого содержания декстринов сообщает высокую вязкость карамельной массе, которая, будучи приготовлена на инвертном сиропе, при той же влажности обладает меньшей вязкостью и большей растекаемостью.

Растекаемость карамельной массы характеризуется коэффициентом растекания, который рассчитывается по формуле

$$K = \frac{S}{P_2},$$

где K – коэффициент растекания, см/г; S – площадь, занимаемая пластом карамельной массы (площадь круга), вылитой на плиту при температуре 108 °C (см<sup>2</sup>); P – количество карамельной массы, г.

Для подсчета величины растекаемости карамельной массы определяют диаметр круга и массу готовой карамели. Для нормальной карамельной массы на патоке коэффициент растекания равен 1,35, для массы,

содержащей 20 % инвертного сиропа – соответственно 1,6. С целью увеличения вязкости карамельной массы на инвертном сиропе снижают ее влажность.

#### Органолептическая оценка карамели

При органолептической оценке карамели на основании требований, предусмотренных ГОСТ, определяют ее вкус, аромат, цвет, вид поверхности и форму:

*вкус и аромат*: явно выраженные, соответствующие данному наименованию, без посторонних привкуса и запаха;

цвет: свойственный данной карамели;

поверхность: сухая, без трещин, вкраплений и заусенцев;

форма: правильная, соответствующая данному виду изделий.

Следует сравнить органолептические показатели качества карамели, приготовленной с использованием различных антикристаллизаторов.

Написать отчет о проделанной работе.

#### ЛАБОРАТОРНАЯ РАБОТА № 4

# Влияние различных факторов на качество, стойкость и хранение карамели

На качество карамели, прежде всего на ее органолептические свойства (цвет, прозрачность, аморфное состояние), а также на способность сохранять эти свойства при хранении (не увлажняться, не засахариваться), оказывает влияние ряд факторов, связанных с приготовлением карамельной массы и условиями хранения карамели (вид и качество антикристаллизатора, соотношение антикристаллизатора и сахара в рецептуре карамели, влажность карамельной массы, качество обработки на тянульной машине, содержание влаги в воздухе при хранении и др.).

Кроме общепринятых показателей, качество карамели и ее стойкость при хранении характеризуются величиной гигроскопичности.

Сущностью предусмотренных к выполнению по данной теме работ является определение влияния на гигроскопичность карамельной массы следующих факторов: продолжительность хранения; соотношение сахара и патоки в рецептуре.

Содержанием работ являются:

- изготовление карамельной массы по заданным рецептурам;
- оценка качества карамельной массы по органолептическим свойствам, влажности, количеству редуцирующих веществ;
- определение гигроскопичности карамельной массы в соответствии с заданием и установление зависимости гигроскопичности от заданного фактора.

Карамельную массу (3–5 г), отлитую небольшими порциями на плите (2–3 шт.), после охлаждения и взвешивания на аналитических весах и на предварительно взвешенном и просушенном часовом стекле поставить в эксикатор. Ранее эксикатор, в целях создания заданной относительной влажности воздуха, заполняют насыщенным раствором определенной соли.

Насыщенный раствор  $NH_4NO_3$  создает относительную влажность воздуха  $\phi = 62,7$  %.

Карамель на часовом стекле взвешивают через 1, 2, 3, 5, 10 сут. после выдерживания в эксикаторе при температуре 20 °С. Привес влаги, отнесенной к массе навески, выраженный в процентах, и будет характеризовать гигроскопичность карамели. Во время проведения наблюдений над гигроскопичностью необходимо следить за изменением внешнего вида (засахаривание, помутнение, расплывание) карамельных изделий.

# Влияние продолжительности хранения карамельной массы на ее гигроскопичность

Содержанием работы является определение влияния продолжительности хранения карамельной массы на ее гигроскопичность. Необходимо провести исследования с двумя образцами карамельной массы, изготовленной по нормальной рецептуре из расчета на 100 г сахара на обычной карамельной и низкоосахаренной патоке. Это позволит выявить воздействие продолжительности хранения на гигроскопичность карамели, изготовленной с использованием разных антикристаллизаторов, и одновременно сделать вывод о влиянии вида патоки на стойкость карамели при ее хранении.

Применение карамельной массы для приготовления низкоосахаренной патоки, т. е. патоки с меньшим содержанием редуцирующих веществ (30–34 % вместо 38–44 %), и увеличенным количеством декстринов (70–66 % вместо 55–60 %) – один из путей повышения качества, а также стойкости карамели к увлажнению и засахариванию при хранении. Содержание редуцирующих веществ в патоке уменьшается вследствие снижения до 10–12 % количества глюкозы (вместо 19–22 %), которая обусловливает гигроскопичность патоки и карамели, приготовленной на ней.

Карамельная масса на низкоосахаренной патоке содержит меньше редуцирующих веществ (12–13 %) по сравнению с карамельной массой на обычной патоке и, следовательно, обладает меньшей гигроскопичностью. Повышенное содержание декстринов в низкоосахаренной патоке обусловливает более высокую вязкость как патоки, так и карамельной массы, что приводит к повышеннию стойкости карамели к засахариванию.

После изготовления каждого образца карамельной массы отлить пробы на мраморной плите (по 3–5 г), взвесить с точностью до 0,0001 г и поместить в эксикатор, относительная влажность воздуха в котором  $\phi = 62,7$  %. Через определенное время образцы взвесить и рассчитать гигроскопичность карамели.

Оформить результаты. Полученные данные занести в журнал.

| Рецептура карамели                                                               | Количество влаги (в %), поглощенной по истечении, |   |   |   | Влажность, | Внешний вид |  |
|----------------------------------------------------------------------------------|---------------------------------------------------|---|---|---|------------|-------------|--|
|                                                                                  | сут                                               |   |   |   |            |             |  |
|                                                                                  | 1                                                 | 2 | 3 | 4 | 5          |             |  |
| На обычной карамельной патоке (100 частей массы сахара + 50 частей массы патоки) |                                                   |   |   |   |            |             |  |

Форма записи в лабораторном журнале

Полученную зависимость представить графически в координатах «прирост влаги – продолжительность хранения».

Сравнить кривые, полученные для образцов карамельной массы, изготовленных на основе карамельной и низкоосахаренной патоки. Сделать вывод о влиянии на гигроскопичность карамели продолжительности хранения и углеводного состава патоки, т. е. стойкость при хранении.

# Влияние соотношения сахара и патоки на гигроскопичность карамельной массы

Для определения влияния соотношения сахара и патоки на гигроскопичность карамельной массы в лабораторных условиях изготовить образцы карамельной массы с одинаковой (или близкой) влажностью по рецептурам, указанным в таблице формы записи. Расчет вести на 100 г сахара. В качестве сырья использовать одну партию сахара-песка и одну партию карамельной патоки.

Способ приготовления карамельной массы приведен в лабораторной работе  $\mathbb{N}_2$  1. Необходимо определить гигроскопичность полученных образцов в процессе их хранения в эксикаторе с относительной влажностью 62,7 %, а также влажность и содержание редуцирующих веществ.

Полученные результаты занести в лабораторный журнал.

Представить графически зависимость гигроскопичности карамельной массы в от рецептурного соотношения сахара и патоки (прирост влаги – соотношение сахара и патоки).

Сделать вывод о количественном влиянии антикристаллизатора и содержания редуцирующих веществ на гигроскопичность и стойкость к засахариванию карамельной массы.

| Соотношение частей | Содержа-  | Конечная    | Влажность  | Количество  | Внеш- |
|--------------------|-----------|-------------|------------|-------------|-------|
| сахара и патоки по | ние РВ, % | температура | карамель-  | влаги, по-  | ний   |
| массе              |           | кипения, °С | ной массы, | глощенной   | вид   |
|                    |           |             | %          | через 5 сут | массы |
|                    |           |             |            | хранения, % |       |
| 100 : 30           |           |             |            |             |       |
| 100 : 40           |           |             |            |             |       |
| 100 · 50           |           |             |            |             |       |

Форма записи в лабораторном журнале

Написать отчет о проделанной работе.

100:60

## Вопросы для самопроверки

1. Какими физико-химическими показателями характеризуют качество сиропов, карамельной массы и карамели?

- 2. Каков химический состав карамельной массы, приготовленной на патоке с частичной заменой патоки инвертным сиропом?
- 3. По каким показателям производят органолептическую оценку сиропов и карамели?
- 4. От каких факторов зависят гигроскопичность, цвет и растекаемость карамельной массы?
- 5. На чем основаны методы определения влажности сиропов, карамельной массы, карамели, содержания редуцирующих веществ?
- 6. Какие поправки необходимо учитывать при определении рефрактометрическим методом влажности сиропов, карамельной массы и карамели?

#### СПИСОК ЛИТЕРАТУРЫ

#### Основной

**Драгилев А.И., Маршалкин Г.А.** Основы кондитерского производства: Учеб. для студентов высших учебных заведений. – М.: Колос, 1999.-447 с.

**Кузнецова Л.С.** Лабораторный практикум по кондитерскому про-изводству. – М.: Пищ. пром-сть, 2001. - 317 с.

**Лурье И.С.** Технология кондитерского производства. – М.: Агропромиздат, 1992. – 399 с.

**Маршалкин Г.А.** Производство кондитерских изделий. – М.: Колос, 1994. - 271c.

#### Дополнительный

**Андреев А.Н.** Технология сахаристых кондитерских изделий: Метод. указания для студентов спец. 270300. – СПб.: СПбГУНиПТ, 2005.

**Зубченко А.В.** Физико-химические основы технологии кондитерских изделий. — Воронеж: Воронежская государственная технологическая академия, 1997. — 416 с.

**Лурье И.С.** Технохимический контроль сырья в кондитерском производстве. – М.: Агропромиздат, 1987. – 272 с.

#### ПРИЛОЖЕНИЕ

Таблица 1

Температурные поправки, рассчитанные на 20 °C

| T               | Количество сухих веществ, %        |       |            |            |        |      |  |
|-----------------|------------------------------------|-------|------------|------------|--------|------|--|
| Температура, °С | 30                                 | 40    | 50         | 60         | 70     | 75   |  |
|                 |                                    | От пр | оцента сух | их веществ | отнять |      |  |
| 15              | 0,35                               | 0,37  | 0,38       | 0,39       | 0,40   | 0,41 |  |
| 16              | 0,28                               | 0,30  | 0,30       | 0,31       | 0,31   | 0,32 |  |
| 17              | 0,21                               | 0,22  | 0,23       | 0,23       | 0,24   | 0,24 |  |
| 18              | 0,14                               | 0,15  | 0,15       | 0,15       | 0,16   | 0,16 |  |
| 19              | 0,07                               | 0,08  | 0,08       | 0,08       | 0,08   | 0,08 |  |
|                 | К проценту сухих веществ прибавить |       |            |            |        |      |  |
| 21              | 0,08                               | 0,08  | 0,08       | 0,08       | 0,08   | 0,08 |  |
| 22              | 0,15                               | 0,15  | 0,16       | 0,16       | 0,16   | 0,16 |  |
| 23              | 0,23                               | 0,23  | 0,24       | 0,24       | 0,24   | 0,24 |  |
| 24              | 0,31                               | 0,31  | 0,31       | 0,32       | 0,32   | 0,32 |  |
| 25              | 0,39                               | 0,40  | 0,40       | 0,40       | 0,40   | 0,40 |  |
| 26              | 0,47                               | 0,48  | 0,48       | 0,48       | 0,48   | 0,48 |  |
| 27              | 0,55                               | 0,56  | 0,56       | 0,56       | 0,56   | 0,56 |  |
| 28              | 0,63                               | 0,64  | 0,64       | 0,64       | 0,64   | 0,64 |  |
| 29              | 0,72                               | 0,73  | 0,73       | 0,73       | 0,73   | 0,73 |  |
| 30              | 0,80                               | 0,81  | 0,81       | 0,81       | 0,81   | 0,81 |  |

Таблица 2

Поправка к рефрактометрическому показателю СВ для карамельной массы на инвертном сиропе, содержащей 20–22 % редуцирующих веществ

| Ha 100 | кг сахара бере       | ется, кг       | На 100 кг сахара берется, кг |                      |             |  |
|--------|----------------------|----------------|------------------------------|----------------------|-------------|--|
| патоки | инвертного<br>сиропа | поправка,<br>% | патоки                       | инвертного<br>сиропа | поправка, % |  |
| 45     | 10,2                 | -0,54          | 20                           | 17,7                 | 0,00        |  |
| 40     | 11,7                 | -0,44          | 15                           | 19,3                 | + 0,12      |  |
| 35     | 13,3                 | -0,33          | 10                           | 20,8                 | + 0,24      |  |
| 30     | 14,8                 | -0,23          | 5                            | 22,2                 | + 0,37      |  |
| 25     | 16,3                 | -0,13          | 0                            | 23,7                 | + 0,52      |  |

Таблица 3

Поправка к рефрактометрическому показателю СВ для полуфабрикатов и изделий, состоящих из сахара и патоки

Количество частей массы патоки 30 50 45 40 35 на 100 частей сахара Поправка, % -0.85-0.78-0.71-0,62-0,55Количество частей массы патоки 25 20 15 10 5 на 100 частей сахара -0,46-0.37-0.27-0.16-0.07Поправка, %

# СОДЕРЖАНИЕ

| ВВЕДЕНИЕ                                                      | . 3 |
|---------------------------------------------------------------|-----|
| ЛАБОРАТОРНАЯ РАБОТА № 1                                       |     |
| Расчет рецептуры карамели на патоке                           |     |
| Изготовление сахаро-паточного сиропа и карамели               | .4  |
| Вопросы для самопроверки                                      | . 5 |
| ЛАБОРАТОРНАЯ РАБОТА № 2                                       |     |
| Расчет рецептуры карамели на инвертном сиропе                 |     |
| Изготовление сахаро-инвертного сиропа и карамели              | . 6 |
| Вопросы для самопроверки                                      | .7  |
| ЛАБОРАТОРНАЯ РАБОТА № 3                                       |     |
| Определение физико-химических и органолептических показателей |     |
| карамельных сиропов и карамели                                | .8  |
| ЛАБОРАТОРНАЯ РАБОТА № 4                                       |     |
| Влияние различных факторов на качество, стойкость и хранение  |     |
| карамели                                                      | 12  |
| Вопросы для самопроверки                                      | 15  |
| ЛИТЕРАТУРА                                                    | 17  |
| ПРИЛОЖЕНИЕ                                                    | 18  |



В 2009 году Университет стал победителем многоэтапного конкурса, в результате которого определены 12 ведущих университетов России, которым присвоена категория «Национальный исследовательский университет». Министерством образования науки Российской Федерации была утверждена программа его развития на 2009–2018 годы. В 2011 году Университет получил наименование «Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики».

## ИНСТИТУТ ХОЛОДА И БИОТЕХНОЛОГИЙ



Институт холода и биотехнологий является преемником Санкт-Петербургского государственного университета низкотемпературных и пищевых технологий (СПбГУНиПТ), который в ходе реорганизации (приказ Министерства образования и науки Российской Федерации № 2209 от 17 августа 2011 г.) в январе 2012 года был присоединен к Санкт-Петербургскому национальному исследовательскому университету информационных технологий, механики и оптики.

Созданный 31 мая 1931 года институт стал крупнейшим образовательным и научным центром, одним из ведущих вузов страны в области холодильной, криогенной техники, технологий и в экономике пищевых производств.

В институте обучается более 6500 студентов и аспирантов. Коллектив преподавателей и сотрудников составляет около 900 человек, из них 82 доктора наук, профессора; реализуется более 40 образовательных программ.

Действуют 6 факультетов:

- холодильной техники;
- пищевой инженерии и автоматизации;
- пищевых технологий;
- криогенной техники и кондиционирования;

- экономики и экологического менеджмента;
- заочного обучения.

За годы существования вуза сформировались известные во всем мире научные и педагогические школы. В настоящее время фундаментальные и прикладные исследования проводятся по 20 основным научным направлениям: научные основы холодильных машин и термотрансформаторов; повышение эффективности холодильных установок; газодинамика и компрессоростроение; совершенствование процессов, машин и аппаратов криогенной техники; теплофизика; теплофизическое приборостроение; машины, аппараты и системы кондиционирования; хладостойкие стали; проблемы прочности при низких температурах; твердотельные преобразователи энергии; холодильная обработка и хранение пищевых продуктов; тепломассоперенос в пищевой промышленности; технология молока и молочных продуктов; физико-химические, биохимические и микробиологические основы переработки пищевого сырья; пищевая технология продуктов из растительного сырья; физико-химическая механика и тепло-и массообмен; методы управления технологическими процессами; техника пищевых производств и торговли; промышленная экология; от экологической теории к практике инновационного управления предприятием.

В институте создан информационно-технологический комплекс, включающий в себя технопарк, инжиниринговый центр, проектно-конструкторское бюро, центр компетенции «Холодильщик», научнообразовательную лабораторию инновационных технологий. На предприятиях холодильной, пищевых отраслей реализовано около тысячи крупных проектов, разработанных учеными и преподавателями института.

Ежегодно проводятся международные научные конференции, семинары, конференции научно-технического творчества молодежи.

Издаются журнал «Вестник Международной академии холода» и электронные научные журналы «Холодильная техника и кондиционирование», «Процессы и аппараты пищевых производств», «Экономика и экологический менеджмент».

В вузе ведется подготовка кадров высшей квалификации в аспирантуре и докторантуре по 11 специальностям.

Действуют два диссертационных совета, которые принимают к защите докторские и кандидатские диссертации.

Вуз является активным участником мирового рынка образовательных и научных услуг.

www.ihbt.edu.ru www.gunipt.edu.ru

## Фёдорова Рита Александровна Соболева Елена Викторовна

# ИЗГОТОВЛЕНИЕ И АНАЛИЗ КАЧЕСТВА КОНДИТЕРСКИХ ИЗДЕЛИЙ Часть І

Учебно-методическое пособие

Ответственный редактор Т.Г. Смирнова

*Редактор* Р.А. Сафарова

Компьютерная верстка Д.Е. Мышковский

> Дизайн обложки Н.А. Потехина

Подписано в печать 29.03.2013. Формат 60×84 1/16 Усл. печ. л. 1,4. Печ. л. 1,5. Уч.-изд. л. 1,25 Тираж 100 экз. Заказ № С 13

НИУ ИТМО. 197101, Санкт-Петербург, Кронверкский пр., 49 ИИК ИХиБТ. 191002, Санкт-Петербург, ул. Ломоносова, 9

Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики 197101, Санкт-Петербург, Кронверкский пр., 49 Институт холода и биотехнологий 191002, Санкт-Петербург, ул. Ломоносова, 9

