МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

ИНСТИТУТ ХОЛОДА И БИОТЕХНОЛОГИЙ

А.Ю. Григорьев, Д.П. Малявко, Л.А. Фёдорова

ЭЛЕМЕНТЫ КИНЕМАТИКИ ДЛЯ РЕШЕНИЯ ЗАДАЧ ДИНАМИКИ

Учебно-методическое пособие

Санкт-Петербург

2014

Григорьев А.Ю., Малявко Д.П., Фёдорова Л.А. Элементы кинематики для решения задач динамики: Учеб.-метод. пособие. – СПб.: НИУ ИТМО; ИХиБТ, 2014. – 36 с.

Представлены схемы механических систем с характерными точками, скорости и ускорения которых показаны на рисунках. Каждая схема сопровождается кинематическими зависимостями, полученными на основе теории кинематики движений твёрдых тел (поступательного, вращательного и плоскопараллельного движений).

Пособие предназначено для студентов направлений 141200, 190600, 220700, 151000, 140700 всех форм обучения.

Рецензент: доктор техн. наук, проф. В.А. Арет

Рекомендовано к печати редакционно-издательским советом Института холода и биотехнологий

В 2009 году Университет стал победителем многоэтапного конкурса, в результате которого определены 12 ведущих университетов России, которым присвоена категория «Национальный исследовательский Министерством образования университет». науки Российской Федерации была утверждена программа его развития на 2009–2018 годы. В 2011 году Университет получил наименование «Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики».

- © Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики, 2014
 - © Григорьев А.Ю., Малявко Д.П., Фёдорова Л.А., 2014

1. ПОСТУПАТЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА

Определение

Поступательным движением твердого тела называется такое движение, при котором отрезок, соединяющий две произвольные точки тела, во все время движения остается параллельным самому себе.

Теорема

Все точки твердого тела, движущиеся поступательно, описывают одинаковые (совпадающие при наложении) траектории и в каждый момент времени имеют геометрически равные скорости и ускорения.

Следствие

При поступательном движении тела достаточно знать движение одной его точки (например, центра тяжести C), чтобы судить о движении тела в целом.

Таким образом, уравнениями поступательного движения твердого тела являются уравнения центра тяжести этого тела

$$x_c = f_1(t), y_c = f_2(t), z_c = f_3(t),$$

где x_c , y_c , z_c —декартовые координаты центра тяжести C; t —текущее время.

2. ВРАЩАТЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА

Определение I

Вращательным называется такое движение твердого тела, при котором остаются неподвижными все его точки, лежащие на некоторой прямой, называемой осью вращения.

При этом движении все остальные точки тела движутся в плоскостях, перпендикулярных оси вращения, и описывают окружности, центры которых лежат на этой оси.

Положение твердого тела при вращательном движении определяется углом поворота φ . Зависимость $\varphi = f(t)$ называется уравнением вращательного движения тела.

Определение II

Величина, характеризующая быстроту изменения угла поворота φ с течением времени, называется угловой скоростью и обозначается через $\widetilde{\omega}$.

$$\widetilde{\omega} = d\varphi/dt$$
,

где $\widetilde{\omega}$ –алгебраическая величина угловой скорости тела;

 $\omega = |\widetilde{\omega}|$ -модуль угловой скорости тела;

 $\widetilde{\omega}>0$ —тело вращается в направлении положительного отсчета угла поворота φ ;

 $\widetilde{\omega} < 0$ —тело вращается в направлении отрицательного отсчета угла поворота φ ;

Определение III

Величина, характеризующая быстроту изменения угловой скорости с течением времени, называется угловым ускорением тела и обозначается через $\tilde{\varepsilon}$.

$$\tilde{\varepsilon} = d\widetilde{\omega}/dt = d\omega/dt = d^2\varphi/dt^2$$
,

где $\tilde{\varepsilon}$ –алгебраическая величина углового ускорения;

 $\varepsilon = |\widetilde{\varepsilon}|$ -модуль углового ускорения тела;

Если знаки $\widetilde{\omega}$ и $\widetilde{\varepsilon}$ одинаковы, то тело вращается ускорено, а если их знаки различны –замедленно.

Теорема I

Вектор вращательной (линейной) скорости точки твердого тела расположен в плоскости, перпендикулярной оси вращения, и направлен по касательной к траектории (окружности) точки в соответствии с вращением твердого тела в данный момент времени. Модуль вращательной скорости равен произведению модуля угловой скорости ω тела на расстояние R от точки до оси вращения

$$v = \omega R$$
, $\omega = /\widetilde{\omega}/$.

Теорема II

Вектор ускорения \vec{a} точки твердого тела, вращающегося вокруг неподвижной оси, равен геометрической сумме вращательного \vec{a}^{ε} и центростремительного \vec{a}^{ω} ускорений.

$$\vec{a} = \vec{a}^{\varepsilon} + \vec{a}^{\omega}, a^{\varepsilon} = \varepsilon R, a^{\omega} = \omega^2 R,$$

где $\vec{a}^{\varepsilon} = \vec{a}^{\tau}$ –касательное ускорение точки; $\vec{a}^{\omega} = \vec{a}^n$ –нормальное ускорение точки.

Следствие

Концы скоростей и ускорений точек тела, лежащих на одном отрезке, перпендикулярном оси вращения, лежат на соответствующих прямых, проходящих через ось вращения.

3. ПЛОСКОПАРАЛЛЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА

Определение

Движение твердого тела, при котором все его точки движутся в плоскостях, параллельных некоторой неподвижной плоскости, называется плоскопараллельным или плоским движением.

Изучение плоскопараллельного движения тела можно свести к изучению движения плоской фигуры, положение которой определяется уравнениями плоского движения твердого тела:

$$x_0=f_1(t), y_0=f_2(t), \varphi=f_3(t),$$

где x_0 , y_0 –декартовые координаты полюса O плоской фигуры; φ –угол поворота плоской фигуры.

Теорема I

Скорость \vec{v}_B любой точки B плоской фигуры равна геометрической сумме скорости \vec{v}_0 полюса O и вращательной скорости \vec{v}_{OB} этой точки во вращательном движении фигуры вокруг полюса O:

$$\vec{v}_B = \vec{v}_O + \vec{v}_{OB},$$

где υ_{ОВ}=ωОВ,

 $\vec{v}_{OB} \perp OB$ (направлен соответственно $\widetilde{\omega}$).

Следствие I

Существует точка, неизменно связанная с плоской фигурой, скорость которой в данный момент времени равна нулю. Эту точку называют мгновенным центром скоростей (МЦС) и обозначают P. Мгновенный центр скоростей находится на перпендикуляре к направлению скорости полюса, на расстоянии от полюса, равном \vec{v}_0/ω .

Если полюсом является мгновенный центр скорости P, то определение скоростей точек плоской фигуры значительно упрощается:

$$\vec{v}_B = \vec{v}_{PB}, v_{PB} = \omega PB, \vec{v}_{PB} \perp PB.$$

Теорема II

Ускорение \vec{a}_B любой точки B плоской фигуры равно геометрической сумме \vec{a}_O полюса O и ускорения \vec{a}_{OB} этой точки во вращательном движении фигуры вокруг полюса:

$$\vec{a}_B = \vec{a}_O + \vec{a}_{OB} = \vec{a}_O + \vec{a}_{OB}^{\varepsilon} + \vec{a}_{OB}^{\omega},$$

где $\vec{a}_{OB}^{\,\varepsilon}$ —вращательное ускорение точки B во вращении вокруг полюса O, этот вектор имеет модуль $a_{OB}^{\,\varepsilon}$ = εOB и направлен перпендикулярно отрезку OB соответственно $\tilde{\varepsilon}$;

 \vec{a}_{OB}^{ω} —центростремительное ускорение точки B во вращении вокруг полюса O, этот вектор имеет модуль $a_{OB}^{\omega} = \omega^2 OB$ и направлен вдоль OB от точки B к полюсу O.

	TUIOBBIE CXEMBI	XEMbi	Таблица 1	
Схема №1	Дуговые координаты и углы поворота	Скорости	Ускорения	
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	При поступательном движении твердого тела, точки тела описывают подобные (совпадающие при наложении) траектории. Точка B движется по окружности с центром в точке O и радиусом $OB=I$ $SS_I=S_2=S$ $S_I=I\varphi$	Точки O_{l} , O_{2} , O — неподвижны $v_{O_{1}} = 0$; $v_{O_{2}} = 0$; $O_{l}B_{l} = O_{2}B_{2} = l$ Тело Д совершает поступательное движение: $v_{1} = v_{2} = v$ $v_{1} = v_{2} = v$ $o = \dot{\phi} $ -утловая скорость стержня $O_{l}B_{l}$; $\omega_{\mathcal{A}} = 0$ —угловая скорость тела Д равна 0 .	$a_{0_1}=0, a_{0_2}=0$ $a_1=\vec{a}_1^{\varepsilon}+\vec{a}_1^{\omega}$ $a_1^{\varepsilon}=\varepsilon O_l B_l=\varepsilon l$ $a_1=l\sqrt{\varepsilon^2+\omega^4}$ $a_1=l\sqrt{\varepsilon^2+\omega^4}$ Teno \mathbb{A} cobepinaet nocynatejne abbinkehie $\vec{a}_1=\vec{a}_2=\vec{a}$ $\vec{a}_1=\vec{a}_2=\vec{a}$ $a^{\tau}=a_1^{\varepsilon}=a_2^{\varepsilon}=\varepsilon l$ $a^{\sigma}=a_1^{\sigma}=a_2^{\sigma}=\omega^2 l$ $a=\sqrt{(a^{\tau})^2+(a^{\eta})^2}$ $a=a_1=l\sqrt{\varepsilon^2+\omega^4}$	
a, a			$\varepsilon = \ddot{\phi} $ $\omega = \dot{\phi} $	

Таблица 2

z aomida z	Ускорения	$a_{I} = a_{2}^{\varepsilon} = a_{3}^{\varepsilon} = a_{4} = \varepsilon R$ $\varepsilon = \ddot{\varphi}/= \frac{a_{1}}{R} = \frac{a_{4}}{R}$ $\tilde{a}_{1}^{T} = \ddot{s}_{1}$; $a_{I} = /\tilde{a}_{1}^{T}/$ $\tilde{a}_{4}^{T} = \ddot{s}_{4}$; $a_{4} = /\tilde{a}_{4}^{T}/$ $tg\beta = \frac{\varepsilon}{\omega^{2}}$
	Скорости	$v_I = v_2 = v_3 = v_4 = \omega R$ $\omega = \dot{\varphi} = \frac{v_1}{R} = \frac{v_4}{R}$ $\dot{S}_1 = \widetilde{v}_1; \ v_I = \widetilde{v}_1 $ $\dot{S}_4 = \widetilde{v}_4; \ v_4 = \widetilde{v}_1 $
	Дуговые координаты и углы поворота	$S_{I} = S_{4} = \varphi R$ $\dot{S}_{1} = \dot{S}_{4} = \dot{\varphi} R$ $\varphi = \frac{S_{1}}{R} = \frac{S_{4}}{R}$
	Схема №2	

Таблица 3	Ускорения	$a_1 = a_2^E = \varepsilon R$ $a_4 = a_3^E = \varepsilon R$ $\varepsilon = \dot{\varphi} - \frac{a_1}{r} = \frac{a_4}{R}$ $\tilde{a}_1^T = \ddot{s}_1; \ a_1 = \tilde{a}_1^T $ $\tilde{a}_4^T = \ddot{s}_4; \ a_4 = \tilde{a}_4^T $ $tg\beta = \frac{\varepsilon}{\omega^2}$
	Скорости	$v_1 = v_2 = \omega r$ $v_3 = v_4 = \omega R$ $\omega = \varphi = \frac{\dot{v_1}}{r} = \frac{v_4}{R}$
	Дуговые координаты и углы поворота	$S_{I} = \varphi r$ $S_{4} = \varphi R$ $\dot{S}_{1} = \dot{\varphi} r$ $\dot{S}_{4} = \dot{\varphi} R$ $\varphi = \frac{S_{4}}{R} = \frac{S_{1}}{r}$ $\varphi = \frac{S_{4}}{R} = \frac{S_{1}}{r}$
	Схема №3	

 $egin{aligned} ilde{a}_1^{ au} &= ec{s}_1, \, a_I = / ilde{a}_1^{ au} / \ ilde{a}_4^{ au} &= ec{s}_4, \, a_4 = / ilde{a}_4^{ au} / \ tgeta &= rac{arepsilon}{\omega^2} \end{aligned}$ $\varepsilon = |\ddot{\varphi}/= \frac{a_1}{R} = \frac{a_4}{r}$ Таблица 4 Ускорения $a_1 = a_2^{\varepsilon} = \varepsilon R$ $\omega = |\varphi| = \frac{\dot{v}_1}{R} = \frac{v_4}{r}$ $v_1 = v_2 = \omega R$ $v_3 = v_4 = \omega r$ Скорости Дуговые координаты и углы поворота $\varphi = \frac{S_4}{r} = \frac{S_1}{R}$ $S_I = \varphi R$ $S_4 = \varphi r$ $\dot{S}_1 = \dot{\varphi} R$ $\dot{S}_4 = \dot{\varphi} r$ 3 3 Схема №4

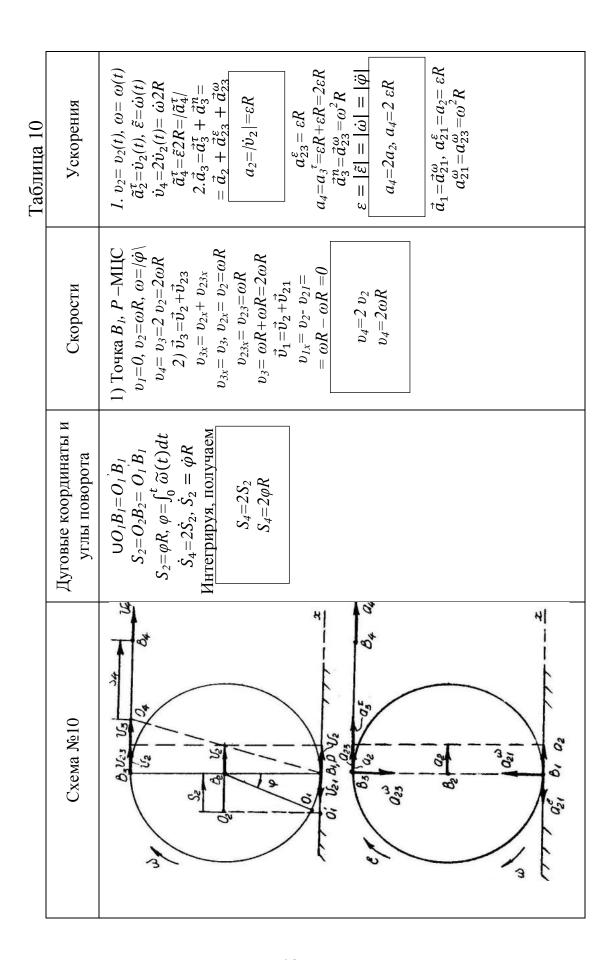

Таблица 5	Ускорения	$ \begin{aligned} v_6 &= v_6(t); \ \omega = \omega(t) \\ \vec{a} &= \vec{a}^T + \vec{a}^n \\ & \hat{a} &= \vec{a}^T + \vec{a}^n \\ & \hat{a} &= \vec{a}^T = \vec{a}^T \\ & \hat{a}_5^T &= \tilde{a}_6^T &= \tilde{\epsilon}^R \\ & \hat{a}_6^T &= \tilde{\epsilon}^T &= \tilde{a}_6^T \frac{l_1}{R} \\ & \tilde{a}_6^T &= \tilde{\epsilon}^T &= \tilde{a}_6^T \frac{l_2}{R} \\ & \tilde{a}_1^T &= \tilde{a}_1^T \tilde{a}_1^T &= \tilde{a}_2^T \tilde{a}_2^T \\ & \tilde{a}_1^T &= \tilde{a}_1^T \tilde{a}_1^T \tilde{a}_2^T \tilde{a}_2^T \tilde{a}_2^T \tilde{a}_3^T $
	Скорости	$v_0 = 0, v_2 = v_5 = v_6$ $\omega = \frac{v_1}{oB_1} = \frac{v_2}{oB_2} = \frac{v_3}{oB_3},$ $\omega = \frac{v_4}{oB_4} = \frac{v_5}{oB_5} = \frac{v_5}{R},$ $OB_2 = OB_5 = R, OB_1 = I_1$ $OB_3 = I_3, OB_4 = I_4$ $\omega = \frac{v_6}{R}, v_5 = v_6 = \omega R$ $v_1 = \omega I_1 = v_6 \frac{I_1}{R},$ $v_2 = \omega R = \frac{v_6}{R} R = v_6$ $v_2 = \omega R = \frac{v_6}{R} R = v_6$ $v_3 = \omega I_3 = v_6 \frac{I_3}{R},$ $v_4 = \omega I_4 = v_6 \frac{I_3}{R},$ $v_4 = \omega I_4 = v_6 \frac{I_4}{R},$
	Дуговые координаты и углы поворота	$\dot{\varphi} = \frac{\dot{s}_6}{R}$ $\dot{S}_1 = l_1 \dot{\varphi} = \dot{S}_6 \frac{l_1}{R}$ $\dot{S}_2 = R \dot{\varphi} = \dot{S}_6$ $\dot{S}_3 = l_3 \dot{\varphi} = \dot{S}_6 \frac{l_3}{R}$ $HTEPMPYS, ПОЛУЧАЕМ$ $\varphi = \frac{S_6}{R}$ $S_1 = l_1 \dot{\varphi} = S_6 \frac{l_3}{R}$ $S_2 = R \dot{\varphi} = S_6$ $S_2 = R \dot{\varphi} = S_6$ $S_3 = l_3 \dot{\varphi} = S_6 \frac{l_3}{R}$ $S_2 = R \dot{\varphi} = S_6$ $S_3 = l_3 \dot{\varphi} = S_6 \frac{l_3}{R}$
	Схема №5	The part of the pa

Таблица 6	Ускорения	$a_{I}^{\varepsilon} = a_{2}^{\varepsilon} = a^{\varepsilon}$ $\varepsilon_{I}R_{I} = \varepsilon_{2}R_{2}$ $\varepsilon_{I} = \dot{\varphi}_{1} = \frac{a_{1}^{\varepsilon}}{R_{1}}$ $\varepsilon_{2} = \dot{\varphi}_{2} = \frac{a_{2}^{\varepsilon}}{R_{2}}$ $a_{I}^{\omega} = \omega_{I}^{2}R_{I}$ $a_{2}^{\omega} = \omega_{2}^{2}R_{2}$ $a_{I}^{\omega}R_{I} = a_{2}^{\omega}R_{2}$
	Скорости	$v_I=v_2=v$ $\omega_I R_I=\omega_2 R_2$ $\dot{S}_1= ilde{v}_1,\ v_I=/ ilde{v}_1/$ $\dot{S}_2= ilde{v}_2,\ v_2=/ ilde{v}_2/$
	Дуговые координаты и углы поворота	$S_{I} = S_{2} = \varphi_{I}R_{I} = \varphi_{2}R_{2}$ $\dot{S}_{1} = \dot{S}_{2} = \dot{\varphi}_{1}R_{I} = \dot{\varphi}_{2}R_{2}$ $\varphi_{1} = \frac{S_{1}}{R_{1}}$ $\varphi_{2} = \frac{S_{2}}{R_{2}}$ $\varphi_{2} = \frac{S_{2}}{R_{2}}$ $\varphi_{2} = \int_{0}^{t} \widetilde{\omega}_{1}(t)dt$ $\varphi_{2} = \int_{0}^{t} \widetilde{\omega}_{2}(t)dt$
	Схема №6	25

Дифференцируем по t $\omega_I = \omega_I(t); \ \omega_2 = \omega_2(t)$ $\vec{a}_1 = \vec{a}_1^{\varepsilon} + \vec{a}_1^{\omega}$ $egin{aligned} \widetilde{arepsilon}_1 = \widetilde{lpha}_1^{arepsilon}/R_I, \ \widetilde{arepsilon}_2 = \widetilde{lpha}_2^{arepsilon}/R_I \ \widetilde{lpha}_2^{arepsilon} = \widetilde{arepsilon}_2/R_I, \ \widetilde{lpha}_2^{arepsilon} = \widetilde{arepsilon}_2R_2, \ \widetilde{lpha}_3^{arepsilon} = \widetilde{arepsilon}_1R_I \end{aligned}$ Таблица 7 $a_1^{\omega} = \omega_I^2 R_I = v_I^2 / R_I$ Ускорения $v_I = v_I(t)$ Точки O_I , O_2 – непод- $\omega_{I=} v_I/R_I, \omega_{2=} v_I/R_2$ $\frac{\omega_1}{\omega_2} = \frac{R_2}{R_1}$ $egin{aligned} v_0 = 0, & v_l = v_2 = v_3 \ \omega_l = rac{v_1}{o_1 B_1} = rac{v_3}{o_1 B_3}, \ \omega_2 = rac{v_1}{o_2 B_1} = rac{v_2}{o_2 B_1}, \ O_l B_l = O_l B_3 = R_l \end{aligned}$ $v_2 = \omega_2 R_2$, $v_3 = \omega_1 R_1$ $O_2B_1 = O_2B_2 = R_2$ Скорости ВИЖНЫ Дуговые координаты и Используя, получим углы поворота $egin{align*} arphi_1 = & rac{S_1}{R_1} \ arphi_2 = & rac{S_2}{R_2} \ R_1 \ arphi_1 = & R_2 \ arphi_2 = & S_2 \ S_1 = & S_2 \ \end{pmatrix}$ $\phi_1 = rac{\dot{s_1}}{R_1} \ \phi_2 = rac{\dot{s_2}}{R_2} \ R_1 \dot{\phi}_1 = R_2 \dot{\phi}_2$ $tg\beta_1 = \frac{\varepsilon_1}{\omega_1^2}$ $tg\beta_2 = \frac{\varepsilon_2}{\omega_2^2}$ 3 Схема №7

 $a_1=a_2^{\varepsilon}=a_3^{\varepsilon}=a_4=\varepsilon_1R_1$ $a_1=a_6^{\ \varepsilon}=a_5^{\ \varepsilon}=a_4=\varepsilon_2R_2$ Таблица 8 $\mathcal{E}_I = /\ddot{arphi}_1 / = \frac{a_1}{R_1} = \frac{a_4}{R_1}$ $\mathcal{E}_2 = /\ddot{arphi}_2 / = \frac{a_1}{R_2} = \frac{a_4}{R_2}$ $\widetilde{a}_1^ au = \ddot{\mathrm{S}}_1, \; a_I = /\widetilde{a}_1^ au/$ $\widetilde{a}_4^ au = \ddot{\mathrm{S}}_4, \; a_4 = /\widetilde{a}_4^ au/$ Ускорения $\varepsilon_I R_I = \varepsilon_2 R_2$ $v_1 = v_6 = v_5 = v_4 = v = \omega_2 R_2$ $v_I = v_2 = v_3 = v = \omega_I R_I$ $\dot{S}_1 = \widetilde{v}_1, \; v_I = /\widetilde{v}_1/$ $\dot{S}_4 = \widetilde{v}_4, \; v_4 = /\widetilde{v}_4/$ $\omega_1 R_1 = \omega_2 R_2$ Скорости Дуговые координаты и $S_I = S_4 = \varphi_1 R_I = \varphi_2 R_2$ $\dot{S}_1 = \dot{S}_4 = \dot{\varphi}_1 R_I = \dot{\varphi}_2 R_2$ углы поворота $\varphi_I = \frac{S_1}{R_1}$ $\varphi_2 = \frac{S_4}{R_2}$ 9 8 a 8 8 13 Схема №8

 $egin{aligned} v_2 &= v_2(t), \; \omega = \omega(t) \ & ilde{lpha}_2^{ au} &= \dot{
u}_2(t), \; ilde{arkappa} &= \dot{\omega}(t) \ &\dot{
u}_4 &= \dot{
u}_2(t) &= \dot{\omega}R \ & ilde{lpha}_4^{ au} &= ilde{arkappa}_2 &= ilde{arkappa} R \end{aligned}$ $a_4 = a_2, \ a_4 = \varepsilon R$ $2) \ \vec{a}_1 = \vec{a}_2 + \vec{a}_{21}^{\varepsilon} + \vec{a}_{21}^{\omega},$ Таблица 9 $a_4=\tilde{\alpha}_4^{\tau},\ a_2=/\tilde{\alpha}_2^{\tau}/,$ $a_{21x}^{\varepsilon} = -\varepsilon R$ $\vec{a}_2 + \vec{a}_{21}^{\varepsilon} = 0$ Ускорения $a_{2x}=a_2=\varepsilon R$ $ec{a}_1 = ec{a}_{21}^\omega \ a_{21}^\omega = lpha_{21}^\omega R$ $\varepsilon = |\widetilde{\varepsilon}/,$ * $v_4 = v_2 = \omega R, \ v_3 = 2 \ v_2$ $\tilde{v}_2(t) = \dot{S}_2, \ v_2 = /\tilde{v}_2/$ $\tilde{v}_4(t) = \dot{S}_4, \ v_4 = /\tilde{v}_4/$ $\tilde{\omega}(t) = \dot{\phi}, \ \omega = /\tilde{\omega}/$ $2)\tilde{v}_1 = \tilde{v}_2 + \tilde{v}_{21}$ $v_{2Ix} = -v_{2I} = -\omega R$ $v_{Ix} = \omega R - \omega R = 0$ 1) Точка B_I , P –МЦС $v_{Ix} = v_{2x} + v_{2Ix}$ v_1 =0, v_2 = ωR , ω =/ $\dot{\varphi}$ / $v_{2x} = v_2 + v_{2Ix}$ $v_{2x} = v_2 = \omega R$ Скорости $v_4 = \omega R$ $v_4 = v_2$ Дуговые координаты и Интегрируя, получаем $S_2=\varphi R$, $\varphi=\int_0^t\widetilde{\omega}(t)dt$ Из (*) имеем $\dot{S}_4 = \dot{S}_2, \ \dot{S}_2 = \dot{\phi} R$ $S_2 = O_2 B_2 = O_I B_I$ углы поворота $\cup O_I B_I = O_I B_I$ $S_4 = S_2$ $S_4 = \varphi R$ 70 00 Схема №9 05 300 3 OS.

 $\vec{a}_1 = \vec{a}_{21}^{\omega}, \ a_{21}^{\varepsilon} = a_2 = \varepsilon R$ $a_{21}^{\omega} = a_{23}^{\omega} = \omega^2 R$ I. $v_2 = v_2(t)$, $\omega = \omega(t)$ $ilde{a}_2^ au = \dot{v}_2(t), \; ilde{arepsilon} = \dot{\omega}(t) \ \dot{v}_4 = 2\dot{v}_5(t) = \; \dot{\omega} 2R \ ar{lpha}_4^ au = 2ar{lpha}_2^ au = ar{arepsilon} 2R$ $a_{23}^{\varepsilon} = \varepsilon R$ $a_{4} = a_{3}^{\tau} = \varepsilon R + \varepsilon R = 2\varepsilon R$ $a_4=/\widetilde{a}_4^{\mathsf{T}}/$ $2.\vec{a}_3=\vec{a}_3^{\mathsf{T}}+\vec{a}_3^{\mathsf{T}}=$ $=\vec{a}_2+\vec{a}_{23}^{\mathsf{E}}+\vec{a}_{23}^{\mathsf{E}}$ $|\ddot{\varphi}| = |\ddot{\omega}| = |\ddot{\beta}| = 3$ $\vec{a}_3^n = \vec{a}_{23}^\omega = \omega^2 R$ $a_4=2a_2=2 \varepsilon R$ Таблица 11 $a_2 = /\dot{v}_2| = \varepsilon R$ Ускорения 1) Точка B_I , P –МЩС $v_{3x} = v_3, v_{2x} = v_2 = \omega R$ $v_I=0, v_2=\omega R, \omega=/\dot{\varphi}$ $v_3 = \omega R + \omega R = 2\omega R$ $v_4 = v_3 = 2 \ v_2 = 2\omega R$ 2) $\vec{v}_3 = \vec{v}_2 + \vec{v}_{23}$ $v_{3x}=v_{2x}+v_{23x}$ $v_{23x} = v_{23} = \omega R$ Скорости v_4 =2 v_2 v_4 =2 ωR Дуговые координаты и $S_2= egin{aligned} S_2= egin{aligned} eta_R, & eta= \int_0^t \widetilde{\omega}(t) dt \end{aligned} \ \dot{S}_4= 2 \dot{S}_2, & \dot{S}_2= \dot{\phi} R \end{aligned}$ Интегрируя, получаем $0O_{I}B_{I}=O_{I}^{'}B_{I}$ $S_{2}=O_{2}B_{2}=O_{I}^{'}B_{I}$ углы поворота $S_4 = 2S_2$ $S_4 = 2\varphi R$ 81,4 200 ó 0 Ø ar. B Схема №11 355 70 at 9 8 200 23

Таблица 12	Ускорения	$I) v_2 = v_2(t), \omega = \omega(t)$ $\tilde{\alpha}_2^T = \dot{v}_2(t), \tilde{\varepsilon} = \dot{\omega}(t)$ $\dot{v}_4 = \frac{r+R}{r} \dot{v}_2, \dot{v}_4 = (r+R)\dot{\omega}$ $\tilde{\alpha}_4^T = \tilde{\alpha}_2^T \frac{r+R}{r} = \tilde{\varepsilon}(r+R)$ $a_4 = \tilde{\alpha}_2^T + \tilde{\alpha}_2^T$ $a_4 = \tilde{\alpha}_2^T + \tilde{\alpha}_2^T$ $a_2 = \tilde{\alpha}_2^T + \tilde{\alpha}_2^T$ $a_2 = \tilde{\alpha}_2^T + \tilde{\alpha}_2^T$ $a_2 = \tilde{\alpha}_2^T = \varepsilon r$ $\tilde{\alpha}_2^E = \varepsilon R, a_4 = a_3^T,$ $a_4 = a_3^T = \varepsilon r + \varepsilon R = \varepsilon (r+R)$ $a_3 = a_2^\omega = \omega^2 R$ $\varepsilon = \tilde{\varepsilon} = \dot{\omega} = \dot{\omega} $ $a_4 = \tilde{\tau} = \dot{\omega} $ $a_4 = \tilde{\tau} = \tilde{\omega} $ $a_4 = \tilde{\tau} = \tilde{\alpha}_2 $ $a_4 = \tilde{\tau} = \tilde{\tau} $
	Скорости	1) Toyka B_I , P –MILC $v_I = 0, v_2 = \omega r, \ \omega = \dot{\varphi} $ $v_4 = v_3 = \frac{r+R}{r} v_2 = (r+R)\omega$ 2) $) \ \dot{v}_3 = \dot{v}_2 + \dot{v}_{23}$ $v_{3x} = v_{2x} + v_{23x}$ $v_{2x} = v_2 = \omega R$ $v_{2x} = \frac{R}{r} v_2 = \omega R$ $v_{2x} = \frac{R}{r} v_2 = \omega R$ $v_{3x} = v_3 = \frac{r+R}{r} v_2$ $v_{3x} = v_3 = (r+R)\omega$ $v_4 = \frac{r+R}{r} v_2$ $v_4 = \frac{r+R}{r} v_2$ $v_4 = \frac{r+R}{r} v_2$
	Дуговые координаты и углы поворота	$\begin{array}{l} UO_{I}B_{I} = O_{I}B_{I} \\ S_{2} = O_{2}B_{2} = O_{I}B_{I} \\ S_{2} = \varphi r, \ \varphi = \int_{0}^{t}\widetilde{\omega}(t)dt \\ \dot{S}_{4} = \frac{r+R}{r}\dot{S}_{2}, \\ \dot{S}_{2} = \dot{\varphi}R \\ \mathrm{MHTETPMPYR, IIOIIY4aeM} \\ S_{4} = \frac{r+R}{r}S_{2} \\ S_{4} = (r+R)\ \varphi \end{array}$
	Схема №12	22 24 44 44 44 44 44 44 44 44 44 44 44 4

 $\dot{v_4} = \frac{\ddot{r} + R}{r} \dot{v_2}, \ \dot{v_4} = (r + R) \dot{\omega}$ $\widetilde{\alpha_4} = \widetilde{\alpha_2} \frac{r + R}{r} = \widetilde{\varepsilon} (r + R)$ $a_4 = a_3^{\tau} = \varepsilon r + \varepsilon R = \varepsilon (r + R)$ $\vec{a}_1 = \vec{a}_{21}^{\omega}, \ a_{21}^{\varepsilon} = a_2 = \varepsilon r$ I) $v_2 = v_2(t)$, $\omega = \omega(t)$ $a_2=/\dot{v}_2|=\varepsilon r,\ \dot{a}_{23}^{\varepsilon}=\varepsilon R \ a_4=a_3^{\tau},$ $ilde{lpha}_2^{ au} = \dot{
u}_2(t), \; ilde{arepsilon} = \dot{\omega}(t)$ $a_4=/\widetilde{lpha}_4^{ au}/\ 2)\ \overrightarrow{a}_3=\overrightarrow{a}_3^{ au}==\overrightarrow{a}_2+\overrightarrow{a}_{23}^{ au}+\overrightarrow{a}_{23}^{ au}$ Таблица 13 $a_3^n = a_{23}^\omega = \omega^2 R$ $a_4 = \frac{r+R}{r} a_2,$ $a_4 = (r+R)\varepsilon$ Ускорения $a_{21}^{\omega}R=a_{23}^{\omega}r$ $arepsilon = |\dot{\omega}/{=}/\ddot{arphi}|$ $v_{I} = 0, \ v_{2} = \omega r, \ \omega = |\dot{\varphi}|$ $v_{4} = v_{3} = \frac{r+R}{r} v_{2} = (r+R)\omega$ 2)) $\vec{v}_{3} = \vec{v}_{2} + \vec{v}_{23}$ 1) Точка B_I , P –МЦС $v_{2x} = v_2 = \omega R$ $v_{23x} = \frac{R}{r} v_2 = \omega R$ $v_{3x} = v_3 = \frac{r+R}{r} v_2$ $v_{3x} = v_3 = (r + R)\omega$ $v_{3x} = v_{2x} + v_{23x}$ $v_4 = \frac{r+R}{r} v_2$ $v_4 = (r + R)\omega$ Скорости $S_2=arphi r, \ arphi=\int_0^t \widetilde{\omega}(t)dt \ \dot{S}_4=rac{r+R}{r}\dot{S}_2, \ \dot{S}_2=\dot{arphi}R$ Дуговые координаты и Интегрируя, получаем $S_2 = O_2 B_2 = O_I B_I$ углы поворота $\cup O_I B_I = O_I B_I$ $S_4=(r+R) \varphi$ $S_4 = \frac{r+R}{r} S_2$ Схема №13 04 B. 7

 $a_4 = a_3^{\tau} = \varepsilon r + \varepsilon R = \varepsilon (r + R)$ $ilde{lpha}_2^T = \dot{
u}_2(t), \; ilde{arepsilon} = \dot{\omega}(t) \ \dot{
u}_4 = rac{r+R}{r} \dot{
u}_2(t), \ \dot{
u}_4 = (r+R) \dot{\omega}(t) \ ilde{lpha}_4 = ilde{lpha}_2^T rac{r+R}{r} = ilde{arepsilon}(r+R)$ $\vec{a}_1 = \vec{a}_{21}^{\omega}, \, a_{21}^{\varepsilon} = a_2 = \varepsilon r$ I) $v_2 = v_2(t)$, $\omega = \omega(t)$ $a_{4}=/ ilde{lpha}_{4}^{ au}/\ 2)\; ec{lpha}_{3}=ec{lpha}_{3}^{ au}+ec{lpha}_{23}^{ au}=\ =ec{lpha}_{2}+ec{lpha}_{23}^{ au}+ec{lpha}_{23}^{ au}=\ a_{2}+ec{lpha}_{23}^{ au}+ec{lpha}_{23}^{ au}=\ a_{2}=/\dot{
u}_{2}|=arepsilon R$ $a_3^n = a_{23}^\omega = \omega^2 R$ $|\mathcal{E}|=|\tilde{\mathcal{E}}/=|\dot{\omega}/=|\dot{\varphi}|$ Таблица 14 $a_4 = (r + R)\varepsilon$ Ускорения $a_4 = \frac{r + R}{R} a_2$ $a_{21}^{\omega}R=a_{23}^{\omega}r$ $v_{4} = v_{3} = \frac{\vec{r} + R}{r} v_{2} = (r + R)\omega$ 2)) $\vec{v}_{3} = \vec{v}_{2} + \vec{v}_{23}$ 1) Точка B_I , P –МЦС $v_1=0, v_2=\omega r, \omega=|\dot{\varphi}|$ $v_{2x} = v_2 = \omega R$ $v_{23x} = \frac{r}{R} v_2 = \omega r$ $v_{3x} = v_3 = (r + R)\omega$ $v_{3x} = v_3 = \frac{r+R}{r} v_2$ $v_{3x} = v_{2x} + v_{23x}$ $v_4 = (r + R)\omega$ $v_4 = \frac{r+R}{R} v_2$ Скорости $S_2 = \varphi r, \ \varphi = \int_0^t \widetilde{\omega}(t) dt$ $S_4 = \frac{r+R}{R} S_2,$ $S_2 = \dot{\varphi} R$ Дуговые координаты и Интегрируя, получаем $0O_{1}B_{1}=O_{1}\dot{B}_{1}$ $S_{2}=O_{2}B_{2}=O_{1}\dot{B}_{1}$ углы поворота $S_4=(r+R) \varphi$ $S_4 = \frac{r+R}{R} S_2$ Схема №14 0,00

Таблица 15	Ускорения	$1) v_{2} = v_{2}(t), \omega = \omega(t)$ $\tilde{a}_{2}^{T} = \dot{v}_{2}(t), \tilde{\varepsilon} = \dot{\omega}(t)$ $\dot{v}_{4} = \frac{r+R}{r} \dot{v}_{2}(t), \dot{v}_{4} = (r+R)\dot{\omega}(t)$ $\tilde{a}_{4}^{T} = \tilde{a}_{2}^{T} \frac{r+R}{r} = \tilde{\varepsilon}(r+R)$ $a_{4} = \tilde{a}_{2}^{T} + \tilde{a}_{4}^{T}$ $2) \vec{a}_{3} = \vec{a}_{3}^{T} + \vec{a}_{3}^{R} = \tilde{a}_{23}^{T} + \vec{a}_{23}^{R}$ $a_{2} = \dot{v}_{2} = \varepsilon R$ $\tilde{a}_{23}^{\varepsilon} = \varepsilon R, \ a_{4} = a_{3}^{r},$ $a_{4} = a_{3}^{r} = \varepsilon R + \varepsilon R = \varepsilon (r+R)$ $a_{3} = a_{23}^{\omega} = \omega^{2} R$ $\varepsilon = \tilde{\varepsilon} = \dot{\omega} = \dot{\omega} $ $a_{4} = \dot{\varepsilon} = \dot{\omega} = \dot{\omega} $ $a_{4} = (r+R)\varepsilon$ $\tilde{a}_{1} = \vec{a}_{21}^{\omega}, \ a_{21}^{\varepsilon} = a_{23}^{\varepsilon} r$ $\tilde{a}_{21}^{\omega} R = a_{23}^{\omega} r$
	Скорости	1) Toyka B_I , P –MILC $v_I = 0, v_2 = \omega r, \ \omega = \dot{\varphi} $ $v_4 = v_3 = \frac{r+R}{r} v_2 = (r+R)\omega$ 2) $\dot{v}_3 = \dot{v}_2 + \dot{v}_{23}$ $v_{2x} = v_2 + v_{23}$ $v_{2x} = v_2 = \omega R$ $v_{23x} = \frac{r}{R} v_2 = \omega r$ $v_{3x} = v_3 = \frac{r+R}{r} v_2$ $v_{3x} = v_3 = \frac{r+R}{r} v_2$ $v_4 = \frac{r+R}{R} v_2$ $v_4 = \frac{r+R}{R} v_2$
	Дуговые координаты и углы поворота	$\begin{array}{l} \cup O_{I}B_{I}=O_{I}\dot{B}_{I}\\ S_{2}=O_{2}B_{2}=O_{I}\dot{B}_{I}\\ S_{2}=\varphi r,\ \varphi=\int_{0}^{t}\widetilde{\omega}(t)dt\\ \dot{S}_{4}=\frac{r+R}{R}\dot{S}_{2},\\ \dot{S}_{2}=\dot{\varphi}R\\ \text{Интегрируя, получаем}\\ S_{4}=\frac{r+R}{R}S_{2}\\ S_{4}=\frac{r+R}{R}S_{2}\\ S_{4}=(r+R)\ \varphi \end{array}$
	Схема №15	S4

Таблица 16	Ускорения	1) $v_2 = v_2(t)$, $\omega = \omega(t)$ $\tilde{\alpha}_2^T = \dot{v}_2(t)$, $\tilde{\varepsilon} = \dot{\omega}(t)$ $\dot{v}_4 = \frac{R-r}{r}$, \dot{v}_2 , $\dot{v}_4 = (R-r)\dot{\omega}$ $\tilde{\alpha}_4 = \tilde{\alpha}_2^T \frac{R-r}{r} = \tilde{\varepsilon}(R-r)$ $a_4 = \tilde{\alpha}_4^T ^4$ 2) $\vec{a}_3 = \tilde{a}_3^T + \vec{a}_3^T = = \tilde{a}_2 + \tilde{a}_2^T + \tilde{a}_2^{\omega}$ $a_2 = \dot{v}_2 = \varepsilon r$ $a_2 = \dot{v}_2 = \varepsilon r$ $a_4 = a_3^T = \varepsilon R - \varepsilon r = \varepsilon (R-r)$ $a_3^T = a_3^{\omega} = \omega^2 R$ $\varepsilon = \tilde{\varepsilon} = \dot{\omega} = \dot{\omega} $ $a_4 = R - r$ $a_4 = R - r$
	Скорости	1) Tohka B_I , P -MILC $v_I = 0, v_2 = \omega r, \ \omega = \dot{\varphi} $ $v_4 = v_3 = \frac{R - r}{r} v_2 = (R - r) \omega$ 2) $\dot{v}_3 = \dot{v}_2 + \dot{v}_{23}$ $v_{3x} = v_{2x} + v_{23x}$ $v_{2x} = v_2 = \omega r$ $v_{2x} = v_2 = \omega r$ $v_{2x} = v_2 = \omega r$ $v_{2x} = v_3 = \frac{R - r}{r} v_2$ $v_{3x} = v_3 = (R - r) \omega$ $v_4 = \frac{R - r}{r} v_2$ $v_4 = \frac{R - r}{r} v_2$ $v_4 = \frac{R - r}{r} v_2$
	Дуговые координаты и углы поворота	$ \begin{array}{l} O_{I}B_{I} = O_{I}\dot{B}_{I} \\ S_{2} = O_{2}B_{2} = O_{I}\dot{B}_{I} \\ S_{2} = \varphi R, \ \varphi = \int_{0}^{t}\widetilde{\omega}(t)dt \\ \dot{S}_{4} = \frac{R-r}{r}\dot{S}_{2}, \\ \dot{S}_{2} = \dot{\varphi}r \end{array} $ $ \begin{array}{l} A_{4} = \frac{R-r}{r}\dot{S}_{2}, \\ \dot{S}_{2} = \dot{\varphi}r \end{array} $ $ \begin{array}{l} S_{4} = \frac{R-r}{r}\dot{S}_{2}, \\ \dot{S}_{4} = \frac{R-r}{r}\dot{S}_{2}, \\ \dot{S}_{4} = \frac{R-r}{r}\dot{S}_{2} \end{array} $ $ \begin{array}{l} S_{4} = \frac{R-r}{r}\dot{S}_{2} \\ S_{4} = (R-r)\dot{\varphi} \end{array} $
	Схема №16	The part of the pa

П0 $\widetilde{arepsilon} > 0$ –вращение тела ус- $\tilde{a}_{2}^{\tau} > 0$ –движение точки $v_4 = v_4(t), v_6 = v_6(t)$ $\dot{v}_4(t) = \widetilde{a}_4^{ au} \ \dot{v}_6(t) = \widetilde{a}_6^{ au} \ \widetilde{a}_2^{ au} = rac{1}{2} (\widetilde{a}_4^{ au} + \widetilde{a}_6^{ au})$ $\omega = \frac{1}{2R}(v_4 - v_6)$ $ilde{arepsilon}=rac{1}{2R}(ilde{a}_4^ au- ilde{a}_6^ au)$ Таблица 17 $v_2 = \frac{1}{2}(v_4 + v_6)$ Дифференцируем Ускорения B_2 ускоренное времени коренное $v_P = 0$, $v_3 = v_4$, $v_1 = v_6$, $v_5 = v_2$ $\omega = \frac{v_3}{B_3 P} = \frac{v_1}{B_1 P} = \frac{v_3 - v_1}{B_3 P - B_1 P}$ Tak kak $B_3 P = 2R + B_1 P$, $B_3 P = \frac{v_3}{\omega}$, $B_1 P = \frac{v_1}{\omega}$ $= \frac{-\omega R + \omega B_I P}{z^{\frac{\nu_3 - \nu_1}{2}} + \nu_I = \frac{\nu_3 + \nu_1}{z}}$ $v_2 = \omega (B_2 B_I + B_I P) =$ $v_2 = v_5 = \frac{1}{2}(v_4 + v_6)$ $egin{aligned} ext{M}, & ext{следовательно}, \ & \omega = rac{1}{2R} \left(v_3 - v_I
ight), \end{aligned}$ $\omega = \frac{1}{2R} \left(\upsilon_4 - \upsilon_6 \right)$ Скорости Точка Р-МЦС $\varphi = \frac{1}{2R} \left(\dot{S}_4 - \dot{S}_6 \right) \mid$ $\varphi = \frac{1}{2R} (S_4 - S_6)$ $\dot{S}_2 = \frac{1}{2} (\dot{S}_4 + \dot{S}_6),$ $S_5 = S_2 = \frac{1}{2} (S_4 + S_6)$ динаты и углы Дуговые коорповорота 8(04,06) (c (au c a6) d Схема №17 2 (V4 7VE); 7777 FIFE 77777 7///

Ш $\tilde{s} > 0$ –вращение тела ус- $\tilde{a}_{2}^{ au} > 0$ –движение точки Таблица 18 $v_{4} = v_{4}(t), \ v_{6} = v_{6}(t)$ $v_{2} = \frac{1}{2}(v_{4}(t) + v_{6}(t))$ $\omega = \frac{1}{2R}(v_{\mathcal{A}}(t) - v_{\mathcal{G}}(t))$ $\dot{v}_4(t) = \widetilde{a}_4^{ au} \ \dot{v}_6(t) = \widetilde{a}_6^{ au} \ \widetilde{a}_2^{ au} = rac{1}{2} (\widetilde{a}_4^{ au} + \widetilde{a}_6^{ au})$ $ilde{arepsilon}=rac{1}{2R}(ilde{a}_4^ au- ilde{a}_6^ au)$ Дифференцируем Ускорения B_2 ускоренное времени коренное $\omega = \frac{v_5 = v_2}{B_3 P} = \frac{v_1}{B_1 P} = \frac{v_3 - v_1}{B_3 P - B_1 P},$ так как $B_3 P = 2R + B_1 P,$ $B_3 P = \frac{v_3}{\omega}, B_1 P = \frac{v_1}{\omega}$ И, следовательно, $\omega = \frac{1}{2R} (v_3 - v_1),$ $v_2 = \omega(\tilde{B}_2 B_I + B_I P) =$ $= \omega R + \omega B_I P =$ $= \frac{v_3 - v_1}{2} + v_I = \frac{v_3 + v_1}{2}$ $v_P = 0$, $v_3 = v_4$, $v_1 = v_6$, $\omega = \frac{1}{2R} \left(v_4 - v_6 \right)$ $v_2 = \frac{1}{2}(v_4 + v_6)$ Скорости Точка Р-МЦС Дуговые координаты и $S_5 = S_2 = \frac{1}{2}(S_4 + S_6)$ углы поворота $\varphi = \frac{1}{2R} (\dot{S}_4 - \dot{S}_6)$ $\Phi = \frac{1}{2R} (S_4 - S_6)$ $\dot{S}_2 = \frac{1}{2} (\dot{S}_4 + \dot{S}_6),$ 8 90 C (30106) 02,00 Схема №18 00 •\$ K 04 0 01

Дифференцируем по времени -движение $\tilde{\varepsilon} > 0$ —вращение тела $v_4 = v_4(t), \ v_6 = v_6(t)$ $v_2 = \frac{1}{2}(v_4 - v_6)$ $\dot{v}_4(t) = \widetilde{a}_4^{ au} \ \dot{v}_6(t) = \widetilde{a}_6^{ au} \ \widetilde{a}_2^{ au} = rac{1}{2} (\widetilde{a}_4^{ au} - \widetilde{a}_6^{ au})$ $\tilde{\varepsilon} = \frac{1}{2R} (\tilde{\alpha}_4^{\tau} + \tilde{\alpha}_6^{\tau})$ $\omega = \frac{1}{2R}(v_4 + v_6)$ Ускорения Таблица 19 B_2 ускоренное ускоренное $\tilde{a}_2^{ au} > 0$ ТОЧКИ $v_P = 0$, $v_3 = v_4$, $v_1 = v_6$, $v_5 = v_2$ $\omega = \frac{v_3}{B_3 P} = \frac{v_1}{B_1 P} = \frac{v_3 + v_1}{B_3 P + B_1 P}$ Tak kak $B_3 P + B_1 P = 2R$, $\begin{bmatrix} B_{3}P = \frac{v_{3}}{\omega}, B_{I}P = \frac{v_{1}}{\omega} \\ \text{И, следовательно,} \\ \omega = \frac{1}{2R} (v_{3} + v_{I}), \\ v_{2} = \omega (B_{2}B_{I} - B_{I}P) = \\ = \omega R - \omega B_{I}P = \\ = \frac{v_{3} + v_{1}}{2} + v_{I} = \frac{v_{3} - v_{1}}{2} \end{bmatrix}$ $v_2 = v_5 = \frac{1}{2}(v_4 - v_6)$ $\omega = \frac{1}{2R} \left(v_4 + v_6 \right)$ Скорости Точка P –МЦС Дуговые координаты и углы поворота $S_5 = S_2 = \frac{1}{2} (S_4 - S_6)$ $\varphi = \frac{1}{2R} (\dot{S}_4 + \dot{S}_6)$ $\phi = \frac{1}{2R} (S_4 + S_6)$ $\dot{S}_2 = \frac{1}{2} (\dot{S}_4 - \dot{S}_6),$ 00 Tala 16 02 (00,06) Схема №19 B THE REAL PROPERTY. 57777 8 8

Гаолица 20	Ускорения	$v_4 = v_4(t), v_6 = \frac{r_1}{R_1} v_4(t)$ $\omega = \omega_1(t) = v_4/R_1$ $\omega = \dot{\omega}_1(\dot{t}) = \dot{\omega}_4/R_1$ $\dot{z} = \ddot{z}_1 = \ddot{a}_4^T/R_1$ $\dot{v}_2 = \frac{1}{2}(\dot{v}_4 - \dot{v}_6)$ $\ddot{a}_2^T = \frac{1}{2} \ddot{z}_1(R_I - r_I),$ $\ddot{a}_2^T = \frac{1}{2} \ddot{a}_4^T \left(1 - \frac{r_1}{R_1}\right)$ $\ddot{a}_2^T = \frac{1}{2} \ddot{a}_4^T \left(1 - \frac{r_1}{R_1}\right)$ $\ddot{a}_2^T > 0 - \text{движение точки}$ $B_2 \text{ ускоренное}$ $\ddot{z} > 0 - \text{вращение тела ускоренное}$ коренное
	Скорости	Точка $P - MIIC$ $v_P = 0, v_3 = v_4, v_1 = v_6, v_5 = v_2$ $\omega = \frac{v_3}{B_3 P} = \frac{v_1}{B_1 P} = \frac{v_3 + v_1}{B_3 P + B_1 P},$ Tak kak $B_3 P + B_1 P = 2R = R_1 + r_1,$ $B_3 P + B_1 P = 2R = R_1 + r_1,$ $B_3 P + B_1 P = 2R = R_1 + r_1,$ $B_3 P + B_1 P = 2R = R_1 + r_1,$ $B_3 P + B_1 P = 2R = R_1 + r_1,$ $B_3 P + B_1 P = 2R = R_1 + r_1,$ $\omega = \frac{1}{2R} (v_3 + v_1),$ $v_2 = \omega (B_2 B_1 - B_1 P) = \frac{v_3 + v_1}{2}$ $\omega = \omega (B_2 B_1 - B_1 P) = \frac{v_3 + v_1}{2}$ $\omega = \omega R - \omega B_1 P = \frac{v_3 + v_1}{2}$ $\omega = \omega_1 = v_4 R_1$ $\omega = \omega_1 = v_4 R_1$ $\omega = \omega_1 = v_4 R_1$ $v_2 = v_5 = \frac{1}{2} v_4 \left(1 - \frac{r_1}{R_1}\right)$ $v_2 = v_5 = \frac{1}{2} v_4 \left(1 - \frac{r_1}{R_1}\right)$
	Дуговые координаты и углы поворота	$\dot{\varphi} = \dot{\varphi}_1 = \frac{1}{R_1} \dot{S}_4$ $\phi = \varphi_1 = \frac{S_4}{R_1}$ $\dot{S}_2 = \dot{S}_5 = \frac{1}{2} \dot{\varphi} (R_1 - r_1)$ $\dot{S}_2 = \dot{S}_5 = \frac{1}{2} \dot{\varphi}_4 \left(1 - \frac{r_1}{R_1} \right)$ $S_2 = S_5 = \frac{1}{2} \varphi_I (R_1 - r_1),$ $S_2 = S_5 = \frac{1}{2} \varphi_I (R_1 - r_1),$ $S_2 = S_5 = \frac{1}{2} \varphi_I (R_1 - r_1),$ $S_2 = S_5 = \frac{1}{2} \varphi_I (R_1 - r_1),$
	Схема №20	25 Co.

 $\dot{v}_5 = \tilde{a}_5^{\tau}, \dot{\omega}_3 = \tilde{\varepsilon}_3,$ $\tilde{a}_2^{\tau} = \tilde{a}_5^{\tau} (R_1 + R_2)/R_3)$ $\tilde{a}_2^{\tau} = \tilde{\varepsilon}_3 (R_1 + R_2)$ $\tilde{\varepsilon}_2 = \tilde{a}_5^{\tau} ((R_1 + R_2)/R_2R_3)$ $\tilde{\varepsilon}_2 = \tilde{a}_3^{\tau} ((R_1 + R_2)/R_3)$ $a_2^n = \frac{v_2^2}{R_1 + R_2} = \omega_3^2 (R_1 + R_2)$ $\omega_2 = v_5((R_1 + R_2)/R_2R_3)$ $v_2 = v_5(t) \cdot (R_I + R_2)/R_3$ Дифференцируем по *t* $v_5 = v_5(t)$, $\omega_3 = \omega_3(t)$ $v_2 = \omega_3(t) (R_1 + R_2)$ Таблица 21 $ec{a}_2 = ec{a}_2^ au + ec{a}_3^n \ ec{a}_2^ au = /ec{a}_2^ au /$ Ускорения $v_3 = 2 v_2, v_4 = \omega_3 R_3 = v_5$ $\omega_3 = \frac{v_5}{R_3} = \frac{v_2}{R_1 + R_2}$ $v_1 = 0, v_2 = \omega_3(R_1 + R_2)$ $= \omega_3(R_I + R_2)$ $\omega_2 = \frac{v_2}{R_2} = v_5 \frac{R_1 + R_2}{R_2 R_3}$ $\omega_2 = \frac{v_2}{R_2} = \omega_3 \frac{R_1 + R_2}{R_2}$ $v_2 = \frac{v_5}{R_3} = (R_I + R_2) =$ Точка B_I , P –МЦС Скорости Дуговые координаты и Интегрируя, получаем $\dot{S}_{2} = \dot{S}_{5} \frac{R_{1} + R_{2}}{R_{3}}$ $\dot{S}_{2} = \dot{\varphi}_{3}(R_{I} + R_{2})$ $\dot{\varphi}_{2} = \frac{\dot{S}_{2}}{R_{2}}$ $S_2 = S_3 \frac{R_1 + R_2}{R_3}$ $S_2 = \varphi_3 (R_1 + R_2)$ $\varphi_2 = S_2 / R_2$ $\varphi_2 = \varphi_3 \frac{R_1 + R_2}{R_2}$ углы поворота $\dot{\phi}_2 = \dot{\phi}_3 \frac{\tilde{R}_1 + R_2}{R_2}$ Схема №21 0=13

 $\omega_1 R_1$] Дифференцируем по t $\dot{\omega}_1 = \tilde{\varepsilon}_1, \, \dot{\omega}_3 = \tilde{\varepsilon}_3$ $\omega_2 = \frac{1}{R_2} \left[\omega_3 (R_1 + R_2) - \right]$ $\tilde{\varepsilon}_2 = \frac{1}{R_2} [\tilde{\varepsilon}_3 (R_1 + R_2) \omega_I = \omega_I(t), \ \omega_3 = \omega_3(t)$ $egin{align*} ec{a}_{2} = ec{a}_{2}^{arepsilon} + ec{a}_{2}^{\omega} \ a_{2}^{arepsilon} = & arepsilon_{2}(R_{1} + R_{2}) \ a_{2}^{\omega} = & \omega_{2}^{2}(R_{1} + R_{2}) \ arepsilon_{2} = & \omega_{2}^{2}(R_{1} + R_{2}) \ \end{array}$ $v_{I} = v_{I}(t), v_{2} = v_{2}(t)$ Таблипа 22 $\omega_2 = \frac{1}{R_2} (v_2 - v_I)$ Ускорения $\tilde{\varepsilon}_1 R_1]$ $\left| \begin{array}{c} v_P = 0, \ v_I = \omega_I R_I \\ v_2 = \omega_3 (R_I + R_2) \\ \omega_2 = = \frac{v_2}{B_2 P} = \frac{v_1}{B_1 P} = \frac{v_2 - v_1}{B_2 P - B_1 P} \end{array} \right|$ $\omega_2 = \frac{v_3}{B_3 P} = \frac{v_2}{B_2 P} = \frac{v_3 - v_2}{B_3 P - B_2 P}$ $\omega_2 = \frac{v_3 - v_2}{R_2}$ $B_2P = v_2/\omega_2, B_1P = v_1/\omega_2$ $\omega = \frac{v_2 - v_1}{2} = \frac{\omega_3(R_1 + R_2) - \omega_1 R_1}{2}$ $v_3 = v_2 + \omega_2 R_2 = v_2 + (v_2 - v_1)$ $B_2P-B_1P=R_2$ $v_3 = 2 v_2 - v_I$ Скорости и, следовательно, Точка P –МЦС так как $\dot{\phi}_2 = \frac{1}{R_2} [\dot{\phi}_3(R_I + R_2) - \dot{\phi}_1 R_I]$ Дуговые координаты и $\phi_2 = \frac{1}{R_2} [\phi_3(R_1 + R_2) - \phi_1 R_1]$ углы поворота B 63 (016,00) Схема №22 E, (E, 70) 65(6,50)

Таблица 23	Ускорения	$v_{I} = v_{I}(t), v_{2} = v_{2}(t)$ $\omega_{2} = \frac{1}{R_{2}}(v_{2} + v_{I})$ $\omega_{2} = \frac{1}{R_{2}}[\omega_{3}(R_{1} + R_{2}) + \omega_{1}R_{1}]$ $And \phie perturpyem no t$ $\dot{\omega}_{1} = \tilde{\varepsilon}_{1}, \dot{\omega}_{3} = \tilde{\varepsilon}_{3}$ $\tilde{\varepsilon}_{2} = \frac{1}{R_{2}}[\tilde{\varepsilon}_{3}(R_{1} + R_{2}) + \tilde{\varepsilon}_{2} = \tilde{\varepsilon}_{3}(R_{1} + R_{2}) + \tilde{\varepsilon}_{2} = \tilde{\varepsilon}_{2}(R_{1} + R_{2})$ $\dot{\alpha}_{2}^{\varepsilon} = \varepsilon_{2}(R_{1} + R_{2})$ $\dot{\alpha}_{2}^{\varepsilon} = \varepsilon_{2}(R_{1} + R_{2})$ $\dot{\alpha}_{2}^{\omega} = \omega_{2}^{2}(R_{1} + R_{2})$ $\varepsilon_{2} = /\tilde{\varepsilon}_{2}/R_{1} + R_{2}$
	Скорости	Точка P —МЦС $v_{P}=0, v_{I}=\omega_{I}R_{I}$ $v_{2}=\omega_{3}(R_{I}+R_{2})$ $\omega_{2}==\frac{v_{2}}{B_{2}P}=\frac{v_{1}}{B_{1}P}=\frac{v_{2}+v_{1}}{B_{2}P+B_{1}P}$ Так как $B_{2}P=v_{2}/\omega_{2}, B_{I}P=R_{2}$ $B_{2}P=v_{2}/\omega_{2}, B_{I}P=v_{I}/\omega_{2}$ и, следовательно, $\omega_{2}=\frac{v_{2}+v_{1}}{R_{2}}=\frac{\omega_{3}(R_{1}+R_{2})+\omega_{1}R_{1}}{R_{2}}$ $\omega_{2}=\frac{v_{2}+v_{1}}{B_{3}P}=\frac{v_{2}}{B_{3}P-B_{2}P}$ $\omega_{2}=\frac{v_{3}}{B_{3}P}=\frac{v_{2}}{B_{3}P-B_{2}P}$ $\omega_{2}=\frac{v_{3}}{B_{3}P}=\frac{v_{2}}{B_{3}P-B_{2}P}$ $\omega_{2}=\frac{v_{3}-v_{2}}{v_{3}-v_{2}}$ $v_{3}=v_{2}+\omega_{2}R_{2}=v_{2}+(v_{2}+v_{I})$ $v_{3}=v_{2}+\omega_{2}R_{2}=v_{2}+v_{I}$
	Дуговые координаты и углы поворота	$\dot{\phi}_2 = \frac{1}{R_2} [\dot{\varphi}_3(R_I + R_2) + \dot{\varphi}_1 R_I]$ $\phi_2 = \frac{1}{R_2} [\varphi_3(R_I + R_2) + \varphi_I R_I]$
	Схема №23	(a) (E, 20) (E, 20) (C, E, 20) (C

Таблица 24	Ускорения	$ λ5 = υ5(t), ω1 = ω1(t) $ Дифференцируем по t $ \dot{υ5} = \tilde{α}_5^T, \dot{ω}_1 = \tilde{ε}_1 $ $ \tilde{α}_2^T = \tilde{α}_5^T \frac{R_1}{2r_1}, \tilde{α}_2^T = \frac{1}{2} \tilde{ε}_1 R_1 $ $ \tilde{ε}_2 = \frac{\tilde{α}_5^T R_1}{2r_1 R_2} $ $ \tilde{ε}_3 = \frac{\tilde{ε}_1 R_1}{\tilde{α}_5^T R_1} $ $ \tilde{ε}_3 = \frac{\tilde{ε}_1 R_1}{\tilde{α}_5^T R_1} $ $ \tilde{ε}_2 = \frac{\tilde{ε}_1 R_1}{\tilde{α}_5^T R_1} $ $ \tilde{ε}_2 = \frac{\tilde{ε}_1 R_1}{\tilde{ε}_1 R_1} $ $ \tilde{ε}_2 = \frac{\tilde{ε}_1 R_1}{\tilde{ε}_1 R_1} $ $ \tilde{ε}_2 = \frac{\tilde{ε}_1 R_1}{\tilde{ε}_1 R_1} $ $ \tilde{α}_2 = \tilde{α}_2^T + \tilde{α}_n^T, α_2^T = /\tilde{α}_2^T/ $ $ a_2 = \tilde{α}_1^T + \tilde{α}_2^T, α_2^T = /\tilde{α}_2^T/ $ $ a_2 = \frac{v_2^T}{R_1 + R_2} = ω_3^2(R_1 + R_2) $
	Скорости	Точка B_I , P –МЩС $v_I = 0, v_2 = \omega_3(R_I + R_2)$ $v_3 = 2 v_2, v_4 = \omega_I r_1 = v_5$ $\omega_I = v_2 / r_1 = v_4 / r_1 = v_3 / R_I$ $v_2 = v_3 / 2 = v_2 / R_I$ $v_2 = v_3 / 2 = \omega_I r_I / 2$ $\omega_2 = v_2 / R_2 =$ $= v_2 R_I / (2r_I R_2)$ $\omega_2 = v_2 / (R_I + R_2) =$ $= v_5 R_I / (2r_I (R_I + R_2))$ $\omega_3 = v_2 / (R_I + R_2) =$ $= v_5 R_I / (2r_I (R_I + R_2))$ $\omega_3 = v_2 / (R_I + R_2) =$ $= \omega_I R_I / (2r_I (R_I + R_2))$
	Дуговые координаты и углы поворота	$\dot{S}_{2} = \frac{R_{1}}{2r_{1}} \dot{S}_{5}, \dot{S}_{2} = \dot{\varphi}_{1}R_{1}/2$ $\dot{\varphi}_{2} = \frac{1}{2r_{1}R_{2}} \dot{S}_{5}, \dot{\varphi}_{2} = \dot{\varphi}_{1} \frac{R_{1}}{2R_{2}}$ $\dot{\varphi}_{3} = \frac{R_{1}}{2r_{1}(R_{1} + R_{2})} \dot{S}_{5}$ $\dot{\varphi}_{3} = \frac{R_{1}}{2(R_{1} + R_{2})} \dot{\varphi}_{1}$ $HHTETPUDYS, HOHYSHEM $ $S_{2} = S_{2r_{1}} \frac{R_{1}}{R_{2}} = \varphi_{1}R_{1}/2$ $\varphi_{2} = S_{2r_{1}} \frac{R_{1}}{R_{1}} = \varphi_{1}R_{1}/2$ $\varphi_{3} = \frac{R_{1}}{2r_{1}(R_{1} + R_{2})} \dot{S}_{5}$ $\varphi_{3} = \frac{R_{1}}{2r_{1}(R_{1} + R_{2})} \dot{S}_{5}$ $\varphi_{3} = \frac{R_{1}}{2r_{1}(R_{1} + R_{2})} \dot{S}_{5}$
	Схема №24	25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Таблица 25	Ускорения	$v_{6} = v_{6}(t), \omega_{I} = \omega_{I}(t)$ Дифференцируем по t $\tilde{a}_{2}^{T} = \tilde{\varepsilon}_{1}(R_{I} + R_{2})$ $\tilde{a}_{2}^{T} = \tilde{\varepsilon}_{1}(R_{I} + R_{2})/r_{I}$ $\tilde{a}_{4}^{T} = \tilde{\varepsilon}_{1}(R_{I} + 2R_{2} + R_{3})$ $\tilde{a}_{4}^{T} = \tilde{a}_{6}^{T}(R_{I} + 2R_{2} + R_{3})/r_{I}$ $\tilde{\varepsilon}_{1} = \varepsilon_{I}(R_{I} + R_{2})/R_{2}$ $\tilde{\varepsilon}_{2} = \tilde{a}_{6}^{T} \frac{R_{1} + R_{2}}{r_{1}R_{2}}$ $\tilde{\varepsilon}_{3} = \tilde{a}_{6}^{T} \frac{R_{1} - R_{3}}{r_{1}R_{3}}$ $\tilde{\varepsilon}_{3} = \tilde{a}_{6}^{T} \frac{R_{1} - R_{3}}{r_{1}R_{3}}$ $\tilde{\varepsilon}_{3} = \tilde{a}_{6}^{T} + \tilde{a}_{4}^{T}$ $\tilde{a}_{4}^{T} = \tilde{a}_{4}^{T} + \tilde{a}_{4}^{T}$
	Скорости	Точка $B_I P_I$ –МЦС звена 3 v_1 =0, v_2 = $\omega_1(R_1+R_2)$ v_3 = $2v_2$, v_4 = $\omega_1(R_1+2R_2+R_3)$ ω_1 = ω_2/R_1 = ω_2/R_2 ω_3 = v_2/R_2 ω_3 = v_3/R $_3P_3$ = v_4/R_4P_3 $(v_3-v_4)/(R_3P_3-B_4P_3)$ так как B_3P_3 = $B_4P_3+R_3$ B_3P_3 = u_3/ω_3 , B_4P_3 = u_4/ω_3 v_2 = $\omega_1(R_1+R_2)$ = v_2 = $v_6(R_1+2R_2+R_3)/r_1$ v_4 = $\omega_1(R_1+2R_2+R_3)/r_1$ ω_2 = $\omega_1(R_1+2R_2+R_3)/r_1$ ω_2 = $\omega_1(R_1+2R_2+R_3)/r_1$ ω_2 = $\omega_1(R_1+2R_2+R_3)/r_1$ ω_3 = $(2v_2-v_4)/R_3$ = $=v_6(R_1-R_3)/R_3$ = $=v_6(R_1-R_3)/R_$
	Дуговые координаты и углы поворота	$\dot{S}_{6} = \dot{\phi}_{1} r_{I}, \dot{S}_{2} = \dot{\phi}_{1} (R_{I} + R_{2})' r_{I})$ $\dot{S}_{2} = \dot{S}_{6} ((R_{I} + R_{2})' r_{I})$ $\dot{S}_{4} = \dot{\phi}_{1} (R_{I} + 2R_{2} + R_{3})$ $\dot{S}_{4} = \dot{S}_{6} / r_{I} (R_{I} + 2R_{2} + R_{3})$ $\dot{\phi}_{2} = \dot{\phi}_{1} \frac{R_{1} + R_{2}}{R_{3}} = \dot{S}_{6} \frac{R_{1} + R_{2}}{R_{3} r_{1}}$ $\dot{\phi}_{3} = \dot{\phi}_{1} \frac{R_{1} - R_{3}}{R_{3}} = \dot{S}_{6} \frac{R_{1} - R_{3}}{R_{3} r_{1}}$ $HHTETPUPYEM,$ $S_{6} = \phi_{1} r_{I}, \phi_{I} = S_{6} / r_{I}$ $S_{7} = \phi_{I} (R_{I} + R_{2}) = S_{6} / r_{I}$ $S_{4} = \phi_{I} (R_{I} + 2R_{2} + R_{3})$ $\phi_{2} = \phi_{I} (R_{I} + 2R_{2} + R_{3})$ $\phi_{2} = \phi_{I} \frac{R_{1} + R_{2}}{R_{3}} = S_{6} \frac{R_{1} + R_{2}}{R_{3} r_{1}}$ $\phi_{3} = \phi_{I} \frac{R_{1} - R_{3}}{R_{3}} = S_{6} \frac{R_{1} - R_{3}}{R_{3} r_{1}}$
	Схема №25	Charles A Charle

СПИСОК ЛИТЕРАТУРЫ

- 1. **Яблонский А.А, Никифорова В.М.** Курс теоретической механики: Статика, кинематика, динамика: Учеб. пособие для вузов. 7-е изд., стер. СПб.: Лань, 2007. 764 с.
- 2. Сборник заданий для курсовых работ по теоретической механике / Под общ. ред. А.А. Яблонского. М.: Интеграл Пресс, 2004.

СОДЕРЖАНИЕ

1.	Поступательное движение твердого тела	3
2.	Вращательное движение твердого тела	3
3.	Плоскопараллельное движение твердого тела	5
Типовые схемы		7
Список литературы		32

Григорьев Александр Юрьевич Малявко Дмитрий Пантелеймонович Фёдорова Людмила Анатольевна

ЭЛЕМЕНТЫ КИНЕМАТИКИ ДЛЯ РЕШЕНИЯ ЗАДАЧ ДИНАМИКИ

Учебно-методическое пособие

Ответственный редактор

Т.Г. Смирнова

Компьютерная верстка

Ю.Н. Санкина

А.М. Елисеев

Дизайн обложки

Н.А. Потехина

Печатается в авторской редакции

Подписано в печать 17.04.2014. Формат 60×84 1/16 Усл. печ. л. 2,09 Печ. л. 2,25 Уч.-изд. л. 2,0 Тираж 150 экз. Заказ № С 27

НИУ ИТМО. 197101, Санкт-Петербург, Кронверкский пр., 49 ИИК ИХиБТ. 191002, Санкт-Петербург, ул. Ломоносова, 9