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FOREWORD

Scientific achievements of mankind that impress us with its perfection and
efficiency are mostly based on results obtained in experimental studies: theorists
develop some theories to understand the results of experiments and control the
process of its obtaining, then to improve it further. A value of a theory itself is
defined by the accuracy of the experiment results description and the ability to
interpret them altogether correctly. A new unifying theory in its aggregate
development solves the task at first stages of its application, then some new
experimental results that cannot be correctly interpreted with the existing theory
are accumulated gradually. So the science contradictions rise automatically during
the natural evolution of ideas and then the necessity appears to find the
contradiction reasons and the ways to resolve it. Present achievements of
experimenter physicists have already led to a crash of the physical theories of the
XX century: there are so many new results of experiments that the theorists are
unable to explain that everyone feels the need to revise both old theories and its

fundamentals.

The necessary condition for studying any complex systems is the application
of computers at scientific researches, so the conventional approach of association
between theories and experiments should be completed with the computer
simulation conception. The new effective procedure allows comprehensive
studying of the most complicated systems, both natural and created artificially for
checking the theory suppositions. Nowadays the computer simulation is applied
at almost all the scientific and technical fields, from history to space navigation,
as it allows forecasting and simulating the events or estimated phenomena in
preselected parameters. For instance, in 1954 E. Fermi, J. Pasta and S. Ulam
discovered some surprising peculiarities of atomic behavior in crystals with the

computer simulation method thus inspiring active researches of nonlinear systems



and leading to the number of the most important findings in physics and
mathematics.

The educational book reviews the issues concerning the application of math
modelling at forecasting states and behavior of multi-parameter engineering
systems in the context of modern research methods, i.e. according to a new task
of mathematical physics — the task of engineering system synthesis. The modern
physics requires not just qualitative description of a system and its general
principles but an adequate quantitative forecasting, i.e. we need to know physical
or chemical properties that could be disregarded before, so we need to create the
models that represent physicochemical properties of complex systems fairly in
quantity. The modern modelling solves the non-trivial and non-traditional tasks —
to complete the fundamental principles with some hypotheses from which the
adequate quantitative real-object characteristics could be formulated and applied

for synthesis and further for multi-parameter engineering systems forecasting.

The unique educational book “The application of math modelling methods
at forecasting the engineering systems states” written by professor A.V. Demin
and S.P. Dmitrieva is an example of fruitful approach to this complicated problem.
Paying tributes to the developers of the analytical modelling methods, the authors
point up their opinion on the unsolved problems and contradictions. It allowed
them to establish the fact that it is impossible to find the way of resolving the
accumulated contradictions without trying to search for the beginning of
formation of the theoretical problems of all modern physics. Most of the scientific
theories are similar to mathematics in its internal logic of the derivation because
any mathematical theory has several assumptions as its basis, and all the
subproducts called theorems are drawn from the assumptions with deductive
logical reasoning where the assumptions are some ideal abstract images of real-
world objects. In the same way in all exact sciences, the experimental data are
accumulated and then the basic laws are formulated from which all the

characteristics of various systems and processes embraced by the theory can be
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obtained. The solid and precise formulation of science laws are made in
mathematical language as some equations. Consequently, some equation or
equation system with definite parameter values and definite boundary condition

Is a mathematical model of any real-world system.

The authors gave a thorough description of the principles they used for
argumentation of the forecast model structure, distinguished its base, additional
and subsidiary components. The educational book shows computational solutions
and forecasting algorithms that confirm the experiment results and thus prove the
fruitfulness of the authors’ approach in the described research. They connected
their research to the functioning of such multi-parameter systems as digital optical
systems. The main subjects analyzed with the desired physical simulator are the
signal reflection and its passing through the natural and manmade objects
describing its most important elements, i.e.: the radiation energy distribution
through the length of electromagnetic waves according to the Planck law,
Bouguer law describing the light absorption on the propagation path through the
scattering or absorbing medium, spectral characteristics of light radiation,
reflection and absorption by objects, backgrounds, propagation media and
photodetectors, classification of reflection types in which the notion of scattering
indicatrix is used, image deformation caused by atmospheric turbulence and

image deformation caused by optical system temperature deformation.

The criteria of the result validation estimation designed by the authors have
not only simplified the procedures of searching for the forecast inaccuracy but
have given the new procedures for obtaining new science results in key areas of
physics, mathematics, informatics, etc. Of course, the new approach to forecasting
the behavior of complex engineering systems and its description gives rise to a lot
of questions, the answers to which follow from the set of new information from
the various chapters of the educational book . To simply the process of searching
and learning the information concerning multi-parameter engineering systems,

the authors compiled an idioglossary and gave a brief historical background of
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forecasting in science thus making the understanding of the main information

easier, and, of course, the readers will be grateful to them for such an opportunity.

Every reader having thoroughly studied the educational book will realize that
it is impossible to destroy the developed frame of forecasting the multi-parameter
engineering systems with math modelling methods. One can only improve and

complete it, and the authors have brilliantly done the thing.

Doctor of technical Sciences A. G. Korobeinikov



INTRODUCTION

Rationale. The success of human scientific, production and social activities
depends much on the information awareness and the opportunities to forecast the states
of the activity support tools. The state of environment and engineering systems is
characterized by a set of parameters that are probably not connected to each other by a
functional relationship, i.e. by a multi-parameter functional. We can define the
parameter points real-time but forecasting the future state of environment and
engineering systems is a problem of rather a great concern.

The educational book is devoted to the procedures of developing the forecasting
models for multi-parameter engineering systems (MPES) in accordance with the
aposterior data, i.e. developing the forecasting models according to the current
measurement results.

The process of the engineering system forecasting can be summarized by the main
aspects and practical tasks described below:

1. Environmental state monitoring;

2. Control of the qualitative and quantitative parameter points of the engineering

system functioning;

3. Prevention of the unauthorized tampering of the engineering objects.

The opportunity to forecast the MPES state and behavior is based on the
processing of the experimental object characteristics. The basic forecasting principle is
the test data meta-extension: by extending some multi-valued statistical cause-and-
effect relations and the conclusions drawn from it we may develop some patterns —
some laws that tend to display itself not in the proximate values but upon the average,
I.e. within some limits of some eventual variance, as a tendency, with a deviation
sometimes, thus not allowing to hope for a definite future prediction but making it
possible to say that the more consistently some process develops and the tighter the
interconnections between the phenomena under investigation are, the more chances we

have to obtain a reliable prediction. Within the scope of analyzing the required system,



the task of forecasting the output data basing on the observed input data is called the
observability problem and arises from the need to predict the future system behavior.
Infra-red light emitted by an object contains the most exhaustive information
about it — about the substances it contains, its prehistory and location. Acquiring this
information with a detection system and its appropriate processing allow defining and
controlling the parameters that are hard or impossible to be measured directly.
Electrooptical equipment gathers and analyzes the data concerning the processes taking

place in the environment in optical range of the radiation spectrum.
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Figure A Radiometric scheme of optical radiation measurement

Solvability of the problems under investigation. To define a problem of exploring
the engineering systems and processes, i.e. to set goals, tasks, requirements and
limitations for finding a suitable decision, is a key moment for the methods and
algorithms of forecast functions development.

A system forecasting function can be developed according to its model

representation. Indeed, if {My5(9;)}{0B,..(g;)}=max the model representation
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Is the most identical one to the real-world system, and then it is possible to develop a
forecast model of its behavior on the following stages:
estage of changing the real object {OB,.,;(g;) } with the model - {M,5(g;) };
estage of simulation modelling (SM) {My5(9g;) };
estage of physical modelling {O0B,.4:(9g;) }.

To perform it we need to set the main properties and peculiar features of the given
forecast connection, i.e. the semantics of the described process, where we note all the
known physical laws applicable to the present experiment first, and match any
limitations and requirements to the physical meaning of variables taking part in
functions development, then develop a forecast function describing the given physical
process basing on it.

The research paper shows a landmark approach of presenting engineering systems
having complex functioning laws with the help of composition and decomposition of
its elements with various particularization degrees, and the development of algorithms
for implementation of problem-oriented programs for computational experiments. The
advantage of applying the given approach is confirmed with the method of evaluating
the sufficiency and fidelity of the results obtained.

The fidelity of the scientific results and conclusions is defined by the correctness
of applying the mathematical tools and confirmed with the computer simulation results.

The qualitative forecasting questions are of special concern: does the given MPES
have a significant growth reserve? Which of them will change which one? What
conceptually new technical problems and tasks may arise in future? The existing
forecasting methods cannot provide the answers to such questions. The reason lies
particularly in the subjectivity of the present methods, i.e. they rely on the estimations,
opinions and judgments of the experts. Though the source materials are processed to
make it more objective (a formal math model is created, etc.), the most part of it
remains subjective in its primitive conjecture, application areas and input information
interpretations depending on a scientist’s intuition.

Extrapolation is one of the most prospective ES forecasting methods, as it is based

on factual objective data in relatively greater degree. The growth curve of some index
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characterizing the ES development is constructed on the basis of aposterior information
to continue this curve “into the future”; the drawback of the method is that it is not
always possible to extrapolate the process development for a short space of time even
having the most accurate aposterior data.

The book can be used as a study guide for students and postgraduates getting a
degree in the following fields: “Informatics and computer engineering”, “Tool

99 ¢¢

engineering”, “Optical engineering” and probably some other ones.
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CHAPTER 1. COMPUTER FORECASTING PROCEDURES

Being a procedure, the forecast modelling does not substitute for
mathematics, physics, biology and other sciences, does not compete with them
but on the contrary contributes to them as a synthesizing part. Indeed, it is
impossible to create a forecast model without relying on the most diverse
methods, approaches and innovations — from qualitative analysis of non-linear
models to the modern programming languages. The modelling provides additional
motivations to various science fields, and adding some, exact knowledge helps
limit an instinctive speculative “simulation” extending the application areas for
rational methods.

Any theoretical study in reality comes down to the consideration of an object
model, as a linguistic or mathematical description of any object, process or
phenomenon can be made only to a definite particularization level.

A model is some suppositions and analogues representing the real estimative
world and having some visualization level or reduced to logical schemes
convenient for investigation, simplifying the reasoning and logical constructions
or allowing performing the experiments aimed at specifying the character of
phenomenon. It is a stand-in of a source object that ensures studying some of the

characteristics of a source-object. Figure 1.1 shows the MPES simulation triad.

The modelling is based on the conformity theory stating that the absolute
conformity may take place only if one object is changed with the other identical
one. We do not achieve absolute conformity at modelling and the scientists want
the model to represent the object functioning area under investigation well

enough.

The research success depends on the extent to which the model is equal to a

real object.
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Figure 1.1 The ES simulation triad

Modelling theory is a theory of substituting some objects (source objects) by
some other objects (models) and investigating the object characteristics with the
help of the models.

While it is being studied, a model acts as an independent quasi-object that
allows obtaining some knowledge about the object under research. We develop a
forecasting model stage-by-stage; the sequence is shown at Figure 1.3.

The process of developing the best model variation (which as a rule is a
compromise one) is rather a complicated one; it implies the comprehensive
approach and involves the following stages of model constructing:

Stage one: defining the aim of modelling. Any model is not just an image

standing for a source object but its target representation.
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THE STAGES IN WHICH THE
CHANGE TAKES PLACE AND
THE CORRESPONDENCE
FORMS FOR A MODEL AND
A SOURCE MAY DIFFER:

OR DEVELOPING SOME MODEL-SYSTEM
(SECOND SYSTEM) CONNECTED BY A
DEFINITE DEGREE OF CONFORMITY TO A
SOURCE SYSTEM (FIRST ONE), WHERE
REPRESENTING ONE SYSTEM WITHIN

COGNITIVE PROCESS, WHERE THE
INFORMATION COMING FROM THE
ENVIRONMENT CONCERNING THE
PROCESSES HAPPENING THERE IS
PROCESSED AND SO THE IMAGES
CORRESPONDING TO THE OBJECT
APPEAR IN OUR MIND

SYSTEMS, REPRESENTED IN SIMILARITY
RELATIONS, BUT NOT FOLLOWING FROM
STUDYING THE INCOMING INFORMATION

DIRECTLY

ANOTHER ONE IS A WAY TO DISTINGUISH THE
FUNCTIONAL CONNECTIONS BETWEEN TWO

J

Figure 1.2 Informational processes in modelling

Stage two: model synthesis — developing its possible variations. One should
distinguish between:

e structural synthesis — developing the model structure: its general form (e.g.
the form of system of equations, polynomial or differential ones), number of
parameters, etc.;

e parametric synthesis — searching for numerical values of model parameters.
It is performed either on the basis of the reference data or within the
framework of maximum correspondence of the results obtained at the
experiment conducted with the model.

Stage three: model analyzing. It means defining the quality of the
synthesized model according to the following criteria:

o versatility — the completeness of the object properties represented by the

model;
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e accuracy — degrees of correspondence of the real data to the ones predicted
by the model;

e adequacy — the ability to represent the object characteristics within the
framework of modelling aim (i.e. of the task being solved) correctly;

o efficiency — the costs for the model development and implementation.
Stage four. Choosing and making decision — evaluating the utility of model

variations in general and choosing the best one.

1 |
DEFINING THE FORECAST AIMS

2 |
SPECIFYING THE CHARACTERISTICS OF THE FORECASTED OBJECT

3 |
ESTABLISHING ACTIVE FACTORS AND ITS ANALYZING
4
FORMING THE INFORMATION BASE

5 |
CHOOSING MODELS AND FORECASTING METHODS
6
EXPRESSING AND ESTIMATING OPTIONS
7

DEVELOPING SUGGESTIONS REGARDING THE DECISION-MAKING

Figure 1.3 Model-developing stages

The problem of highly effective synthesis is closely connected to the problem
of choice, i.e. checking to what degree some object or the other one correspond

to the given requirements and then accepting or rejecting it.

In the course of solving the given task (modelling aim implementation), the
math model undergoes some changes. “Life cycle” term usually refers to the

process of some system appearance and development. Here we speak of the life
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cycle of the model. First stage of the life cycle of the model is arranging the
modelling aim that is usually stated verbally (non-formally) into the mathematical
language. As a result, we obtain a description model. Then we develop a model
of solution — a set of math expressions providing the way of solving the task. There

are three kinds of the model: analytical, computational and simulation ones.

The analytical model is the most accurate on; besides, it allows obtaining a
solution in general terms. That is why we should do our best to obtain the

analytical model of solution, if possible.

The computational model is a more multi-purpose model; it is highly
competitive with the analytical model in accuracy but does not allow obtaining a

solution in general terms.

The simulation model is the least accurate but the simplest one. It is applied
for obtaining final solutions only in modelling of some complex objects for which
we cannot develop the other models of solution. We may apply the simulation
model in more simple cases in search of the first approximation for obtaining the
final solution with the computational model, or for a preliminary analysis of the

object allowing obtaining some initial understanding of the subject of modelling.

The algorithmic model is a solution written in the form of algorithm. It differs
from the model of solution, as it is not necessary for the latter one to have all the
algorithm characteristics: finiteness, determination, effectiveness, large scale,
efficiency. In most cases, the model of solution does not have the property of

finiteness.

The program model is an algorithm written on some programming language.
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The basis for modelling are the informational processes (IP), because the
model development itself is based on the information concerning the real-world
object (during the model implementation you receive the information about the
given object, at the same time you enter the control data (the input data) while
performing the experiment with a model, processing the obtained results (the
output data) is also of great importance.

The computational model development is based on abstracting from the
specific nature of phenomena or the source object under study and consists of two
stages: developing first the qualitative and then the quantitative model. The more
of the notional properties we define and transfer to a computational model, the
more real-like it will be and the more opportunities will be provided to a system
in which it is applied. The computer-based simulation involves conducting a
number of computational experiments aimed at the analysis, interpretation and
comparison of the simulation results to the real behavior of the object studied and
the subsequent model correction, if necessary.

One can distinguish between analytical and simulation modelling. At the
analytical modelling one examines the math (abstract) models of a real-world
object presented as algebraic, differential or other equations, also involving
single-valued computational method leading to its exact solution.

At the simulation modelling one examines the math models presented as
algorithms representing the functioning of the studied system by sequential
execution of a large number of elementary operations at the environmental
uncertainty, i.e. while controlling the material flows one should take into account
some number of random factors. Under such conditions, it might turn to be
impossible or too expensive to develop an analytical model setting the exact

quantitative proportions of various components of logistics processes.
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The following methods are referred to the computer-based simulation

algorithms:

e finite-element method;

e method of finite differences;

e method of finite volumes;

e moving cellular automation method;

e method of classical molecular dynamics;

e component chain method,;

e node-potential method.

The simulation process is the iterative one and is executed within the limits
of the aims formulated before and in line with the simulation borders. The
construction starts from studying (investigating) the real-world system, its
internal structure, connections between its elements and the external actions and

finishes with the model development.

There are four simulation (modelling) stages, from formulating the problem
to obtaining results, shown at Figure 1.4.

It is not necessary to move through all of the substages at developing the
definite models having definite aims and modelling borders.

The first stage of modelling — analyzing the requirements and project
designing — includes formulating the conceptual model, developing its formal
scheme and checking the efficiency and the expedience of system modelling.

At the stage, we determine the quantitative characteristics (parameters) of
the system and its elements functioning, the numerical values of which will be the
source data for the modelling. It is obvious, that most of the system parameters
are random values. That is why the selection of random variables distribution

laws, function fitting, etc. is of great importance at forming the source data. We
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need to check the model adequacy as a result of distinguishing the model
characteristics and developing the conceptual model. While creating the
conceptual model (CM), the source data area or the system informational space
is formed almost simultaneously — it is the stage of source data collecting.

Conceptual model (CM) is an abstract model defining the system body and
structure, the element properties and causal relationship of the analyzed system
essential for reaching the aims or our modelling. Such models usually describe
the nature and parameters (characteristics) of the elementary phenomena of the
system under investigation, type and degree of interference between them and the
position and meaning of each elementary phenomenon in general process of the
system functioning verbally.

At the second stage - the model development stage — we specify or choose
the modelling software package. At choosing the modelling tools, the software
and technical tools are chosen according to a number of criteria. The essential
conditions are the sufficiency and completeness of tools for implementing the
conceptual model. Usability, being simple and easy to learn, speed and
correctness in model creation are among the other criteria.

After choosing modelling environment, the conceptual model formulated at
the previous stage is implemented into the computational model, i.e. the model
algorithm presentation and particularization is made.

The system model is presented as a set of parts (elements, subsystems). The
set includes all the parts ensuring the system integrity maintenance, on the one
hand, and the achievement of the preset modelling goals (the required accuracy
and fidelity or the results at computational experiments with the model), on the
other. Further, we perform the final particularization, localization (distinguishing
the system from the environment), structuring (indication and general description
of the connections between the selected system elements) and the extended

description of behavior pattern of system functioning and probable states.
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Setting the simulated time is the next substage. The variable providing the
current meaning of the simulated time is called the simulation clock at
computational model.

There two main approaches to the simulated time advance: from-event-to-

event advance and fixed-increment time advance.

Most of the computer programs and most of the engineers developing the

models in unified languages apply from-event-to-event time advance.

MODELLING STAGES

. ANALYZING THE N I1. MODEL | 111. conpuCTING 1V. MODELLING
REQUIREMENTS. DEVELOPMENT THE EXPERIMENT SUMMARIZING- IN
PROJECT DESIGNING ACCORDANCE
WITH THE SET
SETTING AND CHOOSING THE STARTING GOALS AND
ANALYZING THE MODELING THE MODEL PURPOSES
MODELLING GOALS RUNNING
AND PURPOSES ENVIRONMENT THE MODEL

COLLECTING AND VARIATION OF
ANALYZING THE GENERATING THE MODEL
SOURCE THE LOGICAL PARAMETERS
INFORMATION ON THE MODEL AND STATISTICS
MODELLING OBJECT GATHERING
SETTING THE A
MODULI NALYSIS OF
CONSTRUCTING THE CHARACTERIS- THE MODELING
CONCEPTUAL MODEL TICS RESULTS
CHECKING THE S
VALIDITY OF THE ETTING THE
CONCEPTUAL MODEL SIMULATED TIME

Figure 1.4 Model development scheme

MODEL
VERIFICATION
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The third stage — conducting the experiment — is the critical stage
characterized by gathering the required data due to the simulation process and the
data static processing at the interpretation of the simulation results according to
which the decision is made of whether the research should be continued or
finished. If the result is known, we may compare it to the obtained modelling
result. The obtained conclusions often promote conducting an additional set of
experiments, and sometimes even changing the model. The decision is usually
based on the results of experiments and tests. If the results do not correspond to
the modelling aims (to a real-world object or process), it means that some
mistakes were made at the previous stages or the input data are not the best
parameters in the area under investigation, so the engineer returns to one of the
previous stages. Analysis of the modelling results is the substage at which we
make the extensive analysis of the obtained results for receiving some
recommendations concerning the system designing or modifying. The stage of
modelling summarizing in accordance with the set goals and purposes includes
the assessment of the work done, the comparison of the set goals to the results
obtained and the preparation of the final report on the work done.

On the contrary, interpenetration of all kinds of the modelling and symbiosis
of various information technologies in modelling, especially for complicated
applications and complex modelling projects, are the principal nowadays trends.
For instance, simulation modelling includes conceptual modelling (carried out on
the early stages of the simulation model formation), logical-mathematical
modelling (including Al methods) — for describing separate model subsystems
and also for processing and analyzing the computational experiment results and
for decision-making.  The procedure of planning and conducting the
computational experiment with the corresponding mathematical methods was
brought to simulation modelling from physical (full-scale) simulation. Finally,
structural-functional modelling is applied at creating the stratified description of

many model complexes.
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CHAPTER 2 PROBLEMS OF MULTI-PARAMETER
ENGINEERING SYSTEMS STATE FORECASTING

The problems of technical process forecasting are rather broad and diverse
because there are no strict standards and so a system is developed (synthesized)
in the nature of a compromise according to the system purposes, characteristics
and limitations see Figure 2.1. The fundamental principles of physics are deep and
“elementary” but physics theories come up to great generality and allow
describing the attributes of broad classes of physical phenomena. There was a
period in the progressive branches of theoretical physics when the analysis of a
specific phenomenon was limited to the application of basic principles to a given
special case and to a search for the methods of profound conclusions rigorous
deduction out of source formulae. The source formulae is not exactly a model at
the above described method because some ready-made fundamental axioms and
descriptions were used during its development, e.g. a common value of
continuous medium assign or a true liquid model.

However, physics has been moving from a traditional task of analyzing the
physical world phenomena to a new task of engineering systems synthesis during
the last 50-60 years, i.e. it is not enough to provide a qualitative system description
but an accurate quantitative forecast is required nowadays. Consequently, general
principles are not enough, we need to know the object physical or chemical
characteristics that may not be taken into account before, i.e. modern physics
develops such models that provide the exact quantitative representation of
physicochemical properties of complicated systems. Hence, the modelling has to
solve the non-trivial and non-traditional task — to complete the fundamental
principles with some hypotheses from which the adequate quantitative real-object
characteristics could be formulated and applied for complicated MPES

synthesizing.
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The MPES synthesis is based on developing its open or closed model and
researching it. When choosing and visualizing such a model, one should rely on
Bellman principle that states that the art of modelling is the art of going on a
narrow track between “a trap of simplifying too much” and “a morass of
complicating too much”. That is why a model should be complicated enough to
include all the necessary components, and simple enough “to be able to see the
woods for the trees”. One should not work for a very complicated model.
N. Wiener said specially for complicated model devotees: “Only a cat can be a
final model of a cat”. A model should be easy to remember and accessible for
application not only for inventors (at heuristic synthesis) but for computing
engineers also (at statistical synthesis).

The systems theory that customary divides the design into two large sections
(external and internal design) is taken into account at MPES designing, see Figure
2.2.

Since MPES is an information model, it is a dual-purpose model and should
be synthesized (simulated) with the involvement of physics and information
theories. According to the system analysis and synthesis methods peculiar to these
two theories, we may consider two classes of system models shown at Figure 2.3

[47]: physical and information ones.

A dominant information approach [47.p.94] is a key to developing a correct
information model. According to it, instead of applying the old Hartley and
Shannon concept of the required exclusion of psychological factors or
N. Wiener’s hints that the information is neither substance nor energy,
information should be treated as an intermediary between spirit and substance,

having three components: purpose, quality, quantity.
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Figure 2.1 Probable structure of MPES forecast model synthesis
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The main issues investigated with MPES physical models in the context of

digital optical systems are the signal reflection from or passing through nature and

manmade objects, see Figure 2.4. Let us describe its most important components:

radiation energy distribution through the length of electromagnetic waves
according to the planck law;

bouguer law describing the light absorption on the propagation path through
the scattering or absorbing medium;

spectral characteristics of light radiation, reflection and absorption by
objects, backgrounds, propagation media and photodetectors;
classification of reflection types (mirror, diffuse or mixed reflection) in
which the notion of scattering indicatrix is used;

image deformation caused by atmospheric turbulence;

image deformation caused by optical system temperature deformation.

Developing a forecast model of behavior for a one-parameter, ES does not

usually cause any problems. However, for multi-parameter engineering systems

that we label as {OBreal(gi)} and that operate off-line open-loop, it is quite

challenging to develop a forecast model of its state, labelled as {Mog(gi) } , and

especially to create an algorithm for such a development.

Further we consider the algorithm of a forecast model development for

{OBreal(gi) } on the example of an airborne system of the Earth surface optical

range remote sensing (Figures 2.4, 2.5, 2.6), the functioning of which is based on

the following principles: optical radiation propagation principle, laws of motion,

principles of optical data processing, control engineering, computer engineering

{OBreal(gi) }
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[ DESIGNING MULTI-PARAMETER ENGINEERING SYSTEMS ]
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Figure 2.2 External and internal MPES designing
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Figure 2.3 MPES — synthesis of information and physical models
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Figure 2.4 Generalized physical model of an on-board multi-parameter digital
optical system; two connections of a useful object and background to the on-
board equipment (solid arrows) mean the existence of self-radiation and reflected
radiation; the connection of the on-board equipment to an exposure source (dot
line) means the existence of systems of two types — with natural and artificial
lighting; backward link of the on-board equipment to an object (dot-and-dash
line) represent the process of choosing an object during the observation.

When applied, to develop a system forecast model, it is required to compare
its mathematical structure to the structure being known at the moment of carrying

the research out:;

M) =< 81,85, ., S RO, RP, ., RW; PO p@, _ pm) 5 (2.1)

str
where {S;}¥ is a set of math members different in purposes, names and function
operations; R(™ is a subset of n-th power product; {PU)}T are the mapping

operators.
For instance, a mathematical structure of a modulation transfer function of

the Earth surface remote sensing system MTF_ isa product of MTF components

(the Earth surface; the atmosphere; the digital optical system; the system of
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information reception and conversion), each of them is a function of different
structure, precisely:

MTFgs = MTF x MTF,, x MTF,os X MTHFg g

2 2 2 2
Q- f -(v +v )
_ 2 T y T V2 2.2
MTFAtm (Vy’vz)_ eXp -2 H 2 ( )
cam
THE OBJECT UNDER
OBSERVATION
Q 4
///\\\
ENVIRONMENT
l NOISES

| MPES |

: Box oF INFORMATION RECEPTION DATA :

[| ESTIMATING THE BOX > CONVERSION |
DISTURBANCE || DISTURBANCE IN ) BOX |
SIGNALS | I

| ATIMEZAND .| STABILIZED PROGRAMMED |

I| CORRECTING CONTROL BOX !

||  THE CONTROL |

: FUNCTION FOR A t :

|| FORECASTING MPES CONTROL PANEL |

| TIME T 7y |

e——— I 1

y

RECEIVING INFORMATION
AND MAKING DECISION

Figure 2.5 Diagram for closed-loop
multi-parameter engineering system having forecast control

The following symbols are used for MTF,, in formula (2.2):
v,,v, - space frequencies; Q; - atmospheric turbulence parameter changes from

0.017 to 0.1; f - lens focal length of ERS system; H_, - the height of the
shooting, without breaking the reasoning integration the equations for MTF ,

MTFyos and MTF,. are not formulated. We can see from formula (2.2) that a real
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MTF,, value based on the ground-based researches is a forecast value, if just for

Q; and H_,,,. That is why the results of researches are of great importance for

developing a forecast model.

t
PAST FUTURE
-7 -7
- - .~
-~ \ /
. -, - ~ ~
/’ MPES STATE IN ACCORDANCE WITH
, THE FORECAST MODEL
/' Fur=M(f)
——— /
/ /
/ \\ —
/
JMPES state -
O=x(O+ u(®)
\ —
\ /
N o 7 T
Testimatio Tforecast
INTERPOLATION EXTRAPOLATION
METHODS METHODS

Figure 2.6 Diagram of a probable multi-parameter engineering system
forecasting basing on aprior data

For developing the MPES forecast model we suggest considering processes
on account of the opportunity of dividing the general control task into fractions or
decompositions, where its own model part may be developed and applied for each
of decompositions, assuming the existence of a “‘complete” model and describing
mutual influence of its parts on condition that they have maximum freedom from
the would-be methods of solving the given fractions, at the same time basing on
its content and dynamic properties of the investigated technical process. We pay
special attention to the fact that in case there being some mutual influence in the
required system of MPES models, there should exist some model having the

dynamic description of the influencing processes in it. For instance, for describing
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the flying vehicle drive we often use a driving force model presented as statistical
dependence on several motion parameters, and that is quite enough for controlling
the vehicle in the routine flight modes but at the violent maneuvering we need to
know the dynamics of the driving force changing. Consequently, there can even
be no “complete” model at the development of the MPES control algorithm
because it is replaced with a system of decomposition tasks, i.e. it is expected that
there exists a system of “windows” in a “black box” through which the required

processes can be observed.
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CHAPTER 3. ANALYTICAL REPRESENTATION
OF EXPERIMENT RESULTS

3.1 Test data analysis

n

The source test data {x }; may be specified either in tabular or graphical form. At

graphical form, the data may be represented step-wise in analytical form of F({xi }f) in

particular [5, p.328]:
1) At the first stage we need:
e reduce the data dimension by applying the principal component analysis (PCA),
it should be noted that the volume of data loss is as small as possible here;

e define the possible characteristics and distinctive features of the required

analytical dependence F({xi }f) , 1.e. to define its acceptable region.

2) At the second stage, depending on the F({xi }f) acceptable region, we need to do the
following:
e if we search forF({xi }f) only for analytical representation of the experiment

results, 1.e. we are not going to extend its “application” area, it is reasonable to

use the interpolation method with subsequent approximation;
o if we search for F({xi }f) with regard to the extension of its application beyond the
range of {x } , then it is reasonable to use the extrapolation method with subsequent

approximation.

It should be noted that if source data are given in graphical form, we should

transform it to a discrete form, i.e. to digitize it. Sample spacing size (Ax) and the

upper frequency in the analogue signal spectrum (v, ) are connected according to the

sampling theorem: 2AX - v, =1.
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If the frequency and the source data rangeability are high (volatility level is high),

we apply various processing methods, the main of which are given in Table 3.1

[10, 34, 52, 54, 58].

Data processing methods

Table 3.1

METHOD

MATHEMATICAL METHOD
REPRESENTATION

Normalization method

- X, — min({xi }:)

%= max ({x; }7 ) — min({x; }7 )

Arithmetic mean method < Zl:Xi
n
Zn:XiWi
Arithmetic weighted mean method X = 12
W

Uniform approximation method

(min-max method)

1f(x)-g(x)| <& xelab]

Conditional-relative differences

method

n

Z yza" — min

0 yzad

Exponential smoothing method

exp{—t/r} - 15T

Habn"*
T

N-fold exponential smoothing

method

t"texp{-t/z}

"(n-1)
(aTH%n), if n>3, then (a/2n)<1

Alternating smoothing method

a

{v‘l(v2 +772)-(sinut)-exp{—t/r}

T,.6, =37+ 0,57 - In[1+ (Vr)fz]

Parabolic smoothing method

67(ty—Tth — TZ)...T € [O?ty]

3
ty

At source data processing we define some special and irregularly different x; that

may turn out to be both outliers of the series [46, p.143] and significant extreme points

relating to data semantics. Both the F({xi }f) value “violation” of acceptable region
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specified physical nature of a phenomenon at some points{x |, and the excess of some

threshold value & between two neighbor reports, i.e. [F(x_.f)-F(x}J-5 or

IF({%})- F({x..}] = &, may serve as an outlier test. If possible, they should be deleted

before data investigating — at the stage of primary data processing. However, sometimes
an outlier provides such kind of information that cannot be obtained from the other
data because it is connected to an unusual combination of conditions that is of vital
importance. Nevertheless, we should exclude the outliers instantly if we find out that
they are caused by such reasons as the errors in logging, in equipment alignment [23,

p.199] or by applying non-certified equipment.

3.2 Methods of analytical form representation

of experiment results

Having completed the data investigation, we have to choose a method of
developing the analytical dependency and to work out the criterion of defining the
match of the obtained analytical model to a source test data. Table 3.2 describes the
most frequently used development methods.

Methods of data analytical representation

Table 3.2
METHOD MATHEMATICAL METHOD REPRESENTATION

4 2
Least square method F(a,b) = le[yi - (ax —b)]
(LSM) oF(a,b) o oF (a,b) _0

oa " ob
Moment method T 1 oA R
d=g 7=F= exp(—am, — C)
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L®) =w( /6) = [wis6) =

n
1 1
Maximum likelihood - _exp __Z(y.
(V2mo)" ( 202 L™
method (MLM) i=1
— 5o0G (6, 9i))2>
1 (x—b)
_[—‘P 22 f(x)dx
a
Wavelet method W, (a,b) f (x) = \/H

.
S (%) = S mi (%)

Spline function method

Least absolute deviation n
IV =£00]=D Iy — F(x)
1

method

Mean-value method

Zn:(%' -y =0
i=1

Maximum likelihood method (MLM) is one of the most methods of estimating the

model (both linear and non-linear) parameters and highly effective Bayesian estimation
method at a simple loss function.

The “MLM” notion appeared in Fisher paper in 1922. The method provides the
estimation of constant parameters at uniform prior distribution and is the basic method
if the prior distribution is not specified, i.e. when the estimation of an unknown
parameter 6 by observations yi, Y2 ... ynis meant. According to the method, the
estimates of the unknown model parameters are found on condition of likelihood
function maximization [40, p.237].

The likelihood function L is the joint sample distribution, which is the function of
parameter

0= (6, &, ... &), (3.1)
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where (01, 02, ... 6y) is the vector of unknown model parameters.
If the sample has continuous distribution, the likelihood function L is described

with the joint distribution density
f (X, 0) =fo(X1)- fa(X2)- ... - Ta(Xn). (3.2)

If the sample elements X = (Xi, Xz, ..., Xn) have discrete distribution, then the

likelihood function L becomes the form:
f(x, &) =Po(Xy =x1) -fo(X2=X1) ... - Po(Xn = Xn). (3.3)

Value L(6) may be considered as a measure of value @ likelihood at a specified
implementation x.
Let us suppose that L is a sample likelihood function and at the observed values
Is the function of parameters 6 : = (&, &, ... &), then the most reasonable values of
6 that maximize the function L are called the values of maximum likelihood of &:
6 = argmaxg L(x,0). (3.4)
It is evident that the estimates xi, X2, ..., Xn depend on the observations and are
highly effective in sweeping assumptions. It often happens that it is easier to search for
the function maximum point In L(6), that aligns with 8 due to the log monotonicity,
where 0 is the element of space Q. If 2 is an open interval and L(0) can be
differentiated and reaches a maximum at (2, then the maximum likelihood estimates

satisfy the following equation:

dL(0)

=0. (3.5)

Maximum likelihood conception may be considered as a main idea of all the
methods on which the test data statistical processing for developing the empirical
equation is founded. In general, we may formulate the maximum likelihood conception
as follows: the best phenomenon description is the one that provides maximum

probability to obtain exactly that values that in fact were obtained. [33, p.104].
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Maximum likelihood method and function Bayesian estimation will be considered
in detail in Chapter 5.

At normally distributed errors &, the maximum likelihood method is reduced
to the least square method (LSM) [25, p.237-238] that consists in minimizing the
sum of differences squares between the source testing and corresponding values of

function derived from the approximation (3.6) [39, p.42-43]:

2 .
7iAL=1(yr0Lschi - )’zadi) — min, (3.6)

where y,.qsch,- 1S the desired value, y,,4. — the value specified by the source test data.

The least square method (LSM) is one of the most wide-spread approaches to
solving the formulated task nowadays. Its main peculiarity is the absence of any strict
requirements to the prior information concerning the evaluated parameters and
experimental errors [47, p.44].

As we have already noted, the LSM usually suggests that the errors are governed
by the normal law of distribution. However, a number of researches prove the good
forecasting properties of models derived in accordance with LSM if there are some
deviations from normality and mutual excess independency also [1, p.19].

Conditional-relative differences method [29, 30] is the improvement of the least
square method. The sum of conditional-relative differences squares serves as the

approximation measure here, see formula (3.7):

n
(Yrasch-_y'zad-)z .
E ————>min (3.7)
YVzad;
i=0

wWhere  y,qscn, IS the desired value, y,.4,— value specified by the source test data.

Application of conditional-relative differences method allows increasing the
approximation accuracy in small values area y;, but decreases it in large values area

y. Thus, the described method has some advantages at solving some specific tasks but
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it we cannot recommend to apply it widely due to the computational complexity and

obscurity of statistical properties of suchlike values [28, p.696].

In spite of the described advantages of the maximum likelihood method, there is
a number of estimating problems in which it is hard to apply it because of significant
mathematical or computational difficulties in finding the L(6#) maximum. In such cases,
the moment method is often used; it has no asymptotic optimality properties but it often

leads to relatively simple computations.

— T
The moment method. If the parameters 6 = (61, 0,, ... Oy ) are unknown, the

initial distribution moments are the functions, see formula (3.8):

my(0) = fykw (%) dx . (3.8)

Basing on observations yi, ¥ ... Yo we may find the sample initial moments of k-

th order m; = % n  y¥ . which serve as independent estimates of distribution

moments mk(é). The moment methods consists in setting M sample moments equal
to the corresponding distribution moments and in finding the estimates of unknown
parameters from the equation system: my, (6,,68,, ... 8y ) = My, k=12, ... M.
Besides the initial moments, we may use the central distribution moments and sample

central moments for parameter evaluation, see formula (3.9):

~ 1 P
fie = SX 0 - )" (3.9)

For some distributions, e.g. for a normal or exponential one, the parameter
estimates obtained with the moment method align with the corresponding maximum
likelihood estimate (MLE). At the same time, there are many problems, in solution of
which the moment method application leads to obtaining less accurate estimates than
the application of maximum likelihood method. Estimating the 6 parameter — the even
distribution expressed in correlation - is its case study:
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W(y:) =2,0<y,<0,i=12 ..n. (3.10)

To find the estimate with the moment method, let us set the expectation (i.e. the

first initial moment) m, () =;eequal to the sample mean m, = % Y

As a result we obtain an unbiased estimate, congruence (3.11):
~ 2
03 = =¥,y (3.11)
R 2
having dispersion M {(8(37 - 6)) } = 39—; . It should be noted, that the obtained value

N 2
is (n+2)/3 times as dispersion D, = M{(e(y—e)) } =

(n_+1)2 fﬂ 2 w(x)dx — 02 = o defining the accuracy of the corrected
- o X° w (%) dx = Tmig g y

estimate of maximum likelihood. Except initial moments, it is possible to use central
distribution moments and sample central moments for parameter estimation.

The obtained estimates may be applied, for instance, at developing the noise type
sorter in radar receiver, because the Weibull distribution describes a wide range of

possible noises like receiver noises, clutter reflections, hydrometeors, etc.

Consequently, the motivation of searching for efficient estimates with the
maximum likelihood method is evident. However, there are some cases in which it is
difficult to find the solution of likelihood equations but possible to obtain proper

estimates with the moment method application.

Wavelet is a class of family functions local in time and frequency, i.e. small
quantities in which all the functions are derived from one by its timeline shifts and
tensions, i.e. they go in turn; it allows analyzing various data frequency components.
Wavelet-analysis is relatively new and powerful mathematical apparatus; it is widely
used in classical sciences like analyzing and processing numerical series of physical,
geophysical and other experiment or observation results, in identification or synthesis

of signals of different nature and structure, applied for processing, compression, storing
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and transferring of large data volumes including analogue pictures and videos. It is “a
mathematical microscope” for accurate studying of inner structures of non-uniform
signals and functions.

Wavelet transforms are usually divided into discrete wavelet transforms (DWT)
and continuous wavelet transforms (CWT). Speaking about the application, DWT is
usually applied for signal encoding, while CWT — for signal analysis. As a result,
DWT is widely used in engineering and computer sciences and CWT in scientific
researches.

In that way in the classical Fourier analysis we naturally use sines and cosines or
the general complex exponential as basic functions, because the other orthogonal
functions, e.g. orthogonal polynomials, are difficult in results interpretation.

In wavelet analysis there is a great choice of basic functions and it is being
extended constantly, its application is simplified because the wavelet transforms are
included in mathematical packages as standard applications. All the wavelet transforms
consider a function (taken as being a time function) in terms of oscillations localized
in time and frequency. Table 3.3 shows some of the main classical wavelet formulas.

Let us consider the main disadvantages of conventional Fourier analysis:

1. Insufficient informational contents at analyzing non-stationary signals and
almost complete lack of opportunities to analyze its peculiarities or singular
behavior and the appearance of destructive components absent in a source
signal given that it had some disturbances and discontinuities;

2. Frequency basic expansion functions are basically incapable of reflecting the
signal differentials having continued rate, e.g. rectangular pulses, because it
requires infinite number of series terms, otherwise (at a finite number of Fourier
series terms) strong oscillations appear in the neighborhood of disturbances and
discontinuities in regenerated signals, i.e. Gibbs phenomena.

3. The Fourier transform provides the general information on the investigated
signal frequencies and does not describe its local properties at fast time changes

of its spectral distribution. The classical Fourier transform algorithm does not
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provide an opportunity to analyze the signal frequency characteristics at
random time moments (this information is not required for a stationary signal).
Besides there is a fundamental problem connected with the finiteness of the series
investigated, while the Fourier transform requires a function to be specified and
periodical at an infinite horizon.
Classical basic wavelets
Table 3.3

MATHEMATICAL WAVELET
REPRESENTATION

GRAPHICAL WAVELET VIEW

Haar-wavelet: o o5 1 1,5 2
2
t
+1, 0<t<0,5 1
p(t) = {-1, 05<t<1, 01
0, t<0,t=>1. ¢ -2
1,5 0,5 0,5 1,5
Fhat-wavelet: t 1,5
( 1 0,5
+1, It] < 3 0s
P = Y_o05 1/3<t<1, ol is
0, |t] > 1.
-10 -5 0 5 10
Wawe-wavelet: t 20
.2 10
p(t) = () exp (—5) 0
-10
[} -20
-1,5 -0,5 0,5 1,5
Mhat-wavelet: : 15

o) = (1t exp (-5

-0,5

¢ -1,5

All the wavelet transforms may be considered as a variation of temporal-

frequency representation and, consequently, refer to the subject of Fourier analysis.
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Discrete wavelet transform may be considered as a variation of finite impulse response
filter. CWT wavelets are governed by Heisenberg uncertainty principle, and
consequently the discrete wavelet basis may be considered in the context of the other

forms of uncertainty principle.

Nowadays wavelet transforms have a wide range of various applications, it often
substitutes the conventional Fourier transform in many areas. Such paradigm shift
occurs in many areas of physics, including molecular dynamics, ab initio
computations, physical astronomy, localization of density matrix, seismic geophysics,
optics, turbulence, qguantum mechanics, image processing, blood pressure, pulse and
electrocardiogram analysis, DNA analysis, protein researches, climate investigation,
general signal processing, speech recognition, computer-generated images,

multifractal analysis and others.

Methods of solving the problem of parameter signal identification by applying
wavelets are at the initial stage of development now. It is a new area just starting its
development - wavelet application at solving differential equations. G.Beylkin,
Professor of state Colorado University, is the founder of representation theory of

differential operators in wavelet basis.

We should note that it is unreasonable to use high degrees of interpolation
polynomials at global approximation method. That is why patch-global method based
on, for example, linear or quadratic (parabolic) interpolation is often used, but the
derivatives of such interpolation polynomials obtained at the finite intervals and its

joining points have discontinuities.

The considered approximating functions Sn(x) (where m is a polynomial degree)
should satisfy the requirements of continuity Sn(X) , Sm(x) and, if possible, S'n(x) or

S"m(x) atall the points x e[a;b], which gives rise to the necessity of developing spline-
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functions having the above mentioned characteristics and being of interpolation or
smoothing nature.
A spline-function, or a spline, is a class of Sy (X) — algebraic polynomials of m

order  (components), defined at the finite intervals [xi, Xi+1], [Xi, Xi+1],

i =0, n—1 and joined together in all the finite intervals in such a way that we can

set up the multitier function, see equation (3.12):
Sm(x) = UL Smi (%), (3.12)
that is definite and continuous on the whole interval together with all of its derivatives

S,(,f’) (x) up to some of its order p=1,2... The difference in m and the highest derivative
order continuous at the interval [a,b] presents the defect of spline g. The conditions of
matching the spline components Sy (X) to a source function y; = f (x) at a
corresponding finite interval [xi, Xi+1] are the conditions imposed on disparities of
differential and integral types 551(,22(960, 6Sm,i(1ii+1) and used for developing a
formula of one spline component at a specified finite interval.

The number of matching conditions required for developing a formula of one
spline component should correspond to the spline order, i.e. the number of conditions

greater by unity than m. Having defined the formula Sy, (X), we express its right part

through its known and unknown parameters: f(p) (x;) for differential spline or through
the set of F®(x;) and Ii*! = f;"“ f (x) dx for integral-differential one. These

values are called the spline parameters. Depending on the fact, if that or those spline
parameters have been specified at the task setting or not, they are called definite or
indefinite parameters. The computational basis for the last ones is the continuity
condition, i.e. the spline smoothness Sn,i (X) that are called the connection conditions
here. For some juncture x;, common to i-1 component referring to a finite interval

[xi-1, Xi] and i component defined at a finite interval [xi, Xi+1], the condition looks as

= ST

follows: ), (x| i

x=x x=x;i"
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At solving the approximation tasks with spline functions, we transform the
connection conditions to correlations connecting definite and indefinite parameters and
called parameter correlations.

Parameter correlations written in the form of equations may be applied at finding
the indefinite parameters out in relation to spline approximation or at expressing some
parameters through the others. Besides, parameter correlations based on the principle
of concordance of numerical quantity orders establish the correspondence of the orders
for various parameters included in one correlation or another.

There is also a simpler but less strict method for developing empirical analytical
dependences — the so-called mean-value method.

The core of the mean-value method is that the parameters of the required
empirical formula are defined on the assumption that the sum of all the observed
quantity deviations from its mean value is zero: .7 ;(y; —y) = 0, where y is the
function mean value. “The method is the most efficient one in the simplest situation,

when we need to develop the dependency of y=b; x kind” [33, p.101].

In cases, where we have not managed to exclude gross outliers from the source

data selection, it is better to use the special methods of robust regression.

One of such methods is the method of the least [38] that are squared if the LSM
is applied. The principle of the method is minimizing the sum of moduli of differences
between the desired values and the values specified by the source test data:
Y1 |Vrashe; — Yzaa,| = min, where  y,qecn, is the desired value, y,qq, - the value
specified by the source test data.

It should be noted that there are no methods of statistical analysis of LADM-
regression equations. Whereas in the least square method the regression parameter
distributions and their main statistical properties have already been studied, thus
allowing performing the required statistical analysis, in the LADM the distributions

remain unknown. So we know nothing about statistical properties of regression
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obtained by the LADM-method. This is the substantial defect of the LADM method
limiting its application in statistics [28, p.693].

One more approximation method is the uniform approximation method, in which
the modulus of maximum deviation of the desired values from the specified test data
serves as the approximation measure: |V,gsch — Yzadlmax = min, Where y,qocp, is
the desired value, y,qq4, - the value specified by the source test data. Such measure

Is also called the min-max approximation measure.

It is commonly supposed that the best uniform approximation provides a little
better approximation than the least square one. However, theoretical studies show that
such advantage is negligible; it is larger for the functions having discrete higher
derivatives not too large in absolute value if the volume of source data is not large.
However, the method has a substantial disadvantage — the absence of sufficient
computational algorithms (except the direct search with non-linear programming

methods) makes the given method hardly suitable for use.

There are other approximation methods — in particular, the extreme point method
[28, p.694], single-valued approximation method, method of inverted divided
differences [27].

At the next stage of forecast model development we need to choose its structure
type — to sort out the class of functions. As in designing any math model of some real-
world object, there are two approaches to model development — theoretical and

empirical one [56].

Choosing the class of functions on the basis of theoretical approach enjoins taking
into consideration the physical laws governing the investigated phenomenon provided

by the results of experiments conducted.
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It means that we develop the standard form of the analytical formula on account
of some known scientific laws (laws of physics, chemistry, biology, etc.), and all the
parameters included in the formula have some physical meaning. However, developing
a model even in the simplest cases may require applying several (not a single one)
fundamental laws [44, p.33].

At the same time we may represent the test data as an empirically fitted functional
dependence with one or the other degree of correspondence to the observed
phenomenon.

If we do not know the type of the dependence between x and y, “then the empirical
formula has an unspecified form. It is preferable to use simple formulas having high
accuracy. If there is no information concerning the intermediate data, it is usually
supposed that the empirical function is of analytical type having a smooth curve and
no discontinuity points. There is no uniform method for finding out the best type of
formula corresponding to the experiment data” [12, p.80]. When trying the dependence
general form one should make sure that the fitting function f(x) has the same peculiar
features as the investigated function y(x). For example, if function y(x) is an even
function by its content, then function f(x) should also be an even one, etc.; it is very
important to convey the function behavior at large and small values of x, probable

changes of its sign and other substantial features correctly [39, p.41].

The problem of finding a compromise between the model accuracy and simplicity
usually arises at this stage: we need to choose such class of functions that satisfies “the
definite correlation between the value characterizing the quality of function
approximation to the set of source test data and the value characterizing “complexity”

of approximating function [9, p.9].

While choosing the class of functions we may rely upon the ‘from-simple-to-
complex’ modelling algorithm [60, p.6], checking consequently various classes of

functions from elementary to more complex ones.
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First we should check for the linearity of the required dependency, and then find
out if there is any probable internal linearity. Sometimes an internally linear
dependence hides behind the non-linear function structure in outward appearance. Such
functions can be transformed to a linear form by change of the variables called
linearization. The function linearization allows simplifying the computational
procedure, because trying the parameters for a linear dependence is much easier from
computational point of view than for a non-linear dependence. However, we should
remember that the best choice of parameters for the transformed dependency may turn
out to be not the best one for a source function. Besides, having computed the linear
dependence parameters, we need to make a conversion calculation to get back to the
source variables. Nevertheless, changing variables (the examples of linearizing
transformations may be found in [25, p.415]) may help in finding the class of functions
suitable for analytical representations of the source test data. Then we search for the
suitable options in a set of non-linear functions. Among the classes of functions we
may enumerate the functions described in Table 3.4.

Classes of mathematical functions
Table 3.4

MATHEMATICAL SPECIES OF FUNCTIONS

1. Class of functions: power functions (elementary algebraic)
Specific instance—hyperbolic and parabolic

2. Class of functions: Exponential and logarithmic functions
(elementary analytical)
Specific instance — exponential

3. Class of functions: Periodic — line and arc-trigonometric functions
(elementary analytical)

4. Class of functions: rational (elementary algebraic)
Specific instance —linear-fractional and polynomial functions

5. Class of functions: S-shaped curves and growth functions

(composite functions)

6. Class of functions: Bell curves and peak functions (composite functions)

7. Class of functions: Delta functions (composite functions)
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Let us note that, if ideally, the chosen type of function should completely reflect
the physical meaning of the investigated phenomenon as much as all the parameters of

the chosen functional dependence should be physically interpretable.

Polynomial dependency is convenient for describing the test data not only from
the point of view of computational simplicity, but from opportunity to obtain an
analytical equation having the specified accuracy that depends on the chosen
polynomial order n directly. However, from the point of view of the required
analytical dependence semantics, this class of functions has substantial disadvantages:
indices in the obtained polynomial dependence usually have no real physical
interpretation; and it has been proved that there is a whole class of functions that cannot
be interpolated with a polynomial on the equally spaced grid of values. These are the
functions having poles on the Mobius plane at a point of interpolation interval, e.g. a
function having poles in x = +i and x = -i points. The larger n is, the more widely the
interpolation polynomial will deviate from the function on drawing near the interval
borders; at the unlimited growth of the number of points the interpolation error at the
interval will go to infinity.

It should be understood that the growth of interpolation error at the growth of the
number of interpolation points is not an algorithm problem and not a consequence of
natural errors of real-numbers operations, but a fundamental property of interpolation
polynomial because while passing through all the prescribed points, it rises sharply in
the interval between them. As for the errors of real-numbers operations, they may be
accumulated at the interpolation on the grid having equally spaced nodes and lead to
the loss of interpolation quality. The reason is the following: even if the interpolated
function refers to the “well-behaved functions” class, i.e. it has no poles at a point of
interpolation interval, the errors of real-number operations usually add some
contaminations to its graph. Such contaminations often assume the similitude to an
“ill-behaved function” thus leading to a catastrophic error growth at the growth of point

number.
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The above-described problem has two solutions. If for some reason we cannot
withdraw from the grid having equally spaced nodes, we may use cubic splines or
rational functions. But if we are free in choosing the points, we may perform the
interpolation on Chebyshev grid with Chebyshev polynomials, see formula (3.13):

Tk (x) = cos (k arccos x), |x|<1. (3.13)
The Chebyshev polynomials are the least deviating from zero polynomials. In most
cases on such a grid the interpolation error is reduced at the growth of number of points,
particularly, it is true for any of the smooth functions. Computational errors are also
less inclined to accumulation: the interpolation error is greater on the interpolation
interval borders at the interpolation with equidistant nodes; but at the Chebyshev nodes
interpolation the error is more uniformly distributed on the interpolation intervals and
Is smaller than at the interpolation with equidistant nodes.

Consequently, if it is difficult or impossible to fit an elementary class function for
describing the source test data, we have to consider the classes of more composite
functions, e.g. S-shaped curves and growth functions, bell curves and peak functions,
Table 3.4. Typical graph of such-like functions is shown at Figure 3.1 and in the below-

given example (article 3.5) of developing a forecast function for a wind velocity.

Y Y

Figure 3.1 Functions graphs: a) s-shape curves and growth functions;
b) bell curves and peak functions

To the s-shape «curves we refer, for instance: logistic curve

A4
y= 1+(x/xg)P

A—A,
1+exp((x—xq)/D)

+ A,, Boltzmann curve y = + A, and others.
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To the bell curves and peak functions we refer, for instance, Gaussian function

A —2(x—x.)>?

Y=Y+ = exp(— ).

At the beginning of the XX century mathematics had no necessary strong
descriptions for operating with a new class of value dependences discovered in physics;
that is why the scientists introduced a new notion of generalized functions.

The need in suchlike generalization often appears in many physical and
mathematical problems; the idea of generalized function indicates the fact that it is
impossible in reality to measure the physical quantity value at some point and we can
measure only its average values in a small neighborhood of the point. The derivative

of d-function is a generalized function also, and the integral is a Heaviside function.

So, the generalized function method is a convenient and adequate tool for

describing the distribution of various physical quantities.

The list of the various functions can be found in special atlases of charts [57, 59].
The next research stage is calculating the parameter values of the functional
dependence defined at the previous stage according to the chosen approximation
method. If we do not manage to find the parameters, it means that the choice of the
formula class or correspondingly the approximation method and measure may have

been ineffectual.

Distribution is a mathematical notion,
extending the classical notion of a————
function; it is not a function in its

es the opportunities to:

ess the idealized notion of

conventional meaning but it is defined T\ mafg'kial point density in
as a continuous lineay functional on mathematically correct form

differentiatedfunctijons space

- point charge,
point dipole

density of a single or double
jntensity of instantaneous
, etc

Figure 3.2 Generalized function description
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3.3 Methods of analytical model investigation

Having developed an analytical dependence according to the experiment result,
we need to choose the investigation method and establish the criterion of defining the
correspondence of the obtained analytical model to a prior source data.

Classical function investigation methods involve the known methods of
differential calculus, where an extreme point of the objective function f(x) is found
from the necessary condition of its existence. The condition is that the derivative at the
extreme point is zero and the best solution of x* can be found from the equation system
(3.14):

W _0o, ati=12, ... n (3.14)

ax;

To define if x* is a maximum or minimum point, one should use the sufficient
condition of extreme point existence, according to which: if at the extreme point the
derivative changes sign from plus to minus, then f(x*) is an objective function
maximum,; if at the extreme point the derivative changes its sign from minus to plus,
then f(x*) is an objective function minimum. If the given equations are non-linear, it is
almost impossible to succeed in solving its system with analytical methods. In such
cases, the ECM and corresponding numerical techniques or non-linear programming
methods are used. In the last case, the problem of system solution is reduced to the

problem of function minimization:

f@)=3r, (% (x))z . (3.15)

dx;

The considered methods of investigating classical analytical functions may be
applied at the solution of relatively simple optimization problems having no
constraints. However, most of the engineering problems relate to optimization at some
constraints of the controlled variables. Such constraints substantially reduce the size
of the region on which the optimum search is conducted. On the face of it, it may
appear that accessible region size reduction should simplify the optimum search.
However, with the constraints, even the condition, according to which the optimum

should be reached at a critical point characterized by a zero gradient, may be violated.
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For example, unconstrained minimum of function f(x) = (x-2)? occurs at the
stationary point x = 2. But if the minimization task is solved with regard to the
constraint of x > 4, then we find the constrained minimum with the corresponding point
x = 4. This point is not a stationary point of the f (x) function, because f ‘(4).

Lagrange multipliers method allows finding the function maximum or minimum
at the equality constraints. The basic idea of the method consists in moving from
constrained extremum problem to the problem of finding the unconstrained extremum
of some developed Lagrange function. Let us consider the general optimization
problem containing several equality constraints: to minimize f (x) at constraints g; =0,
j =1, ... k The problem may be solved basically as the unconstrained optimization
problem obtained by elimination of independent variables with the help of the certain
inequalities from the objective function k. The presence of the equality constraints
allows in fact, at the constraint: g(x) = x;+x,+ x3-1=0. Having eliminated the variable
x3 With the equation g(x)= 0, we obtain the optimization problem having two variables
and no constraints: f(x1, x2) = x1- x2+ (1 - x1 - x2).

The elimination approach can be applied only in the cases when the equations
expressing the restrictions may be solved for some definite set of the independent
variables. If there are many equality constraints, the variable elimination procedure
becomes rather a time-consuming one and sometimes the equations cannot be solved
for variable.

In particular, if in the given example we set the constraints g(x)= 0 in the form of
g(x) = x12x3 + x2- x3%+ xo 1 x1, then it is impossible to obtain an analytical expression

of some of the variables through the other.

Consequently, it is reasonable to apply the Lagrange multipliers method at

solving the optimization problems containing complicated equality constraints.

By applying this method, we may find the required conditions allowing

identifying the optimum points in optimization problems with equality constraints.
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Here the problem with equality constraints transforms to the equivalent unconstrained
optimization problem. For example, the problem having several equality constraints:
we minimize f (x) at the constraints (x) =0 at j=1,2 ... k. According to the
multipliers method, the problem translates to the following unconstrained optimization
problem, the minimization is made as formula (3.16) shows:

L ()= 1) = Xk, 9; - g5, (3.16)
where L(x, ¥) — Lagrange function, $- Lagrange multiplier. There are no requirements
to sign 9. We equate the partial derivatives L(x, 9) with respect to x to zero, obtain the

following system of n-equations having n-unknown variables, see equation (3.17):

aL(x,B)ZO 0L(x,.9)_0

5y o (3.17)

Kuhn-Tucker conditions. The Lagrange multipliers method may be applied at
developing the optimality criterion for problems with equality constraints. Kuhn and
Thucker expanded this approach for the general problem of non-linear programming,
one needs to minimize f(x) at the constraints: g(x)>0 1=1,2,...,1
he(x) =0, k=1,2, ..., K, where x =x1,xz, ..., xn . Inequality constraint gj(x) >0 is
called an active or connecting constraint at point x if gj(x) =0, and inactive or non-
connecting if gj(x) > 0, where x is an admissible point, i.e. satisfying all the
constraints. If there is an opportunity to find the constraints that are inactive in the
optimum point before solving the task, then these constraints may be excluded from
the model thus reducing its size.

Kuhn and Thucker have developed the necessary and sufficient optimality
conditions for non-linear programming problems on account of the assumption of
differentiability of f, g; , hq functions. Consequently, the Kuhn-Thucker problem

consists in finding the vectors Xux1), Uaxy , Kuxk satisfying the following conditions:

(Vf (x) = XjqUj-Vg;(x) = Xioq 9k Vhe(x) = 0,

gjx) =0 j=12 .,1
1 he(x) =0 k=12 ..,K (3.18)
Up-gjx) =0,
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Variational calculus. When solving some problems, we need to introduce the
element modeling functions to describe the geometric properties of constantly
changing cross sections of a mechanical system structural component. Let us consider
two representative examples to define the attributes of the given problem class.

1. It is required to find the shortest curve between two points (Xo,z0) and (x1,z;) in
the plane X and Z. The length is put in correspondence to any curve connecting
two specified points. The problem consists in choosing a curve Z(x) having the

shortest length. For a curve Z(x) the length is defined by formula (3.19):

F0)=[(1 +(EDH°%dx. (3.19)
Z
(X1,21)
1
(X0,20) X

Figure 3.6 Illustrating example No.1

2. Two points (Xo,20) and (x1,z1) not lying on the vertical line are specified in the
vertical plane. It is required to find such a curve connecting these points, in the
line of which a particle having been at a standstill at (Xo,z0) will slide
frictionless to a point (x1,z;) at the shortest time.

Let m be a mass of a particle, g — free-falling acceleration; as the particle starts

moving from a standstill (xo,20) and the friction is missing, we may put the energy

equation down as follows, see formula (3.20):

1

EmV2 =mg(z — z). (3.20)
where V is a velocity defined by formula (3.21):
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where t is the time of particle moving.

3.4 Analyzing model parameters

Having found the parameter values in empiric formulas, we need to check the
fidelity of the obtained analytical representation. For this purpose we calculate the
deviation percentage for desired values obtained from the source test data on the basis
of the defined analytical representation. The computational procedure for deviation
percentage depends on the chosen fidelity criteria.

For example, the deviation percentage may be estimated as the determination
factor.

If the value of deviation percentage is satisfactory, the analytical representation
has been obtained and the algorithm has led to the problem solution.

If the deviation percentage outnumbers the allowable value or the parameter
values have not been found at all, then probably some wrong dependence structure or
approximation method has been chosen. Insuch a case, it is required to get back to the
algorithm start and complete the next research iteration.

Having found that the computed fidelity criteria of the defined analytical model
fit the initially specified limits, we may check for the model adequacy by conducting

real-world experiments.
3.5 Example of forecast function development

Problem. It is required to develop a wind velocity forecast function for MPES in the
nearest 10 minutes on the basis of the test data results shown at Table 3.5.

Test data results for the wind velocity

Table 3.5

TIME |VELOCITY TIME |VELOCITY TIME |VELOCITY
(h.min.sec) (m/s) (h.min.sec) (m/s) (h.min.sec) (m/s)
0:00:00 6.09 0:02:55 1.66 0:05:35 4.29
0:00:05 6.33 0:03:00 3.09 0:05:40 4.15
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0:00:10 5.88 0:03:05 2.51 0:05:45 2.92
0:00:15 4.97 0:03:10 2.04 0:05:50 1.61
0:00:20 5.69 0:03:15 4.3 0:05:55 4.09
0:00:25 5.37 0:03:20 8.13 0:06:00 4.69
0:00:30 5.62 0:03:25 8.86 0:06:05 3.29
0:00:35 5.12 0:03:30 2.39 0:06:10 2.51
0:00:40 4.43 0:03:35 0.34 0:06:15 4.04
0:00:45 3.04 0:03:40 1.05 0:06:20 1.99
0:00:50 4.16 0:03:45 0.23 0:06:25 4.43
0:00:55 3.88 0:03:50 0.96 0:06:30 3.36
0:01:00 2.82 0:03:55 3.00 0:06:35 4.80
0:01:05 2.16 0:04:00 3.94 0:06:40 3.76
0:01:10 3.17 0:04:05 5.92 0:06:45 5.37
0:01:15 2.09 0:04:10 1.93 0:06:50 4.1
0:01:20 1.59 0:04:15 1.91 0:06:55 0.70
0:01:25 2.71 0:04:05 5.92 0:07:00 1.54
0:01:30 4.97 0:04:10 1.93 0:07:05 1.28
0:01:35 3.22 0:04:15 1.91 0:07:10 0.47
0:01:40 1.5 0:04:20 241 0:07:15 0.56
0:01:45 0.80 0:04:25 6.11 0:07:20 0.53
0:01:50 0.87 0:04:30 5.49 0:07:25 1.09
0:01:55 2.18 0:04:35 7.25 0:07:30 0.75
0:02:00 1.86 0:04:40 10.28 0:07:35 0.46
0:02:05 0.81 0:04:45 9.31 0:07:40 0.53
0:02:10 4.15 0:04:50 8.07 0:07:45 1.35
0:02:15 5.29 0:04:55 9.75 0:07:50 1.01
0:02:20 6.96 0:05:00 7.82 0:07:55 1.58
0:02:25 5.56 0:05:05 5.6 0:08:00 3.13
0:02:30 5.65 0:05:10 2.33 0:08:05 6.31
0:02:35 4.47 0:05:15 1.38 0:08:10 0.71
0:02:40 1.38 0:05:20 0.51 0:08:15 0.73
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0:02:45

1.25

0:05:25

2.56

0:02:50

0.74

0:05:30

5.71

Problem solution:

1) We introduce and define two array-variables: for the values of the time of

occurrence and for the wind velocity values.
time: - ("0:00:05" "0:00:10" "0:00:15" "0:00:20" "0:00:25"
"0:00:50" "0:00:55" "0:01:00" "0:01:05"

"0:00:40"
"0:01:20"
"0:02:00"
"0:02:40"
"0:03:20"
"0:04:00"
"0:04:40"
"0:05:20"
"0:06:00"
"0:06:40"
"0:07:20"

"0:00:45"
"0:01:25"
"0:02:05"
"0:02:45"
"0:03:25"
"0:04:05"
"0:04:45"
"0:05:25"
"0:06:05"
"0:06:45"
"0:07:25"

"0:01:30"
"0:02:10"
"0:02:50"
"0:03:30"
"0:04:10"
"0:04:50"
"0:05:30"
"0:06:10"
"0:06:50"
"0:07:30"

"0:01:35"
"0:02:15"
"0:02:55"
"0:03:35"
"0:04:15"
"0:04:55"
"0:05:35"
"0:06:15"
"0:06:55"
"0:07:35"

"0:08:00" "0:08:05" "0:08:10" "0:08:15").
values: - (6.09 6.33 5.88 4.97 5.69 5.37 5.62 5.12 4.43 3.04 4.16 3.88 2.82 2.16
3.17 2.09 159 2.71 4.97 3.22 1.55 0.80 0.87 2.18 1.86 0.81 4.15 5.29 6.96
5.56 5.65 4.47 1.38 1.25 0.74 1.66 3.09 2.51 2.04 4.30 8.13 8.86 2.39 0.34
1.05 0.23 0.96 3.00 3.94 592 193 1.91 241 6.11 5.49 7.25 10.28 9.31 8.07
9.75 7.82 5.60 2.33 1.38 0.51 2.56 5.71 4.29 4.15 2.92 1.61 4.09 4.69 3.29
2.51 4.04 199 4.43 3.36 4.80 3.76 5.37 4.10 0.70 1.54 1.28 0.47 0.56 0.53
1.09 0.75 0.46 0.53 1.35 1.01 1.58 3.13 6.31 0.71 0.73),

where time array is an array of measurement occurrence time and values array is an

"0:01:40"
"0:02:20"

"0:01:45"
"0:02:25"

"0:03:00"'0:03:05"

"0:03:40"
"0:04:20"
"0:05:00"
"0:05:40"
"0:06:20"
"0:07:00"
"0:07:40"

"0:03:45"
"0:04:25"
"0:05:05"
"0:05:45"
"0:06:25"
"0:07:05"
"0:07:45"

"0:00:30"
"0:01:10"
"0:01:50"
"0:02:30"
"0:03:10"
"0:03:50"
"0:04:30"
"0:05:10"
"0:05:50"
"0:06:30"
"0:07:10"
"0:07:50"

"0:00:35"
"0:01:15"
"0:01:55"
"0:02:35"
"0:03:15"
"0:03:55"
"0:04:35"
"0:05:15"
"0:05:55"
"0:06:35"
"0:07:15"
"0:07:55"

array of wind velocity measurements occurred in the corresponding moment of time

(table 3.5).

k := 0..cols(time) — 1
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_ hhmmss(timey) hhmmss (tims )
~ hhmmss("00:00:01") hhmmss("00:00:01")

2) Let us range the values of time of wind velocity measurements occurrences:
0:00:00 =0, 0:00:05=5, 0:00:10 =10, etc.

Agk :

L(x, valuesx, valuesy) :

result < 0
fori € 0..cols(valuesy) — 1
basic < 1
forj € 0..cols(valuesx) — 1
- x — valuesx;

basic < basic
valuesx,; — valuesxy;
result < resuit + basic * valuesy,;
retum result

3) Let us define a function computing the interpolation Lagrange polynomial on

ifi #j

account of data arrays: time and values, farther denoted as valuesx and valuesy

respectively.
4) Let us develop a graph of Lagrange polynomial where the Runge phenomenon
occurs, i.e. the large outliers happen at high polynomial orders, see Figures 3.7,

3.8.

Wind velocity according to the test data (m/s)

12

L(x,A,values)
-
IN o) o )
C

Wind velocity (m/s)

£

t(h.min.sec)

LS

0 -
0:00:00 0:01:26 0:02:53 0:04:19 0:05:46 0:07:12 0:08:38 0:10:05

Figure 2.7 Graphical representation of Lagrange polynomial —
Runge phenomenon observation

5) In connection of item 4, we need to choose the other method (LSM) and try the most

suitable indices of power polynomial: by searching of p order values. The
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experiments show that the 4" order polynomial allows achieving the minimum

deviation.
cols(values)— 1 cols(c)— 1 2
LSM(c) = Z values,; — z [co,i * (Aoji)i]
(=0 i=0
p:=0..2
CTestyp := 0 F(CTest, x) := Y orCTes0~1(cTesty; + x1)

6) Searching for indices by the LSM: searching for such a value of CTest variable, at
which the LSM function possesses the least value

result < 0
f(values, x) := forie€ 0..98
result < values,; if x = Ay;
F(Minimize(LSM, CTest), x)
f(values, x)
000

7) Graphical representation of the test data f(values, x) and approximating function
F(Minimize( LSM, CTest),x), see Figure 3.8.

8) To exclude the outliers and obtain more correct results we apply the exponential

1

smoothing method to the data: i := 0..98 j:= 0..1 a;:=:

Wind velocity according to the test data (m/s)

[N
N

=
o

Wind velocity (m/s)

t(h.min.sec)

0:00:00 0:01:26 0:02:53 0:04:19 0:05:46 0:07:12 0:08:38 0:10:05

Figure 3.8 Graph of test data distribution

9) Searching for indices by the LSM: searching for such a value of CTest variable, at

which the LSM function possesses the least value.
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Wind velocity and forecast function according to the test data (m/s)
12

10

Wind velocity (m/s)
o

t(h.min.sec)

0:00:00 0:01:26 0:02:53 0:04:19 0:05:46 0:07:12 0:08:38 0:10:05

Figure 3.9 Forecast function graph — 4" order polynomial

10)  Graphical representation of the smoothed test data F( Smooth, x) and function
F( Minimize( LSM, CTest), X) approximating it.

The conclusion drawn according to the experiment results:

In the present paper we obtained the 4" order polynomial that interpolates and

extrapolates the source data. Unfortunately, the discovered polynomial does not take

into account the nature of the data, for which cause the extrapolation by the given

polynomial may be conducted with significant errors.

60



CHAPTER 4. GENERALIZATION PROCEDURES FOR
A FORECAST MODEL

4.1 Concept of developing an analytical forecast model of a
technical process in the form of a component

composition

Let us suppose that a technical process modelling combined with various
conditions for which the experiments were made forms some U system that can be

described through characteristic features of its elements. Let the given U system may

be represented as sets shown at Figure 4.1, that is: a set of input parameters {Vi}llv’”p”t,

System

. . N i . N
medium external disturbances {W;}, Extdist internal parameters {Gi}, and

output parameters {Zl-}llvE"“.
One of the output parameters, e.g. z,, is our required parameter, the others
(-z,, ..., zo-) should be considered at developing the system analytical model only if

there is a feedback from them. In general, the forecast model of technical process looks

as follows (Figure 4.1):

{Wi}llvExt_dist

. NSystem NExi
ey iy AN

Figure 4.1 General scheme of U system functioning in actual

Z(xl, Xorees X, ):V((xl, Xorees Xy, ) OW (X, X0 XNBm))o G(xl, Xy yeeny XNCW) (4.1)

To solve the specified problem it is reasonable to use the method of the analytical

transformation of a function into a Fourier series that subsequently allows making
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transparent the application of the following mathematical operations: differentiation,
integrating, argument shift and convolution.

There are three approaches to represent mathematically the signals processed by
an engineering system. Approach one — through the real signals expressed as a time
function that are visible in oscillograph. Let us suppose that there is an arbitrary time

function S(t) at a finite interval (t;, t2) and there is an orthogonal function system

P1(t), (L), ..., o (1), i€

t2 0, i # ],
[ " owo@ac={p ] 42)
ty ]’ )
It has been affirmed that S(t) = X;S;; ¢;(t), where
%) %)
1
S; =k—]j St)p;)dt, k; = j @i (t)de. (4.3)
t1 t1

It means that a function specified at a finite time interval (including a periodic function)
can be represented in a series in a system of orthogonal functions. Trigonometric
functions sin(kt) and cos(kt) are used as orthogonal functions system most frequently.
Then, as a result of mathematical transformations, we obtain the following Fourier

trigonometric series:

a
s(t) = 70 + Z(akcos kt + by sin kt), (4.4)
k=1
s i
1 1
a =— j s(t) coskt dt, b, = p- j s(t) sinkt dt, (4.5)
-1 -1
where k = 0,1,2.

If apply Euler formulas and proceed to complex variables, we obtain an

exponential form of a Fourier series:

(0]

SO =) vk, v =

k=00

1 | | .
= js(t) e Jkt dt . e/t = coskt + isinkt, (4.6)
—TT
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where ay , by or 1k the indices set is a signal amplitude spectrum.

As most part of real-world signals processed by an engineering system requires
its specification at an unlimited time interval and they are not periodical ones, then the
second approach to its mathematical representation is to distribute it in the form of a
signal spectrum. Forward and inverse Fourier transforms or the spectrum density are

applied to its representation:

V(w) = J Wt) e /@t dt (4.7)

- (t) function spectrum or the forward Fourier transform.

nt) = L j V(w)e 7t dw (4.8)
21

- Inverse Fourier transform.

Consequently, a signal may be specified either as a time function (time
distribution) or as its function spectrum (frequency distribution).

The third approach for the mathematical signal specification is described in
details with the sampling theorem. The approach allows considering the transfer of any
message (continuous or discrete one) from a single position as a number transfer (or
data transfer), i.e. the theorem specifies the opportunity of a complete recovery of a
determinated band-limited signal by its sampling and designates the extreme values of
between-sampling time at which its recovery is still possible.

The sampling theorem: if a continuous function x(t) satisfies the Dirichlet
conditions (it is confined, sectionally continuous and has a finite number of extreme

points) and its spectrum is limited with some frequency f., then it is defined completely

by the sequence of its values at the points spaced from each other % f. apart.

Hence, the continuous signal may be specified digitally — as a sequence of

transient values. Consequently, it is possible to have a single integrated signal for the
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whole class of the considered engineering systems in the output by addressing data

through the shared memory.

If we consider the sampling theorem as an approximate one for functions having
unlimited spectrum, then the contradiction concerning the incapability of a model of
limited spectrum signals to reflect the main signal property — the ability to transfer the
information — is avoidable. The reason is the theoretical opportunity to forecast the
limited spectrum function behavior at the entire temporal axis, if it is known with
precision at the indefinitely small time interval.

At restoring the analogue signal, some errors appear caused by the constrained
limitation of a signal spectrum and the finiteness of the number of samplings applied.
These errors are estimated by special calculations that are in details described in
Chapter 5.

Let us represent an analytical forecast model as a composition of three

components shown at Figure 4.2 and described in Table 4.1.

zy = f1 (01,92, .., Ok) ° fo (V1,V2, .. ) f3 (W1, W2, ... Wn) = f3 (24, ..., 2Zn), (4.9)

f3 (Wl, WZ. pen g Wm) ,"\/’\)’5\

1 \
fz (Vl, Vz, cee V|) q—,\ 4',\‘
1

V(zuze, o, 20 )
fl (gli gz, ey gk) [II :’,
\\(\ \ I‘\’/I

Z,=f,=f, °f,°f,

Figure 4.2 Standard form of the MPES analytical forecast function
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Forecast model components

Table 4.1
ACTING F, MODELLING
FoggfﬂﬁgLEA,\?T%E" DESCRIBED BY THIS STAGE
COMPONENT CHARACTERISTIC
First component- The influence of the U | Considering the
f1(01, 92, ..., OK) system internal | process  semantics
general (universal) part of the | parameters, I.e. the | and extracting the
required model description of F,, process; | forecast function
base;
Second and third components- | The influence of the U | Declaring the
fa (V1,Vv2,..., V1) system external | fundamental
f3 (W1, W2, ..., Wp) parameters, e the | limitations of the
description  of  F... | equired function;
process and medium

Fourth component-

fa (21,22, ..., 7n)

disturbances;

Taking account of the
feedback value, if there is
any;

Opportunities for
parametrical

extension while
choosing parameters

to be taken into
account and for
control of the
forecast and estimate
accuracy with
various degree of
detail.

Interconnections between the model components can be expressed through the

correctness passage of the required function: the smaller the value distinguishing one

function component from the other neighboring one is, the higher is the probability that

the function base have been extracted correctly. Mathematical correctness passage may

be written as follows:

f1 # 0 (otherwise A process),
L#f # f3(acting F — of dif ferent physical nature),
0<|fi—f2l <L0<|f; —f3l <1,
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where the upper border equal to 1 is in accordance with 100% correspondence (match)
of the neighboring components of the required function.

The composition of the offered function parameters may be an additive,
multiplicative or any other arbitrary dependence and be determined by the availability
of continued and variable factors, i.e. the given function is a multifactorial function in
itself:

f(x) = (x) °f2 (), (4.11)
where f; (X) component characterizes the influence of the continued factors, and f; (x)
accounts for the influence of the variable factors. For example, the continued factor for
the atmosphere radiation transmission phenomenon is the radiation absorption with
some gases (in particular, with carbon dioxide gas in case of the infrared radiation).
Some gases in the atmosphere composition may vary depending on the current
geographical and climatic location, and that is why we introduce additional component
f2(x).

Besides, additional components introduced to a model may not only account for
the current environmental conditions but vary depending on the modeling aims. It
means that some regulating component except the basic and specifying ones may be
introduced, for example, to estimate the worse or the best or some abnormal scenarios

of the physical phenomenon investigated.

Representing the analytical model as a component composition allows obtaining
the investigated phenomenon models having various degree of detail. Depending on
the definite aims and conditions of the required model application, we may take into
account or, on the contrary, exclude from consideration some components of the model

structure, thus accounting for or setting certain influences aside.

Consequently, by correcting the result through the experiment, it is possible to
transform it into the forecast model, and change of the model parameters at keeping its

semantic meaning brings the model weighting factors into existence.

66



4.2 Base component of the MPES analytical forecast model

To extract the base or, in other words, the general part of an engineering process
forecast function we investigate the oscillations of different nature, i.e. we take the

universal part of oscillations as fi(g1, gz,..., Ok), See Figure 4.3.

TﬂTﬂTﬁ.‘
o 1 X
W o

i< mechanical oscillation circuit

12111110 I8

electromagnetic oscillation

circuit;
ﬁ electronic quantum oscillation
L circuit.

Figure 4.3 Oscillation of different nature

Let us consider a possibility that all the oscillations may be described with one of
the main equations of mathematical physics, a wave equation, i.e. a partial differential
equation that describes the disturbance propagation in some medium. If the
disturbances are small and the exterior medium is a homogeneous-isotropic medium,
then we can write it as follows:

d’u  d?*u d*u 1d*u

dx? + dy? * dz? a2 dt?’

(4.12)

where x, y, z are space variables, t is disturbance travel time, u= u(x, y, z) is the
required function that characterizes the disturbance in (x,y,z) point at t moment, a is
disturbance velocity.

If « depends on two or one space variables only, we are concerned with the
simplified wave equation — two-dimensional or one-dimensional one,

Next we consider a solution of the wave equation not as corresponding to plane

waves with its superimposition description (e.g. for electromagnetic oscillation) but in

67



the other mathematical form — in waves corresponding to the spherical surface that fall
apart in three dimensions, i.e. through a spherical wave model.
The wave equation admits a “spherical wave spreading” solution; the variable

characterizing the field takes the following form:

T Gi0) (@.13)
where f - is an arbitrary function,
r=y/x2 +y2 + z2, (4.14)

Suchlike function represents the spherical wave of general kind that spreads from
the origin of coordinates having velocity a. If we do not account for r in formula (4.13)
consequent, then the wave amplitude as a distance function from the origin of
coordinates has its definite form in every given moment t and it is spread with velocity
a. However, r in the consequent shows that while the wave is spreading, its amplitude
decays in proportion to 1/r. In other words, in contrast to a plane wave which amplitude
does not change while running, the amplitude of a spherical wave is continuously
decaying, see Figure 4.4. The fact follows from simple physical arguments, i.e. from

the semantics of the physical process itself.

[
i
\ i
] \x
L
1'!.l-.
: LY F,f %IL
of L £
- =  t/\ " 0 W\
I3 5 r K ]
bty =t,) ==
a ]

Figure 4.4 Spherical wave u= (f(t-r/a))/r
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Figure 5 shows under the letter a) the r-dependence of u at t=t; and the same
wave at a later moment t,; under the letter b) the t-dependence of u at r=r; and the
same wave at distance r..

The wave power density depends on the square of the wave amplitude: while the
wave is running, its energy is spreading over to larger area in proportion to the wave
radius square. If the full energy is kept, the energy density decays as 1/r?, and the
amplitude as 1/r. It follows from the above given argument that formula (4.13) is quite
a “reasonable” and acceptable formula for applying it to a spherical wave.

The other possible solution for a one-dimensional wave equation is a spherical
wave running inside from larger r to the origin of coordinates:

r
y =23 (4.15)

r

Consequently, on account of the semantics of the process of spreading the
spherical waves itself, we may assume that the waves generated by some source are
always running away from it only. As the waves are caused by the charge movement
only, we may logically assume that they are running away from the charges. So,
thinking by contradiction, we assume the following: before the charges were set to
move, the spherical wave had already escaped from infinity and come to the charges
exactly when they started to move. The described solution is possible but it is hard to
match such an argument with the logic of the given phenomenon because the
experience shows that when the charges accelerate, the waves are moving away from
the charges but not towards them. Although the electromagnetic field equations
provide equal opportunities to both waves, one should invoke an additive factor based
on the experience that only the spreading waves have physical sense.

The spreading waves system providing a virtual image is indistinguishable from
the waves emitted by the object itself; its holograph fully reconstructs the object three-
dimensional structure and shows the visible spacing of the items with parallax effect
that consists of changing the visible relative item spacing at changing the observation

point, i.e. observing the spreading wave is equal to observing the object itself.
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Simplified wave equation of physical phenomena

Table 4.2

OSCILLATION MATHEMATICAL EQUATIONS OF
TYPE OSCILLATIONS
. d?
1. Mechanical dxz(t) + mozx(z) =0
{

2. Acoustic wave d’x 1 d%*x

dx2~ cZdt?
1 1 1 2 2

3. Vibration of a string d’u _ izd—u, where u= f (t-r/a)/r
dx? a“ dt?

4. Electromagnetic 2

9 ddfgt) +00’g(1) =0

Let us consider an option of determining the base of a forecast function describing

and electromagnetic oscillations, see Figure 4.5 and Tables 4.3, 4.4.

the real-time engineering system behavior by making comparison between mechanical

Mechanical oscillation is a
cyclic variation of the body
coordinates, velocity and
acceleration.

Electromagnetic oscillation is a
cyclic variation of the charge,
current intensity and voltage.

Common feature: cyclic
variation of physical quantities
in both types of oscillation..

Difference: for mechanic
oscillation the coordinates,
velocity and oscillation are

changed, for electromagnetic
oscillation - the charge, current
intensity and voltage.

Figure 4.5 Comparison between mechanical and electromagnetic oscillation
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Figure 4.6 Comparison between the oscillating systems: mechanical and
electromagnetic ones

Comparison between two oscillating systems: mechanical

and electromagnetic ones

Table 4.3

TIME

OSCILLATING CIRCUIT

SPRING PENDULUM

=0

The capacitor has maximum

charge qm,

q2
| =0W  =max=—"W =0
). 2C J

The body  has maximum

displacement from equilibrium X, ,
2

v:O,EH:max=k7X”‘,EK =0

O<t<I
4

At circuit closing, the capacitor
starts running down through the
coil, the current and the connected
magnetic field appear; the current
force increases gradually due to
self-inductance

1 Tgl=>W, >W,

The body sets to move, its velocity
increases gradually due to the body
inertia

vIixi=E, 5> E,

NG

The capacitor has run down, the
current force is a maximum — |, ,

LI2
g=0W,_, =0W,6 =max =

On passing through the equilibrium,
the body velocity is a maximum —
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T _ T | Due to self-inductance the current | Having come to the equilibrium, the
4 2 | force is reduced gradually, the | body continues inertial motion
inductive current appears in the | gradually reducing the velocity
coil and the capacitor starts xTvi= E.>E,
recharging
qT =W, >W,
(=L The capacitor has been recharged, | The spring is at maximum
2 the armature charge signs have | extension, the body has moved to
changed the other side
g=max | =0, X =max, v =0,
2
W, =max =m W =0 E —max=n g o
’ 2c 3| "TK
T _; 3T | The capacitor restarts charging, | The body starts moving in the
2 4 |the current flows in other | opposite direction, the velocity
direction, the current force | increases gradually
increases gradually v xI=E —>E,
1 T,qgd=W, >W,
- 3T | The capacitor has run down, the | The body passes through the
4 current force in the chain is a |equilibrium, its wvelocity is a
maximum - I, maximum - Vi,
2 mVZ
q=0W,=0W, =max=—" | x=0,E_=0,E =max=—22=
2 II K
3T _ - 1{ Due to self-inductance the current | The body continues inertial motion
4 continues flowing in the same | in the same direction to the extreme
direction, the capacitor starts | position
charging
qT =W, >W, xTVI=E —>E,
t=T The capacitor is charged again, The body displacement is a

there is no current in the chain, the

circuit state is similar to the initial
g=max, | =0,

one

q2
W, =max=—"W =0
2c

maximum, its velocity is 0 and its
state is similar to the initial one
X=max, v=0,

kx

2
m

E ,E =0
1| K

(2




Corresponding values: mechanical and electromagnetic oscillations

Table 4.3
MECHANICAL CORRESPONDI ELECTROMAGNETIC
OSCILLATIONS NG VALUES OSCILLATIONS
Displacement X Charge
Velocity Vel Current intensity
Mass m | Inductance
Rigidity K ¢ _ _
¢ Reciprocal of capacitance
Friction ratio ue>R Resistance
Kinetic energy E.> W, Magnetic-field energy
Potential energy Electric field energy
E, W,
Mass Inductance
Rigidity Reciprocal of capacitance
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Oscillating process equation

Table 4.4
SIMPLE
SPRING PENDULUM OSCILLATION CIRCUIT
PENDULUM
0
Y, ~
AVAAVAY ; <
Lx K P F + |+
L # % h 9}:3 3
/\A/\/l\é 4 c - 5
Let us express h in
terms of x through the
similarity of AAOE
and AABC
2
hoox X
x/2 | 2l
W, = const W_ = const W_ = const
W' =(const )'=0 W, =(const )’ =0 W' =(const )'=0
mv° mv? X q°
— )= — +mg—)'=0 ———o
Ky (5 +mg ) 5+ 0)
m2vv'+52xx'=o Mow + Mo — 0 1 oiire L 2qq'=0
2 2 2 2
mw’:—mxx’ Lii'=——qq'
mw’ = —kxx’ I
X =v X' =V q =i
mv’ = —kx mv' = -9 Lire L
= = 7 = Cq
V=—£X v’=—gx i’=—iq
| LC
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V,—X” V,—X” I’:q”
!I__£ "__g ”—_L
X' = mX X' = IX q LCq
Iet£ w? let § — 2 Ieti:a)2
m | LC
"o o__ 2
x” =_w2x X = —wW"X q” — _qu
2T m 2 U v
w k w g w

It is obvious that various oscillatory occurrences are described with the equations
of the same type and have some constant component in common, so this feature can be
used for developing the forecast models for ES behavior.

It is also reasonable to consider various types of energy domains to check the
MPES forecast function base for the common link, see Figure 4.7.

Every energy domain is characterized by two physical values of the first and
second kind, its product is a power always. If we consider an electric domain, they are
the electric current and voltage respectively. These pair physical values, in each of the
energy domain, are connected to each other by the Ohm’s law in the respective

formulation.
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domain hydraulic energy
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Figure 3.7 Diagram of various energy domain types

Consequently, the electrical, magnetic, thermal, hydraulic, acoustic, mechanical,

rotating and other resistances are the energy consumers in each of the energy domains,

see Figure 4.8.
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p

_\\ Electrical

[ and others

Energy
domain

Figure 4.8 Types of resistances that consume the domain energy respectively

In all the cases, it is a simple physical device subdivided into three classes

acording to the operating principle (R, L, C). We can say that the Ohm’s law has 21

formulations for seven above mentioned energy domains. The Ohm’s law formulations

can be written in three different ways (see Table 4.5).

Ohm’s law formulations for seven energy domains

Table 4.5
CLASS OF SIMPLE CLASS OF SIMPLE CLASS OF SIMPLE
DEVICES HAVING R DEVICES HAVING C DEVICES HAVING L
OPERATING OPERATING OPERATING
PRINCIPLE PRINCIPLE PRINCIPLE
C
o— —® [ I I L o— VYV ~~——9»
oy u(®) . du(t) _ 1f
i(t) = = i(t)y==C Tt u(t) = 7 u(t)dt
. 1. di(t
u(t) = Ri(t) u(t) = Ef i(t)dt u(t) = d(t)
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Hydraulic elements

o | o | o o X )—o
1
oy =2 0w =Y 0 =1 [ pordt
_ _ dQ(t)
p(t) = RQ(?) P =7 [ 0wt p(e) =15
Thermal elements
e oW .
AO (t) dA © (t) 1
P(t) = 7 o(t)=C Tt P(t) = jA O (t)dt
1 do(t)
A S (t) = RP(t) AS(t) = Ej @(t)dt AB(t) = 7
Magnetic elements
s u(®) du(t) 1
(p(t)—T (p()—CT (p(t) Ju(t)dt
do
u(t) = RY'(t) u) = 7 [ @ u =120
Mechanical elements
R-1 m Kt
F(t) = V( ) F(t) =m d:i(tt) F(t) = i v(t)dt
v(t) = RTIF(t) v(t) = % f F(t)dt V(t) = K1 df; Et)
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Rotating elements

e

M(t) = ?{(—tl) M(t) = ]dz—f) M(t) = % Q(t)dt
Q) = R7IM(D) Q) = % j M(t)dt Q) = K1 dlZ Et)

Three Ohm’s law notations determine three formalized primitives that are the
passive elements of undirected graphs, i.e. the models of energy consumers. There exist
their own symbolic graphical notations in each of the energy domains for them, but the

mathematical nature of the respective library items is unchanged.

Nine formalized primitives of undirected graphs — energy consumers, sources,
junctions and potential ground-wire — allow developing the comprehensive library of

physical devices elements with any scale and detail levels.

4.3 Analytical representation of a forecast model

as a class of several functions

If the analysis of the source experimental findings shows that y(x) dependence
describing the source test data is not a monotone increasing or monotone
decreasing one but contains a set of relative minimums and maximums, then it
may be difficult to find not too cumbersome single empiric formula.

In such cases it is reasonable to represent a required dependence as a class of

several functions, e.g. as Figure 4.9 shows.
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Figure 4.9 Splitting the argument span into isotropic intervals

Doing this requires splitting the source data span into several isotropic intervals
and defining its own function for each of the intervals. In such a case, we have the
problem of finding a compromise between choosing the minimum number of split
intervals, ensuring the required accuracy and reaching the computational “simplicity”
of the obtained functions.

One of the simplest options of span splitting is the extreme points splitting, see
Figure 4.10. In such a case, as the source data is given as a finite discrete data array,
the required function minimums and maximums can be defined by sequential

comparison of the values of the array neighboring elements.

[y = f1g(5<) y=f2(x)

Figure 4.10 Splitting by the extreme points
The other possible option is splitting by the flex points, see Figure 4.11. If we
deal with an analytical function, we may find the flex points by computing zeros of the
second function derivative. In our case, if we know only the discrete function values,
we may find the approximate flex points by computing the increment of a function in

its neighbor points.
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The source test data often have a lot of extreme and flex points. However, the
number of splitting intervals should be minimal. Consequently, there is a problem of
choosing several points out of the whole set of special points for detecting the splitting

intervals borders

A

y

-
Ay =1,(x)

Figure 4.11 Splitting by the flex points

We may select the most standing out extreme points applying the first-order
function derivative calculated approximately with the help of the calculus. For

example, the derivative value may be calculated with the formula:

' 1 (J’i+1_3’i yi—yi-l)
X)=r- + : 4.16
! (%) 2 \Xjy1—Xi  Xi—Xj—1 ( )

In some cases, we may choose the points of the span interval splitting according

to the physical peculiarities of the investigated phenomenon. For example, if we
develop the analytical dependence of the atmosphere transmission factor from the
wavelength, it is reasonable to split the spectral range into the intervals in such a way

that each interval corresponds to the known transmission band.

4.4 Method of developing the forecast models having
various degree of detail
Let us consider the development of the analytical forecast model basing on the
test data concerning the values of some variable y depending on the value of the other

variable x that have been obtained at various values of w, v, g and q factors. What is

more, by factors we mean both the influencing variables and some environmental
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conditions. For example, if we investigate the atmosphere transmission phenomenon,
the environmental conditions are the meteorological optical range, climate and
geographical setting.

In accordance with the principles of analytical model development considered in
Chapter 1, at stage one we need to set the aims and application conditions of the
required forecast models, to formulate the requirements specified to it.

Let us suppose that w, v and g factors may be measured at a definite moment of
the investigated phenomenon evaluation, and the q factor value is unknown at the
moment. It means that to develop the most accurate model on the basis of the
source data we should account for the influence of w, v and g factors in its
structure. At the same time, the model should be invariant to the g factor.

Consequently, as a source data we have a set of discrete data concerning the
y (X, Wi, Vj, Or, 0s) dependence, where i= 1...m, v...I, g...k, 1...p. Here m, |, k, p is the
number of options for various values of w, v, g, q factors respectively, for which the
experiments have been conducted. We need to obtain an analytical dependence for
the source data in the form of y=f (X, wi, v, gr).

Let us apply “build-up” approach to a modelling. It consists in “adding” the
influence of separate factors gradually when developing an analytical forecast model.

Figure 4.12 shows the generalized algorithm of obtaining the analytical model
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Algorithm for analytical model development

< START >

\ 4

Specifying requirements to the

1 required models
3
Investigating the source test
2 data y (X,wi,Vj,0r,0s)

\ 4

Developing the model for a certain

3 series of the test data and
investigating it y=fa(x), at w=w;,, N
V=Vi, §=0r, =0k _ _
Searching for the basis
$
. . . feo(X)
4 Developing the model invariant to
some factors y=fy(x,w,v,g) at =4 >
and investigating it Searching for refinement
T components
fa(x,9), fa(X,V) u fea(X,W
5 Developing the model in the 1) Tealt) e fes(x W)

—_—

form of component composition
y=feo(X) “fealx,w) fea(x,9)

6 L
Analyzing the results

<END>

Figure 4.12 Algorithm for analytical model development

At stage one we specify the requirements to the required models.

At stage two we perform the data primary processing and investigation. Here we
discretize and normalize the source data, if necessary. We distinguish the domain set
and the set of admissible values on account of both the data itself and the known

physical laws governing the investigated phenomenon. We also specify the peculiar
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features of the required dependence: monotonous and constant-signs intervals,
discontinuity and flex points, etc.

At stage three we develop a model for a certain data series, i.e. we draw an
analytical dependence y = fy(x) for some definite factor values w = w;, v =v;j, g =0r,
g =qs. To develop a model, we apply an algorithm shown at Figure 4.12 step-by
step. The investigation of the model developed in such a way may indicate some
specific operational characteristics important for the given process. Anyhow,
we need to evaluate how successful the chosen points of dividing into the
isotropic intervals and the tried classes of functions turn out to be for the
investigated data.

Then at stage four we offer to develop a model invariant to one or several
factors — depending on the requirements specified. In our case under investigation, at
stage four we develop an analytical model y = f,( X, w, v, g ) that is invariant
to g factor, which values remain unknown at applying the required model for the
forecasting. That is why y = f,( X, w, v, g ) model is developed for some particular or
somehow averaged value of factor q=g. Factors w, v are g may be accounted in the
form of various indices values in the model structure at this stage. Initial suppositions
and modeling aims influence on the method of obtaining the invariant model, as far as
the results of test data investigation. For example, there are the following options for

“excluding” a factor out of the model:

td

S Developing a model for the least factor value

N Developing a model for the largest factor value

~... Developing a model for some averaged factor value
__."\

Developing a model for the most distinctive/most
bk S EE frequently met factor value

Figure 4.13 Options for excluding factors out of the model
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At stage five we develop a model in the form of the component composition. We
may divide it into the substages of searching for the basis and for refinement
components.

The analytical model structure in the form of the component composition looks
as follows:

y = feox) ° fe1 (x, 8)  feaX, T). (4.16)

Here feo(X) is a basis making for a model “base”. In an ideal case, the basis reveals
the investigated phenomenon, describes its most distinctive behavior; that is called a

trend or a systematic component at considering temporal serieses.

Controlling
component

fea(X, W)

components

fq (X, V) u
fea(X: 9)

Figure 4.14 Forecast function structure

While developing an empiric forecast model for some of the purposes, the basis
may also be drawn out of the worst suppositions concerning the physical phenomenon
development.

faa(X, V), fea(x, @) and fea(x, w) are the refinement components and introduced to
the model for accounting the influence of v, g and w factors on the investigated
phenomenon respectively.

Unfortunately, it is not always possible to find a component composition ensuring

the specified accuracy. In such case, we may turn our attention to the invariant model
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from stage 4 and on accounting for the influence of v, g and w factors with respect to
different indices in empiric correlations.

At stage five we analyze the results.
4.5 Obtaining the forecast model basis

The model basis allows obtaining a forecast of the lowest detail level, i.e.
estimating crudely the technical process state before receiving some additional
information on its internal and external parameters.

Depending on the modelling aims, initially specified limitations and model
application conditions, different variations of the source test data may be the core of
the basis.

If there is enough information concerning the most distinctive existence
conditions of the investigated technical process, it is reasonable to use the observations
received in that same or the most closely resembling conditions for the basis
development.

The other option for basis development is to use the averaged data from the
conducted experiments. However, here there is a problem of choosing the averaging
method — computing the arithmetic mean from all of the data, applying some integrated
index and so on.

For some of the modelling purposes (e.g. forecasting the abnormal situations),
minimums or, on the contrary, maximums of the investigated process parameters that
characterize its worst or conversely the most favorable state may be taken as the basis
core.

If we decide to develop the basis as some averaged model describing the general
behavior of the investigated technical process, then it is possible to apply the smoothing
algorithms for its development. In this case, the smoothing may be done by using the
splines [10] or Chebyshev polynomials [3], Fourier series [53] or wavelets [54], median
[52] or exponential smoothing methods [49], with different filters (linear or Savitzky-
Golay filters [58]), etc.
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4.6 Accounting for additional factors

Figure 4.15 shows the application of the fast Fourier transformation for basis

obtaining at the point of extrapolating the wind velocity data.

[
] / I
% )'\ . 'fi \ 1
5 - f‘i u {'-\ f CI !l ﬁ
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=(".'.ll./." -"'. /'- '\,. -.' n l
. er T iy - 0l J":(c)
100 200 300 400 500

Figure 4.15 Data smoothing with the fast Fourier transformation

We introduce the additional component into the physical phenomenon model for
accounting the influence of some additional conditions. Figure 4.15 shows the
graphical representation of the analytical model of wind velocity change in the form of
the basis: “the primal trend” and the model with the additional component introduced
for accounting the maximums — “maximum estimate”.

Similar to the basis, developing the additional refinement components is also a
complex problem, moreover, it directly depends on how the basis has been obtained.

It should be noted, that the introduction of any of the additional components may
be motivated by the following reasons:

e The necessity of accounting for some factor in the model that influence on the
investigated object behavior;

e The necessity of applying the model under the conditions differing from those
under which the basis has been obtained.

One of the methods of additional component development is to obtain an
analytical representation of the data (with the application of the generalized algorithm

considered in Chapter 2) obtained with the elementwise subtraction of the basis values
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from the test data definite values (obtained for those conditions for account of which
we introduce the additional component).

The other method is to investigate the interconnections between the source test
data obtained under different conditions.

Besides, in some cases the known physical laws may determine the additional

component type.
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APPENDIX 1

OPTIMIZATION OF THE OPTICAL BEAM CONTROL ALGORITHM WITH
THE SIMULATION MODELLING METHOD

Along with the analytical methods of solving the problems connected with the
search of the implemented system control algorithm, the simulation modelling
methods may be applied. The specific character of the simulation modelling is an
opportunity to estimate the whole system behavior by simulation results of its
subsystems in accordance with its simulation models, the aggregate of which is
simpler than the model of the whole system. However, the simulation fidelity is
mostly defined by the result of the system decomposition and the correctness of the
simulation modelling algorithm implementation.

Let us consider the application of simulation modelling method for the search
of the optimum algorithm of the optical beam control in two coordinates with a
couple of optical wedges. In general terms, the analytical correlations describing the
system operation include the values of refraction indices, refracting wedge angles
and its rotation angles. Naturally, it is almost impossible to search for the optimum
control algorithm with simultaneous consideration of the image quality (chromatic
aberration). In that context it is reasonable to decompose the system into two
subsystems: a subsystem ensuring the beam movement and a subsystem ensuring
the image quality. Then we may divide the search of the optimum algorithm into
three stages:

Searching for the algorithm of the wedge rotation at preliminary chosen values
of refracting angles and material properties.

Searching for the values of refracting angles and refraction indices ensuring the
required image quality.

Correcting the wedge rotation algorithm with account of the second stage
results.

The first stage is the most difficult one, let us consider it.

Refraction law in the vectorial form:
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n

= (Am—l +FmNm)

m

A =

n n
T =cosa, —— [1—(—L)*(1-cos’a,)
m m m
n_, n

—

m
cosa,, =—-A, N,

where A is the vector of a beam refracted from “m-1” to “m” medium having "m-

and " refraction indices respectively; %~ - the incidence angle of Avs beam to “m”

surface having N normal line.

IN, =i xsino;,sing, — j xcos o, + K xsin o, cos ¢,

|

N, =1 xsino, sing, — j xcos o, + k xsin o, cos ¢,

Let: &

A
—— b —— -

(A = (Tsino, sing, +n,T, sino,sing,)xi +(1-T, cos o, —

—n,I, coso,)x j + (I, sino, cos ¢, +n,I, sin o, cos @,) x k

I, =c0sa, —/nZ —sin’o,
n,I', =—(I;sino, sino, cos(¢, —@,) —(1-T, coso,)coso, —

—J1-nZ(1—(T;sino, sin o, cos(¢, —4,) — (1—T; cOS 5,) COS 7, ) %)

sin 20 - 20m/1800 = 1,06x10-5; sin 50 - 507/1800 = - 6,65x10-5 = at ¢ < 50

possible to
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A = ([,o,sing, +Nn,T,0,siN¢,) +(A-T,41-c7 —

—n,T, \/1—7022) ]+ (T,0,c0s ¢, +n,T,0, c0S ¢, K

I = \/1—012 —\/nf —612

n,T, = (0,0, C08(¢ — ¢,) —(L-T,y1- 02 )J1- 57 —
—1-n2(1- (T,0,0, Cos(g, — §,) (A~ T, \1- 02 )1-02)?)

in  XOZ projection plane at the distance L in linear measure

x| = ([,o,sing, +n,I,o,sing,)L
2, =(T,o,cos¢, +n,I,0,C08¢,)L
I :\/1_0-12 _\/n12 —0oy
2 2
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and angular measure respectively

-

N

Y, =Io,sing +n,I,0,sin ¢,
Y, =Ilo,cos¢ +n,I,o, Ccos g,

L= fioof - Jni—o?

n,T, = —~(,0,0, €08(¢h — 4,) — (L-T1y/1- 67 )1 o7 -

— 1-n(1- (T, cos(d - 4,) — (1— T i- 02 1= 02)?)
max{Y }=T,0, + (-(To,0, - 1-T|[1- 62 )1- 0% —
—1-nZ (1~ (o0, — - T/ 1- 07 W1-02))o,

To find the motion trajectory, i.e. the control action for ¢; and @, under the

N

condition that |I,o,|=|n,I,0,| =T and taking into account that sign(r;o,) = —sign(n,I",o,)

at r,o, <0,n,I',o, = 0, We obtain

Y, =T(sing, —sing¢,)
Y, =T'(cos¢@, —cos ¢,)
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Applying the famous trigonometric transformation, we obtain:

Y, =2I'sin fcosa
Y, =-2I'sinasin 5"

(02+(01’a IB:¢2_(P1

> > . Then, ifcosa #0:

where o =

i Y
sin 8 = X
) p 2" cos
_ Y and atY, #0:
Y, =-2I'sina——=
21" cosa

o= arctan(—:((—z) + 71K

X

: Y
) B =(-1)"arcsin k v +nt
ZFCOS{aI’C'[an(—YZ) +7zk} , Wherek,t,ne Z.
o+ % + 7m
Y, #0

It should be noted, that fulfilling the cosa =0 condition is the consequence of

fulfilling the v 0 condition. Indeed:

c05a¢0:>a¢%+7zk,kez @arctan(—i—z)¢%+ﬂk,kez <Y, #0

X
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Then we obtain:

e

X

X

Y, #0

@, = arctan(— i—z) +(-1)" arcsin

@, = arctan(—i—z) + 7K — (—1)" arcsin X v
2I’ cos{arctan(— Y—Z) - 7Zk:|

Y

X

Y

X

2 cos{arctan(— iz) + 7K

X

k.teZ.

Now it is necessary to consider the case when vy, =o:

In all, we obtain:

Y, =0

{COSa:OQ(p2+(pleﬂ+27zk,keZ_

sinf=0<¢,+p 27Kk,ke”Z
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Y, #0

» = arCtan(_i_z) + 7k — (=1)" arcsin Yy v + 2
x 2T cos{arctan(— Y—Z) + ﬂk:|

@, = arctan(—i—z) +(-1)" arcsin Y 7 o
X 2T cos{arctan(— Y—Z) + 7Zk:|

Y, =0
{COSa:Oc>g02+qole7z'+2ﬂk

N

sinf=0< @, +¢@, € 27K

wherek,tez.

It is evident that an analytical solution of the system is very complicated.
Besides, it is impossible to use continuous functions when dealing with real-world
controllers that regulate the optical guidance systems. In that context, even having
an analytical solution, we perform the results sampling aimed at obtaining some
value list of angular displacements of optical wedges depending on the optical beam
deviation at the stage of programming the controllers. Consequently, we may omit
the stage of analytical solution development.

Mathematically we may express the problem as searching for the unknown
rotation angles of the pair of optical wedges with the preliminary system simulation
at the specified output deviation angles.

To solve the problem, let us conduct several experiments on a computer. We

make a table to put down all the experiments results. We choose a sample spacing

and try to cover all the acceptable region of @;,®, with a discrete network, with the
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nodes ¢; o) of which we may compute Y, (¢, ¢})and Y, (¢, ¢;), and put it down into

the Table.

It should be noted, that we need to work with the first quarter of valuesy,, v,

only, because:

Y (@2,9,) =Y (0,,0,)
Y, (0, 0,) ==Y, (9, 0)
Y (o,9,) ==Y, (~0,,—9,)"
Y. (0, 0,)=Y,(~p,,—¢,)
Consequently, we need to solve the following inequality system:

{(sin ¢, —sing,) >0

(cos¢, —cos¢,) >0 applying the famous trigonometric transformation:
2 17 =

sin Oy — Py COS(pZ + O >0
2 2

sin Q, +Q sin Dy — Py >0

2 2

, Which is the equivalent of:

sin2—"% >

2

<cos%T+¢120

P TP <0 P < @, + 27K

sin
O 2@, — 21w+ 27K
PR 27k
sin?2—?% ¢ Pr="T =P T \Where keZ.
2 @, < -, + 27K
cos 2%
2
sin%>0

In our problem, we may limit ourselves by the main values only, so the required

@, 0, may be in the following rectangle:
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-

¢S @, + 27

O =P,
O 2—Q, +7
o, <—@, + 27

We have chosen k=1, as the angles are positive in that case. It remains to cover
the rectangle with a network and to obtain the results table.

For future work we need to sort the obtained results out in relation tov, , v, ,
i.e. each table line should be sorted according toy, and according to v, inside the
line. This is rather a time-consuming procedure, but the time factor is not very
important at the simulation stage. The table made in such a manner allows applying
the fast searching algorithm with dichotomy method when we search for the required
grade of optical wedges; the dichotomy method functions in the sorted data arrays
only.

The dichotomy method is as follows: at each algorithm step we choose the
medial element of the data chain and compare it to the required one. If the required
element is less, we choose the left part of the chain, if it is greater — the right one,
moreover, the medial element is not included in the chosen half because there is no
need in the repeated comparison. Next we repeat the algorithm but use the chosen
half as the data chain. If the elements are equal at the comparison stage, the medial
element is a required one and the algorithm is completed.

However, the algorithm should be modified a little to apply the dichotomy
method in our problem solution. The point is that we have to find an element in the
table, which is mostly approximated, but not necessarily equal to the input optical
beam deviation angles. It is connected with the fact that our table has only discrete
values, while continuous values will naturally be given to the input of our control
algorithm. Besides, we do not know beforehand how our required element will differ
from the closest one, in other words, we cannot make approximation before the

search stage because the sample spacing is quite possibly will not be constant.
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To apply the dichotomy algorithm for searching for the closest element, we
need to include the medial element into the chosen half because at the comparison
point we do not know if the element is the closest to the required one, we can only
omit the elements that are evidently farther than the medial one. At the moment when
the chain consists of two elements only, we compare both elements with the required
one and find the closest one. As a result, it is possible that one element is twice
compared to the required one, being a medial element at some cycle iteration for the
first time and at the last stage for the second time. However, neither this
circumstance nor the inclusion of the medial elements into the subchains can
influence on the algorithm performance.

It should be noted, that the control systems of the optical-radar systems
certainly belong to the real-time systems in which the time factor is critical from the
point of disturbance recognition to the point of its stabilization. But the application
of the simulation modelling algorithms in such-like systems allows shifting the

computation to the modelling stage thus providing the essential time advantage.
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