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FOREWORD 

Scientific achievements of mankind that impress us with its perfection and 

efficiency are mostly based on results obtained in experimental studies: theorists 

develop some theories to understand the results of experiments and control the 

process of its obtaining, then to improve it further. A value of a theory itself is 

defined by the accuracy of the experiment results description and the ability to 

interpret them altogether correctly. A new unifying theory in its aggregate 

development solves the task at first stages of its application, then some new 

experimental results that cannot be correctly interpreted with the existing theory 

are accumulated gradually. So the science contradictions rise automatically during 

the natural evolution of ideas and then the necessity appears to find the 

contradiction reasons and the ways to resolve it. Present achievements of 

experimenter physicists have already led to a crash of the physical theories of the 

XX century: there are so many new results of experiments that the theorists are 

unable to explain that everyone feels the need to revise both old theories and its 

fundamentals. 

The necessary condition for studying any complex systems is the application 

of computers at scientific researches, so the conventional approach of association 

between theories and experiments should be completed with the computer 

simulation conception. The new effective procedure allows comprehensive 

studying of the most complicated systems, both natural and created artificially for 

checking the theory suppositions. Nowadays the computer simulation is applied 

at almost all the scientific and technical fields, from history to space navigation, 

as it allows forecasting and simulating the events or estimated phenomena in 

preselected parameters. For instance, in 1954 E. Fermi, J. Pasta and S. Ulam 

discovered some surprising peculiarities of atomic behavior in crystals with the 

computer simulation method thus inspiring active researches of nonlinear systems 
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and leading to the number of the most important findings in physics and 

mathematics. 

The educational book reviews the issues concerning the application of math 

modelling at forecasting states and behavior of multi-parameter engineering 

systems in the context of modern research methods, i.e. according to a new task 

of mathematical physics – the task of engineering system synthesis. The modern 

physics requires not just qualitative description of a system and its general 

principles but an adequate quantitative forecasting, i.e. we need to know physical 

or chemical properties that could be disregarded before, so we need to create the 

models that represent physicochemical properties of complex systems fairly in 

quantity. The modern modelling solves the non-trivial and non-traditional tasks – 

to complete the fundamental principles with some hypotheses from which the 

adequate quantitative real-object characteristics could be formulated and applied 

for synthesis and further for multi-parameter engineering systems forecasting. 

The unique educational book “The application of math modelling methods 

at forecasting the engineering systems states” written by professor A.V. Demin 

and S.P. Dmitrieva is an example of fruitful approach to this complicated problem. 

Paying tributes to the developers of the analytical modelling methods, the authors 

point up their opinion on the unsolved problems and contradictions. It allowed 

them to establish the fact that it is impossible to find the way of resolving the 

accumulated contradictions without trying to search for the beginning of 

formation of the theoretical problems of all modern physics. Most of the scientific 

theories are similar to mathematics in its internal logic of the derivation because 

any mathematical theory has several assumptions as its basis, and all the 

subproducts called theorems are drawn from the assumptions with deductive 

logical reasoning where the assumptions are some ideal abstract images of real-

world objects. In the same way in all exact sciences, the experimental data are 

accumulated and then the basic laws are formulated from which all the 

characteristics of various systems and processes embraced by the theory can be 
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obtained. The solid and precise formulation of science laws are made in 

mathematical language as some equations. Consequently, some equation or 

equation system with definite parameter values and definite boundary condition 

is a mathematical model of any real-world system. 

The authors gave a thorough description of the principles they used for 

argumentation of the forecast model structure, distinguished its base, additional 

and subsidiary components. The educational book  shows computational solutions 

and forecasting algorithms that confirm the experiment results and thus prove the 

fruitfulness of the authors’ approach in the described research. They connected 

their research to the functioning of such multi-parameter systems as digital optical 

systems. The main subjects analyzed with the desired physical simulator are the 

signal reflection and its passing through the natural and manmade objects 

describing its most important elements, i.e.: the radiation energy distribution 

through the length of electromagnetic waves according to the Planck law, 

Bouguer law describing the light absorption on the propagation path through the 

scattering or absorbing medium, spectral characteristics of light radiation, 

reflection and absorption by objects, backgrounds, propagation media and 

photodetectors, classification of reflection types in which the notion of scattering 

indicatrix is used, image deformation caused by atmospheric turbulence and 

image deformation caused by optical system temperature deformation. 

The criteria of the result validation estimation designed by the authors have 

not only simplified the procedures of searching for the forecast inaccuracy but 

have given the new procedures  for obtaining new science results in key areas of 

physics, mathematics, informatics, etc. Of course, the new approach to forecasting 

the behavior of complex engineering systems and its description gives rise to a lot 

of questions, the answers to which follow from the set of new information from 

the various chapters of the educational book . To simply the process of searching 

and learning the information concerning multi-parameter engineering systems, 

the authors compiled an idioglossary and gave a brief historical background of 
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forecasting in science thus making the understanding of the main information 

easier, and, of course, the readers will be grateful to them for such an opportunity. 

Every reader having thoroughly studied the educational book will realize that 

it is impossible to destroy the developed frame of forecasting the multi-parameter 

engineering systems with math modelling methods. One can only improve and 

complete it, and the authors have brilliantly done the thing. 

 

 

 

 

 

Doctor of technical Sciences    A. G. Korobeinikov 
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INTRODUCTION 

Rationale. The success of human scientific, production and social activities 

depends much on the information awareness and the opportunities to forecast the states 

of the activity support tools. The state of environment and engineering systems is 

characterized by a set of parameters that are probably not connected to each other by a 

functional relationship, i.e. by a multi-parameter functional. We can define the 

parameter points real-time but forecasting the future state of environment and 

engineering systems is a problem of rather a great concern. 

The educational book  is devoted to the procedures of developing the forecasting 

models for multi-parameter engineering systems (MPES) in accordance with the 

aposterior data, i.e. developing the   forecasting models according to the current 

measurement results. 

The process of the engineering system forecasting can be summarized by the main 

aspects and practical tasks described below: 

1. Environmental state monitoring; 

2. Control of the qualitative and quantitative parameter points of the engineering 

system functioning; 

3. Prevention of the unauthorized tampering of the engineering objects. 

The opportunity to forecast the MPES state and behavior is based on the 

processing of the experimental object characteristics. The basic forecasting principle is 

the test data meta-extension: by extending some multi-valued statistical cause-and-

effect relations and the conclusions drawn from it we may develop some patterns – 

some laws that tend to display itself not in the proximate values but upon the average, 

i.e. within some limits of some eventual variance, as a tendency, with a deviation 

sometimes, thus not allowing to hope for a definite future prediction but making it 

possible to say that the more consistently some process develops and the tighter the 

interconnections between the phenomena under investigation are, the more chances we 

have to obtain a reliable prediction. Within the scope of analyzing the required system, 
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the task of forecasting the output data basing on the observed input data is called the 

observability problem and arises from the need to predict the future system behavior. 

Infra-red light emitted by an object contains the most exhaustive information 

about it – about the substances it contains, its prehistory and location. Acquiring this 

information with a detection system and its appropriate processing allow defining and 

controlling the parameters that are hard or impossible to be measured directly. 

Electrooptical equipment gathers and analyzes the data concerning the processes taking 

place in the environment in optical range of the radiation spectrum. 

 

Solvability of the problems under investigation. To define a problem of exploring 

the engineering systems and processes, i.e. to set goals, tasks, requirements and 

limitations for finding a suitable decision, is a key moment for the methods and 

algorithms of forecast functions development. 

A system forecasting function can be developed according to its model 

representation. Indeed, if     {𝑀𝑂𝐵(𝑔𝑖)}{𝑂𝐵𝑟𝑒𝑎𝑙(𝑔𝑖)}=max    the model representation 

SIGNAL 

FUNCTIONAL 

APPLICATION 

OBJECT 

ATMOSPHERE 

OPTICS 

SIGNALS 

PROCESSING 

SCANNING 

DEVICE 

FORECAST 

SPECTRAL 

FILTER 

RADIATION 

SENSOR 

Figure А  Radiometric scheme of optical radiation measurement 
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is the most identical one to the real-world system, and then it is possible to develop a 

forecast model of its behavior on the following stages: 

 stage of changing the real object  {𝑂𝐵𝑟𝑒𝑎𝑙(𝑔𝑖) } with the model -  {𝑀𝑂𝐵(𝑔𝑖) }; 

 stage of simulation modelling  (SM)    {𝑀𝑂𝐵(𝑔𝑖) }; 

 stage of physical modelling    {𝑂𝐵𝑟𝑒𝑎𝑙(𝑔𝑖) }. 

To perform it we need to set the main properties and peculiar features of the given 

forecast connection, i.e. the semantics of the described process, where we note all the 

known physical laws applicable to the present experiment first, and match any 

limitations and requirements to the physical meaning of variables taking part in 

functions development, then develop a forecast function describing the given physical 

process basing on it. 

The research paper shows a landmark approach of presenting engineering systems 

having complex functioning laws with the help of composition and decomposition of 

its elements with various particularization degrees, and the development of algorithms 

for implementation of problem-oriented programs for computational experiments. The 

advantage of applying the given approach is confirmed with the method of evaluating 

the sufficiency and fidelity of the results obtained. 

The fidelity of the scientific results and conclusions is defined by the correctness 

of applying the mathematical tools and confirmed with the computer simulation results. 

The qualitative forecasting questions are of special concern: does the given MPES 

have a significant growth reserve? Which of them will change which one? What 

conceptually new technical problems and tasks may arise in future? The existing 

forecasting methods cannot provide the answers to such questions. The reason lies 

particularly in the subjectivity of the present methods, i.e. they rely on the estimations, 

opinions and judgments of the experts. Though the source materials are processed to 

make it more objective (a formal math model is created, etc.), the most part of it 

remains subjective in its primitive conjecture, application areas and input information 

interpretations depending on a scientist’s intuition. 

Extrapolation is one of the most prospective ES forecasting methods, as it is based 

on factual objective data in relatively greater degree. The growth curve of some index 
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characterizing the ES development is constructed on the basis of aposterior information 

to continue this curve “into the future”; the drawback of the method is that it is not 

always possible to extrapolate the process development for a short space of time even 

having the most accurate aposterior data. 

The book can be used as a study guide for students and postgraduates getting a 

degree in the following fields: “Informatics and computer engineering”, “Tool 

engineering”, “Optical engineering” and probably some other ones. 



 

13 

CHAPTER 1. COMPUTER FORECASTING PROCEDURES 

Being a procedure, the forecast modelling does not substitute for 

mathematics, physics, biology and other sciences, does not compete with them 

but on the contrary contributes to them as a synthesizing part. Indeed, it is 

impossible to create a forecast model without relying on the most diverse 

methods, approaches and innovations – from qualitative analysis of non-linear 

models to the modern programming languages. The modelling provides additional 

motivations to various science fields, and adding some, exact knowledge helps 

limit an instinctive speculative “simulation” extending the application areas for 

rational methods. 

Any theoretical study in reality comes down to the consideration of an object 

model, as a linguistic or mathematical description of any object, process or 

phenomenon can be made only to a definite particularization level. 

A model is some suppositions and analogues representing the real estimative 

world and having some visualization level or reduced to logical schemes 

convenient for investigation, simplifying the reasoning and logical constructions 

or allowing performing the experiments aimed at specifying the character of 

phenomenon. It is a stand-in of a source object that ensures studying some of the 

characteristics of a source-object. Figure 1.1 shows the MPES simulation triad. 

The modelling is based on the conformity theory stating that the absolute 

conformity may take place only if one object is changed with the other identical 

one. We do not achieve absolute conformity at modelling and the scientists want 

the model to represent the object functioning area under investigation well 

enough. 

The research success depends on the extent to which the model is equal to a 

real object.  
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Modelling theory is a theory of substituting some objects (source objects) by 

some other objects (models) and investigating the object characteristics with the 

help of the models. 

While it is being studied, a model acts as an independent quasi-object that 

allows obtaining some knowledge about the object under research. We develop a 

forecasting model stage-by-stage; the sequence is shown at Figure 1.3. 

The process of developing the best model variation (which as a rule is a 

compromise one) is rather a complicated one; it implies the comprehensive 

approach and involves the following stages of model constructing: 

Stage one: defining the aim of modelling. Any model is not just an image 

standing for a source object but its target representation. 

 

COMPUTER-ORIENTED 
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ORIGINAL OBJECT 

(THE SYSTEM UNDER 

INVESTIGATION) 

ALGORITHM OF 

COMPUTER 

FORECASTING 

SOFTWARE FOR 

COMPUTER 

FORECASTING 

Figure 1.1  The ES simulation triad  
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Figure 1.2  Informational processes in modelling 

Stage two: model synthesis – developing its possible variations. One should 

distinguish between: 

 structural synthesis – developing the model structure: its general form (e.g. 

the form of system of equations, polynomial or differential ones), number of 

parameters, etc.; 

 parametric synthesis – searching for numerical values of model parameters. 

It is performed either on the basis of the reference data or within the 

framework of maximum correspondence of the results obtained at the 

experiment conducted with the model.  

Stage three: model analyzing. It means defining the quality of the 

synthesized model according to the following criteria: 

 versatility – the completeness of the object properties represented by the 

model; 
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 accuracy – degrees of correspondence of the real data to the ones predicted 

by the model;  

 adequacy – the ability to represent the object characteristics within the 

framework of modelling aim (i.e. of the task being solved) correctly; 

 efficiency – the costs for the model development and implementation. 

Stage four. Choosing and making decision – evaluating the utility of model 

variations in general and choosing the best one. 

 

Figure 1.3 Model-developing stages  

The problem of highly effective synthesis is closely connected to the problem 

of choice, i.e. checking to what degree some object or the other one correspond 

to the given requirements and then accepting or rejecting it. 

In the course of solving the given task (modelling aim implementation), the 

math model undergoes some changes. “Life cycle” term usually refers to the 

process of some system appearance and development. Here we speak of the life 
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cycle of the model. First stage of the life cycle of the model is arranging the 

modelling aim that is usually stated verbally (non-formally) into the mathematical 

language. As a result, we obtain a description model. Then we develop a model 

of solution – a set of math expressions providing the way of solving the task. There 

are three kinds of the model: analytical, computational and simulation ones. 

The analytical model is the most accurate on; besides, it allows obtaining a 

solution in general terms. That is why we should do our best to obtain the 

analytical model of solution, if possible. 

The computational model is a more multi-purpose model; it is highly 

competitive with the analytical model in accuracy but does not allow obtaining a 

solution in general terms. 

The simulation model is the least accurate but the simplest one. It is applied 

for obtaining final solutions only in modelling of some complex objects for which 

we cannot develop the other models of solution.  We may apply the simulation 

model in more simple cases in search of the first approximation for obtaining the 

final solution with the computational model, or for a preliminary analysis of the 

object allowing obtaining some initial understanding of the subject of modelling. 

The algorithmic model is a solution written in the form of algorithm. It differs 

from the model of solution, as it is not necessary for the latter one to have all the 

algorithm characteristics: finiteness, determination, effectiveness, large scale, 

efficiency. In most cases, the model of solution does not have the property of 

finiteness. 

The program model is an algorithm written on some programming language. 
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The basis for modelling are the informational processes (IP), because the 

model development itself is based on the information concerning the real-world 

object (during the model implementation you receive the information about the 

given object, at the same time you enter the control data (the input data) while 

performing the experiment with a model, processing the obtained results (the 

output data) is also of great importance. 

The computational model development is based on abstracting from the 

specific nature of phenomena or the source object under study and consists of two 

stages: developing first the qualitative and then the quantitative model. The more 

of the notional properties we define and transfer to a computational model, the 

more real-like it will be and the more opportunities will be provided to a system 

in which it is applied.  The computer-based simulation involves conducting a 

number of computational experiments aimed at the analysis, interpretation and 

comparison of the simulation results to the real behavior of the object studied and 

the subsequent model correction, if necessary. 

One can distinguish between analytical and simulation modelling. At the 

analytical modelling one examines the math (abstract) models of a real-world 

object presented as algebraic, differential or other equations, also involving 

single-valued computational method leading to its exact solution. 

At the simulation modelling one examines the math models presented as 

algorithms representing the functioning of the studied system by sequential 

execution of a large number of elementary operations at the environmental 

uncertainty, i.e. while controlling the material flows one should take into account 

some number of random factors. Under such conditions, it might turn to be 

impossible or too expensive to develop an analytical model setting the exact 

quantitative proportions of various components of logistics processes. 
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The following methods are referred to the computer-based simulation 

algorithms: 

 finite-element method; 

 method of finite differences; 

 method of finite volumes; 

 moving cellular automation method; 

 method of classical molecular dynamics; 

 component chain method; 

 node-potential method. 

The simulation process is the iterative one and is executed within the limits 

of the aims formulated before and in line with the simulation borders. The 

construction starts from studying (investigating) the real-world system, its 

internal structure, connections between its elements and the external actions and 

finishes with the model development. 

There are four simulation (modelling) stages, from formulating the problem 

to obtaining results, shown at Figure 1.4. 

It is not necessary to move through all of the substages at developing the 

definite models having definite aims and modelling borders. 

The first stage of modelling – analyzing the requirements and project 

designing – includes formulating the conceptual model, developing its formal 

scheme and checking the efficiency and the expedience of system modelling. 

At the stage, we determine the quantitative characteristics (parameters) of 

the system and its elements functioning, the numerical values of which will be the 

source data for the modelling. It is obvious, that most of the system parameters 

are random values. That is why the selection of random variables distribution 

laws, function fitting, etc. is of great importance at forming the source data.  We 
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need to check the model adequacy as a result of distinguishing the model 

characteristics and developing the conceptual model. While creating the 

conceptual model (CM), the source data area or the system informational space 

is formed almost simultaneously – it is the stage of source data collecting. 

Conceptual model (CM) is an abstract model defining the system body and 

structure, the element properties and causal relationship of the analyzed system 

essential for reaching the aims or our modelling. Such models usually describe 

the nature and parameters (characteristics) of the elementary phenomena of the 

system under investigation, type and degree of interference between them and the 

position and meaning of each elementary phenomenon in general process of the 

system functioning verbally. 

At the second stage - the model development stage – we specify or choose 

the modelling software package. At choosing the modelling tools, the software 

and technical tools are chosen according to a number of criteria. The essential 

conditions are the sufficiency and completeness of tools for implementing the 

conceptual model. Usability, being simple and easy to learn, speed and 

correctness in model creation are among the other criteria. 

After choosing modelling environment, the conceptual model formulated at 

the previous stage is implemented into the computational model, i.e. the model 

algorithm presentation and particularization is made. 

The system model is presented as a set of parts (elements, subsystems). The 

set includes all the parts ensuring the system integrity maintenance, on the one 

hand, and the achievement of the preset modelling goals (the required accuracy 

and fidelity or the results at computational experiments with the model), on the 

other. Further, we perform the final particularization, localization (distinguishing 

the system from the environment), structuring (indication and general description 

of the connections between the selected system elements) and the extended 

description of behavior pattern of system functioning and probable states. 
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Setting the simulated time is the next substage. The variable providing the 

current meaning of the simulated time is called the simulation clock at 

computational model. 

There two main approaches to the simulated time advance: from-event-to-

event advance and fixed-increment time advance. 

Most of the computer programs and most of the engineers developing the 

models in unified languages apply from-event-to-event time advance. 

MODELLING STAGES 

III. CONDUCTING 

THE EXPERIMENT 

I. ANALYZING THE 

REQUIREMENTS.  

PROJECT DESIGNING 

II. MODEL 

DEVELOPMENT 

IV. MODELLING 

SUMMARIZING- IN 

ACCORDANCE 

WITH THE SET 

GOALS AND 

PURPOSES 

CHECKING THE 

VALIDITY OF THE 

CONCEPTUAL MODEL 

CONSTRUCTING THE 

CONCEPTUAL MODEL 

COLLECTING AND 

ANALYZING THE 

SOURCE 

INFORMATION ON THE 

MODELLING OBJECT 

SETTING AND 

ANALYZING THE 

MODELLING GOALS 

AND PURPOSES 

CHOOSING THE 

MODELING 

ENVIRONMENT 

SETTING THE 

MODULI 

CHARACTERIS-

TICS 

GENERATING 

THE LOGICAL 

MODEL 

SETTING THE 

SIMULATED TIME 

STARTING 

THE MODEL 

RUNNING 

THE MODEL 

MODEL 

VERIFICATION 

VARIATION OF 

THE MODEL 

PARAMETERS 

AND STATISTICS 

GATHERING 

ANALYSIS OF 

THE MODELING 

RESULTS 

МОДЕЛИРОВАНИЯ 

Figure 1.4 Model development scheme 
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The third stage – conducting the experiment – is the critical stage 

characterized by gathering the required data due to the simulation process and the 

data static processing at the interpretation of the simulation results according to 

which the decision is made of whether the research should be continued or 

finished. If the result is known, we may compare it to the obtained modelling 

result. The obtained conclusions often promote conducting an additional set of 

experiments, and sometimes even changing the model. The decision is usually 

based on the results of experiments and tests. If the results do not correspond to 

the modelling aims (to a real-world object or process), it means that some 

mistakes were made at the previous stages or the input data are not the best 

parameters in the area under investigation, so the engineer returns to one of the 

previous stages. Analysis of the modelling results is the substage at which we 

make the extensive analysis of the obtained results for receiving some 

recommendations concerning the system designing or modifying. The stage of 

modelling summarizing in accordance with the set goals and purposes includes 

the assessment of the work done, the comparison of the set goals to the results 

obtained and the preparation of the final report on the work done. 

On the contrary, interpenetration of all kinds of the modelling and symbiosis 

of various information technologies in modelling, especially for complicated 

applications and complex modelling projects, are the principal nowadays trends.    

For instance, simulation modelling includes conceptual modelling (carried out on 

the early stages of the simulation model formation), logical-mathematical 

modelling (including AI methods) – for describing separate model subsystems 

and also for processing and analyzing the computational experiment results and 

for decision-making.  The procedure of planning and conducting the 

computational experiment with the corresponding mathematical methods was 

brought to simulation modelling from physical (full-scale) simulation. Finally, 

structural-functional modelling is applied at creating the stratified description of 

many model complexes.
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CHAPTER 2 PROBLEMS OF MULTI-PARAMETER 

ENGINEERING SYSTEMS STATE FORECASTING 

The problems of technical process forecasting are rather broad and diverse 

because there are no strict standards and so a system is developed (synthesized) 

in the nature of a compromise according to the system purposes, characteristics 

and limitations see Figure 2.1. The fundamental principles of physics are deep and 

“elementary” but physics theories come up to great generality and allow 

describing the attributes of broad classes of physical phenomena.  There was a 

period in the progressive branches of theoretical physics when the analysis of a 

specific phenomenon was limited to the application of basic principles to a given 

special case and to a search for the methods of profound conclusions rigorous 

deduction out of source formulae. The source formulae is not exactly a model at 

the above described method because some ready-made fundamental axioms and 

descriptions were used during its development, e.g. a common value of 

continuous medium assign or a true liquid model. 

However, physics has been moving from a traditional task of analyzing the 

physical world phenomena to a new task of engineering systems synthesis during 

the last 50-60 years, i.e. it is not enough to provide a qualitative system description 

but an accurate quantitative forecast is required nowadays. Consequently, general 

principles are not enough, we need to know the object physical or chemical 

characteristics that may not be taken into account before, i.e. modern physics 

develops such models that provide the exact quantitative representation of 

physicochemical properties of complicated systems. Hence, the modelling has to 

solve the non-trivial and non-traditional task – to complete the fundamental 

principles with some hypotheses from which the adequate quantitative real-object 

characteristics could be formulated and applied for complicated MPES 

synthesizing. 
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The MPES synthesis is based on developing its open or closed model and 

researching it. When choosing and visualizing such a model, one should rely on 

Bellman principle that states that the art of modelling is the art of going on a 

narrow track between “a trap of simplifying too much” and “a morass of 

complicating too much”. That is why a model should be complicated enough to 

include all the necessary components, and simple enough “to be able to see the 

woods for the trees”. One should not work for a very complicated model. 

N. Wiener said specially for complicated model devotees: “Only a cat can be a 

final model of a cat”. A model should be easy to remember and accessible for 

application not only for inventors (at heuristic synthesis) but for computing 

engineers also (at statistical synthesis). 

The systems theory that customary divides the design into two large sections 

(external and internal design) is taken into account at MPES designing, see Figure 

2.2.  

Since MPES is an information model, it is a dual-purpose model and should 

be synthesized (simulated) with the involvement of physics and information 

theories. According to the system analysis and synthesis methods peculiar to these 

two theories, we may consider two classes of system models shown at Figure 2.3 

[47]: physical and information ones.  

A dominant information approach [47.p.94] is a key to developing a correct 

information model. According to it, instead of applying the old Hartley and 

Shannon concept of the required exclusion of psychological factors or 

N. Wiener’s hints that the information is neither substance nor energy, 

information should be treated as an intermediary between spirit and substance, 

having three components: purpose, quality, quantity. 
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The main issues investigated with MPES physical models in the context of 

digital optical systems are the signal reflection from or passing through nature and 

manmade objects, see Figure 2.4. Let us describe its most important components:  

 radiation energy distribution through the length of electromagnetic waves 

according to the planck law; 

 bouguer law describing the light absorption on the propagation path through 

the scattering or absorbing medium; 

 spectral characteristics of light radiation, reflection and absorption by 

objects, backgrounds, propagation media and photodetectors; 

 classification of reflection types (mirror, diffuse or mixed reflection) in 

which the notion of scattering indicatrix is used; 

 image deformation caused by atmospheric turbulence; 

 image deformation caused by optical system temperature deformation. 

Developing a forecast model of behavior for a one-parameter, ES does not 

usually cause any problems. However, for multi-parameter engineering systems 

that we label as  {𝑂𝐵𝑟𝑒𝑎𝑙( ig ) }  and that operate off-line open-loop, it is quite 

challenging to develop a forecast model of its state, labelled as  {𝑀𝑂𝐵( ig ) } , and 

especially to create an algorithm for such a development. 

Further we consider the algorithm of a forecast model development for  

{𝑂𝐵𝑟𝑒𝑎𝑙( ig ) } on the example of an airborne system of the Earth surface optical 

range remote sensing  (Figures 2.4, 2.5, 2.6), the functioning of which is based on 

the following principles: optical radiation propagation principle, laws of motion, 

principles of optical data processing, control engineering, computer engineering 

 {𝑂𝐵𝑟𝑒𝑎𝑙( ig ) }. 
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When applied, to develop a system forecast model, it is required to compare 

its mathematical structure to the structure being known at the moment of carrying 

the research out: 

М𝑠𝑡𝑟
(Т)

=≪ 𝑆1, 𝑆2, … , 𝑆𝑘; 𝑅
(1), 𝑅(2), … , 𝑅(𝑛); 𝑃(1), 𝑃(2), … , 𝑃(𝑚) ≫ .        (2.1) 

where {𝑆𝑖}1
𝑘  is a set of math members different in purposes, names and function 

operations; R(n) is a subset of n-th power product; {𝑃(𝑗)}
1

𝑚
 are the mapping 

operators. 

For instance, a mathematical structure of a modulation transfer function of 

the Earth surface remote sensing system  ERSMTF  is a product of  MTF  components 

(the Earth surface; the atmosphere; the digital optical system; the system of 

ON-BOARD EQUIPMENT 
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Figure  2.4  Generalized physical model of an on-board multi-parameter digital 

optical system; two connections of a useful object and background to the on-

board equipment (solid arrows) mean the existence of self-radiation and reflected 

radiation; the connection of the on-board equipment to an exposure source (dot 

line) means the existence of systems of two types – with natural and artificial 

lighting; backward link of the on-board equipment to an object (dot-and-dash 

line)  represent the process of choosing an object during the observation. 
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information reception and conversion), each of them is a function of different 

structure, precisely: 

 
 
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(2.2) 

The following symbols are used for АtmMTF  in formula (2.2): 

zy  ,  - space frequencies; TQ  - atmospheric turbulence parameter changes from 

0.017 to 0.1; f - lens focal length of ERS system; саmH  - the height of the 

shooting, without breaking the reasoning integration the equations for ESMTF  , 

DOSMTF  and SIRCMTF  are not formulated. We can see from formula (2.2) that a real 

Figure 2.5   Diagram for closed-loop 
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ERSMTF  value based on the ground-based researches is a forecast value, if just for 

TQ  and camH . That is why the results of researches are of great importance for 

developing a forecast model. 

For developing the MPES forecast model we suggest considering processes 

on account of the opportunity of dividing the general control task into fractions or 

decompositions, where its own model part may be developed and applied for each 

of decompositions, assuming the existence of a “complete” model and describing 

mutual influence of its parts on condition that they have maximum freedom from 

the would-be methods of solving the given fractions, at the same time basing on 

its content and dynamic properties of the investigated technical process. We pay 

special attention to the fact that in case there being some mutual influence in the 

required system of MPES models, there should exist some model having the 

dynamic description of the influencing processes in it. For instance, for describing 

Figure  2.6   Diagram of a probable multi-parameter engineering system 
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the flying vehicle drive we often use a driving force model presented as statistical 

dependence on several motion parameters, and that is quite enough for controlling 

the vehicle in the routine flight modes but at the violent maneuvering we need to 

know the dynamics of the driving force changing. Consequently, there can even 

be no “complete” model at the development of the MPES control algorithm 

because it is replaced with a system of decomposition tasks, i.e. it is expected that 

there exists a system of “windows” in a “black box” through which the required 

processes can be observed. 
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CHAPTER 3. ANALYTICAL REPRESENTATION 

OF EXPERIMENT RESULTS 

3.1 Test data analysis  

The source test data  nix
1
  may be specified either in tabular or graphical form. At 

graphical form, the data may be represented step-wise in analytical form of   n

ixF
1

, in 

particular [5, p.328]: 

1)  At the first stage we need: 

 reduce the data dimension by applying the principal component analysis (PCA), 

it should be noted that the volume of data loss is as small as possible here;  

 define the possible characteristics and distinctive features of the required 

analytical dependence   n

ixF
1

 , i.e. to define its acceptable region. 

2) At the second stage, depending on the   n

ixF
1  acceptable region, we need to do the 

following: 

 if we search for   n

ixF
1

 only for analytical representation of the experiment 

results, i.e. we are not going to extend its “application” area, it is  reasonable to 

use the interpolation method with subsequent approximation; 

 if we search for   n

ixF
1   with regard to the extension of its application beyond the 

range of nix
1
, then it is reasonable to use the extrapolation method with subsequent 

approximation.  

It should be noted that if source data are given in graphical form, we should 

transform it to a discrete form, i.e. to digitize it.  Sample spacing size ( x ) and the 

upper frequency in the analogue signal spectrum ( max ) are connected according to the 

sampling theorem: 12 max  x . 
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If the frequency and the source data rangeability are high (volatility level is high), 

we apply various processing methods, the main of which are given in Table 3.1 

[10, 34, 52, 54, 58]. 

Data processing methods  

Table 3.1 

METHOD MATHEMATICAL METHOD 

REPRESENTATION 

Normalization method 
  

     n
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Uniform approximation method 

 (min-max method) 
 baxxgxf ,;)()(    

Conditional-relative differences 

method 

 
 

n

zad

zadR

y

yy

0
2

2

min  

Exponential smoothing method 
 


/exp t
;  ..5,1 НаблT  

N-fold exponential smoothing 

method  

 
 !1

/exp1





n

tt
n

n




 









n

aTНабл

2
, if n3, then  na 2/ 1 

Alternating smoothing method  
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Parabolic smoothing method 
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At source data processing we define some special and irregularly different 𝑥𝑖 that 

may turn out to be both outliers of the series [46, p.143] and significant extreme points 

relating to data semantics.  Both the   n

ixF
1  value “violation” of acceptable region 
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specified physical nature of a phenomenon at some points nix
1
, and the excess of some 

threshold value   between two neighbor reports, i.e.       ii xFxF 1   or 

      1 ii xFxF , may serve as an outlier test. If possible, they should be deleted 

before data investigating – at the stage of primary data processing. However, sometimes 

an outlier provides such kind of information that cannot be obtained from the other 

data because it is connected to an unusual combination of conditions that is of vital 

importance. Nevertheless, we should exclude the outliers instantly if we find out that 

they are caused by such reasons as the errors in logging, in equipment alignment [23, 

p.199] or by applying non-certified equipment. 

3.2 Methods of analytical form representation 

of experiment results  

Having completed the data investigation, we have to choose a method of 

developing the analytical dependency and to work out the criterion of defining the 

match of the obtained analytical model to a source test data.  Table 3.2 describes the 

most frequently used development methods. 

Methods of data analytical representation  

Table 3.2 

METHOD MATHEMATICAL METHOD REPRESENTATION  

Least square method 

(LSM) 

  
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Maximum likelihood 

method  (MLM) 

𝐿(𝜃) = 𝑤(�̅� /𝜃 ) = ∏(𝑦𝑖  /𝜃 )
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Maximum likelihood method (MLM) is one of the most methods of estimating the 

model (both linear and non-linear) parameters and highly effective Bayesian estimation 

method at a simple loss function.  

The “MLM” notion appeared in Fisher paper in 1922. The method provides the 

estimation of constant parameters at uniform prior distribution and is the basic method 

if the prior distribution is not specified, i.e. when the estimation of an unknown 

parameter   by observations y1, y2 … yn is meant.   According to the method, the 

estimates of the unknown model parameters are found on condition of likelihood 

function maximization [40, p.237]. 

The likelihood function L is the joint sample distribution, which is the function of 

parameter  

 = (1, 2, … k),     (3.1) 
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where  (1, 2, … k) is the vector of unknown model parameters.  

If the sample has continuous distribution, the likelihood function L is described 

with the joint distribution density  

f (x, ) = f (x1) f (x2) …  f (xn).   (3.2) 

 If the sample elements X = (X1, X2, …, Xn) have discrete distribution, then the 

likelihood function L becomes the form: 

f (x, ) = P (X1 = x1)  f (X2 = x1)  …  P (Xn = xn).  (3.3) 

Value L() may be considered as a measure of value θ likelihood at a specified 

implementation x. 

Let us suppose that L is a sample likelihood function and at the observed values 

is the function of parameters θ :  = (1, 2, … k), then the most reasonable values of 

𝜃 that maximize the function L are called the values of maximum likelihood of θ:    

𝜃 ̂ =  𝑎𝑟𝑔𝑚𝑎𝑥𝜃 𝐿(𝑥, 𝜃).     (3.4) 

It is evident that the estimates x1, x2, …, xn  depend on the observations and are 

highly effective in sweeping assumptions. It often happens that it is easier to search for 

the function maximum point ln L(θ), that aligns with  𝜃 due to the log monotonicity, 

where θ is the element of space . If   is an open interval and L(θ) can be 

differentiated and reaches a maximum at  , then the maximum likelihood estimates 

satisfy the following equation: 

𝑑𝐿(𝜃)

𝑑
 = 0 .      (3.5) 

Maximum likelihood conception may be considered as a main idea of all the 

methods on which the test data statistical processing for developing the empirical 

equation is founded.  In general, we may formulate the maximum likelihood conception 

as follows: the best phenomenon description is the one that provides maximum 

probability to obtain exactly that values that in fact were obtained. [33, p.104]. 
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Maximum likelihood method and function Bayesian estimation will be considered 

in detail in Chapter 5. 

At normally distributed errors i, the maximum likelihood method is reduced 

to the least square method (LSM) [25, p.237-238] that consists in minimizing the 

sum of differences squares between the source testing and corresponding values of 

function derived from the approximation (3.6) [39, p.42-43]: 

∑ (𝑦𝑟𝑎𝑠𝑐ℎ𝑖 − 𝑦𝑧𝑎𝑑𝑖
)
2
→ 𝑚𝑖𝑛𝑛

𝑖=1 ,    (3.6) 

where 𝑦𝑟𝑎𝑠𝑐ℎ𝑖- is the desired value, 𝑦𝑧𝑎𝑑𝑖
 – the value specified by the source test data.  

The least square method (LSM) is one of the most wide-spread approaches to 

solving the formulated task nowadays.  Its main peculiarity is the absence of any strict 

requirements to the prior information concerning the evaluated parameters and 

experimental errors [47, p.44]. 

 As we have already noted, the LSM usually suggests that the errors are governed 

by the normal law of distribution. However, a number of researches prove the good 

forecasting properties of models derived in accordance with LSM if there are some 

deviations from normality and mutual excess independency also [1, p.19]. 

Conditional-relative differences method [29, 30] is the improvement of the least 

square method. The sum of conditional-relative differences squares serves as the 

approximation measure here, see formula (3.7): 

∑
(𝑦𝑟𝑎𝑠𝑐ℎ𝑖

−𝑦𝑧𝑎𝑑𝑖
)2

𝑦𝑧𝑎𝑑𝑖
2

min

𝑛

𝑖=0

,    (3.7) 

where   𝑦𝑟𝑎𝑠𝑐ℎ𝑖  is the desired value, 𝑦𝑧𝑎𝑑𝑖
– value specified by the source test data.  

Application of conditional-relative differences method allows increasing the 

approximation accuracy in small values area yi,  but decreases it in large values area 

у. Thus, the described method has some advantages at solving some specific tasks but 
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it we cannot recommend to apply it widely due to the computational complexity and 

obscurity of statistical properties of suchlike values [28, p.696]. 

In spite of the described advantages of the maximum likelihood method, there is 

a number of estimating problems in which it is hard to apply it because of significant 

mathematical or computational difficulties in finding the L(θ) maximum. In such cases, 

the moment method is often used; it has no asymptotic optimality properties but it often 

leads to relatively simple computations.   

The moment method. If the parameters θ ̅ =  (θ1, θ2 ,  …   θМ )
Т
 are unknown, the 

initial distribution moments are the functions, see formula  (3.8): 

𝑚𝑘(θ̅) =  ∫ 𝑦𝑘𝑤

∞

−∞

(
𝑦 

 θ̅
) 𝑑𝑥 .                               (3.8) 

Basing on observations y1, y2 … yn   we may find the sample initial moments of k-

th order   �̂�𝑘 =  
1

𝑛
∑ 𝑦𝑖

𝑘𝑛
𝑖=1  , which serve as independent estimates of distribution 

moments 𝑚𝑘(𝜃). The moment methods consists in setting M sample moments equal 

to the corresponding distribution moments and in finding the estimates of unknown 

parameters from the equation system:  𝑚𝑘  (θ1, θ2 ,  …   θМ ) =  �̂�𝑘  ,  k = 1,2, … М. 

Besides the initial moments, we may use the central distribution moments and sample 

central moments for parameter evaluation, see formula (3.9): 

 �̂�𝑘 =  
1

𝑛
∑ (𝑦𝑖 − �̂�1)

𝑘𝑛
𝑖=1 .     (3.9) 

For some distributions, e.g. for a normal or exponential one, the parameter 

estimates obtained with the moment method align with the corresponding maximum 

likelihood estimate (MLE).  At the same time, there are many problems, in solution of 

which the moment method application leads to obtaining less accurate estimates than 

the application of maximum likelihood method.  Estimating the θ parameter – the even 

distribution expressed in correlation - is its case study: 
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 𝑤 (
𝑦 

 �̂�
)  =

 1

 𝜃 
, 0 ≤ 𝑦𝑖 ≤ 𝜃, 𝑖 =  1,2,  …  𝑛 .    (3.10) 

To find the estimate with the moment method, let us set the expectation (i.e. the 

first initial moment) 𝑚1 ( θ ) =
 θ

2
 equal to the sample mean 𝑚𝑘 =  

1

𝑛
∑ 𝑦𝑖

𝑛
𝑖=1 .  

As a result we obtain an unbiased estimate, congruence (3.11): 

𝜃(�̅�) =  
2

𝑛
∑ 𝑦𝑖

𝑛
𝑖=1      (3.11) 

having dispersion  𝑀{(θ̂(�̅� − θ))
2

}  =
 θ2

3n
 . It should be noted, that the obtained value 

is (n+2)/3 times as dispersion 𝐷𝜀  =  𝑀{(θ̂(�̅� − θ))
2

}  =

(
n+1

𝑛
)
2

 ∫ x2
θ

0
 w (x) dx −  θ2 =  

θ2

n (n + 2)
 , defining the accuracy of the corrected 

estimate of maximum likelihood. Except initial moments, it is possible to use central 

distribution moments and sample central moments for parameter estimation.  

The obtained estimates may be applied, for instance, at developing the noise type 

sorter in radar receiver, because the Weibull distribution describes a wide range of 

possible noises like receiver noises, clutter reflections, hydrometeors, etc.  

Consequently, the motivation of searching for efficient estimates with the 

maximum likelihood method is evident. However, there are some cases in which it is 

difficult to find the solution of likelihood equations but possible to obtain proper 

estimates with the moment method application.  

Wavelet is a class of family functions local in time and frequency, i.e. small 

quantities in which all the functions are derived from one by its timeline shifts and 

tensions, i.e. they go in turn; it allows analyzing various data frequency components. 

Wavelet-analysis is relatively new and powerful mathematical apparatus; it is widely 

used in classical sciences like analyzing and processing numerical series of physical, 

geophysical and other experiment or observation results, in identification or synthesis 

of signals of different nature and structure, applied for processing, compression, storing 
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and transferring of large data volumes including analogue pictures and videos. It is “a 

mathematical microscope” for accurate studying of inner structures of non-uniform 

signals and functions.  

Wavelet transforms are usually divided into discrete wavelet transforms (DWT) 

and continuous wavelet transforms (CWT).  Speaking about the application, DWT is 

usually applied for signal encoding, while CWT – for signal analysis.  As a result, 

DWT is widely used in engineering and computer sciences and CWT in scientific 

researches. 

In that way in the classical Fourier analysis we naturally use sines and cosines or 

the general complex exponential as basic functions, because the other orthogonal 

functions, e.g. orthogonal polynomials, are difficult in results interpretation.  

In wavelet analysis there is a great choice of basic functions and it is being 

extended constantly, its application is simplified because the wavelet transforms are 

included in mathematical packages as standard applications. All the wavelet transforms 

consider a function (taken as being a time function) in terms of oscillations localized 

in time and frequency. Table 3.3 shows some of the main classical wavelet formulas.   

Let us consider the main disadvantages of conventional Fourier analysis: 

1. Insufficient informational contents at analyzing non-stationary signals and 

almost complete lack of opportunities to analyze its peculiarities or singular 

behavior and the appearance of destructive components absent in a source 

signal given that it had some disturbances and discontinuities;    

2. Frequency basic expansion functions are basically incapable of reflecting the 

signal differentials having continued rate, e.g. rectangular pulses, because it 

requires infinite number of series terms, otherwise (at a finite number of Fourier 

series terms) strong oscillations appear in the neighborhood of disturbances and 

discontinuities in regenerated signals, i.e. Gibbs phenomena.   

3. The Fourier transform provides the general information on the investigated 

signal frequencies and does not describe its local properties at fast time changes 

of its spectral distribution. The classical Fourier transform algorithm does not 
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provide an opportunity to analyze the signal frequency characteristics at 

random time moments (this information is not required for a stationary signal).  

Besides there is a fundamental problem connected with the finiteness of the series 

investigated, while the Fourier transform requires a function to be specified and 

periodical at an infinite horizon.  

Classical basic wavelets  

Table 3.3 

MATHEMATICAL WAVELET 

REPRESENTATION  
GRAPHICAL WAVELET VIEW  

Haar-wavelet: 

𝜑(𝑡) =  {

+1,   0 ≤ 𝑡 < 0,5,

−1,   0,5 ≤ 𝑡 < 1,

 0,   𝑡 < 0,  𝑡 ≥ 1.

 

 

 

Fhat-wavelet: 

𝜑(𝑡) =  

{
 
 

 
 +1,   |𝑡| <

1

3
,

−0,5,   1/3 < 𝑡 ≤ 1,

 0,               |𝑡| > 1.

 
 

Wawe-wavelet: 

𝜑(𝑡) =  (𝑡) 𝑒𝑥𝑝 (−
𝑡2

2
)  

 

Mhat-wavelet: 

𝜑(𝑡) =  (1 − 𝑡2) 𝑒𝑥𝑝 (−
𝑡2

2
)  

 

All the wavelet transforms may be considered as a variation of temporal-

frequency representation and, consequently, refer to the subject of Fourier analysis. 
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Discrete wavelet transform may be considered as a variation of finite impulse response 

filter. CWT wavelets are governed by Heisenberg uncertainty principle, and 

consequently the discrete wavelet basis may be considered in the context of the other 

forms of uncertainty principle.  

Nowadays wavelet transforms have a wide range of various applications, it often 

substitutes the conventional Fourier transform in many areas. Such paradigm shift 

occurs in many areas of physics, including molecular dynamics, ab initio 

computations, physical astronomy, localization of density matrix, seismic geophysics, 

optics, turbulence, quantum mechanics,  image processing, blood pressure, pulse and 

electrocardiogram analysis, DNA analysis, protein researches, climate investigation, 

general signal processing, speech recognition, computer-generated images, 

multifractal analysis and others. 

Methods of solving the problem of parameter signal identification by applying 

wavelets are at the initial stage of development now. It is a new area just starting its 

development - wavelet application at solving differential equations. G.Beуlkin, 

Professor of state Colorado University, is the founder of representation theory of 

differential operators in wavelet basis.  

We should note that it is unreasonable to use high degrees of interpolation 

polynomials at global approximation method. That is why patch-global method based 

on, for example, linear or quadratic (parabolic) interpolation is often used, but the 

derivatives of such interpolation polynomials obtained at the finite intervals and its 

joining points have discontinuities. 

The considered approximating functions Sm(x)  (where m is a polynomial degree) 

should satisfy the requirements of continuity Sm(x) , S'
m(x)  and, if possible, S''

m(x)  or  

S'''
m(x)  at all the points x [a;b], which gives rise to the necessity of developing spline-
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functions having the above mentioned characteristics and being of interpolation or 

smoothing nature.  

A spline-function, or a spline, is a class of Sm,i (x) — algebraic polynomials of m 

order  (components), defined at the finite intervals [xi, xi+1], [xi, xi+1], 

 𝑖 = 0,  𝑛 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  and joined together in all the finite intervals in such a way that we can 

set up the multitier function, see equation (3.12): 

𝑆𝑚(𝑥) =  ⋃ 𝑆𝑚,𝑖(𝑥)
𝑛−1
𝑖=0 ,     (3.12) 

that is definite and continuous on the whole interval together with all of its derivatives  

𝑆𝑚
(𝑝)

(𝑥) up to some of its order p=1,2... The difference in m and the highest derivative 

order continuous at the interval [a,b] presents the defect of spline q. The conditions of 

matching the spline components Sm,i (x)  to a source function  yi = f (xi)  at a 

corresponding finite interval [xi, xi+1]  are the conditions imposed on disparities of 

differential and integral types  𝑆𝑚,𝑖
(𝑝)(𝑥𝑖),   𝛿 𝑆𝑚,𝑖(𝐼𝑖

𝑖+1) and used for developing a 

formula of one spline component at a specified finite interval. 

The number of matching conditions required for developing a formula of one 

spline component should correspond to the spline order, i.e. the number of conditions 

greater by unity than m. Having defined the formula Sm,i (x), we express its right part 

through its known and unknown parameters:  𝑓
(𝑝)

(𝑥𝑖) for differential spline or through 

the set of  𝑓
(𝑝)(𝑥𝑖)  and  𝐼𝑖

𝑖+1 =  ∫ 𝑓 (𝑥) 𝑑𝑥
𝑥𝑖+1
𝑥𝑖

 for integral-differential one. These 

values are called the spline parameters. Depending on the fact, if that or those spline 

parameters have been specified at the task setting or not, they are called definite or 

indefinite parameters. The computational basis for the last ones is the continuity 

condition, i.e. the spline smoothness Sm,i (x) that are called the connection conditions 

here. For some juncture xi, common to i-1 component referring to a finite interval 

[xi-1, xi] and i component defined at a finite interval [xi, xi+1], the condition looks as 

follows:  𝑆𝑚,𝑖−1
(𝑝) (𝑥𝑖)| 𝑥=𝑥𝑖

=  𝑆𝑚,𝑖
(𝑝)(𝑥𝑖)| 𝑥=𝑥𝑖

. 



 

44 

At solving the approximation tasks with spline functions, we transform the 

connection conditions to correlations connecting definite and indefinite parameters and 

called parameter correlations.   

Parameter correlations written in the form of equations may be applied at finding 

the indefinite parameters out in relation to spline approximation or at expressing some 

parameters through the others.  Besides, parameter correlations based on the principle 

of concordance of numerical quantity orders establish the correspondence of the orders 

for various parameters included in one correlation or another.  

There is also a simpler but less strict method for developing empirical analytical 

dependences – the so-called mean-value method.  

The core of the mean-value method is that the parameters of the required 

empirical formula are defined on the assumption that the sum of all the observed 

quantity deviations from its mean value is zero: ∑ (𝑦𝑖 − �̅�) = 0𝑛
𝑖=1 ,  where  �̅�  is the 

function mean value. “The method is the most efficient one in the simplest situation, 

when we need to develop the dependency of y=b1 x kind”  [33, p.101]. 

In cases, where we have not managed to exclude gross outliers from the source 

data selection, it is better to use the special methods of robust regression.  

One of such methods is the method of the least [38] that are squared if the LSM 

is applied. The principle of the method is minimizing the sum of moduli of differences 

between the desired values and the values specified by the source test data:  

∑ |𝑦𝑟𝑎𝑠ℎ𝑐𝑖 − 𝑦𝑧𝑎𝑑𝑖
| → 𝑚𝑖𝑛𝑛

𝑖=1 ,  where   𝑦𝑟𝑎𝑠𝑐ℎ𝑖  is the desired value,  𝑦𝑧𝑎𝑑𝑖
  - the value 

specified by the source test data. 

It should be noted that there are no methods of statistical analysis of LADM-

regression equations. Whereas in the least square method the regression parameter 

distributions and their main statistical properties have already been studied, thus 

allowing performing the required statistical analysis, in the LADM the distributions 

remain unknown.  So we know nothing about statistical properties of regression 



 

45 

obtained by the LADM-method.  This is the substantial defect of the LADM method 

limiting its application in statistics [28, p.693]. 

One more approximation method is the uniform approximation method, in which 

the modulus of maximum deviation of the desired values from the specified test data 

serves as the approximation measure: |𝑦𝑟𝑎𝑠𝑐ℎ − 𝑦𝑧𝑎𝑑|𝑚𝑎𝑥 → 𝑚𝑖𝑛,  where   𝑦𝑟𝑎𝑠𝑐ℎ𝑖 is 

the desired value,  𝑦𝑧𝑎𝑑𝑖
  - the value specified by the source test data. Such measure 

is also called the min-max approximation measure.  

It is commonly supposed that the best uniform approximation provides a little 

better approximation than the least square one. However, theoretical studies show that 

such advantage is negligible; it is larger for the functions having discrete higher 

derivatives not too large in absolute value if the volume of source data is not large.  

However, the method has a substantial disadvantage – the absence of sufficient 

computational algorithms (except the direct search with non-linear programming 

methods) makes the given method hardly suitable for use.   

There are other approximation methods – in particular, the extreme point method 

[28, p.694], single-valued approximation method, method of inverted divided 

differences [27]. 

At the next stage of forecast model development we need to choose its structure 

type – to sort out the class of functions.  As in designing any math model of some real-

world object, there are two approaches to model development – theoretical and 

empirical one [56]. 

Choosing the class of functions on the basis of theoretical approach enjoins taking 

into consideration the physical laws governing the investigated phenomenon provided 

by the results of experiments conducted. 
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It means that we develop the standard form of the analytical formula on account 

of some known scientific laws (laws of physics, chemistry, biology, etc.), and all the 

parameters included in the formula have some physical meaning.  However, developing 

a model even in the simplest cases may require applying several (not a single one) 

fundamental laws [44, p.33]. 

At the same time we may represent the test data as an empirically fitted functional 

dependence with one or the other degree of correspondence to the observed 

phenomenon.  

If we do not know the type of the dependence between х and у, “then the empirical 

formula has an unspecified form.  It is preferable to use simple formulas having high 

accuracy.  If there is no information concerning the intermediate data, it is usually 

supposed that the empirical function is of analytical type having a smooth curve and 

no discontinuity points. There is no uniform method for finding out the best type of 

formula corresponding to the experiment data” [12, p.80]. When trying the dependence 

general form one should make sure that the fitting function f(x) has the same peculiar 

features as the investigated function у(х). For example, if function у(х)  is an even 

function by its content, then function f(x)  should also be an even one, etc.; it is very 

important to convey the function behavior at large and small values of х, probable 

changes of its sign and other substantial features correctly [39, p.41]. 

The problem of finding a compromise between the model accuracy and simplicity 

usually arises at this stage: we need to choose such class of functions that satisfies “the 

definite correlation between the value characterizing the quality of function 

approximation to the set of source test data and the value characterizing “complexity” 

of approximating function [9, p.9]. 

While choosing the class of functions we may rely upon the ‘from-simple-to-

complex’ modelling algorithm [60, p.6], checking consequently various classes of 

functions from elementary to more complex ones. 
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First we should check for the linearity of the required dependency, and then find 

out if there is any probable internal linearity. Sometimes an internally linear 

dependence hides behind the non-linear function structure in outward appearance. Such 

functions can be transformed to a linear form by change of the variables called 

linearization.  The function linearization allows simplifying the computational 

procedure, because trying the parameters for a linear dependence is much easier from 

computational point of view than for a non-linear dependence. However, we should 

remember that the best choice of parameters for the transformed dependency may turn 

out to be not the best one for a source function. Besides, having computed the linear 

dependence parameters, we need to make a conversion calculation to get back to the 

source variables. Nevertheless, changing variables (the examples of linearizing 

transformations may be found in [25, p.415]) may help in finding the class of functions 

suitable for analytical representations of the source test data.  Then we search for the 

suitable options in a set of non-linear functions. Among the classes of functions we 

may enumerate the functions described in Table 3.4.  

Classes of mathematical functions  

Table   3.4 

MATHEMATICAL SPECIES OF FUNCTIONS 

1. Class of functions: power functions (elementary algebraic) 

Specific instance–hyperbolic and parabolic 

2. Class of functions: Exponential and logarithmic functions 

(elementary analytical) 

Specific instance – exponential 

3. Class of functions: Periodic – line and arc-trigonometric functions 

(elementary analytical) 

4. Class of functions: rational (elementary algebraic) 

Specific instance –linear-fractional and polynomial functions 

5. Class of functions: S-shaped curves and growth functions 

(composite functions) 

6. Class of functions: Bell curves and peak functions (composite functions) 

7. Class of functions: Delta functions (composite functions) 
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Let us note that, if ideally, the chosen type of function should completely reflect 

the physical meaning of the investigated phenomenon as much as all the parameters of 

the chosen functional dependence should be physically interpretable.  

Polynomial dependency is convenient for describing the test data not only from 

the point of view of computational simplicity, but from opportunity to obtain an 

analytical equation having the specified accuracy that depends on the chosen 

polynomial order n directly. However, from the point of view of the required 

analytical dependence semantics, this class of functions has substantial disadvantages:  

indices in the obtained polynomial dependence usually have no real physical 

interpretation; and it has been proved that there is a whole class of functions that cannot 

be interpolated with a polynomial on the equally spaced grid of values. These are the 

functions having poles on the Mobius plane at a point of interpolation interval, e.g. a 

function having poles in x = +i  and  x = -i points. The larger n is, the more widely the 

interpolation polynomial will deviate from the function on drawing near the interval 

borders; at the unlimited growth of the number of points the interpolation error at the 

interval will go to infinity.   

It should be understood that the growth of interpolation error at the growth of the 

number of interpolation points is not an algorithm problem and not a consequence of 

natural errors of real-numbers operations, but a fundamental property of interpolation 

polynomial because while passing through all the prescribed points, it rises sharply in 

the interval between them. As for the errors of real-numbers operations, they may be 

accumulated at the interpolation on the grid having equally spaced nodes and lead to 

the loss of interpolation quality. The reason is the following: even if the interpolated 

function refers to the “well-behaved functions” class, i.e. it has no poles at a point of 

interpolation interval, the errors of real-number operations usually add some 

contaminations to its graph.  Such contaminations often assume the similitude to an 

“ill-behaved function” thus leading to a catastrophic error growth at the growth of point 

number. 
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The above-described problem has two solutions. If for some reason we cannot 

withdraw from the grid having equally spaced nodes, we may use cubic splines or 

rational functions. But if we are free in choosing the points, we may perform the 

interpolation on Chebyshev grid with Chebyshev polynomials, see formula (3.13): 

Tk (x) = cos (k arccos x),   |x|≤1.    (3.13) 

The Chebyshev polynomials are the least deviating from zero polynomials. In most 

cases on such a grid the interpolation error is reduced at the growth of number of points, 

particularly, it is true for any of the smooth functions. Computational errors are also 

less inclined to accumulation: the interpolation error is greater on the interpolation 

interval borders at the interpolation with equidistant nodes; but at the Chebyshev nodes 

interpolation the error is more uniformly distributed on the interpolation intervals and 

is smaller than at the interpolation with equidistant nodes.  

Consequently, if it is difficult or impossible to fit an elementary class function for 

describing the source test data, we have to consider the classes of more composite 

functions, e.g. S-shaped curves and growth functions, bell curves and peak functions, 

Table 3.4. Typical graph of such-like functions is shown at Figure 3.1 and in the below-

given example (article 3.5) of developing a forecast function for a wind velocity.  

 

Figure 3.1  Functions graphs: a) s-shape curves and growth functions; 

b) bell curves and peak functions  

To the s-shape curves we refer, for instance: logistic curve 

𝑦 =  
𝐴1−𝐴2

1+(𝑥 𝑥0⁄ )𝑝
+ 𝐴2, Boltzmann curve 𝑦 =

𝐴1−𝐴2

1+exp ((𝑥−𝑥0) 𝐷⁄ )
+ 𝐴2 and others. 
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To the bell curves and peak functions we refer, for instance, Gaussian function 

у=y0+
𝐴

𝑤√ 2⁄
exp (

−2(𝑥−𝑥𝑐)
2

𝑤2
). 

At the beginning of the ХХ century mathematics had no necessary strong 

descriptions for operating with a new class of value dependences discovered in physics; 

that is why the scientists introduced a new notion of generalized functions.   

The need in suchlike generalization often appears in many physical and 

mathematical problems; the idea of generalized function indicates the fact that it is 

impossible in reality to measure the physical quantity value at some point and we can 

measure only its average values in a small neighborhood of the point.  The derivative 

of δ-function is a generalized function also, and the integral is a Heaviside function.  

So, the generalized function method is a convenient and adequate tool for 

describing the distribution of various physical quantities.  

The list of the various functions can be found in special atlases of charts [57, 59]. 

The next research stage is calculating the parameter values of the functional 

dependence defined at the previous stage according to the chosen approximation 

method. If we do not manage to find the parameters, it means that the choice of the 

formula class or correspondingly the approximation method and measure may have 

been ineffectual. 

 

Figure 3.2 Generalized function description  

Distribution is a mathematical notion, 
extending the classical notion of a 
function; it is not a function in its 

conventional meaning but it is defined 
as a continuous linear functional on 

differentiated functions space

Provides the opportunities to:

- express the idealized notion of 
material point density in 
mathematically correct form

- point charge, 
point dipole

-space density of a single or double 
layer, intensity of instantaneous 
source, etc
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3.3 Methods of analytical model investigation  

Having developed an analytical dependence according to the experiment result, 

we need to choose the investigation method and establish the criterion of defining the 

correspondence of the obtained analytical model to a prior source data.   

Classical function investigation methods involve the known methods of 

differential calculus, where an extreme point of the objective function f(x) is found 

from the necessary condition of its existence. The condition is that the derivative at the 

extreme point is zero and the best solution of х* can be found from the equation system 

(3.14): 

𝜕(𝑥)

𝜕𝑥𝑖
= 0 ,    at  i = 1,2, …, n.    (3.14) 

To define if х* is a maximum or minimum point, one should use the sufficient 

condition of extreme point existence, according to which: if at the extreme point the 

derivative changes sign from plus to minus, then f(х*) is an objective function 

maximum; if at the extreme point the derivative changes its sign from minus to plus, 

then f(х*) is an objective function minimum. If the given equations are non-linear, it is 

almost impossible to succeed in solving its system with analytical methods. In such 

cases, the ECM and corresponding numerical techniques or non-linear programming 

methods are used. In the last case, the problem of system solution is reduced to the 

problem of function minimization: 

𝑓 (𝑥) =  ∑ (
𝜕𝑓 (𝑥)

𝜕𝑥𝑖
)
2

.𝑛
𝑖=1      (3.15) 

The considered methods of investigating classical analytical functions may be 

applied at the solution of relatively simple optimization problems having no 

constraints.  However, most of the engineering problems relate to optimization at some 

constraints of the controlled variables.   Such constraints substantially reduce the size 

of the region on which the optimum search is conducted.  On the face of it, it may 

appear that accessible region size reduction should simplify the optimum search. 

However, with the constraints, even the condition, according to which the optimum 

should be reached at a critical point characterized by a zero gradient, may be violated.   
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For example, unconstrained minimum of function f(х) = (x-2)2  occurs at the 

stationary point х = 2. But if the minimization task is solved with regard to the 

constraint of х  4, then we find the constrained minimum with the corresponding point 

х = 4. This point is not a stationary point of the f (х) function, because f ‘(4). 

Lagrange multipliers method allows finding the function maximum or minimum 

at the equality constraints. The basic idea of the method consists in moving from 

constrained extremum problem to the problem of finding the unconstrained extremum 

of some developed Lagrange function. Let us consider the general optimization 

problem containing several equality constraints: to minimize f (х) at constraints  gi = 0, 

j = 1, … ,k. The problem may be solved basically as the unconstrained optimization 

problem obtained by elimination of independent variables with the help of the certain 

inequalities from the objective function k. The presence of the equality constraints 

allows in fact, at the constraint: g(х) = х1+х2+ х3-1=0. Having eliminated the variable 

х3 with the equation g(х)= 0, we obtain the optimization problem having two variables 

and no constraints: f(х1, х2) = х1 х2+ (1 - х1 - х2). 

The elimination approach can be applied only in the cases when the equations 

expressing the restrictions may be solved for some definite set of the independent 

variables. If there are many equality constraints, the variable elimination procedure 

becomes rather a time-consuming one and sometimes the equations cannot be solved 

for variable.  

In particular, if in the given example we set the constraints g(х)= 0 in the form of 

g(х) = х1
2х3 + х2 х3

2+ х2
-1х1, then it is impossible to obtain an analytical expression 

of some of the variables through the other.  

Consequently, it is reasonable to apply the Lagrange multipliers method at 

solving the optimization problems containing complicated equality constraints.    

By applying this method, we may find the required conditions allowing 

identifying the optimum points in optimization problems with equality constraints. 
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Here the problem with equality constraints transforms to the equivalent unconstrained 

optimization problem. For example, the problem having several equality constraints: 

we minimize  f (х) at the constraints  (х) = 0   at  j = 1,2 … ,k. According to the 

multipliers method, the problem translates to the following unconstrained optimization 

problem, the minimization is made as formula (3.16) shows: 

L (х) = f(х) = ∑ 𝜗𝑗 ∙ 𝑔𝑗
𝑘
𝑗=1  ,   (3.16) 

where L(х, ) – Lagrange function, j- Lagrange multiplier. There are no requirements 

to sign j. We equate the partial derivatives L(х, ) with respect to х to zero, obtain the 

following system of n-equations having n-unknown variables, see equation (3.17): 

𝜕 𝐿 (х, ) 

𝜕𝑥1
 = 0, … 

𝜕 𝐿 (х, ) 

𝜕𝑥𝑛
= 0.    (3.17) 

Kuhn-Tucker conditions. The Lagrange multipliers method may be applied at 

developing the optimality criterion for problems with equality constraints. Kuhn and 

Thucker expanded this approach for the general problem of non-linear programming, 

one needs to minimize f(х)  at the constraints: g(х)0  j=1,2,…,I  

 hk(x) = 0,   k =1,2, ..., K, where  х = х1 , х2, … , хn . Inequality constraint gj(х)  0 is 

called an active or connecting constraint at point  �̅�  if    gj(�̅�) = 0 , and inactive or non-

connecting if gj(�̅�) > 0, where �̅� is an admissible point, i.e. satisfying all the 

constraints.  If there is an opportunity to find the constraints that are inactive in the 

optimum point before solving the task, then these constraints may be excluded from 

the model thus reducing its size.  

Kuhn and Thucker have developed the necessary and sufficient optimality 

conditions for non-linear programming problems on account of the assumption of 

differentiability of  f , gj , hk  functions. Consequently, the Kuhn-Thucker problem 

consists in finding the vectors   x(n1) , U(1I) , (1k)  satisfying the following conditions: 

{
  
 

  
 
∇𝑓 (𝑥) − ∑ 𝑈𝑗 ∙ ∇𝑔𝑗(𝑥) − ∑ 𝜗𝑘 ∙ ∇ℎ𝑘(𝑥) =  0𝐼

𝑗=1 ,𝐼
𝑗=1

𝑔𝑗(𝑥) ≥  0                                                𝑗 =  1,  2,  …  ,  𝐼,

ℎ𝑘(𝑥) =  0                                             𝑘 =  1,  2,  …  ,  𝐾,

𝑈𝑗 ∙ 𝑔𝑗(𝑥) =  0   ,                                                                     

𝑈𝑗 ≥  0       .                                                                              

  (3.18) 
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Variational calculus. When solving some problems, we need to introduce the 

element modeling functions to describe the geometric properties of constantly 

changing cross sections of a mechanical system structural component. Let us consider 

two representative examples to define the attributes of the given problem class. 

1. It is required to find the shortest curve between two points (x0,z0) and (x1,z1)  in 

the plane X and Z. The length is put in correspondence to any curve connecting 

two specified points. The problem consists in choosing a curve Z(x) having the 

shortest length. For a curve Z(x) the length is defined by formula (3.19): 

f (x) = ∫( 1 +(
𝑑𝑧

𝑑𝑥
)2)0,5𝑑𝑥 .   (3.19) 

2. Two points (x0,z0) and (x1,z1) not lying on the vertical line are specified in the 

vertical plane. It is required to find such a curve connecting these points, in the 

line of which a particle having been at a standstill at (x0,z0) will slide 

frictionless to a point (x1,z1)  at the shortest time. 

Let m be a mass of a particle, g – free-falling acceleration; as the particle starts 

moving from a standstill (x0,z0) and the friction is missing, we may put the energy 

equation down as follows, see formula (3.20): 

1

2
𝑚𝑉2 =  𝑚 𝑔 ( 𝑧 −  𝑧0) .                                                  (3.20) 

where V is a velocity defined by formula (3.21): 

 

Figure 3.6 Illustrating example No.1  

Z 

(x1,z1) 

1 

2 

3 

 

(x0,z0)    Х 
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𝑉 =  ((
𝑑𝑥

𝑑𝑡
)2 +  (

𝑑𝑧

𝑑𝑡
)
2
)0,5 =  ( 1 + (

𝑑𝑧

𝑑𝑥
)2)0,5 

𝑑𝑥

𝑑𝑡
 , (3.21) 

where t is the time of particle moving. 

3.4 Analyzing model parameters  

Having found the parameter values in empiric formulas, we need to check the 

fidelity of the obtained analytical representation. For this purpose we calculate the 

deviation percentage for desired values obtained from the source test data on the basis 

of the defined analytical representation. The computational procedure for deviation 

percentage depends on the chosen fidelity criteria. 

For example, the deviation percentage may be estimated as the determination 

factor. 

If the value of deviation percentage is satisfactory, the analytical representation 

has been obtained and the algorithm has led to the problem solution.  

If the deviation percentage outnumbers the allowable value or the parameter 

values have not been found at all, then probably some wrong dependence structure or 

approximation method has been chosen.  In such a case, it is required to get back to the 

algorithm start and complete the next research iteration.  

Having found that the computed fidelity criteria of the defined analytical model 

fit the initially specified limits, we may check for the model adequacy by conducting 

real-world experiments. 

3.5 Example of forecast function development 

Problem. It is required to develop a wind velocity forecast function for MPES in the 

nearest 10 minutes on the basis of the test data results shown at Table 3.5. 

Test data results for the wind velocity 

Table 3.5 

TIME 

(h.min.sec) 

VELOCITY 

(m/s) 

 

TIME 

(h.min.sec) 

VELOCITY 

(m/s) 

 

TIME 

(h.min.sec) 

VELOCITY 

(m/s) 

0:00:00 6.09 0:02:55 1.66 0:05:35 4.29 

0:00:05 6.33 0:03:00 3.09 0:05:40 4.15 
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0:00:10 5.88 0:03:05 2.51 0:05:45 2.92 

0:00:15 4.97 0:03:10 2.04 0:05:50 1.61 

0:00:20 5.69 0:03:15 4.3 0:05:55 4.09 

0:00:25 5.37 0:03:20 8.13 0:06:00 4.69 

0:00:30 5.62 0:03:25 8.86 0:06:05 3.29 

0:00:35 5.12 0:03:30 2.39 0:06:10 2.51 

0:00:40 4.43 0:03:35 0.34 0:06:15 4.04 

0:00:45 3.04 0:03:40 1.05 0:06:20 1.99 

0:00:50 4.16 0:03:45 0.23 0:06:25 4.43 

0:00:55 3.88 0:03:50 0.96 0:06:30 3.36 

0:01:00 2.82 0:03:55 3.00 0:06:35 4.80 

0:01:05 2.16 0:04:00 3.94 0:06:40 3.76 

0:01:10 3.17 0:04:05 5.92 0:06:45 5.37 

0:01:15 2.09 0:04:10 1.93 0:06:50 4.1 

0:01:20 1.59 0:04:15 1.91 0:06:55 0.70 

0:01:25 2.71 0:04:05 5.92 0:07:00 1.54 

0:01:30 4.97 0:04:10 1.93 0:07:05 1.28 

0:01:35 3.22 0:04:15 1.91 0:07:10 0.47 

0:01:40 1.5 0:04:20 2.41 0:07:15 0.56 

0:01:45 0.80 0:04:25 6.11 0:07:20 0.53 

0:01:50 0.87 0:04:30 5.49 0:07:25 1.09 

0:01:55 2.18 0:04:35 7.25 0:07:30 0.75 

0:02:00 1.86 0:04:40 10.28 0:07:35 0.46 

0:02:05 0.81 0:04:45 9.31 0:07:40 0.53 

0:02:10 4.15 0:04:50 8.07 0:07:45 1.35 

0:02:15 5.29 0:04:55 9.75 0:07:50 1.01 

0:02:20 6.96 0:05:00 7.82 0:07:55 1.58 

0:02:25 5.56 0:05:05 5.6 0:08:00 3.13 

0:02:30 5.65 0:05:10 2.33 0:08:05 6.31 

0:02:35 4.47 0:05:15 1.38 0:08:10 0.71 

0:02:40 1.38 0:05:20 0.51 0:08:15 0.73 
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0:02:45 1.25 0:05:25 2.56   

0:02:50 0.74 0:05:30 5.71   

Problem solution: 

1) We introduce and define two array-variables: for the values of the time of 

occurrence and for the wind velocity values. 

time: - ("0:00:05" "0:00:10" "0:00:15" "0:00:20" "0:00:25" "0:00:30" "0:00:35" 

"0:00:40" "0:00:45" "0:00:50" "0:00:55" "0:01:00" "0:01:05" "0:01:10" "0:01:15" 

"0:01:20" "0:01:25" "0:01:30" "0:01:35" "0:01:40" "0:01:45" "0:01:50" "0:01:55" 

"0:02:00" "0:02:05" "0:02:10" "0:02:15" "0:02:20" "0:02:25" "0:02:30" "0:02:35" 

"0:02:40" "0:02:45" "0:02:50" "0:02:55" "0:03:00""0:03:05" "0:03:10" "0:03:15" 

"0:03:20" "0:03:25" "0:03:30" "0:03:35" "0:03:40" "0:03:45" "0:03:50" "0:03:55" 

"0:04:00" "0:04:05" "0:04:10" "0:04:15" "0:04:20" "0:04:25" "0:04:30" "0:04:35" 

"0:04:40" "0:04:45" "0:04:50" "0:04:55" "0:05:00" "0:05:05" "0:05:10" "0:05:15" 

"0:05:20" "0:05:25" "0:05:30" "0:05:35" "0:05:40" "0:05:45" "0:05:50" "0:05:55" 

"0:06:00" "0:06:05" "0:06:10" "0:06:15" "0:06:20" "0:06:25" "0:06:30" "0:06:35" 

"0:06:40" "0:06:45" "0:06:50" "0:06:55" "0:07:00" "0:07:05" "0:07:10" "0:07:15" 

"0:07:20" "0:07:25" "0:07:30" "0:07:35" "0:07:40" "0:07:45" "0:07:50" "0:07:55" 

"0:08:00" "0:08:05" "0:08:10" "0:08:15"). 

values: - (6.09  6.33  5.88  4.97  5.69  5.37  5.62  5.12  4.43  3.04  4.16  3.88  2.82  2.16  

3.17  2.09  1.59  2.71  4.97  3.22  1.55  0.80  0.87  2.18  1.86  0.81  4.15  5.29  6.96  

5.56  5.65  4.47  1.38  1.25  0.74  1.66  3.09  2.51  2.04  4.30  8.13  8.86  2.39  0.34  

1.05  0.23  0.96  3.00  3.94  5.92  1.93  1.91  2.41  6.11  5.49  7.25  10.28  9.31  8.07  

9.75  7.82  5.60  2.33  1.38  0.51  2.56  5.71  4.29  4.15  2.92  1.61  4.09  4.69  3.29  

2.51  4.04  1.99  4.43  3.36  4.80  3.76  5.37  4.10  0.70  1.54  1.28  0.47  0.56  0.53  

1.09  0.75  0.46  0.53  1.35  1.01  1.58  3.13  6.31  0.71  0.73), 

where time array is an array of measurement occurrence time and values array is an 

array of wind velocity measurements occurred in the corresponding moment of time 

(table 3.5). 

𝐤 ∶= 𝟎. . 𝐜𝐨𝐥𝐬(𝐭𝐢𝐦𝐞) −  𝟏 



 

58 

𝐀𝟎,𝐤 ∶=  
𝐡𝐡𝐦𝐦𝐬𝐬(𝐭𝐢𝐦𝐞𝟎,𝐤)

𝐡𝐡𝐦𝐦𝐬𝐬("𝟎𝟎: 𝟎𝟎: 𝟎𝟏")
− 

𝐡𝐡𝐦𝐦𝐬𝐬 (𝐭𝐢𝐦𝐬𝟎,𝟎)

𝐡𝐡𝐦𝐦𝐬𝐬("𝟎𝟎: 𝟎𝟎: 𝟎𝟏")
 

2) Let us range the values of time of wind velocity measurements occurrences: 

0:00:00 = 0,  0:00:05 = 5,  0:00:10 = 10,  etc. 

L(𝐱, 𝐯𝐚𝐥𝐮𝐞𝐬𝐱, 𝐯𝐚𝐥𝐮𝐞𝐬𝐲) ∶

=  

|

|

|

𝐫𝐞𝐬𝐮𝐥𝐭 ← 𝟎
𝐟𝐨𝐫 𝐢 ∈ 𝟎. . 𝐜𝐨𝐥𝐬(𝐯𝐚𝐥𝐮𝐞𝐬𝐲) −  𝟏

|

|

𝐛𝐚𝐬𝐢𝐜 ← 𝟏
𝐟𝐨𝐫 𝐣 ∈ 𝟎. . 𝐜𝐨𝐥𝐬(𝐯𝐚𝐥𝐮𝐞𝐬𝐱) −  𝟏

𝐛𝐚𝐬𝐢𝐜 ← 𝐛𝐚𝐬𝐢𝐜 
𝐱 − 𝐯𝐚𝐥𝐮𝐞𝐬𝐱𝟎.𝐣

𝐯𝐚𝐥𝐮𝐞𝐬𝐱𝟎.𝐢 − 𝐯𝐚𝐥𝐮𝐞𝐬𝐱𝟎,𝐣
𝐫𝐞𝐬𝐮𝐥𝐭 ← 𝐫𝐞𝐬𝐮𝐢𝐭 + 𝐛𝐚𝐬𝐢𝐜 ∗ 𝐯𝐚𝐥𝐮𝐞𝐬𝐲𝟎,𝐣 

  𝐢𝐟 𝐢 ≠ 𝐣

𝐫𝐞𝐭𝐮𝐦 𝐫𝐞𝐬𝐮𝐥𝐭

 

3) Let us define a function computing the interpolation Lagrange polynomial on 

account of data arrays: time and values, farther denoted as valuesx and valuesy 

respectively. 

4) Let us develop a graph of Lagrange polynomial where the Runge phenomenon 

occurs, i.e. the large outliers happen at high polynomial orders, see Figures 3.7, 

3.8. 

 

Figure 2.7  Graphical representation of Lagrange polynomial –  

Runge phenomenon observation  

5) In connection of item 4, we need to choose the other method (LSM) and try the most 

suitable indices of power polynomial: by searching of р order values. The 
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experiments show that the 4th order polynomial allows achieving the minimum 

deviation. 

𝐋𝐒𝐌(𝐜) ≔ ∑ [𝐯𝐚𝐥𝐮𝐞𝐬𝟎,𝐣 − ∑ [𝐜𝟎,𝐢 ∗ (𝐀𝟎,𝐣)
𝐢
]

𝐜𝐨𝐥𝐬(𝐜)− 𝟏

𝐢=𝟎

]

𝟐𝐜𝐨𝐥𝐬(𝐯𝐚𝐥𝐮𝐞𝐬)− 𝟏

𝐣=𝟎

 

𝒑 ∶=  𝟎. . 𝟐 

𝐂𝐓𝐞𝐬𝐭𝟎,𝐩 ∶=  𝟎  𝐅(𝐂𝐓𝐞𝐬𝐭, 𝐱) ∶=  ∑ (𝐂𝐓𝐞𝐬𝐭𝟎,𝐢 ∗  𝐱
𝐢)

𝐜𝐨𝐥𝐬(𝐂𝐓𝐞𝐬𝐭)− 𝟏
𝐢=𝟎  

6) Searching for indices by the LSM: searching for such a value of СTest variable, at 

which the LSM function possesses the least value 

𝐟(𝐯𝐚𝐥𝐮𝐞𝐬, 𝐱) ∶=  |

𝐫𝐞𝐬𝐮𝐥𝐭 ← 𝟎
𝐟𝐨𝐫 𝐢 ∈ 𝟎. . 𝟗𝟖

𝐫𝐞𝐬𝐮𝐥𝐭 ← 𝐯𝐚𝐥𝐮𝐞𝐬𝟎,𝐢  𝐢𝐟 𝐱 = 𝐀𝟎,𝐢

 

𝐅(𝐌𝐢𝐧𝐢𝐦𝐢𝐳𝐞(𝐋𝐒𝐌, 𝐂𝐓𝐞𝐬𝐭), 𝐱)

𝐟(𝐯𝐚𝐥𝐮𝐞𝐬, 𝐱)
𝐨𝐨𝐨

 

7) Graphical representation of the test data f(values, х) and approximating function 

F(Minimize( LSM, CTest),x), see Figure 3.8. 

8) To exclude the outliers and obtain more correct results we apply the exponential 

smoothing method to the data: 𝒊 ∶=  𝟎. . 𝟗𝟖   𝒋 ∶=  𝟎. . 𝟏    𝒂𝒊 ∶=
𝟏

𝟕
 

 

Figure  3.8  Graph of test data distribution  

9) Searching for indices by the LSM: searching for such a value of СTest variable, at 

which the LSM function possesses the least value. 
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Figure 3.9 Forecast function graph – 4th order polynomial 

10) Graphical representation of the smoothed test data F( Smooth, х) and function 

F( Minimize( LSM, CTest), x) approximating it. 

The conclusion drawn according to the experiment results: 

In the present paper we obtained the 4th order polynomial that interpolates and 

extrapolates the source data.  Unfortunately, the discovered polynomial does not take 

into account the nature of the data, for which cause the extrapolation by the given 

polynomial may be conducted with significant errors. 
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CHAPTER 4. GENERALIZATION PROCEDURES FOR 

A FORECAST MODEL 

4.1 Concept of developing an analytical forecast model of a 

technical process in the form of a component 

composition  

Let us suppose that a technical process modelling combined with various 

conditions for which the experiments were made forms some U system that can be 

described through characteristic features of its elements. Let the given U system may 

be represented as sets shown at Figure 4.1, that is: a set of input parameters   {𝑉𝑖}1
𝑁𝐼𝑛𝑝𝑢𝑡

, 

medium external disturbances  {𝑊𝑖}1
𝑁𝐸𝑥𝑡_𝑑𝑖𝑠𝑡 , internal parameters  {𝐺𝑖}1

𝑁𝑆𝑦𝑠𝑡𝑒𝑚
 and 

output parameters  {𝑍𝑖}1
𝑁𝐸𝑥𝑖𝑡. 

 One of the output parameters, e.g. 𝑧1, is our required parameter, the others 

(-𝑧2, ..., 𝑧n-) should be considered at developing the system analytical model only if 

there is a feedback from them.  In general, the forecast model of technical process looks 

as follows (Figure 4.1): 

     
СистемВозмВходВыход NNNN xxxGxxxWxxxVxxxZ ,...,,),...,,(),...,,(,...,, 21212121   (4.1) 

To solve the specified problem it is reasonable to use the method of the analytical 

transformation of a function into a Fourier series that subsequently allows making 

{𝑉𝑖}1
𝑁𝐼𝑛𝑝𝑢𝑡

 
{𝐺𝑖}1

𝑁𝑆𝑦𝑠𝑡𝑒𝑚
 

{𝑊𝑖}1
𝑁𝐸𝑥𝑡_𝑑𝑖𝑠𝑡

 

{𝑍𝑖}1
𝑁𝐸𝑥𝑖𝑡

 

Figure 4.1 General scheme of U system functioning in actual 

practice
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transparent the application of the following mathematical operations: differentiation, 

integrating, argument shift and convolution.    

There are three approaches to represent mathematically the signals processed by 

an engineering system. Approach one – through the real signals expressed as a time 

function that are visible in oscillograph. Let us suppose that there is an arbitrary time 

function S(t) at a finite interval (t1, t2) and there is an orthogonal function system  

𝜑1(𝑡), 𝜑2(𝑡), … , 𝜑𝑚(𝑡), i.e. 

∫   𝜑𝑖(𝑡)𝜑𝑗(𝑡)𝑑𝑡 = {
0 ,          𝑖 ≠ 𝑗,
𝐶𝑗 , 𝑖 = 𝑗.

𝑡2

𝑡1

                                            (4.2) 

It has been affirmed that    𝑆(𝑡) = ∑ 𝑆𝑖𝑗𝑗 𝜑𝑗(𝑡),    where 

𝑆𝑗 =
1

𝑘𝑗
∫ 𝑆(𝑡)𝜑𝑗(𝑡)𝑑𝑡,   𝑘𝑗 = ∫ 𝜑𝑗

2(𝑡)𝑑𝑡

𝑡2

𝑡1

𝑡2

𝑡1

.                                  (4.3) 

It means that a function specified at a finite time interval (including a periodic function) 

can be represented in a series in a system of orthogonal functions. Trigonometric 

functions sin(kt) and cos(kt) are used as orthogonal functions system most frequently. 

Then, as a result of mathematical transformations, we obtain the following Fourier 

trigonometric series: 

𝑠(𝑡) =
𝑎0
2

+∑(𝑎𝑘𝑐𝑜𝑠 𝑘𝑡 + 𝑏𝑘 sin 𝑘𝑡)

∞

𝑘=1

,                                           (4.4) 

𝑎𝑘 =
1

𝜋
∫ 𝑠(𝑡) cos 𝑘𝑡 𝑑𝑡,    𝑏𝑘

𝜋

−𝜋

=
1

𝜋
∫ 𝑠(𝑡) sin 𝑘𝑡 𝑑𝑡

𝜋

−𝜋

,                (4.5) 

  where 𝑘 = 0,1,2.  

If apply Euler formulas and proceed to complex variables, we obtain an 

exponential form of a Fourier series: 

𝑠(𝑡) = ∑ 𝑘е
𝑗𝑘𝑡

∞

𝑘=∞

,   𝑘 =

=
1

2𝜋
∫ 𝑠(𝑡) е−𝑗𝑘𝑡  𝑑𝑡  ,   е𝑗𝑘𝑡 = cos 𝑘𝑡 + 𝑖 sin 𝑘𝑡  ,                             (4.6)

𝜋

−𝜋
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where ak , bk  or  k the indices set   is a signal amplitude spectrum. 

As most part of real-world signals processed by an engineering system requires 

its specification at an unlimited time interval and they are not periodical ones, then the 

second approach to its mathematical representation is to distribute it in the form of a 

signal spectrum. Forward and inverse Fourier transforms or the spectrum density are 

applied to its representation: 

𝑉(𝜔) = ∫ (𝑡) е−𝑗𝜔𝑡  𝑑𝑡                                                            (4.7)

∞

−∞

 

- (t) function spectrum or the forward Fourier transform. 

(𝑡) =
1

2𝜋
∫ 𝑉(𝜔) е−𝑗𝜔𝑡  𝑑𝜔                                                      (4.8)

∞

−∞

 

- Inverse Fourier transform. 

Consequently, a signal may be specified either as a time function (time 

distribution) or as its function spectrum (frequency distribution). 

The third approach for the mathematical signal specification is described in 

details with the sampling theorem. The approach allows considering the transfer of any 

message (continuous or discrete  one) from a single position as a number transfer (or 

data transfer), i.e. the theorem specifies the opportunity of a complete recovery of a 

determinated band-limited signal by its sampling and designates the extreme values of 

between-sampling time at which its recovery is still possible.   

The sampling theorem: if a continuous function x(t) satisfies the Dirichlet 

conditions (it is confined, sectionally continuous and has a finite number of extreme 

points) and its spectrum is limited with some frequency fc, then it is defined completely 

by the sequence of its values at the points spaced from each other 
1

2
𝑓с apart. 

Hence, the continuous signal may be specified digitally – as a sequence of 

transient values.  Consequently, it is possible to have a single integrated signal for the 
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whole class of the considered engineering systems in the output by addressing data 

through the shared memory. 

If we consider the sampling theorem as an approximate one for functions having 

unlimited spectrum, then the contradiction concerning the incapability of a model of 

limited spectrum signals to reflect the main signal property – the ability to transfer the 

information – is avoidable. The reason is the theoretical opportunity to forecast the 

limited spectrum function behavior at the entire temporal axis, if it is known with 

precision at the indefinitely small time interval.    

At restoring the analogue signal, some errors appear caused by the constrained 

limitation of a signal spectrum and the finiteness of the number of samplings applied. 

These errors are estimated by special calculations that are in details described in 

Chapter 5.  

Let us represent an analytical forecast model as a composition of three 

components shown at Figure 4.2 and described in Table 4.1.  

𝑧1 = 𝑓1  (g1, g2 , ... , gk)  𝑓2 (v1,v2,…vl) 𝑓3  (w1, w2 , ... ,wm) = 𝑓4 (𝑧2 , ... , 𝑧n),        (4.9) 

 

 

f3 (w1, w2, ... , wm) 

Z1=f4=f1 f2 f3 

f2 (v1, v2, … , vl) 

 
f1 (g1, g2, ... , gk) 

Figure 4.2 Standard form of the MPES analytical forecast function 

f4 (z1,z2 , ... , zn) 
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Forecast model components  

Table 4.1 

FORECAST MODEL 

COMPONENTS 

ACTING F,  
DESCRIBED BY THIS 

COMPONENT 

MODELLING 

STAGE 

CHARACTERISTIC 

First component-  

f1 (g1, g2 , ... , gk) 

general (universal) part of the 

required model  

The influence of the U 

system internal 

parameters, i.e. the 

description of 𝐹вн. process; 

 

Considering the 

process semantics 

and extracting the 

forecast function 

base; 

 

Second and third components- 

f2 (v1,v2 ,…, vl) 

f3 (w1, w2 , ... , wm) 

The influence of the U 

system external 

parameters, i.e. the 

description of 𝐹внеш. 

process and medium 

disturbances; 

Declaring the 

fundamental 

limitations of the 

required function; 

   

 

Fourth component- 

f4 (z1,z2 , ... , zn) 

 

Taking account of the 

feedback value, if there is 

any; 

 

Opportunities for 

parametrical 

extension while 

choosing parameters 

to be taken into 

account and for 

control of the 

forecast and estimate 

accuracy with 

various degree of 

detail. 

Interconnections between the model components can be expressed through the 

correctness passage of the required function: the smaller the value distinguishing one 

function component from the other neighboring one is, the higher is the probability that 

the function base have been extracted correctly. Mathematical correctness passage may 

be written as follows: 

{

𝑓1 ≠ 0 (𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ∄ 𝑝𝑟𝑜𝑐𝑒𝑠𝑠),                                                                (4.10)

𝑓1 ≠ 𝑓2 ≠ 𝑓3(𝑎𝑐𝑡𝑖𝑛𝑔 𝐹 − 𝑜𝑓 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙 𝑛𝑎𝑡𝑢𝑟𝑒),                         

0 < |𝑓1 − 𝑓2| < 1, 0 < |𝑓2 − 𝑓3| < 1,                                                                   
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where the upper border equal to 1 is in accordance with 100% correspondence (match) 

of the neighboring components of the required function. 

The composition of the offered function parameters may be an additive, 

multiplicative or any other arbitrary dependence and be determined by the availability 

of continued and variable factors, i.e. the given function is a multifactorial function in 

itself: 

f (x) = f1 (x)  f2 (x),     (4.11) 

where f1 (x) component characterizes the influence of the continued factors, and f2 (x) 

accounts for the influence of the variable factors. For example, the continued factor for 

the atmosphere radiation transmission phenomenon is the radiation absorption with 

some gases (in particular, with carbon dioxide gas in case of the infrared radiation). 

Some gases in the atmosphere composition may vary depending on the current 

geographical and climatic location, and that is why we introduce additional component 

f2(x). 

Besides, additional components introduced to a model may not only account for 

the current environmental conditions but vary depending on the modeling aims.  It 

means that some regulating component except the basic and specifying ones may be 

introduced, for example, to estimate the worse or the best or some abnormal scenarios 

of the physical phenomenon investigated.  

Representing the analytical model as a component composition allows obtaining 

the investigated phenomenon models having various degree of detail. Depending on 

the definite aims and conditions of the required model application, we may take into 

account or, on the contrary, exclude from consideration some components of the model 

structure, thus accounting for or setting certain influences aside.   

Consequently, by correcting the result through the experiment, it is possible to 

transform it into the forecast model, and change of the model parameters at keeping its 

semantic meaning brings the model weighting factors into existence.  
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4.2 Base component of the MPES analytical forecast model 

To extract the base or, in other words, the general part of an engineering process 

forecast function we investigate the oscillations of different nature, i.e. we take the 

universal part of oscillations as f1(g1, g2,..., gk), see Figure 4.3. 

 

Figure 4.3 Oscillation of different nature 

Let us consider a possibility that all the oscillations may be described with one of 

the main equations of mathematical physics, a wave equation, i.e. a partial differential 

equation that describes the disturbance propagation in some medium. If the 

disturbances are small and the exterior medium is a homogeneous-isotropic medium, 

then we can write it as follows: 

𝑑2𝑢

𝑑𝑥2
+ 

𝑑2𝑢

𝑑𝑦2
+ 

𝑑2𝑢

𝑑𝑧2
= 

1

𝑎2

𝑑2𝑢

𝑑𝑡2
,                                               (4.12) 

where х, у, z are space variables, t is disturbance travel time, u= u(х, у, z) is the 

required function that characterizes the disturbance in (х,у,z) point at t moment, a is 

disturbance velocity.  

If и depends on two or one space variables only, we are concerned with the 

simplified wave equation – two-dimensional or one-dimensional one. 

Next we consider a solution of the wave equation not as corresponding to plane 

waves with its superimposition description (e.g. for electromagnetic oscillation) but in 

mechanical oscillation circuit

electromagnetic oscillation 
circuit;

electronic quantum oscillation 
circuit.
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the other mathematical form – in waves corresponding to the spherical surface that fall 

apart in three dimensions, i.e. through a spherical wave model.    

The wave equation admits a “spherical wave spreading” solution; the variable 

characterizing the field takes the following form: 

 𝑢 =  
𝑓(𝑡−𝑟/𝑎)

𝑟
 ,     (4.13) 

where  f - is an arbitrary function, 

r=√𝑥2 + 𝑦2 + 𝑧2.     (4.14) 

Suchlike function represents the spherical wave of general kind that spreads from 

the origin of coordinates having velocity а. If we do not account for r in formula (4.13) 

consequent, then the wave amplitude as a distance function from the origin of 

coordinates has its definite form in every given moment t and it is spread with velocity 

a. However, r in the consequent shows that while the wave is spreading, its amplitude 

decays in proportion to 1/r. In other words, in contrast to a plane wave which amplitude 

does not change while running, the amplitude of a spherical wave is continuously 

decaying, see Figure 4.4. The fact follows from simple physical arguments, i.e. from 

the semantics of the physical process itself.  

  

 

Figure 4.4  Spherical wave u=  (f(t-r/a))/r 
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Figure 5 shows under the letter a) the r-dependence of u at  t=t1 and the same 

wave at a later moment t2; under the letter b) the t-dependence of u at  r=r1 and the 

same wave at distance r2. 

The wave power density depends on the square of the wave amplitude: while the 

wave is running, its energy is spreading over to larger area in proportion to the wave 

radius square. If the full energy is kept, the energy density decays as 1/r2, and the 

amplitude as 1/r. It follows from the above given argument that formula (4.13) is quite 

a “reasonable” and acceptable formula for applying it to a spherical wave.   

The other possible solution for a one-dimensional wave equation is a spherical 

wave running inside from larger r to the origin of coordinates: 

𝑢 =
𝑔(𝑡−

𝑟

𝑎
)

𝑟
.      (4.15)  

Consequently, on account of the semantics of the process of spreading the 

spherical waves itself, we may assume that the waves generated by some source are 

always running away from it only. As the waves are caused by the charge movement 

only, we may logically assume that they are running away from the charges. So, 

thinking by contradiction, we assume the following: before the charges were set to 

move, the spherical wave had already escaped from infinity and come to the charges 

exactly when they started to move. The described solution is possible but it is hard to 

match such an argument with the logic of the given phenomenon because the 

experience shows that when the charges accelerate, the waves are moving away from 

the charges but not towards them.  Although the electromagnetic field equations 

provide equal opportunities to both waves, one should invoke an additive factor based 

on the experience that only the spreading waves have physical sense.   

The spreading waves system providing a virtual image is indistinguishable from 

the waves emitted by the object itself; its holograph fully reconstructs the object three-

dimensional structure and shows the visible spacing of the items with parallax effect 

that consists of changing the visible relative item spacing at changing the observation 

point, i.e. observing the spreading wave is equal to observing the object itself. 
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Simplified wave equation of physical phenomena 

Table   4.2 

OSCILLATION 

TYPE 

MATHEMATICAL EQUATIONS OF 

OSCILLATIONS 

1. Mechanical 
 

2. Acoustic wave  𝑑2𝑥

𝑑𝑥2
= 

1

𝑐𝑠
2

𝑑2𝑥

𝑑𝑡2
 

3. Vibration of a string 𝑑2𝑢

𝑑𝑥2 = 
1

𝑎2

𝑑2𝑢

𝑑𝑡2
,      where u= f (t-r/a)/r 

4. Electromagnetic  

 

Let us consider an option of determining the base of a forecast function describing 

the real-time engineering system behavior by making comparison between mechanical 

and electromagnetic oscillations, see Figure 4.5 and Tables 4.3, 4.4.  

 

Figure 4.5  Comparison between mechanical and electromagnetic oscillation 

 

 

d x t

dt
x t

2

2 0
2

0
( )

( ) 

d q t

dt
q t

2

2 0
2

0
( )

( ) 

Mechanical oscillation is a 
cyclic variation of the body 
coordinates, velocity and 

acceleration. 

Electromagnetic oscillation is a 
cyclic variation of the charge, 
current intensity and voltage.  

Common feature: cyclic 
variation of physical quantities 

in both types of oscillation..

Difference: for mechanic 
oscillation the coordinates, 
velocity and oscillation are 

changed, for electromagnetic 
oscillation - the charge, current 

intensity and voltage.
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t=0 t=T/4 t=T/2 t=3T/4 t=T 

     

   

 

 

 

  

     

 

Figure 4.6   Comparison between the oscillating systems: mechanical and 

electromagnetic ones  

Comparison between two oscillating systems: mechanical 

and electromagnetic ones  

Table   4.3 

TIME OSCILLATING CIRCUIT SPRING PENDULUM 

0t  The capacitor has maximum 

charge qm, 

0,
2

max,0
2

 м
m

эл W
c

q
WI  

The body has maximum 

displacement from equilibrium  xm , 

0E,
2

maxE0,v K

2

П  mkx
 

4
0

T
t 

 

At circuit closing, the capacitor 

starts running down through the 

coil, the current and the connected 

magnetic field appear; the current 

force increases gradually due to 

self-inductance  

мэл WWqI ,  

 The body sets to move, its velocity 

increases gradually due to the body 

inertia  

 

кп EExv ,  

4

T
t   The capacitor has run down, the 

current force is a maximum – Im ,  

2
max,0,0

2

m

мэл

LI
WWq   

On passing through the equilibrium, 

the body velocity is a maximum  – 

vm , 

2

mv
max

к
E0,

п
E0,x

2

m  

Vm 

 

x=0 

0 

Vm 

x=0 

0 

Vm 
0 

x=0 

Vm 
0 

x=0 
h 

0 

xm 

h 
0 

xm 

V=0 

V=0 

0 

xm 

V=0 

xm 

 0 

q=0 

 

Jm 

 

V=0 

xm 

 0 

h 
0 

V=0 

qm+ -qm 

J=0 

 

qm+ -qm 

J=0 

 

qm- +qm 

J=0 

 

q=0 

 

Jm 
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24

T
t

T


 

Due to self-inductance the current 

force is reduced gradually, the 

inductive current appears in the 

coil and the capacitor starts 

recharging  

элм WWIq ,  

Having come to the equilibrium, the 

body continues inertial motion 

gradually reducing the velocity  

пк EEvx ,  

2

T
t   The capacitor has been recharged, 

the armature charge signs have 

changed  

0,
2

max

,0max,

2





м
m

эл W
c

q
W

Iq

 

The spring is at maximum 

extension, the body has moved to 

the other side   

0
к

E,
2

kx
max

п
E

0,vmax,x

2

m 



 

4

3

2

T
t

T


 

The capacitor restarts charging, 

the current flows in other 

direction, the current force 

increases gradually  

мэл WWqI ,  

The body starts moving in the 

opposite direction, the velocity 

increases gradually  

кп EExv ,  

4

3T
t   The capacitor has run down, the 

current force in the chain is a 

maximum - Im 

2
max,0,0

2

m

мэл

LI
WWq   

The body passes through the 

equilibrium, its velocity is a 

maximum - vm 

2

mv
max

к
E0,

п
E0,x

2

m  

Tt
T


4

3

 

Due to self-inductance the current 

continues flowing in the same 

direction, the capacitor starts 

charging  

элм WWIq ,  

The body continues inertial motion 

in the same direction to the extreme 

position  

 

пк EEvx ,  

Tt   The capacitor is charged again, 

there is no current in the chain, the 

circuit state is similar to the initial 

one  
0,

2
max

,0max,

2





м

m

эл W
c

q
W

Iq

 

 

 

The body displacement is a 

maximum, its velocity is 0 and its 

state is similar to the initial one  

0
к

E,
2

kx
max

п
E

0,vmax,x

2

m 


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Corresponding values: mechanical and electromagnetic oscillations  

Table 4.3 

MECHANICAL 

OSCILLATIONS 

CORRESPONDI

NG VALUES 

ELECTROMAGNETIC 

OSCILLATIONS 

 

Displacement 

 

xq 

 

Charge 

 

 

Velocity 

 

VI 

 

Current intensity  

 

 

Mass 

 

m  l 

 

Inductance 

 

 

Rigidity 

 

k 
1

𝐶
 

 

Reciprocal of capacitance 

 

Friction ratio 

 

μ R 

 

Resistance 

 

 

Kinetic energy 

 

Eк Wм 

 

Magnetic-field energy 

 

 

Potential energy 

 

Mass 

 

Rigidity 

Еп Wэ 

 

Electric field energy 

 

Inductance 

 

Reciprocal of capacitance 
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Oscillating process equation 

Table  4.4 

SPRING PENDULUM 
SIMPLE 

PENDULUM 
OSCILLATION CIRCUIT 

 

 

 

 

Let us express h in 

terms of х through the 

similarity of ∆АОЕ 

and ∆АВС 

l

x
h

l

x

x

h

22/

2

  

 

 

constWn   constWn   constWn   

0)(  constWn  0)(  constWn  0)(  constWn  

0)
22

(
22


kxmv

 0)
22

(
22


l

x
mg

mv
 0)

22
(

22


С

qLi
 

02
2

2
2

 xx
k

vv
m

 02
2

2
2

 xx
l

mg
vv

m
 02

2

1
2

2
 qq

C
ii

i
 

 

xkxvmv   

xx
l

mg
vmv   qq

C
iLi 

1
 

 

vx   

 

vx   

 

iq   

 

kxvm   

 

x
l

mg
vm   

 

q
C

iL
1

  

x
m

k
v ,

 x
l

g
v   q

LC
i

1
  
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xv   

 

xv   

 

qi   

 

x
m

k
x   

 

x
l

g
x   

 

q
LC

i
q   

 

2
m

k
let  

 

2
l

g
let  

 

21


LC
let  

𝒙′′ = −𝝎𝟐𝒙 

𝑇 =
2𝜋

𝜔
= 2𝜋√

𝑚

𝑘
 

𝒙′′ = −𝝎𝟐𝒙 

𝑇 =
2𝜋

𝜔
= 2𝜋√

𝑙

𝑔
 

𝒒′′ = −𝝎𝟐𝒒 

𝑇 =
2𝜋

𝜔
= 2𝜋√𝐿𝐶 

It is obvious that various oscillatory occurrences are described with the equations 

of the same type and have some constant component in common, so this feature can be 

used for developing the forecast models for ES behavior. 

It is also reasonable to consider various types of energy domains to check the 

MPES forecast function base for the common link, see Figure 4.7. 

Every energy domain is characterized by two physical values of the first and 

second kind, its product is a power always. If we consider an electric domain, they are 

the electric current and voltage respectively. These pair physical values, in each of the 

energy domain, are connected to each other by the Ohm’s law in the respective 

formulation. 
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Figure 3.7 Diagram of various energy domain types 

Consequently, the electrical, magnetic, thermal, hydraulic, acoustic, mechanical, 

rotating and other resistances are the energy consumers in each of the energy domains, 

see Figure 4.8. 

domain hydraulic energy 

domain of thermal energy 

domain magnetic energy 

domain mechanical energy 

domain rotational energy 
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Figure 4.8  Types of resistances that consume the domain energy respectively  

In all the cases, it is a simple physical device subdivided into three classes 

acording to the operating principle (R, L, С). We can say that the Ohm’s law has 21 

formulations for seven above mentioned energy domains. The Ohm’s law formulations 

can be written in three different ways (see Table 4.5). 

Ohm’s law formulations for seven energy domains  

Table 4.5 

CLASS OF SIMPLE 

DEVICES HAVING R 

OPERATING 

PRINCIPLE  

CLASS OF SIMPLE 

DEVICES HAVING C 

OPERATING 

PRINCIPLE 

CLASS OF SIMPLE 

DEVICES HAVING L 

OPERATING 

PRINCIPLE 

   

𝑖(𝑡) =
𝑢(𝑡)

𝑅
 𝑖(𝑡) = 𝐶

𝑑𝑢(𝑡)

𝑑𝑡
 𝑢(𝑡) =

1

𝐿
∫𝑢(𝑡)𝑑𝑡 

𝑢(𝑡) = 𝑅𝑖(𝑡) 𝑢(𝑡) =
1

𝐶
∫ 𝑖(𝑡)𝑑𝑡 𝑢(𝑡) = 𝐿

𝑑𝑖(𝑡)

𝑑𝑡
 

Energy 
domain

Electrical
Magnetic

Thermal

Hydraulic

Acoustic

Mechanical

Rotating

and others

C 
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Hydraulic elements 

   

𝑄(𝑡) =
𝑝(𝑡)

𝑅
 𝑄(𝑡) = 𝐶

𝑑𝑝(𝑡)

𝑑𝑡
 𝑄(𝑡) =

1

𝐿
∫𝑝(𝑡)𝑑𝑡 

𝑝(𝑡) = 𝑅𝑄(𝑡) 𝑝(𝑡) =
1

𝐶
∫𝑄(𝑡)𝑑𝑡 𝑝(𝑡) = 𝐿

𝑑𝑄(𝑡)

𝑑𝑡
 

Thermal elements 

   

𝛷(𝑡) =
∆⊖ (𝑡)

𝑅
 𝛷(𝑡) = 𝐶

𝑑∆⊖ (𝑡)

𝑑𝑡
 𝛷(𝑡) =

1

𝐿
∫∆⊖ (𝑡)𝑑𝑡 

∆⊖ (t) = RΦ(t) ∆⊖ (𝑡) =
1

𝐶
∫𝛷(𝑡)𝑑𝑡 ∆⊖ (𝑡) = 𝐿

𝑑𝛷(𝑡)

𝑑𝑡
 

Magnetic elements 

   

𝛷′(𝑡) =
𝑢(𝑡)

𝑅
 𝛷′(𝑡) = 𝐶

𝑑𝑢(𝑡)

𝑑𝑡
 𝛷′(𝑡) =

1

𝐿
∫𝑢(𝑡)𝑑𝑡 

𝑢(𝑡) = 𝑅𝛷′(𝑡) 𝑢(𝑡) =
1

𝐶
∫𝛷′(𝑡)𝑑𝑡 𝑢(𝑡) = 𝐿

𝑑𝛷′(𝑡)

𝑑𝑡
 

Mechanical elements 

 

  

𝐹(𝑡) =
𝜈(𝑡)

𝑅−1
 𝐹(𝑡) = 𝑚

𝑑𝜈(𝑡)

𝑑𝑡
 𝐹(𝑡) =

1

𝐾−1
∫𝜈(𝑡)𝑑𝑡 

𝜈(𝑡) = 𝑅−1𝐹(𝑡) 𝜈(𝑡) =
1

𝑚
∫𝐹(𝑡)𝑑𝑡 𝜈(𝑡) = 𝐾−1

𝑑𝐹(𝑡)

𝑑𝑡
 

 m  
𝐾−1 

C 

  

  

𝑅−1 
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Rotating elements 

 

  

𝑀(𝑡) =
Ω(𝑡)

R−1
 𝑀(𝑡) = 𝐽

𝑑Ω(𝑡)

𝑑𝑡
 𝑀(𝑡) =

1

𝐾−1
∫Ω(𝑡)𝑑𝑡 

Ω(𝑡) = 𝑅−1𝑀(𝑡) Ω(𝑡) =
1

𝐽
∫𝑀(𝑡)𝑑𝑡 Ω(𝑡) = 𝐾−1

𝑑𝑀(𝑡)

𝑑𝑡
 

Three Ohm’s law notations determine three formalized primitives that are the 

passive elements of undirected graphs, i.e. the models of energy consumers. There exist 

their own symbolic graphical notations in each of the energy domains for them, but the 

mathematical nature of the respective library items is unchanged. 

Nine formalized primitives of undirected graphs – energy consumers, sources, 

junctions and potential ground-wire – allow developing the comprehensive library of 

physical devices elements with any scale and detail levels. 

4.3 Analytical representation of a forecast model 

as a class of several functions  

If the analysis of the source experimental findings shows that y(x) dependence 

describing the source test data is not a monotone increasing or monotone 

decreasing one but contains a set of relative minimums and maximums, then it 

may be difficult to find not too cumbersome single empiric formula. 

In such cases it is reasonable to represent a required dependence as a class of 

several functions, e.g. as Figure 4.9 shows. 

 J  K-1 R
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Figure 4.9 Splitting the argument span into isotropic intervals 

Doing this requires splitting the source data span into several isotropic intervals 

and defining its own function for each of the intervals. In such a case, we have the 

problem of finding a compromise between choosing the minimum number of split 

intervals, ensuring the required accuracy and reaching the computational “simplicity” 

of the obtained functions.    

One of the simplest options of span splitting is the extreme points splitting, see 

Figure 4.10. In such a case, as the source data is given as a finite discrete data array, 

the required function minimums and maximums can be defined by sequential 

comparison of the values of the array neighboring elements.  

The other possible option is splitting by the flex points, see Figure 4.11.  If we 

deal with an analytical function, we may find the flex points by computing zeros of the 

second function derivative. In our case, if we know only the discrete function values, 

we may find the approximate flex points by computing the increment of a function in 

its neighbor points. 

y 

x 0 

y 

X 0 

у= f2 (x) 

Figure  4.10  Splitting by the extreme points 
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The source test data often have a lot of extreme and flex points. However, the 

number of splitting intervals should be minimal. Consequently, there is a problem of 

choosing several points out of the whole set of special points for detecting the splitting 

intervals borders 

We may select the most standing out extreme points applying the first-order 

function derivative calculated approximately with the help of the calculus. For 

example, the derivative value may be calculated with the formula: 

𝑓′(𝑥) =
1

2
(
𝑦𝑖+1−𝑦𝑖

𝑥𝑖+1−𝑥𝑖
+

𝑦𝑖−𝑦𝑖−1

𝑥𝑖−𝑥𝑖−1
).    (4.16) 

In some cases, we may choose the points of the span interval splitting according 

to the physical peculiarities of the investigated phenomenon.  For example, if we 

develop the analytical dependence of the atmosphere transmission factor from the 

wavelength, it is reasonable to split the spectral range into the intervals in such a way 

that each interval corresponds to the known transmission band. 

4.4 Method of developing the forecast models having 

various degree of detail  

Let us consider the development of the analytical forecast model basing on the 

test data concerning the values of some variable у depending on the value of the other 

variable х that have been obtained at various values of  w, v, g and q factors. What is 

more, by factors we mean both the influencing variables and some environmental 

x 

y = f2 (x) 

y 

Figure  4.11  Splitting by the flex points 
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conditions. For example, if we investigate the atmosphere transmission phenomenon, 

the environmental conditions are the meteorological optical range, climate and 

geographical setting. 

In accordance with the principles of analytical model development considered in 

Chapter 1, at stage one we need to set the aims and application conditions of the 

required forecast models, to formulate the requirements specified to it. 

Let us suppose that w, v and g factors may be measured at a definite moment of 

the investigated phenomenon evaluation, and the q factor value is unknown at the 

moment. It means that to develop the most accurate model on the basis of the 

source data we should account for the influence of w, v and g factors in its 

structure. At the same time, the model should be invariant to the q factor. 

Consequently, as a source data we have a set of discrete data concerning the  

y (x, wi, vj, gr, qs) dependence, where i= 1...m,  v...l, g...k, 1...p. Here m, l, k, p is the 

number of options for various values of w, v, g, q factors respectively, for which the 

experiments have been conducted.  We need to obtain an analytical dependence for 

the source data in the form of  у=f (x, wi, vj, gr). 

Let us apply “build-up” approach to a modelling. It consists in “adding” the 

influence of separate factors gradually when developing an analytical forecast model.  

Figure 4.12 shows the generalized algorithm of obtaining the analytical model 
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At stage one we specify the requirements to the required models. 

At stage two we perform the data primary processing and investigation. Here we 

discretize and normalize the source data, if necessary. We distinguish the domain set 

and the set of admissible values on account of both the data itself and the known 

physical laws governing the investigated phenomenon. We also specify the peculiar 

Figure 4.12 Algorithm for analytical model development  

2 

3 

5 

4 

6 

1 

START 

END 

Specifying requirements to the 

required models  

Investigating the source test 

data y (x,wi,vj,gr,qs) 

Developing the model for a certain 

series of the test data and 

investigating it y=fa(x), at w=wi,, 

v=vj, g=gr, q=qk 

Developing the model invariant to 

some factors y=fb(x,w,v,g) at q=�̂� 

and investigating it 

Developing the model in the 

form of component composition  

y= fc0(x)  fc1(x,w)  fc1(x,g) 

Analyzing the results  

Algorithm for analytical model development  

Searching for the basis 

fc0(x) 

Searching for refinement 

components 

fc1(x,g), fc2(x,v) и fc3(x,w) 
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features of the required dependence: monotonous and constant-signs intervals, 

discontinuity and flex points, etc.   

At stage three we develop a model for a certain data series, i.e. we draw an 

analytical dependence  y = fa(x) for some definite factor values  w = wi, v = vj, g =gr, 

q =qs. To develop a model, we apply an algorithm shown at Figure 4.12 step -by 

step. The investigation of the model developed in such a way may indicate some 

specific operational characteristics important for the given process. Anyhow, 

we need to evaluate how successful the chosen points of dividing into the 

isotropic intervals and the tried classes of functions turn out to be for the 

investigated data.  

Then at stage four we offer to develop a model invariant to one or several 

factors – depending on the requirements specified. In our case under investigation, at 

stage four we develop an analytical model  y = fb( x, w, v, g ) that is invariant 

to q factor, which values remain unknown at applying the required model for the 

forecasting. That is why y = fb( x, w, v, g ) model is developed for some particular or 

somehow averaged value of factor q=�̃�.   Factors  w, v  are g may be accounted in the 

form of various indices values in the model structure at this stage. Initial suppositions 

and modeling aims influence on the method of obtaining the invariant model, as far as 

the results of test data investigation. For example, there are the following options for 

“excluding” a factor out of the model: 

 

Figure  4.13 Options for excluding factors out of the model  

Developing a model for the least factor value 

Developing a model for the largest factor value 

Developing a model for some averaged factor value

Developing a model for the most distinctive/most 
frequently met factor value 
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At stage five we develop a model in the form of the component composition. We 

may divide it into the substages of searching for the basis and for refinement 

components.   

The analytical model structure in the form of the component composition looks 

as follows: 

y = fc0(x) ° fc1 (x, s) ◦ fc2(x, r).    (4.16) 

Here  fc0(x) is a basis making for a model “base”. In an ideal case, the basis reveals 

the investigated phenomenon, describes its most distinctive behavior; that is called a 

trend or a systematic component at considering temporal serieses. 

 

Figure 4.14  Forecast function structure 

While developing an empiric forecast model for some of the purposes, the basis 

may also be drawn out of the worst suppositions concerning the physical phenomenon 

development. 

fc1(x, v),  fc2(x, g)  and  fc3(x, w)  are the refinement components and introduced to 

the model for accounting the influence of v, g and w factors on the investigated 

phenomenon respectively. 

Unfortunately, it is not always possible to find a component composition ensuring 

the specified accuracy. In such case, we may turn our attention to the invariant model 

Controlling 
component 

fc3(x, w)Refinement 
components

fc1(x, v) и 
fc2(x, g) 

Basis

fc0(x)
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from stage 4 and on accounting for the influence of v, g and w factors with respect to 

different indices in empiric correlations. 

At stage five we analyze the results. 

4.5 Obtaining the forecast model basis  

The model basis allows obtaining a forecast of the lowest detail level, i.e. 

estimating crudely the technical process state before receiving some additional 

information on its internal and external parameters. 

Depending on the modelling aims, initially specified limitations and model 

application conditions, different variations of the source test data may be the core of 

the basis. 

If there is enough information concerning the most distinctive existence 

conditions of the investigated technical process, it is reasonable to use the observations 

received in that same or the most closely resembling conditions for the basis 

development. 

The other option for basis development is to use the averaged data from the 

conducted experiments. However, here there is a problem of choosing the averaging 

method – computing the arithmetic mean from all of the data, applying some integrated 

index and so on. 

For some of the modelling purposes (e.g. forecasting the abnormal situations), 

minimums or, on the contrary, maximums of the investigated process parameters that 

characterize its worst or conversely the most favorable state may be taken as the basis 

core. 

If we decide to develop the basis as some averaged model describing the general 

behavior of the investigated technical process, then it is possible to apply the smoothing 

algorithms for its development. In this case, the smoothing may be done by using the 

splines [10] or Chebyshev polynomials [3], Fourier series [53] or wavelets [54], median 

[52] or exponential smoothing methods [49], with different filters (linear or Savitzky-

Golay filters [58]), etc. 
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4.6 Accounting for additional factors  

Figure 4.15 shows the application of the fast Fourier transformation for basis 

obtaining at the point of extrapolating the wind velocity data. 

We introduce the additional component into the physical phenomenon model for 

accounting the influence of some additional conditions. Figure 4.15 shows the 

graphical representation of the analytical model of wind velocity change in the form of 

the basis: “the primal trend” and the model with the additional component introduced 

for accounting the maximums – “maximum estimate”. 

Similar to the basis, developing the additional refinement components is also a 

complex problem, moreover, it directly depends on how the basis has been obtained. 

It should be noted, that the introduction of any of the additional components may 

be motivated by the following reasons: 

 The necessity of accounting for some factor in the model that influence on the 

investigated object behavior; 

 The necessity of applying the model under the conditions differing from those 

under which the basis has been obtained. 

One of the methods of additional component development is to obtain an 

analytical representation of the data (with the application of the generalized algorithm 

considered in Chapter 2) obtained with the elementwise subtraction of the basis values 

 

100                200                300                400                500 

Figure 4.15 Data smoothing with the fast Fourier transformation  
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from the test data definite values  (obtained for those conditions for account of which 

we introduce the additional component).  

The other method is to investigate the interconnections between the source test 

data obtained under different conditions. 

Besides, in some cases the known physical laws may determine the additional 

component type. 
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APPENDIX 1 

OPTIMIZATION OF THE OPTICAL BEAM CONTROL ALGORITHM WITH 

THE SIMULATION MODELLING METHOD  

Along with the analytical methods of solving the problems connected with the 

search of the implemented system control algorithm, the simulation modelling 

methods may be applied. The specific character of the simulation modelling is an 

opportunity to estimate the whole system behavior by simulation results of its 

subsystems in accordance with its simulation models, the aggregate of which is 

simpler than the model of the whole system.   However, the simulation fidelity is 

mostly defined by the result of the system decomposition and the correctness of the 

simulation modelling algorithm implementation. 

Let us consider the application of simulation modelling method for the search 

of the optimum algorithm of the optical beam control in two coordinates with a 

couple of optical wedges. In general terms, the analytical correlations describing the 

system operation include the values of refraction indices, refracting wedge angles 

and its rotation angles. Naturally, it is almost impossible to search for the optimum 

control algorithm with simultaneous consideration of the image quality (chromatic 

aberration). In that context it is reasonable to decompose the system into two 

subsystems: a subsystem ensuring the beam movement and a subsystem ensuring 

the image quality. Then we may divide the search of the optimum algorithm into 

three stages:  

Searching for the algorithm of the wedge rotation at preliminary chosen values 

of refracting angles and material properties. 

Searching for the values of refracting angles and refraction indices ensuring the 

required image quality. 

Correcting the wedge rotation algorithm with account of the second stage 

results. 

The first stage is the most difficult one, let us consider it.   

Refraction law in the vectorial form: 
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where  is the vector of a beam refracted from “m-1” to “m” medium having  

and  refraction indices respectively; - the incidence angle of  beam to “m” 

surface having normal line. 
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in XOZ projection plane at the distance L  in linear measure 

 

and angular measure respectively  
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Applying the famous trigonometric transformation, we obtain: 
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It should be noted, that fulfilling the 0cos   condition is the consequence of 

fulfilling the 0xY  condition. Indeed: 
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Then we obtain: 
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Now it is necessary to consider the case when :0xY  
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In all, we obtain: 
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where tk, . 

It is evident that an analytical solution of the system is very complicated. 

Besides, it is impossible to use continuous functions when dealing with real-world 

controllers that regulate the optical guidance systems. In that context, even having 

an analytical solution, we perform the results sampling aimed at obtaining some 

value list of angular displacements of optical wedges depending on the optical beam 

deviation at the stage of programming the controllers. Consequently, we may omit 

the stage of analytical solution development.  

Mathematically we may express the problem as searching for the unknown 

rotation angles of the pair of optical wedges with the preliminary system simulation 

at the specified output deviation angles.   

To solve the problem, let us conduct several experiments on a computer. We 

make a table to put down all the experiments results. We choose a sample spacing 

and try to cover all the acceptable region of 21,  with a discrete network, with the 



 

101 

nodes 
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zY  , and put it down into 

the Table. 
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Consequently, we need to solve the following inequality system: 
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, where Zk . 

In our problem, we may limit ourselves by the main values only, so the required 

21,  may be in the following rectangle: 
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We have chosen k=1, as the angles are positive in that case. It remains to cover 

the rectangle with a network and to obtain the results table.  

For future work we need to sort the obtained results out in relation to
XY , 

ZY , 

i.e. each table line should be sorted according to
ZY  and according to 

XY  inside the 

line. This is rather a time-consuming procedure, but the time factor is not very 

important at the simulation stage. The table made in such a manner allows applying 

the fast searching algorithm with dichotomy method when we search for the required 

grade of optical wedges; the dichotomy method functions in the sorted data arrays 

only.  

The dichotomy method is as follows: at each algorithm step we choose the 

medial element of the data chain and compare it to the required one. If the required 

element is less, we choose the left part of the chain, if it is greater – the right one, 

moreover, the medial element is not included in the chosen half because there is no 

need in the repeated comparison. Next we repeat the algorithm but use the chosen 

half as the data chain. If the elements are equal at the comparison stage, the medial 

element is a required one and the algorithm is completed. 

However, the algorithm should be modified a little to apply the dichotomy 

method in our problem solution.  The point is that we have to find an element in the 

table, which is mostly approximated, but not necessarily equal to the input optical 

beam deviation angles. It is connected with the fact that our table has only discrete 

values, while continuous values will naturally be given to the input of our control 

algorithm. Besides, we do not know beforehand how our required element will differ 

from the closest one, in other words, we cannot make approximation before the 

search stage because the sample spacing is quite possibly will not be constant.   
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To apply the dichotomy algorithm for searching for the closest element, we 

need to include the medial element into the chosen half because at the comparison 

point we do not know if the element is the closest to the required one, we can only 

omit the elements that are evidently farther than the medial one. At the moment when 

the chain consists of two elements only, we compare both elements with the required 

one and find the closest one. As a result, it is possible that one element is twice 

compared to the required one, being a medial element at some cycle iteration for the 

first time and at the last stage for the second time. However, neither this 

circumstance nor the inclusion of the medial elements into the subchains can 

influence on the algorithm performance.   

It should be noted, that the control systems of the optical-radar systems 

certainly belong to the real-time systems in which the time factor is critical from the 

point of disturbance recognition to the point of its stabilization. But the application 

of the simulation modelling algorithms in such-like systems allows shifting the 

computation to the modelling stage thus providing the essential time advantage.   
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