ЭНИВЕРСИТЕТ ИТМО

Ю.В. Татаренко ТЕПЛОВЫЕ РАСЧЕТЫ ЦИКЛОВ ХОЛОДИЛЬНЫХ МАШИН

Учебно-методическое пособие

Санкт-Петербург

2018

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

УНИВЕРСИТЕТ ИТМО

Ю.В. Татаренко ТЕПЛОВЫЕ РАСЧЕТЫ ЦИКЛОВ ХОЛОДИЛЬНЫХ МАШИН

РЕКОМЕНДОВАНО К ИСПОЛЬЗОВАНИЮ В УНИВЕРСИТЕТЕ ИТМО по направлению подготовки 16.03.03 «Холодильная, криогенная техника и системы жизнеобеспечения» и 23.03.03 «Эксплуатация транспортнотехнологических машин и комплексов» факультета низкотемпературной энергетики всех форм обучения в качестве учебно-методического пособия для реализации основных профессиональных образовательных программ высшего образования бакалавриата

ЭНИВЕРСИТЕТ ИТМО

Санкт-Петербург

2018

Татаренко Ю.В. Тепловые расчеты циклов холодильных машин: Учеб.-метод. пособие. – СПб.: Университет ИТМО, 2018. – 62 с.

Рецензент: Пронин Владимир Александрович, д.т.н., профессор, заведующий кафедрой ИПСЖ

одноступенчатых и многоступенчатых Рассматриваются расчеты холодильных машин. Приведены методики расчета холодильной машины с поршневым компрессором моделирование режимов его работы. И Предназначено для студентов специальности 16.03.03 «Холодильная, криогенная техника и системы жизнеобеспечения» и 23.03.03 «Эксплуатация транспортно-технологических машин И комплексов» факультета форм низкотемпературной энергетики всех обучения, изучающих дисциплину «Теоретические холодильной техники основы И низкотемпературные машины».

ЭНИВЕРСИТЕТ ИТМО

Университет ИТМО – ведущий вуз России в области информационных и фотонных технологий, один из немногих российских вузов, получивших в 2009 году статус национального исследовательского университета. С 2013 года Университет ИТМО – участник программы повышения конкурентоспособности российских университетов среди ведущих мировых научно-образовательных центров, известной как проект «5 в 100». Цель Университета ИТМО – становление исследовательского университета мирового уровня, предпринимательского по типу, ориентированного на интернационализацию всех направлений деятельности.

© Университет ИТМО, 2018 ©Татаренко Ю.В., 2018

введение

Важной частью многих процессов производства продуктов, их сохранности, транспортировки и дальнейшей реализации является искусственный холод. Не менее 40% производимой в России сельскохозяйственной продукции необходимо подвергать обработке, например холодом, в целях предотвращения порчи и сохранности.

По масштабам потребления искусственного холода важное место занимает химическая промышленность. В химической промышленности искусственный холод применяется для разделения жидких и газовых смесей и получения чистых продуктов (например, этилена, пропана, пропилена из нефти и природного газа).

В машиностроении внедряются низкотемпературная закалка металлов и холодные посадки. Искусственное замораживание грунтов оказывается эффективным средством для выполнения строительных работ в водоносных слоях. Искусственное охлаждение бетона применяется при строительстве плотин крупнейших гидростанций. Холод используется при производстве большого числа материалов и изделий.

При помощи холода создается искусственный климат в закрытых помещениях (кондиционирование воздуха), в любое время года и в любом климате могут быть созданы искусственные ледяные катки. Искусственный холод широко применяется на различных видах транспорта для перевозки пищевых продуктов, а также на судах рыболовного флота, в торговле пищевыми продуктами и в быту [1].

Наиболее распространены для получения искусственного холода парокомпрессорные холодильные машины [2]. Они работают в широком диапазоне изменения холодопроизводительностей [3]. Рабочее вещество, циркулируя по системе, совершает обратный цикл и меняет свое агрегатное состояние от сухого насыщенного или перегретого пара до жидкого состояния.

В учебно-методическом пособии рассмотрены вопросы расчетов циклов парокомпрессорных холодильных машин. А именно, расчеты одноступенчатых и многоступенчатых холодильных машин. Также уделено внимание такому важному аспекту для парокомпрессорных холодильных машин, как расчет внутренних и внешних необратимых потерь.

Данные расчеты рекомендуется использовать как основу при создании математических моделей, которые могут быть использованы при решении современных практических задач. Необходимо помнить, что для расчетов на реальных рабочих веществах требуется подключение библиотеки термодинамики.

1. Термодинамическая эффективность циклов холодильных машин

Пример 1. Расчет обратимого обратного цикла при переменном источнике низкой температуры (рис. 1).

Исходные данные

Температура, К:	
окружающей среды, $T_{o.c}$	303
источника низкой температуры начальная в точке H, T _н	243
источника низкой температуры конечная в точке К, T _к	233
Теплоемкость источника с _и , кДж/(кг·К)	0,25

Рисунок 1 - Обратимый цикл для переменного источника низкой температуры

Для данных внешних условий обратимым будет цикл 1-2-3-4, так как в этом цикле сжатие и расширение идут изоэнтропно (обратимо), а теплообмен между рабочим веществом и внешними источниками происходит при разности температур ΔT , которая стремится к нулю [4].

Результаты расчета даны в табл. 1.

Определяемая величина	Расчетная формула	Результаты расчета
Удельная теплота, отведенная от рабочего вещества в окру- жающую среду, кДж/кг	$q = T_{0.c}(s_2 - s_3) = T_{0.c}(s_H - s_{\kappa}) =$	3,183
	$= c_{_{\rm H}} \ln \frac{T_{_{\rm H}}}{T_{_{\rm K}}}$	
Удельная холодопроизводи- тельность цикла, кДж/кг	$q_{0} = c_{\mu} \left(T_{\mu} - T_{\kappa} \right)$	2,5
Удельная работа цикла, кДж/кг	$l = q - q_0$	0,683
Холодильный коэффициент	$\varepsilon = \frac{q_0}{l}$	3,66

Результаты расчета

Пример 2. Расчет обратимого обратного цикла при постоянных температурах внешних источников (рис. 2).

Исходные данные

Температура, К:	
окружающей среды, <i>Т</i> _{о. с}	303
источника низкой температуры начальная, <i>Т</i> _{и.н.т}	233

В том случае, когда температура внешних источников в процессе теплообмена с рабочим веществом не меняется, обратимым будет цикл 1-2-3-4, а разность температур между рабочим веществом и источниками ΔT стремится к нулю. Сжатие и расширение рабочего вещества изоэнтропны (обратимы). Такой цикл называется циклом Карно [5].

$$\varepsilon = \frac{T_{\text{u.h.t}}}{T_{\text{o.c}} - T_{\text{u.h.t}}} = \frac{233}{303 - 233} = 4,33.$$

Здесь и в примерах изображение внешних источников в диаграммах для рабочего вещества является условным, так как строго говоря, такое изображение справедливо только в том случае, когда свойства рабочего вещества и источников одинаковы.

Пример 3. Расчет необратимых потерь в обратном цикле при наличии разности температур в процессе теплообмена рабочего вещества и внешних источников (рис. 3).

Daph	annbi
303	303
253	253
243	243
2,5	2,5
3,4	3,4
3	5
5	7
	303 253 243 2,5 3,4 3 5

Исходные данные

DODUOUTU

Для данных источников обратный цикл 1-2-3-4 имеет только внешнюю необратимость, которая зависит от разности температур ΔT_1 и ΔT_2 . Обратимым циклом для данных условий будет цикл a-c-d-b. В табл. 2 даны результаты расчета с разными значениями ΔT_1 и ΔT_2 при прочих равных условиях. Масса источника низкой температуры 1 кг.

Рисунок 3 - Внешние необратимые потери обратного цикла

Определяемая величина	Расчетная формула	Результаты расчета	
		Ι	II
Температура рабочего ве- шества в узловых точках К	$T_3 = T_{\text{o.c}} + \Delta T_2$	308	310
	$T_{\rm 4}=T_{\rm B}-\Delta T_{\rm 1}$	240	238
Теплота отводимая от ис- точника низкой температу- ры, кДж/кг	$q_0 = c_{\scriptscriptstyle \rm H} \left(T_a - T_{\scriptscriptstyle \rm B} \right)$	25	25
Температура рабочего ве- щества в точке 1, К	$T_1 = q_0 / c_{\rm p.B} + T_4$	247,35	245,35
Изменение энтропии в про- цессе 4-1, кДж/кг	$\Delta s_{4-1} = c_{\text{p. B}} \ln \frac{T_1}{T_4}$	0,1026	0,1077
Определение температуры рабочего вещества в точ- ке 2, К	$\Delta s_{2-3} = c_{\text{p.B}} \ln \frac{T_2}{T_3}$ $\Delta s_{4-1} = \Delta s_{2-3}$		

Результаты расчета необратимых потерь в обратном цикле

Продолжение табл. 2

	Результаты ра	Результаты рас	
Определяемая величина	Расчетная формула	Ι	II
	$\ln \frac{T_2}{T_3} = \frac{\Delta s_{4-1}}{c_{\text{p.B}}}$		
	$T_2 = T_3 e^{\overline{c_{\text{p.B}}}}$	317,43	319,60
Теплота, отведенная от ра- бочего вещества в окру- жающую среду, кДж/кг	$q = c_{\mathrm{p.B}} \left(T_2 - T_3 \right)$	32,062	32,637
Удельная работа цикла, кДж/кг	$l = q - q_0$	7,062	7,637
Холодильный коэффициент	$\epsilon = q_0/l$	3,54	3,27
Изменение энтропии источ- ника низкой температуры в процессе <i>а-b</i> , кДж/кг	$\Delta s_{\rm a-b} = c_{\rm m} \ln \frac{T_{\rm a}}{T_{\rm b}}$	0,101	0,101
Теплота, отводимая от ра- бочего вещества в обрати- мом цикле, кДж/кг	$q_{\min} = T_{o.c} \Delta s_{c-d} =$ $= T_{o.c} \Delta s_{a-b}$	30,603	30,603
Работа обратимого цикла, кДж/кг	$l_{\min} = q_{\min} - q_0$	5,603	5,603
Холодильный коэффициент обратимого цикла	$\varepsilon_0 = q_0 / l_{\min}$	4,46	4,46
Коэффициент обратимости	$\eta_{_{o\delta}}=\epsilon/\epsilon_{_0}$	0,793	0,734
Увеличение работы цикла вследствие необратимых потерь, кДж/кг	$\sum \Delta l = l - l_{\min}$	1,459	2,034
Изменение энтропии систе- мы рабочее вещество – ис- точник низкой температуры в процессе теплообмена, кДж/(кг·К)	$\Delta s_1 = \Delta s_{4-1} - \Delta s_{a-b}$	0,0016	0,0027
Увеличение работы цикла из-за необратимых потерь при теплообмене рабочего вещества и источника низ- кой температуры, кДж/кг	$\Delta l_1 = \Delta s_1 T_{\text{o.c}}$	0,489	0,814

Окончание табл. 2

	Paguotung thomas	Результаты расчета		
Определяемая величина	гасчетная формула	Ι	II	
Изменение энтропии сис-	$\Delta s_2 = \Delta s_{d-e} - \Delta s_{2-3} =$	0,00325	0,00403	
темы рабочее вещество – окружающая среда в про- цессе теплообмена, кДж/(кг·К)	$= q / T_{\rm o.c} - \Delta S_{4-1}$			
Увеличение работы цикла из-за необратимых потерь при теплообмене рабочего вещества с окружающей средой, кДж/кг	$\Delta l_2 = \Delta s_2 T_{\text{o.c}}$	0,986	1,220	
Увеличение работы цикла вследствие необратимых потерь, кДж/кг	$\sum \Delta l' = \Delta l_1 + \Delta l_2$	1,471	2,034	
Расхождение в определе- нии увеличения работы цикла	$\delta = \frac{\sum \Delta l' - \sum \Delta l}{\sum \Delta l'}$	0,84	0	

Как следует из сравнения полученных результатов расчета, коэффициент обратимости обратного цикла при увеличении разности температур в процессе теплообмена рабочего вещества и источника низкой температуры уменьшился на 8 % [6].

Пример 4. Расчет необратимых потерь в цикле одноступенчатой паровой холодильной машины (рис. 4).

Исходные данные Температура, К: окружающей среды $T_{_{0.c}}$ 298 источника низкой температуры $T_{_{и.н.T}}$ 248 конденсации $T_{_{K}}$ 303 кипения $T_{_{0}}$ 243 Рабочее вещество R717, R134A

Рисунок 4 - Необратимые потери цикла паровой холодильной машины

Параметры рабочего вещества в узловых точках даны в табл. 3.

Таблица 3

	парам	етры узлов	ых точек		
			R717		
Параметры			Точки		
	1	2	3	4	5
Т, К	243	413	303	303	243
<i>і</i> , кДж/кг	1342	1695	1395	267	267
s, кДж/кг	3,615	3,615	2,822	-0,941	-0,806
			R134a		
Т, К	243	315	303	303	243
<i>і</i> , кДж/кг	380	426	415	242	242
s, кДж/кг	1,75	1,75	1,716	0,45	0,4112

Параметры узловых точек

Результаты расчета необратимых потерь в цикле одноступенчатой холодильной машины на разных рабочих веществах представлены в табл. 4 [7, 8].

	December 1 and 1	Рабочее вещество		
Определяемая величина	Расчетная формула	R717	R134A	
Удельная холодопроизводительность, кДж/кг	$q_0 = i_1 - i_5$	1075	138	
Изоэнтропная работа цикла, кДж/кг	$l_{s} = i_{2} - i_{1}$	353	46	
Холодильный коэффициент:				
цикла <i>1–2–3–4–</i> 5;	$\epsilon = q_{_0}/l_{_s}$	3,05	3,0	
обратимого цикла <i>а-b-c-d</i>	$\varepsilon_0 = \frac{T_{\text{u.h.t}}}{T_{\text{o.c}} - T_{\text{u.h.t}}}$	4,96	4,96	
Коэффициент обратимости	$\eta_{_{ m ob}}=\epsilon/\epsilon_{_0}$	0,615	0,604	
Среднелогарифмическая температура в процессе охлаждения рабочего вещества от состояния 2 до состояния 3	$T_{\rm cp. nor} = \frac{T_2 - T_3}{\ln \frac{T_2}{T_3}}$	357,7	307,7	
Изменение энтропии рабочего вещества в процессе 2–3, кДж/кг	$S_2 - S_3 = \frac{i_2 - i_3}{T_{\text{cp. лог}}}$	0,8387	0,0357	
Изменение энтропии рабочего вещества в процессе 3-4	$s_3 - s_4 = \frac{i_3 - i_4}{T_k}$	3,723	0,571	
Изменение энтропии рабочего вещества в конденсаторе (процесс 2-4)	$\Delta s_{\rm p.B}^{\rm KOH} = (s_2 - s_3) + (s_3 - s_4)$	4,5617	0,6067	

Результаты расчетов цикла

Продолжение табл. 4

	Decusives there are	Рабочее вещество	
Определяемая величина	Расчетная формула	R717	R134A
Изменение энтропии окружающей среды, кДж/(кг·К)	$\Delta s_{\rm o.c} = \frac{i_2 - i_4}{T_{\rm o.c}}$	4,7919	0,6174
Изменение энтропии системы рабочее ве- щество – окружающая среда в конденсато- ре, кДж/(кг·К)	$\Delta s_{\text{сист}}^{\text{конд}} = \Delta s_{\text{o. c}} - \Delta s_{\text{p. b}}^{\text{кон}}$	0,2302	0,0107
Увеличение работы в цикле из-за необра- тимых потерь в конденсаторе, кДж/кг	$\Delta l_{\rm KOH, I} = T_{\rm o.c} \Delta s_{\rm cuct}^{\rm KOH, I}$	68,59	3,203
Изменение энтропии рабочего вещества в испарителе (процесс 5-1)	$\Delta s_{\mathrm{p.B}}^{\mathrm{ucn}} = \frac{q_{0}}{T_{0}}$	4,4239	0,5679
Изменение энтропии источника низкой температуры в испарителе, кДж/(кг·К)	$\Delta s_{\text{и.н.T}} = \frac{q_0}{T_{\text{и.н.T}}}$	4,3347	0,5564
Изменение энтропии системы рабочее ве- щество – источник низкой температуры	$\Delta s_{\text{сист}}^{\text{исп}} = \Delta s_{\text{p.B}}^{\text{исп}} - \Delta s_{\text{и.н.T}}$	0,0892	0,0115
Увеличение работы в цикле из-за необра- тимых потерь в испарителе, кДж/кг	$\Delta l_{\rm ucn} = T_{\rm o.c} \ \Delta s_{\rm cuct}^{\rm ucn}$	26,58	3,427
Изменение энтропии рабочего вещества в процессе дросселирования (процесс 4-5), кДж/(кг·К)	$\Delta s_{\rm dp} = s_5 - s_4$	0,1378	0,0388
Увеличение работы в цикле из-за необра- тимых потерь при дросселировании, кДж/кг	$\Delta l_{\rm дp} = T_{\rm o.c} \Delta s_{\rm dp}$	41,06	11,56

Окончание табл. 4

	De avanuer, han sure	Рабочее вещество	
Определяемая величина	Расчетная формула	R717	R134A
Суммарное увеличение работы из-за необ- ратимых потерь в цикле, кДж/кг	$\sum \Delta l = \Delta l_{\text{конд}} + \Delta l_{\text{исп}} + \Delta l_{\text{др}}$	136,23	18,19
Минимальная работа цикла, кДж/кг	$l_{\min} = l_s - \sum \Delta l$	216,77	27,81
Работа обратимого цикла <i>а-b-с-d</i> , кДж/кг	$l'_{\rm min} = q_0 / \varepsilon_0$	216,73	27,82
Погрешность расчетов	$\delta = \frac{l_{\min} - l'_{\min}}{l_{\min}}$	0,0002	0,0004
Распределение потерь в элементах холо- дильной машины, %:			
в конденсаторе	$\left(\Delta l_{\kappa} / \sum \Delta l\right) 100$	50,3	17,6
в испарителе	$\left(\Delta l_{_{\rm H}}/\sum\Delta l\right)$ 100	19,5	18,8
в дроссельном вентиле	$\left(\Delta l_{\mathrm{Ap}} / \sum \Delta l\right)$ 100	30,4	63,5

2. Паровые одноступенчатые холодильные машины

Пример 5. Тепловой расчет теоретического цикла одноступенчатой холодильной машины (рис. 5).

Исходные данные

Холодопроизводительность Q_0 , кВт	100
Температура, °С:	
кипения t ₀	-15
конденсации t _к	30
Рабочее вещество	R22

Рисунок 5 - Схема и цикл одноступенчатой паровой холодильной машины

В соответствии со схемой и циклом холодильной машины по диаграмме или таблицам определяют параметры узловых точек, которые приведены в табл. 5.

Таблица 5

Пополкотр	Точки				
Параметр	1	2	3	4	
<i>р</i> , МПа	0,2966	1,1908	1,1908	0,2966	
t, °C	-15	53,9	30	-15	
<i>і</i> , кДж/кг	1032,6	1067	871,3	871,3	
<i>v</i> , м ³ /кг	0,076	_	_	_	

Параметры узловых точек

Результаты расчета представлены в табл. 6.

		D
Определяемая величина	Расчетная формула	Результаты
определиемая вели нич	i de leinas populysia	расчета
Удельная массовая холодопроизводи-	$q_{0} = i_{1} - i_{4}$	161,3
тельность, кДж/кг	-0 1 4	
Удельная объемная холодопроизводи-	$q_{11} = q_{0}/v_{1}$	2122,11
тельность, кДж/м ³		
Теплота, отводимая от 1 кг рабочего	$q = i_{2} - i_{2}$	195,7
вещества в конденсаторе, кДж/кг	1 K 2 5	
Удельная изоэнтропная работа ком-	$l_{2} = i_{2} - i_{1}$	34,4
прессора, кДж/кг		
	ИЛИ	
	$l_{s} = q_{\kappa} - q_{0}$	34,4
Теоретический хололильный коэффи-	$\varepsilon = a / l$	4.69
циент	$\mathbf{v}_{\mathrm{T}} = \mathbf{y}_{0} / \mathbf{v}_{s}$	y
Массовый расхол рабочего вещества	G = O / a	0.62
кг/с	$\mathbf{U}_{a} = \mathbf{\mathcal{Y}}_{0} / \mathbf{\mathcal{Y}}_{0}$	-,
Изоэнтропная мошность кВт	N - G.1	213
	$IV_s = O_a V_s$	21,5
Теплота, отводимая от рабочего веще-	$Q_{r} = G_{a} \cdot q_{r}$	121,33
ства в конденсаторе, кВт	K U K	
Объемный расход компрессора, м ³ /с	$V = G_{1} \cdot v_{1}$	$4,72 \cdot 10^{-2}$
	ä I	

Результаты расчета цикла

Пример 6. Тепловой расчет одноступенчатой холодильной машины с регенеративным теплообменником (рис. 6).

Исходные данные

Холодопроизводительность Q_0 , кВт	100
Температура, °С:	
кипения t ₀	-40
конденсации t _к	30
Рабочее вещество	R22

Параметры узловых точек цикла представлены в табл. 7, результаты расчета – в табл. 8.

Рисунок 6 - Схема и цикл одноступенчатой холодильной машины с регенеративным теплообменником

Габлица	7
---------	---

Парамет	ры	узловых	точек

Ποροικοτρ	Точки					
Параметр	а	1	2	3	4	5
<i>р</i> , МПа	0,105	0,105	1,191	1,191	1,191	0,105
t, °C	-40	0	120	30	10	-40
і, кДж/кг	1021,7	1047	1121,7	871,3	846	846
<i>υ</i> , м ³ /кг	_	0,242	_	_	_	_

Температура всасывания (точка l) задается в зависимости от режима работы машины. В данном примере $t_1 - t_a = 40$ °C.

Состояние рабочего вещества в точке 4 определяется из теплового баланса регенеративного теплообменника $i_1 - i_a = i_3 - i_4$, откуда $i_4 = 846$ кДж/кг, $t_4 = 10$ °C.

Таблица 8

Определяемая величина	Расчетная формула	Результаты расчета
Удельная массовая холодопроизводи- тельность, кДж/кг	$q_0 = i_a - i_5$	175,5
Удельная объемная холодопроизводи- тельность, кДж/м ³	$q_v = q_0 / v_1$	717,1
Теплота, отводимая от 1 кг рабочего вещества в конденсаторе, кДж/кг	$q_{\kappa} = i_2 - i_3$	250,4
Удельная изоэнтропная работа компрес- сора, кДж/кг	$l_s = i_2 - i_1$	75

Результаты расчета регенеративного цикла

Окончание табл. 8

Определяемая величина	Расчетная формула	Результаты расчета
Теоретический холодильный коэффици- ент	$\varepsilon_{_{\mathrm{T}}} = q_0/l_s$	2,34
Массовый расход рабочего вещества, кг/с	$G_{a} = Q_{0}/q_{0}$	0,55
Теплота, отводимая от рабочего вещества в конденсаторе, кВт	$Q_{_{\mathrm{K}}} = G_{_{\mathrm{a}}} \cdot q_{_{\mathrm{K}}}$	137,7
Объемный расход рабочего вещества, м ³ /с	$V = G_{a} \cdot v_{1}$	$13,5 \cdot 10^{-2}$
Изоэнтропная мощность, кВт	$N_s = G_a \cdot l_s$	41,25

Пример 7. Тепловой расчет одноступенчатой холодильной машины с бессальниковым компрессором (рис. 7).

Исходные данные

Холодопроизводительность Q_0 , кВт	100
Температура, °С:	
кипения <i>t</i> ₀	-15
конденсации <i>t</i> _к	30
выхода из испарителя <i>t</i> а	-10
Рабочее вещество	R134A

Состояние рабочего вещества при всасывании в компрессор (точка *I*) можно определить двумя методами. Результаты расчета сведены в табл. 9.

Рисунок 7 - Схема и цикл одноступенчатой холодильной машины с бессальниковым компрессором

Результаты расчета

	Doorrow	Воргини по	
Определяемая величина	формуца	ты расчета	Примечание
Первый метод	<i>wopingina</i>		
Нагрев рабочего вещест- ва в электродвигателе, °С	$\Delta t_{\mathrm{вс.эл.дв}} = t_1 - t_a$	30	Принимается
Энтальпия рабочего ве- щества при всасывании в компрессор (точка 1), кДж/кг	i ₁	420,0	Определяется по диа- грамме
Энтальпия рабочего ве- щества при выходе из компрессора (точка 2), кДж/кг	<i>i</i> ₂		Определяется по диа- грамме. Процесс сжатия в компрессоре (1-2) идет изоэнтропно
Коэффициент полезного действия электродвига- теля	$\eta_{_{\mathfrak{I}}}$	0,85	Принимается
Эффективный КПД ком- прессора	η_{e}	0,7	Принимается
Энтальпия рабочего ве- щества при входе в агре- гат, кДж/кг	i _a	394,0	Определяется по диа- грамме. Принимается $t_a - t_0 = 5$ °C
Энтальпия рабочего ве- щества при всасывании в компрессор (точка 1), кДж/кг	$i_{1}^{*} = i_{a} + rac{(i_{2} - i_{1})(1 - \eta_{_{\Im \Pi}})}{\eta_{_{\Im \Pi}} \eta_{e}}$	403,33	Полученное значение от- личается от принятого ранее i_1 =420 кДж/кг. Расчет необходимо по- вторить с другим значе- нием, $\Delta t_{вс.эл.дв}$
Нагрев рабочего вещест- ва в электродвигателе, К	$\Delta t_{\mathrm{вс.эл.дв}} = t_1 - t_a$	10	
Энтальпия рабочего ве- щества в точке 1, кДж/кг	i ₁	402	Определяется по диа- грамме
Энтальпия рабочего ве- щества в точке 2, кДж/кг	i ₂	435,0	Определяется по диа- грамме
Энтальпия рабочего ве- щества при всасывании в компрессор, кДж/кг	$i_1^* = i_a + \frac{(i_2 - i_1)(1 - \eta_{\scriptscriptstyle \mathfrak{II}})}{\eta_{\scriptscriptstyle \mathfrak{II}} \eta_e}$	402,3	Значение i_{l}^{*} незначи- тельно отличается от определенного по диа- грамме ($i_{1} = 402$ кДж/кг). Расчет закончен.

Окончание табл.9

Определяемая	Расчетная	Результаты	Примечание
величина	формула	расчета	
Второй метод			
Холодильный коэффициент	3	3	Задается
Удельная массовая произ- водительность, кДж/кг	$q_0 = i_a - i_4$	152,0	
Энтальпия рабочего ве- щества при всасывании в компрессор, кДж/кг	$\begin{split} i_1 &= i_a + \\ &+ \frac{q_0 \left(1 - \eta_{_{\mathfrak{I}\mathfrak{I}}}\right)}{\varepsilon \eta_{_{\mathfrak{I}\mathfrak{I}}} \eta_e} \end{split}$	406,8	По значению <i>i</i> ₁ в диа- грамме ставится точка <i>1</i>
Энтальпия рабочего ве- щества в точке 2, кДж/кг	i ₂	442,0	Определяется по диа- грамме. Процесс сжатия в компрессоре <i>1–2</i> идет по изоэнтропе
Изоэнтропная работа компрессора, кДж/кг	$l_s = i_2 - i_1$	35,2	no noompone
Холодильный коэффици- ент	$\epsilon = q_0 / l_s$	4,3	Отличается от ранее принятого ($\varepsilon = 3$). Расчет необходимо повторить
Холодильный коэффициент	3	4,6	Принимается
Энтальпия рабочего ве- щества в точке 1, кДж/кг	$\begin{split} i_{1} &= i_{a} + \\ &+ \frac{q_{0} \left(1 - \eta_{\scriptscriptstyle \Im \Pi}\right)}{\varepsilon \eta_{\scriptscriptstyle \Im \Pi} \eta_{e}} \end{split}$	402,26	
Энтальпия рабочего ве- щества в точке 2, кДж/кг	i ₂	435,0	Определяется по диа- грамме
Изоэнтропная работа компрессора, кДж/кг	$l_s = i_2 - i_1$	32,74	
Холодильный коэффици- ент	$\varepsilon = q_0/l_s$	4,64	Мало отличается от ра- нее принятого (ε = 4,6). Расчет закончен

Параметры узловых точек цикла даны в табл. 10, результаты расчета – в табл. 11.

Параметры узловых точек

	Точки				
параметры	а	1	2	3	4
<i>р</i> , МПа	0,161	0,161	0,8	0,8	0,161
t, °C	-10	0	50	30	-15
<i>і</i> , кДж/кг	394	402	435	242	242
<i>υ</i> , м ³ /кг	_	0,11	—	—	—

Таблица 11

• •		
Определяемая величина	Расчетная формула	Результаты
		расчета
Удельная массовая холодопроизводи- тельность, кДж/кг	$q_0 = i_a - i_4$	152
Удельная объемная холодопроизводи- тельность, кДж/м ³	$q_v = q_0 / v_1$	1382
Теплота, отводимая от 1 кг рабочего ве- щества в конденсаторе, кДж/кг	$q_{\kappa} = i_2 - i_3$	193
Удельная изоэнтропная работа компрес- сора, кДж/кг	$l_s = i_2 - i_1$	33
Теоретический холодильный коэффици- ент	$\varepsilon_{_{\mathrm{T}}} = q_{_0}/l_s$	4,60
Массовый расход рабочего вещества, кг/с	$G_{\rm a} = Q_0 / q_0$	0,066
Изоэнтропная мощность, кВт	$N_s = G_a \cdot l_s$	2,18
Теплота, отводимая от рабочего вещества в конденсаторе, кВт	$Q_{\kappa} = G_{a} \cdot q_{\kappa}$	12,7
Объемный расход рабочего вещества, м ³ /с	$V = G_{a} \cdot v_{1}$	$0,7 \cdot 10^2$

Результаты расчета цикла

3. Паровые многоступенчатые и каскадные холодильные машины

Пример 9. Тепловой расчет двухступенчатой холодильной машины с однократным дросселированием и неполным промежуточным охлаждением (рис. 8).

Исходные данные	
Холодопроизводительность Q_0 , кВт	100
Температура, °С:	
кипения t ₀	-60
конденсации t_{κ}	30
после теплообменника t_3	30
всасывания в компрессор ступени 1	-50
перед дроссельным вентилем t_6	25
Недорекуперация на выходе рабочего вещества из	
змеевика промсосуда	5
Рабочее вещество	R22

Параметры узловых точек цикла даны в табл. 14–15, результаты расчета в табл. 16.

Таблица 14

Пологотита	Точки						
Параметры	1	2	3	4	5	6	
<i>р</i> , МПа	0,0218	0,16	0,16	0,16	1,169	1,169	
t, °C	-50	83	30	18	180	25	
і, кДж/кг	1315	1585	1471	1445	1796	242	
<i>v</i> , м ³ /кг	4,75	_	_	0,86	_	_	

Параметры узловых точек

Таблица 15

Параметры узловых точек

		I I	•		
Πορομοτριι			Точки		
Парамстры	7	8	9	10	11
<i>р</i> , МПа	0,16	0,16	0,16	1,169	0,0218
<i>t</i> , °C	-24	-24	-24	-19	-60
і, кДж/кг	242	1351	10	33	33
<i>v</i> , м ³ /кг	—	-	-	_	_

Рисунок 8 - Схема и циклы двухступенчатой холодильной машины с однократным дросселированием и неполным промежуточным охлаждением

гезультаты	грасчета цикла	
Определяемая величина	Расчетная формула	Результаты
		расчета
Промежуточное давление, МПа	$p_m = \sqrt{p_\kappa} \cdot p_0$	0,16
Удельная массовая холодопроизводи- тельность, кДж/кг	$q_0 = i_1 - i_{11}$	1282,0
Удельная объемная холодопроизво- дительность, кДж/м ³	$q_v = q_0 / v_1$	269,9
Массовый расход рабочего вещества в ступени I, кг/с	$G_{a}^{I} = Q_{0}/q_{0}$	0,078
Объемный расход рабочего вещества в ступени I, м ³ /с	$V^{\mathrm{I}} = G_{\mathrm{a}}^{\mathrm{I}} \cdot v_{\mathrm{1}}$	0,37
Массовый расход рабочего вещества в ступени II, кг/с	$G_{\rm a}^{\rm II} = G_{\rm a}^{\rm I} \frac{i_8 - i_{10}}{i_8 - i_7}$	0,09
Энтальпия рабочего вещества в точке 4, кДж/кг	$i_4 = i_8 + \frac{G_a^1(i_3 - i_8)}{G_a^{II}}$	1445
Объемный расход рабочего вещества в ступени II, м ³ /с	$V^{\mathrm{II}} = G_{\mathrm{a}}^{\mathrm{II}} \cdot v_4$	0,077
Изоэнтропная работа компрессора ступени I, кДж/кг	$l_s^{\rm I}=i_2^{\rm I}-i_1^{\rm I}$	270,0
Изоэнтропная мощность компрессора ступени I, кВт	$N_s^{\mathrm{I}} = G_{\mathrm{a}}^{\mathrm{I}} \cdot l_s^{\mathrm{I}}$	21,06
Изоэнтропная работа компрессора ступени II, кДж/кг	$l_s^{\rm II} = i_5 - i_4$	351,0
Изоэнтропная мощность компрессора ступени II, кВт	$N_s^{\mathrm{II}} = G_{\mathrm{a}}^{\mathrm{II}} \cdot l_s^{\mathrm{II}}$	31,63
Теоретический холодильный коэффи- циент	$\varepsilon_{\rm T} = \frac{Q_0}{N_s^{\rm I} + N_s^{\rm II}}$	1,9

Результаты расчета цикла

Пример 10. Тепловой расчет двухступенчатой холодильной машины с однократным дросселированием и полным промежуточным охлаждением по условиям примера 9 (рис. 9).

Параметры узловых точек цикла даны в табл. 17, результаты расчета в табл. 18.

Парамет-		Точки				
ры	1	2	3	4	5	
<i>р</i> , МПа	0,0218	0,16	0,16	0,16	1,169	
t, °C	-50	83	30	-24	125	
<i>і</i> , кДж/кг	1315	1585	1471	1351	1655	
<i>v</i> , м ³ /кг	4,75	_	_	0,73	_	

Параметры узловых точек

Окончание табл. 17

Таблица 17

Πορογοτρι	Точки					
параметры	6	7	8	9	10	
<i>р</i> , МПа	1,169	0,16	0,16	1,169	0,0218	
<i>t</i> , °C	25	-24	-24	-19	-60	
<i>і</i> , кДж/кг	242	242	10	33	33	
<i>v</i> , м ³ /кг	_	_	_	_	_	

Таблица 18

	L	
Определяемая величина	Расчетная формула	Результаты расчета
Промежуточное давление, МПа	$p_m = \sqrt{p_{\kappa} p_0}$	0,16
Удельная массовая холодопроизводи- тельность, кДж/кг	$q_0 = i_1 - i_{10}$	1282,0
Удельная объемная холодопроизводи- тельность, кДж/м ³	${q}_v = {q}_0 / v_1$	269,9
Массовый расход рабочего вещества в ступени I, кг/с	$G_{\rm a}^{\rm I} = Q_0/q_0$	0,078
Удельная теплота, отводимая от рабо- чего вещества в конденсаторе, кДж/кг	$q_{\kappa} = i_5 - i_6$	1413,0
Теплота, отводимая от рабочего веще- ства в конденсаторе, кВт	$Q_{\kappa} = G_{a}^{\Pi} q_{\kappa}$	142,7

Результаты расчета цикла

Рисунок 9 - Схема и циклы двухступенчатой холодильной машины с однократным дросселированием и полным промежуточным охлаждением

Окончание табл. 18

Массовый расход рабочего вещества в ступени II, кг/с	$G_{a}^{II} = G_{a}^{I} \frac{\dot{i}_{3} - \dot{i}_{9}}{\dot{i}_{4} - \dot{i}_{7}}$	0,101
Изоэнтропная работа компрессора ступени I, кДж/кг	$l_s^{\mathrm{I}} = i_2 - i_1$	270,0
Изоэнтропная мощность компрессора ступени I, кВт	$N_s^{\mathrm{I}} = G_{\mathrm{a}}^{\mathrm{I}} \cdot l_s^{\mathrm{I}}$	21,06
Изоэнтропная работа компрессора ступени II, кДж/кг	$l_s^{\rm II} = i_5 - i_4$	304,0
Изоэнтропная мощность компрессора ступени II, кВт	$N_s^{\rm II} = G_{\rm a}^{\rm II} \cdot l_s^{\rm II}$	30,07
Объемный расход рабочего вещества в ступени I, м ³ /с	$V^{\mathrm{I}}=G_{\mathrm{a}} v_{\mathrm{I}}$	0,37
Объемный расход рабочего вещества в ступени II, м ³ /с	$V^{\mathrm{II}} = G_{\mathrm{a}}^{\mathrm{II}} \cdot v_{4}$	0,074
Теоретический холодильный коэффи- циент	$\varepsilon_{\mathrm{T}} = \frac{Q_0}{N_s^{\mathrm{I}} + N_s^{\mathrm{II}}}$	1,93

Пример 11. Тепловой расчет двухступенчатой холодильной машины с двукратным дросселированием и неполным промежуточным охлаждением (рис. 10).

Исходные данные

Холодопроизводительность Q_0 , кВт	100
Температура, °С:	
кипения t ₀	-60
конденсации $t_{_{\rm K}}$	30
после теплообменника t_3	30
всасывания в компрессор ступени 1	-50
перед дроссельным вентилем t_6	25
Рабочее вещество	R717

Параметры узловых точек цикла даны в табл. 19, результаты расчета – в табл. 20.

Рисунок 10 - Схема и циклы двухступенчатой холодильной машины с двукратным дросселированием и неполным промежуточным охлаждением

параметры узловых точек					
Параметры			Точки		
	1	2	3	4	5
<i>р</i> ,МПа	0,0218	0,16	0,16	0,16	1,169
t, °C	-50	83	30	18	180
<i>і</i> , кДж/кг	1315	1585	1471	1443	1790
<i>v</i> , м ³ /кг	4,75	_	_	_	-

Параметры узловых точек

Окончание табл.19

Параметры	Точки					
	6	7	8	9	10	
<i>р</i> ,МПа	1,169	0,16	0,16	1,16	0,0218	
t, °C	25	-24	-24	-24	-60	
<i>і</i> , кДж/кг	242	242	1351	10	10	
<i>v</i> , м ³ /кг	0,855	_	_	_	_	

Таблица 20

Результаты расчета цикла						
Определяемая величина	Расчетная формула	Результаты расчета				
Промежуточное давление, МПа	$p_m = \sqrt{p_{\kappa} p_0}$	0,16				
Удельная массовая холодопроизводи- тельность, кДж/кг	$q_0 = i_1 - i_{10}$	1305				
Удельная объемная холодопроизводи- тельность, кДж/кг	$q = q_0 / v_1$	274,7				
Удельная теплота, отводимая от рабо- чего вещества в конденсаторе, кДж/кг	$q_{\kappa} = i_5 - i_6$	1548				
Массовый расход рабочего вещества в ступени I, кг/с	$G_{\rm a}^{\rm I} = Q_0/q_0$	0,077				
Массовый расход рабочего вещества в ступени II, кг/с	$G_{a}^{II} = G_{a}^{I} \frac{i_{8} - i_{9}}{i_{8} - i_{7}}$	0,093				
Энтальпия рабочего вещества в точке 4, кДж/кг	$i_4 = i_8 + \frac{G_a^{I}(i_3 - i_8)}{G_a^{II}}$	1443				

Окончание табл.20

Теплота, отводимая от рабочего веще- ства в конденсаторе, кВт	$Q_{\kappa} = G_{a}^{II}q_{\kappa}$	143,9
Изоэнтропная работа компрессора ступени I, кДж/кг	$l_s^{\mathrm{I}} = i_2 - i_1$	270,0
Изоэнтропная мощность компрессора ступени I, кВт	$N_s^{\mathrm{I}} = G_{\mathrm{a}}^{\mathrm{I}} \cdot l_s^{\mathrm{I}}$	20,79
Изоэнтропная работа компрессора ступени II, кДж/кг	$l_s^{\rm II} = i_5 - i_4$	347
Изоэнтропная мощность компрессора ступени II, кВт	$N_s^{\rm II} = G_{\rm a}^{\rm II} \cdot l_s^{\rm II}$	32,27
Объемный расход рабочего вещества в ступени I, м ³ /с	$V^{\mathrm{I}}=G_{\mathrm{a}} v_{\mathrm{I}}$	0,366
Объемный расход рабочего вещества в ступени II, м ³ /с	$V^{\mathrm{II}} = G_{\mathrm{a}}^{\mathrm{II}} \cdot v_4$	0,079
Теоретический холодильный коэффи- циент	$\varepsilon_{\rm T} = \frac{Q_0}{N_s^{\rm I} + N_s^{\rm II}}$	1,88

Пример 12. Тепловой расчет двухступенчатой холодильной машины с двукратным дросселированием и полным промежуточным охлаждением по условиям примера 3 (рис. 11).

Параметры узловых точек цикла даны в табл. 21, результаты расчета – в табл. 22.

Параметры узловых точек Точки Параметры 1 2 3 4 5 0,16 *p*, МПа 0,0218 0,16 0,16 0,169 t, °C 83 30 -24 125 -50 і, кДж/кг 1315 1351 1655 1585 1471 *v*, м³/кг 4,75 0,73 _ _

Окончание табл. 21

Таблица 21

Поромотри	Точки							
Параметры	6	7	8	9				
<i>р</i> , МПа	1,169	0,16	0,16	0,0218				
t, °C	25	-24	-24	-60				
<i>і</i> , кДж/кг	242	242	10	10				
<i>v</i> , м ³ /кг	_	_	_	_				

Рисунок 11 - Схема и циклы двухступенчатой холодильной машины с двукратным дросселированием и полным промежуточным охлаждением

Результаты расчета цикла						
Определяемая величина	Расчетная формула	Результаты расчета				
Промежуточное давление, МПа	$p_m = \sqrt{p_\kappa p_0}$	0,16				
Удельная массовая холодопроизводи- тельность, кДж/кг	$q_0 = i_1 - i_9$	1305				
Удельная объемная холодопроизводи- тельность, кДж/кг	$q_v = q_0/v_1$	274,7				
Удельная теплота отводимая от рабоче- го вещества в конденсаторе, кДж/кг	$q_{\kappa} = i_5 - i_6$	1413,0				
Массовый расход рабочего вещества в ступени I, кг/с	$G_{a}^{I} = Q_{0}/q_{0}$	0,077				
Массовый расход рабочего вещества в ступени II, кг/с	$G_{\rm a}^{\rm II} = G_{\rm a}^{\rm I} \frac{i_3 - i_8}{i_4 - i_7}$	0,101				
Теплота, отводимая от рабочего веще- ства в конденсаторе, кВт	$Q_{\kappa} = G_{a}^{II}q_{\kappa}$	142,7				
Изоэнтропная работа компрессора сту- пени I, кДж/кг	$l_s^{\rm I} = i_2 - i_1$	270				
Изоэнтропная мощность компрессора ступени I, кВт	$N_s^{\mathrm{I}} = G_{\mathrm{a}}^{\mathrm{I}} \cdot l_s^{\mathrm{I}}$	20,79				
Изоэнтропная работа компрессора сту- пени II, кДж/кг	$l_s^{\rm II} = i_5 - i_4$	304				
Изоэнтропная мощность компрессора ступени II, кВт	$N_s^{\rm II} = G_{\rm a}^{\rm II} \cdot l_s^{\rm II}$	30,04				
Объемный расход рабочего вещества в ступени I, м ³ /с	$V^{\mathrm{I}} = G_{\mathrm{a}} v_{\mathrm{1}}$	0,366				
Объемный расход рабочего вещества в ступени II, м ³ /с	$V^{\rm II} = G_{\rm a}^{\rm II} \cdot v_4$	0,073				
Теоретический холодильный коэффи- циент	$\varepsilon_{\rm T} = \frac{Q_0}{N_s^{\rm I} + N_s^{\rm II}}$	1,96				

D

Пример 13. Тепловой расчет двухступенчатой холодильной машины с теплообменниками (рис. 12).

Исходные данные	
Холодопроизводительность Q_0 , кВт	100
Температура, °С:	
кипения <i>t</i> ₀	-60
конденсации <i>t</i> _к	30
после теплообменника t_3	30
всасывания в компрессор ступени I t ₁	0
выход из конденсатора t_6	27
Недорекуперация в жидкостном	
теплообменнике $t_m - t_6$	5
Рабочее вещество	R22

Параметры узловых точек цикла даны в табл. 23–24, результаты расчета – в табл. 25.

Таблица 23

Параметры узловых точек										
Параметры		Точки								
	1	1 2 3 4 5 6								
<i>р</i> , МПа	0,0382	0,213	0,213	0,213	1,19	1,19				
t, °C	0	82	30	16	102	27				
<i>і</i> , кДж/кг	1048	1101	1064	1057	1107	868				
<i>v</i> , м ³ /кг	0,7	_	-	0,124	_	_				

Таблица 24

Параметры узловых точек Параметры Точки 7 8 9 10 12 11 1,19 0,213 0,0382 *р*, МПа 0,19 0,0382 0,213 t, °C 5 -18 -23 -60 -23 -60 і, кДж/кг 842 814 814 814 1030 1015 *v*, м³/кг _ _ _ _ _ _

Рисунок 12 - Схема и цикл двухступенчатой холодильной машины с теплообменниками

Результаты расчета цикла

	,	Результаты
Определяемая величина	Расчетная формула	расчета
Промежуточное давление, МПа	$p_m = \sqrt{p_\kappa p_0}$	0,213
Удельная массовая холодо- производительность, кДж/кг	$q_0 = i_{12} - i_9$	201,0
Удельная объемная холодо- производительность, кДж/кг	$q = q_0 / v_1$	287,1
Удельная теплота отводимая от рабочего вещества в кон- денсаторе, кДж/кг	$q_{\kappa} = i_5 - i_6$	239,0
Массовый расход рабочего вещества в ступени <i>I</i> , кг/с	$G_{\rm a}^{\rm I} = Q_0 / q_0$	0,497
Массовый расход рабочего вещества в ступени II, кг/с	$G_{a}^{II} = G_{a}^{I} \frac{(i_{11} - i_{8}) - (i_{1} - i_{12})}{i_{11} - i_{6}}$	0,627
Теплота, отводимая от рабочего вещества в конденсаторе, кВт	$Q_{\kappa} = G_a^{\Pi} q_{\kappa}$	149,8
Энтальпия рабочего вещества при всасывании в компрессор ступени <i>II</i> (точка 4), кДж/кг	$i_4 = \frac{G_a^1}{G_a^{II}} (i_3 - i_{11}) + i_{11}$	1057
Энтальпия рабочего вещества при выходе из парожидкост- ного теплообменника (точ- ка 7), кДж/кг	$i_7 = i_6 - \frac{G_a^1}{G_a^{II}}(i_1 - i_{12})$	842,0
Изоэнтропная работа ком- прессора ступени <i>I</i> , кДж/кг	$l_s^{\rm I} = i_2 - i_1$	53
Изоэнтропная мощность ком- прессора ступени <i>I</i> , кВт	$N_s^{\mathrm{I}} = G_{\mathrm{a}}^{\mathrm{I}} \cdot l_s^{\mathrm{I}}$	26,34
Изоэнтропная работа ком- прессора ступени <i>II</i> , кДж/кг	$l_s^{\rm II} = i_5 - i_4$	50
Изоэнтропная мощность ком- прессора ступени <i>II</i> , кВт	$N_s^{\rm II} = G_{\rm a}^{\rm II} \cdot l_s^{\rm II}$	31,35
Объемный расход рабочего вещества в ступени <i>I</i> , м ³ /с	$V^{\mathrm{I}}=G_{\mathrm{a}} v_{\mathrm{I}}$	0,348
Объемный расход рабочего вещества в ступени <i>II</i> , м ³ /с	$V^{\mathrm{II}} = G_{\mathrm{a}}^{\mathrm{II}} \cdot v_{4}$	0,078
Теоретический холодильный коэффициент	$\varepsilon_{\rm T} = \frac{Q_0}{N_s^{\rm I} + N_s^{\rm II}}$	1,733

Пример 14. Тепловой расчет двухступенчатой холодильной машины с двумя испарителями по условиям примера 3, если холодопроизводительность второго испарителя равна 150 кВт (рис. 13).

Рисунок 13 - Схема и цикл двухступенчатой холодильной машины с двумя испарителями

Параметры узловых точек цикла даны в табл. 26, результаты расчета – в табл. 27.

Таблица 26

Пара-		Точки								
метры	1	2	3	4	5	6	7	8	9	10
р,МПа	0,0218	0,16	0,16	0,16	0,16	1,169	1,169	0,16	1,16	0,0218
t, °C	-50	83	30	16	-24	125	25	-24	-24	-60
і, кДж/кг	1315	1585	1471	1400	1351	1655	242	242	10	10
<i>v</i> , м ³ /кг	4,75	_	_	0,73	_	_	_	_	_	_

Параметры узловых точек

Таблица 27

Результаты расчета цикла						
Определяемая величина	Расчетная формула	Результаты расчета				
Промежуточное давление, МПа	$p_m = \sqrt{p_{\kappa} p_0}$	0,16				
Удельная массовая холодопроизво- дительность, кДж/кг	$q_0 = i_1 - i_{10}$	1305				
Удельная объемная холодопроиз- водительность, кДж/кг	$q_v = q_0 / v_1$	247,7				
Удельная теплота отводимая от ра- бочего вещества в конденсаторе, кДж/кг	$q = i_6 - i_7$	1413				
Массовый расход рабочего вещест- ва в ступени I, кг/с	$G_{a}^{I} = Q_{0}/q_{0}$	0,077				
Массовый расход рабочего вещества в промежуточном испарителе, кг/с	$G_{a}^{np} = \frac{Q_{0}^{np}}{(i_{5} - i_{9})}$	0,11				
Массовый расход рабочего вещест- ва в ступени II, кг/с	$G_{a}^{II} = (G_{a}^{I} + G_{a}^{II}) \frac{i_{4} - i_{9}}{i_{5} - i_{7}}$	0,242				
Теплота, отводимая от рабочего вещества в конденсаторе, кВт	$Q_{\kappa} = G_{a}^{II} q_{\kappa}$	342				
Энтальпия рабочего вещества при всасывании в компрессор ступени II (точка 4), кДж/кг	$i_{4} = \frac{G_{a}^{I}i_{3} + G_{a}^{np}i_{5}}{G_{a}^{I} + G_{a}^{np}}$	1400				
Изоэнтропная работа компрессора ступени I, кДж/кг	$l_s^{\mathrm{I}} = i_2 - i_1$	270				
Изоэнтропная мощность компрес- сора ступени I, кВт	$N_s^{\mathrm{I}} = G_{\mathrm{a}}^{\mathrm{I}} \cdot l_s^{\mathrm{I}}$	20,79				
Изоэнтропная работа компрессора ступени II, кДж/кг	$l_s^{\rm II} = i_6 - i_5$	304				

Окончание табл. 27

Определяемая величина	Расчетная формула	Результаты расчета
Изоэнтропная мощность компрес- сора ступени II, кВт	$N_s^{\mathrm{II}} = G_{\mathrm{a}}^{\mathrm{II}} \cdot l_s^{\mathrm{II}}$	73,57
Объемный расход рабочего веще- ства в ступени I, м ³ /с	$V^{\mathrm{I}}=G_{\mathrm{a}} v_{\mathrm{I}}$	0,366
Объемный расход рабочего веще- ства в ступени II, м ³ /с	$V^{II} = G_a^{II} \cdot v_5$	0,177

Пример 15. Тепловой расчет трехступенчатой холодильной машины (рис. 14).

Холодопроизводительность Q_0 , кВт	Исходные данные	
Температура, °C: -60 кипения t_0	Холодопроизводительность Q_0 , кВт	100
кипения t_0	Температура, °С:	
конденсации t_{κ} 30 выхода рабочего вещества из теплообменника t_5 30 всасывания в компрессор ступени І t_1 -50 перед дроссельным вентилем t_8 25 Рабочее вещество R717	кипения t ₀	-60
выхода рабочего вещества из теплообменника t_5 30 всасывания в компрессор ступени І t_1 -50 перед дроссельным вентилем t_8 25 Рабочее вещество R717	конденсации t_{κ}	30
всасывания в компрессор ступени І t_1	выхода рабочего вещества из теплообменника t_5	30
перед дроссельным вентилем <i>t</i> ₈	всасывания в компрессор ступени I t_1	-50
Рабочее вещество R717	перед дроссельным вентилем t_8	25
	Рабочее вещество	R717

Параметры узловых точек цикла даны в табл. 28-29, результаты расчета – в табл. 30.

Таблица 28

Параметры узловых точек									
Ποροιζοτριι		Точки							
Параметры	1	2	3	4	5	6			
<i>р</i> , МПа	0,0218	0,0822	0,0822	0,31	0,31	0,31			
t, °C	-50	29	-37	48	30	-9			
і, кДж/кг	1315	1477	1330	1500	1461	1369			
<i>v</i> , м ³ /кг	4,75	-	1,36	-	-	0,4			
						Таблица 29			

Параметры		Точки							
	7	7 8 9 10 11 12							
<i>р</i> , МПа	1,169	1,169	0,31	0,31	0,0822	0,0822	0,0218		
t, °C	88	25	-9	-9	-37	-37	-60		
<i>і</i> , кДж/кг	1560	242	242	80	80	-50	-50		
<i>v</i> , м ³ /кг	_	_	_	_	_	_	_		

Параметры узловых точек

Рисунок 14 - Схема и цикл холодильной трехступенчатой холодильной машины

Таблица 30

ГСЗУЛЬТАТ	ы расчета цикла	
Определяемая величина	Расчетная формула	Результаты расчета
Промежуточное давление, МПа:		
p_m	$p_m = \sqrt[3]{p_\kappa^2} p_0$	0,31
p'_m	$p'_m = \sqrt[3]{p_{\kappa}p_0^2}$	0,032
Удельная массовая холодопроиз- водительность, кДж/кг	$q_0 = i_1 - i_{13}$	1365
Удельная теплота, отводимая от рабочего вещества в конденсаторе, кДж/кг	$q_{\kappa} = i_7 - i_8$	1318
Массовый расход рабочего веще- ства в ступени I, кг/с	$G_{\rm a}^{\rm I} = Q_0/q_0$	0,073
Массовый расход рабочего веще- ства в ступени II, кг/с	$G_{\rm a}^{\rm II} = G_{\rm a}^{\rm I} \frac{i_2 - i_{12}}{i_3 - i_{11}}$	0,089
Массовый расход рабочего веще- ства в ступени III, кг/с	$G_{a}^{III} = G_{a}^{II} \frac{i_{5} - i_{10}}{i_{6} - i_{9}}$	0,106
Изоэнтропная работа компрессора ступени I, кДж/кг	$l_s^{\mathrm{I}} = i_2 - i_1$	162
Изоэнтропная мощность ком- прессора ступени I, кВт	$N_s^{\mathrm{I}} = G_{\mathrm{a}}^{\mathrm{I}} \cdot l_s^{\mathrm{I}}$	11,83
Изоэнтропная работа компрессора ступени II, кДж/кг	$l_s^{\rm II} = i_4 - i_3$	170
Изоэнтропная мощность ком- прессора ступени II, кВт	$N_s^{\mathrm{II}} = G_{\mathrm{a}}^{\mathrm{II}} \cdot l_s^{\mathrm{II}}$	15,13
Изоэнтропная работа компрессора ступени III, кДж/кг	$l_s^{\rm III} = i_7 - i_6$	191
Изоэнтропная мощность ком- прессора ступени III, кВт	$N_s^{\rm III} = G_{\rm a}^{\rm III} \cdot l_s^{\rm III}$	20,06
Объемный расход рабочего ве- щества в ступени I, м ³ /с	$V^{\rm I} = G_{\rm a} v_{\rm 1}$	0,347
Объемный расход рабочего ве- щества в ступени II, м ³ /с	$V^{\rm II} = G_a^{\rm II} \cdot v_3$	0,121
Объемный расход рабочего ве- щества в ступени III, м ³ /с	$V^{\rm III} = G_{\rm a}^{\rm III} \cdot v_6$	0,422
Теоретический холодильный ко- эффициент	$\varepsilon_{\mathrm{T}} = \frac{Q_0}{N_s^{\mathrm{I}} + N_s^{\mathrm{II}} + N_s^{\mathrm{III}}}$	2,13
Теплота, отводимая от рабочего вещества в конденсаторе, кВт	$Q_{\kappa} = G_{a}^{III}q_{\kappa}$	139,7

Результаты расчета цикла

Пример 16. Тепловой расчет каскадной холодильной машины (рис. 15).

Исходные данные	
Холодопроизводительность Q_0 , кВт	15
Температура, °С:	
кипения в нижней $t_0^{\text{ н}}$	-85
конденсации в верхней $t^{\rm B}_{\rm \kappa}$	30
после теплообменника t ₃	30
Рабочее вещество в ветви каскада:	
нижней	R13
верхней	R134 <i>a</i>

Температура конденсации рабочего вещества в нижней ветви каскада t_{κ}^{H} и температура кипения в верхней ветви каскада t_{0}^{B} выбира-

ется при условии
$$\frac{p_{\kappa}^{B}}{p_{0}^{B}} = \frac{p_{\kappa}^{H}}{p_{0}^{H}}$$
, а также $t_{0}^{B} - t_{\kappa}^{H} = 5 \div 10 \text{ °C}.$

Температура рабочего вещества в точке 3 определяется по условиям недорекуперации в теплообменнике *IV*. В теплообменнике *III* (точка *I*) рабочее вещество нагревается до температуры $0 \div -15$ °C.

Состояние рабочего вещества в точке 9 определяется из условий его нагрева в теплообменнике II до $-50 \div -40$ °C.

Нагрев рабочего вещества в теплообменнике *I* (процесс *10–11*) выбирается в пределах 20 ÷ 30 °C.

Параметры узловых точек даны в табл. 31–32, результаты расчета – в табл. 33.

Таблица 31

		_							
Пологотить	Точки								
Параметры	1	2	3	4	5	6	7	8	
<i>р</i> , МПа	0,08	0,735	0,735	0,735	0,735	0,735	0,08	0,08	
t, °C	0	85	30	4	-35	-60	-85	-85	
<i>і</i> , кДж/кг	513	567	535	509	360	337	337	464	
<i>v</i> , м ³ /кг	0,28	—	—	-	—	—	-	—	

Параметры узловых точек

Таблица 32

Попомотри	Точки								
параметры	9	10	11	12	13	14	15		
<i>р</i> , МПа	0,08	0,085	0,085	0,78	0,78	0,78	0,085		
t, °C	-45	-30	20	90	30	1	-30		
<i>і</i> , кДж/кг	487	380	420	488	241	201	201		
<i>v</i> , м ³ /кг	_	_	0,29	—	_	_	_		

Параметры узловых точек

Рисунок 15 - Схема и цикл каскадной холодильной машины

Таблица 33

Результаты расчета цикла							
Определяемая величина	Расчетная формула	Результаты расчета					
Энтальпия рабочего вещества, кДж/кг:							
в точке 4	$i_4 = i_3 - (i_1 - i_9)$	509					
в точке б	$i_6 = i_5 - (i_9 - i_8)$	337					
в точке 14	$i_{14} = i_{13} - (i_{11} - i_{10})$	201					
Удельная массовая холодопроизводитель- ность, кДж/кг:							
в нижней ветви каскада	$q_0^{_{ m H}} = i_8 - i_7$	127					
в верхней ветви каскада	$q_0^{\scriptscriptstyle \rm B}=i_{10}-i_{15}$	179					
Теплота, отводимая от рабочего вещества нижней ветви каскада в конденсаторе-испарителе, кДж/кг	$q^{\scriptscriptstyle \rm H}=i_4-i_5$	149					
Массовый расход рабочего вещества, кг/с:							
нижней ветви каскада	$G_a^{\scriptscriptstyle \rm H} = Q_0 / q_0^{\scriptscriptstyle \rm H}$	0,118					
верхней ветви каскада	$G_a^{\scriptscriptstyle \mathrm{B}}=G_a^{\scriptscriptstyle \mathrm{H}}rac{q_0^{\scriptscriptstyle \mathrm{H}}}{q_0^{\scriptscriptstyle \mathrm{B}}}$	0,084					
Изоэнтропная работа компрессора:							
нижней ветви каскада, кДж/кг	$l_s^{\rm H} = \left(i_2 - i_1\right)$	54					
верхней ветви каскада, кДж/кг	$l_{s}^{\rm B} = \left(i_{12}^{\rm } - i_{11}^{\rm }\right)$	68					
Изоэнтропная мощность компрессора, кВт:							
нижней ветви каскада	$N_s^{\scriptscriptstyle\rm H}=G_a^{\scriptscriptstyle\rm H}l_s^{\scriptscriptstyle\rm H}$	6,37					
верхней ветви каскада	$N_s^{\scriptscriptstyle \rm B}=G_a^{\scriptscriptstyle \rm B}l_s^{\scriptscriptstyle \rm B}$	5,71					
Объемный расход рабочего вещества, м ³ /с:							
в нижней ветви каскада	$V^{\scriptscriptstyle \rm H} = G^{\scriptscriptstyle \rm H}_a \upsilon_1$	0,033					
в верхней ветви каскада	$V^{\scriptscriptstyle \rm B} = G^{\scriptscriptstyle \rm B}_a \upsilon_{11}$	0,024					
Теоретический холодильный коэффициент	$\varepsilon_{\rm T} = \frac{Q_0}{N_s^{\rm H} + N_s^{\rm B}}$	1,24					

4. Тепловой расчёт одноступенчатого поршневого компрессора паровой холодильной машины

Исходные данные:

Холодопроизводительность компрессора Q_0 ,	
кВт	100
Температура кипения T_0 , °С (К)	-15 (258,15)
Температура конденсации T_{κ} , °С (К)	+30 (303,15)
Рабочее вещество	R22

Перегрев рабочего вещества при всасывании в компрессор для нерегенеративного цикла принимается в пределах:

при работе на высокомолекулярных хладонах (R134*a*, R22 и т.п.) $\Delta t_{\text{перегр}} = 10 \div 15^{\circ} \text{C}$; при работе на аммиаке (R717) $\Delta t_{\text{перегр}} = 5 \div 10^{\circ} \text{C}$.

Для регенеративного цикла перегрев определяется глубиной регенерации и выбирается в пределах $\Delta t_{\text{перегр}} = 20 \div 30 \,^{\circ}\text{C}$.

Переохлаждение рабочего вещества при выходе из конденсатора для нерегенеративного цикла принимается в пределах $\Delta t_{\text{переохл}} = 0 \div 5 \text{ °C}$, для регенеративного цикла – определяется из теплового баланса регенеративного теплообменника.

Принимаются: $\Delta t_{\text{перегр}} = 10 \degree \text{C}$, $\Delta t_{\text{переохл}} = 0 \degree \text{C}$.

Термодинамические параметры узловых точек цикла определяются по таблицам или диаграммам состояния рабочего вещества. Они представлены в табл. 34.

Таблица 34

	Узловые точки							
Параметр	а	1	2	3	3'	4		
<i>р</i> , МПа	2,96	2,96	11,90	11,90	11,90	2,96		
t, °C	-15	-5	+58,35	+30	+30	-15		
Т, К	258,15	263,15	331,5	303,15	303.15	258,15		
<i>і,</i> кДж/кг	598,8	602,2	638,0	436,0	436,0	436,0		
<i>v</i> , м ³ /кг	-	0,0794	-	-	-	-		

Параметры узловых точек

Рисунок 16 - Цикл одноступенчатой паровой холодильной машины в *i* - *p* диаграмме

Удельная массовая холодопроизводительность

$$q_0 = i_a - i_4$$
, $q_0 = 162,8$ кДж/кг

Массовый расход рабочего вещества

$$G_a = Q_0 / q_0,$$
 $G = 0,6144$ кг/с

Действительная объёмная производительность компрессора

$$V_{\mu} = G_a v_1$$
 $V_{\mu} = 0.0488 \text{ m}^3/\text{c}$

Относительный мертвый объём в поршневых компрессорах средней производительности обычно принимается в пределах 0,04÷0,05.

Меньшие значения – у компрессоров большей производительности. Для рассматриваемо примера принимается следующее значение:

$$c = 0.05$$

Относительные осреднённые потери давления в клапанах принимаются в пределах:

во всасывающем клапане:	
для аммиачных и воздушных компрессоров	$\kappa_{\rm B} = 0,02 \div 0,04$
для хладоновых компрессоров	$\kappa_{\rm H} = 0.03 \div 0.08$
в нагнетательном клапане:	
для аммиачных и воздушных компрессоров	$\kappa_{\rm B} = 0.03 \div 0.06$
для хладоновых компрессоров	$\kappa_{\rm H} = 0.04 \div 0.10$
Принимается для данных расчетов:	

 $\kappa_{\rm B} = 0.03$ $\kappa_{\rm H} = 0.06$

Давления всасывания и нагнетания принимаются для данного примера равными давлениям кипения и конденсации: $p_{\rm B} = p_0$; $p_{\rm H} = p_{\rm K}$.

Давление, потерянное во всасывающем и нагнетательном клапанах:

$$\Delta p_{\rm B} = \kappa_{\rm B} p_{\rm B}$$
 $\Delta p_{\rm B} = 0,0089 \text{ MIIa},$
 $\Delta p_{\rm H} = \kappa_{\rm H} p_{\rm H}$ $\Delta p_{\rm H} = 0,0714 \text{MIIa}$

Отношение давлений в компрессоре:

$$\pi_{\kappa} = p_{\mu} / p_{\mu}$$
. $\pi_{\kappa} = 4,02$

Внутреннее отношение давлений в компрессоре:

$$\pi_{\rm K,BH} = \frac{p_{\rm H} + \Delta p_{\rm H}}{p_{\rm B} - \Delta p_{\rm B}}.$$

$$\pi_{\rm K,BH} = 4,39$$

Индикаторный коэффициент всасывания (коэффициент видимых объёмных потерь):

$$\lambda_{i} = \frac{p_{\rm B} - \Delta p_{\rm B}}{p_{\rm B}} - c \left[\left(\frac{p_{\rm H} + \Delta p_{\rm H}}{p_{\rm B}} \right)^{1/n_{\rm p}} - \frac{p_{\rm B} - \Delta p_{\rm B}}{p_{\rm B}} \right] \quad . \qquad \lambda_{i} = 0.817$$

Коэффициент подогрева:

$$\lambda'_{w} = T_{0} / T_{\kappa}$$
. $\lambda'_{w} = 0.852$

Коэффициент подачи компрессора:

$$\lambda = \lambda_i \lambda'_w \qquad \qquad \lambda = 0,696$$

Теоретическая объёмная производительность поршневого компрессора:

$$V_{\rm T} = V_{\rm A} / \lambda$$
 $V_{\rm T} = 0.07 \, {\rm m}^3 / {\rm c}$

Число цилиндров поршневого компрессора принимается для компрессоров малой и средней производительности z = 2, 4, 6, 8. Для крупных крейцкопфных компрессоров обычно z = 2 или 4.

Для расчетов принимается: z = 8

Отношение хода поршня к диаметру цилиндра. Этот параметр выбирается из конструктивных соображений в пределах:

для крейцкопфных компрессоров $\psi = 0,8 \div 0,9;$ для бескрейцкопфных (тронковых) компрессоров $\psi = 0,6 \div 0,8.$

Для расчетов принимается: $\psi = 0,7$

Частота вращения коленчатого вала компрессора обычно принимается равной частоте вращения приводного асинхронного электродвигателя в пределах n = 12, 16, 24, 48. В случае применения другого привода частота принимается, исходя из его технических характеристик.

Для расчетов принимается: $n = 24 \ 1/c$

Диаметр цилиндра компрессора:

$$D = \sqrt[3]{\frac{4 V_{\rm T}}{\pi \, \psi \, z \, n}} \qquad D = 0,088 \, {\rm M}$$

Ход поршня:

$$S = \psi D$$
 $S = 0,061 \text{ M}$

Показатели политроп сжатия и обратного расширения принимаются в пределах:

$$n_{\rm c} = (0,92 \div 1,00) k;$$

 $n_{\rm p} = (0,94 \div 1,00) n_{\rm c},$

где *k* – показатель изоэнтропы идеального или условный показатель изоэнтропы идеализированного газа.

Не рекомендуется принимать значения меньшие или равные единице.

Для расчетов принимается: $n_c = 1,1$ $n_p = 1,04$

Числа политроп сжатия и обратного расширения:

$$\sigma_{c} = \frac{n_{c}}{n_{c} - 1} \qquad \qquad \sigma_{c} = 11$$

$$\sigma_{p} = \frac{n_{p}}{n_{p} - 1} \qquad \qquad \sigma_{p} = 26$$

Среднее индикаторное давление:

$$p_{i} = (p_{\rm B} - \Delta p_{\rm B}) \left[\sigma_{\rm c} (1+c) (\pi_{\rm K,BH}^{\frac{1}{\sigma_{\rm c}}} - 1) - \sigma_{\rm p} c (\pi_{\rm K,BH} - \pi_{\rm K,BH}^{\frac{\sigma_{\rm p}-1}{\sigma_{\rm p}}}) \right] \qquad p_{i} = 3.87$$

Индикаторная мощность:

$$N_i = p_i V_{\rm T}$$
 $N_i = 27,14 \, {\rm kBT}$

Среднее давление трения принимается в пределах (для аммиака рекомендуется принимать данную величину 0,06 МПа):

$$p_{\rm Tp} = 0,04 \div 0,09$$
 МПа $p_{\rm Tp} = 0,04$ МПа

Мощность трения:

$$N_{\rm Tp} = p_{\rm Tp} V_{\rm T} \qquad \qquad N_{\rm Tp} = 2,8 \text{ kBT}$$

Удельная работа изоэнтропного сжатия:

$$l_s = i_2 - i_1$$
 $l_s = 35,74$ кДж/кг

Мощность изоэнтропного сжатия:

$$N_s = G_a l_s$$
 $N_s = 12,96$ кВт

Эффективная мощность:

$$N_e = N_i + N_{\rm TP}$$
 $N_e = 29,95 \ {\rm \kappa BT}$

Индикаторный к.п.д. компрессора:

$$\eta_i = N_s / N_i \qquad \qquad \eta_i = 0,809$$

Эффективный к.п.д. компрессора:

$$\eta_e = N_s / N_e \qquad \qquad \eta_e = 0,733$$

Механический к.п.д. компрессора:

$$\eta_{\text{mex}} = N_i / N_e \qquad \qquad \eta_{\text{mex}} = 0,906$$

Теоретический холодильный коэффициент:

$$\varepsilon_{\rm T} = Q_0 / N_s$$
 $\varepsilon_{\rm T} = 4,55$

Эффективный холодильный коэффициент:

$$\varepsilon_e = Q_0 / N_e$$
 $\varepsilon_{\rm T} = 3,34$

В результате расчёта получены следующие параметры одноступенчатого холодильного поршневого компрессора, обобщенные в табл.35.

Таблица 35

Конструктивные параметры холодильного поршневого компрессора

Параметр	Расчёт	Принято		
Диаметр цилиндра	<i>D</i> , м	0,088	0,088	
Ход поршня	<i>S</i> , м	0,061	0,060	
Число цилиндров	8			
Частота вращения	<i>n</i> , 1/ <i>c</i>	24		
Рабочее вещество	R22			

5. Исследование характеристик холодильного поршневого компрессора

5.1. Расчёт характеристик одноступенчатого поршневого компрессора паровой холодильной машины

Проведём расчёт характеристик поршневого компрессора, рассчитанного выше. Расчет будет проведен для двух температур конденсации $t_{\kappa} = +30^{\circ}$ C (303,15 K) и $t_{\kappa} = +40^{\circ}$ C (313,15 K). Для того, чтобы получить наиболее полное представление о характере изменения параметров машины выполним расчёт в возможно более широком диапазоне температур кипения (табл. 36).

Для нахождения термодинамических параметров рабочего вещества в узловых точках в термодинамической диаграмме строятся циклы, число которых соответствует числу выбранных температур кипения, интервал между которыми не должен превышать 5÷10 °С (рис.17.).

Рисунок 17 - Построение циклов для расчёта характеристик холодильного поршневого компрессора

Для каждого цикла создаётся таблица параметров узловых точек, подобная табл. 34.

$t_{\kappa} = 30 \ ^{\circ}C$											
T_0	t_0	Q_0	π_{κ}	λ	G	N_s	N_i	N_e	η_i	η_e	η _{мex}
K	°C	кВт	-	-	кг/с	кВт	кВт	кВт	-	-	-
302,15	29	585,91	1,03	0,964	3,2208	2,06	9,05	11,85	0,228	0,174	0,764
293,15	20	431,57	1,31	0,921	2,4070	16,00	22,06	24,86	0,725	0,644	0,887
283,15	10	300,11	1,75	0,869	1,7060	23,90	29,58	32,38	0,808	0,738	0,913
273,15	0	202,10	2,39	0,810	1,1730	25,89	31,48	34,29	0,822	0,755	0,918
263,15	-10	130,30	3,36	0,739	0,7740	23,94	29,31	32,11	0,817	0,746	0,913
253,15	-20	78,86	4,85	0,651	0,4810	19,59	24,39	27,19	0,803	0,721	0,897
243,15	-30	43,04	7,26	0,534	0,2700	13,93	17,86	20,66	0,780	0,674	0,864
233,15	-40	18,96	11,31	0,366	0,1220	7,81	10,62	13,42	0,735	0,582	0,791
223,15	-50	3,50	18,44	0,110	0,0233	1,81	3,37	6,17	0,537	0,293	0,546
220,15	-53	0,15	21,57	0,006	0,0010	0,08	1,26	4,06	0,066	0,020	0,310

Результаты расчёта характеристик

Таблица 36

Расчёт характеристики при фиксированной температуре конденсации сводится к многократному расчёту компрессора при различных температурах кипения. Методика расчёта отличается от приведенной ранее только тем, что теоретическая объёмная производительность находится по формуле:

$$V_{\rm T} = \frac{\pi D^2}{4} S \, z \, n \, ,$$

где *D* – диаметр цилиндра, м;

S - ход поршня, м;

z – число цилиндров,

n – частота вращения вала компрессора, с⁻¹.

Далее расчёт проводится в такой последовательности:

Удельная массовая холодопроизводительность:

$$q_0 = i_a - i_4 ,$$

Отношение давлений в компрессоре:

$$\pi_{\rm K} = p_{\rm H} / p_{\rm B}$$

Внутреннее отношение давлений в компрессоре:

$$\pi_{\rm \tiny K.BH} = \frac{p_{\rm \tiny H} + \Delta p_{\rm \tiny H}}{p_{\rm \tiny B} - \Delta p_{\rm \tiny B}} \ .$$

Индикаторный коэффициент всасывания (коэффициент видимых объёмных потерь):

$$\lambda_{i} = \frac{p_{\mathrm{B}} - \Delta p_{\mathrm{B}}}{p_{\mathrm{B}}} - c \left[\left(\frac{p_{\mathrm{H}} + \Delta p_{\mathrm{H}}}{p_{\mathrm{B}}} \right)^{1/n_{\mathrm{p}}} - \frac{p_{\mathrm{B}} - \Delta p_{\mathrm{B}}}{p_{\mathrm{B}}} \right]$$

Коэффициент подогрева:

$$\lambda'_w = T_0 / T_\kappa \; .$$

Коэффициент подачи компрессора:

$$\lambda = \lambda_i \lambda'_w$$

Действительная объёмная производительность компрессора:

$$V_{\rm d} = \lambda V_{\rm T}$$

Действительная массовая производительность компрессора:

$$G = V_{\rm A} / v_{\rm I}$$

Холодопроизводительность компрессора:

$$Q_0 = G q_0$$

Среднее индикаторное давление:

$$p_{i} = (p_{\rm B} - \Delta p_{\rm B}) \left[\sigma_{\rm c} (1+c)(\pi_{\rm K,BH}^{\frac{1}{\sigma_{\rm c}}} - 1) - \sigma_{\rm p} c(\pi_{\rm K,BH} - \pi_{\rm K,BH}^{\frac{\sigma_{\rm p}-1}{\sigma_{\rm p}}}) \right]$$

Индикаторная мощность:

$$N_i = p_i V_{\mathrm{T}}$$

Мощность трения:

$$N_{\rm TP} = p_{\rm TP} V_{\rm T}$$

Удельная работа изоэнтропного сжатия:

$$l_s = i_2 - i_1$$

Мощность изоэнтропного сжатия:

$$N_s = Gl_s$$

Индикаторный к.п.д. компрессора:

$$\eta_i = N_s / N_i$$

Эффективный к.п.д. компрессора:

$$\eta_e = N_s / N_e$$

Механический к.п.д. компрессора:

$$\eta_{\text{Mex}} = N_i / N_e$$

Теоретический холодильный коэффициент:

$$\varepsilon_{\rm T} = Q_0 / N_s$$

Эффективный холодильный коэффициент:

$$\varepsilon_e = Q_0 / N_e$$

Все указанные параметры определяются для каждого из режимов, для которых построены холодильные циклы (рис. 17). Полученные результаты сводятся в табл. 36. Аналогичная таблица создаётся по результатам расчётов при температуре конденсации $T_{\kappa} = 313,15$ K (+40°C).

По результатам расчёта, представленного в табл.36, строятся характеристики холодильного поршневого компрессора.

Характеристика компрессора по холодопроизводительности и мощности представлена на рис.18.

Рисунок 18 - Зависимости холодопроизводительности и эффективной мощности поршневого компрессора от температуры кипения

Видно, что при низких температурах кипения кривые мощности пересекаются, так что мощность, потребляемая компрессором при более вы-

сокой температуре конденсации $t_{\kappa} = 40^{\circ}$ С становится меньше, чем при $t_{\kappa} = 30^{\circ}$ С. Это происходит потому, что из-за более высокого при $t_{\kappa} = 40^{\circ}$ С отношения давлений коэффициент подачи компрессора а с ним и массовый расход рабочего вещества уменьшаются на этом режиме настолько, что несмотря на увеличение удельной работы потребляемая мощность оказывается меньше.

Изменение индикаторного и эффективного к.п.д. поршневого компрессора показано на рис.19. Видно, что η_i и η_e достигают максимальных значений при отношениях давлений $\pi_{\kappa} = 2 \div 4$. Изменение π_{κ} в ту или иную сторону приводит к снижению к.п.д. Наибольшее снижение к.п.д. наблюдается при π_{κ} меньших 2 и при значениях близких к максимальному в пределах $\pi_{\kappa} = 15 \div 23$.

Рисунок 19 - Изменение индикаторного и эффективного к.п.д. от отношения давлений при температурах конденсации 30 °C и 40 °C

Коэффициент подачи достигает максимума при наименьших значениях π_{κ} , уменьшаясь с его ростом практически до нуля при $\pi_{\kappa} = 23$ (рис. 20). Это вызвано в основном влиянием мертвого пространства и, как следствие, снижением индикаторного объёмного коэффициента λ_i .

Отметим, что в зависимости от π_{κ} эти параметры для обеих температур конденсации ложатся каждый на одну линию, потому, что они, как это видно из методики расчёта, в основном зависят от отношения давлений.

Рисунок 20 - Изменение коэффициента подачи в зависимости от отношения давлений

Индикаторная мощность при всех температурах конденсации достигает максимума при $\pi_{\kappa} = 2 \div 4$ (рис. 21). Таков же и характер изменения среднего индикаторного давления, так как оно отличается от индикаторной мощности на постоянный множитель $1/V_{T}$. Это согласуется с результатами теоретического анализа.

Рисунок 21 - Изменение индикаторной мощности в зависимости от отношения давлений

5.2 Тепловой расчёт одноступенчатого поршневого компрессора паровой холодильной машины при работе на различных рабочих веществах

Расчёт проводится для компрессора, размеры которого найдены в примере (см. раздел 3) по методике, описанной выше для расчёта характеристик.

В качестве рабочих веществ выбраны 8 рабочих веществ: R22, R717, R502, R13*b*1, R12, R134*a*, R142 и R12*b*1 [3, 7, 8]. Хладон R12 запрещённый в соответствие с Монреальским протоколом, но широко применявшийся ранее, выбран для получения дополнительной информации при сравнении с хладоном R134*a*, которым в большинстве холодильных машин заменяется R12.

Видно, что параметры компрессора при работе на R134*a* и R12 близки по величине. То же можно сказать и о рабочих веществах R22 и R717, при работе на которых практически одинаковыми оказываются мощности и к.п.д. Однако, массовый расход R717 почти в семь раз меньше, чем R22, что объясняется значительно более высокой теплотой парообразования аммиака.

Холодопроизводительность при переходе от аммиака и R22 на R134*a* уменьшается на 40%. Это объясняется меньшей удельной объёмной холодопроизводительностью R134*a*, определяемой выражением $q_v = q_0 / v_1$ (v_1 - удельный объём пара при входе в компрессор). То же можно сказать и о хладонах R142 и R12*b*1, при работе на которых холодопроизводительность уменьшается в три и пять раз соответственно. У хладона R13*b*1 удельная объёмная производительность выше, чем у R717 или R22 и это приводит к увеличению холодопроизводительности на 34%.

В расчётах были приняты для всех высокомолекулярных хладонов одинаковые значения показателей политроп сжатия и обратного расширения, равные 1,10 и 1,04 соответственно. Для аммиака, имеющего более высокое значение показателя изоэнтропы k = 1,3, они принимались равными $n_c = 1,25$ и $n_p = 1,15$. Среднее давление трения во всех случаях принималось одинаковым $p_{\tau p} = 0,4$ бар. Результаты расчетов приведены в табл. 37.

Сопоставление и анализ результатов подобных расчётов позволяет оценить изменение параметров и облегчить выбор рабочего вещества для холодильной машины.

Параметры холодильного поршневого компрессора при работе

на различных рабочих веществах ($t_0 = -15$	$C, t_{\rm K} = +30^{\circ}C)$
----------------------------------	-------------	--------------------------------

Рабочее	Q_0	$\pi_{ ext{\tiny K}}$	λ	G	N_s	p_i	N_i	Ne	η_i	η_e	η_{mex}
вещество	кВт	-	-	кг/с	кВт	бар	кВт	кВт	-	-	-
R22	100,25	4,02	0,70	0,616	22,01	3,87	27,11	29,92	0,812	0,736	0,906
R717	102,87	4,93	0,69	0,093	22,11	3,89	27,23	30,03	0,812	0,736	0,907
R502	100,73	3,75	0,71	0,975	23,65	4,38	30,69	33,49	0,771	0,706	0,916
R13b1	134,24	3,38	0,72	2,113	33,90	6,37	44,60	47,4	0,760	0,715	0,941
R12	60,53	4,08	0,70	0,519	13,22	2,40	16,82	19,62	0,786	0,674	0,857
R134a	59,97	4,67	0,67	0,387	12,99	2,30	16,12	18,92	0,806	0,687	0,852
R142	29,82	4,97	0,66	0,174	6,30	1,14	7,98	10,79	0,786	0,584	0,740
R12b1	24,61	4,96	0,66	0,230	5,14	0,92	6,45	9,25	0,798	0,556	0,697

СПИСОК ЛИТЕРАТУРЫ

- 1. **Азизов** Д. Основы холодильной техники и технического обслуживания холодильных систем / Д. Азизов, Ф. Сайдиев. - Ташкент: Baktria press, 2017. - 176 с.
- 2. **Мизин В.М.** Подбор и расчет основных элементов одноступенчатой парокомпрессионной холодильной машины: учеб.-метод. пособие /В.М. Мизин, Ю.В. Татаренко.- СПб.:Университет ИТМО; ИХиБТ,2015. 60 с.
- 3. Холодильные машины: Справ./ Под ред. А. В. Быкова. М.: Лег. и пищ. пром-сть, 1982. 224 с.
- 4. Тепловые и конструктивные расчеты холодильных машин, тепловых насосов и термотрансформаторов: Учеб.пособие для вузов/ Тимофеевский Л.С., Пекарев В.И., Бухарин Н.Н. и др.- СПб.: СПбГУ-НиПТ Ч.1: Расчет циклов, термодинамических и теплофизических свойств рабочих веществ. – 2006 с. – 259 с.
- 5. Холодильные машины/ Под. ред. Л.С. Тимофеевского. СПб.: Политехника, 2006. 992 с.
- Пекарев В.И. Определение термодинамической эффективности цикла одноступенчатой холодильной машины: учеб.- метод. пособие/В.И. Пекарев, В. М. Мизин. - СПб: НИУ ИТМО; ИХиБТ,2014.-46 с.
- 7. Холодильная техника. Кондиционирование воздуха. Свойства веществ: Справ./ Под ред. С.Н. Богданова. СПб.: СПбГАХПТ, 1999.
- 8. **Цветков О.Б.**, **Лаптев Ю.А.** Таблицы свойств холодильных агентов: Учеб.-метод. пособие – СПб.: НИУ ИТМО; ИХиБТ, 2013. – 52 с.

СОДЕРЖАНИЕ

	Стр
ВВЕДЕНИЕ	3
 Термодинамическая эффективность циклов холодильных машин 	4
2. Паровые одноступенчатые холодильные машины	14
3. Паровые многоступенчатые и каскадные холодильные машины	21
4. Тепловой расчет одноступенчатого поршневого компрессора паровой холодильной машины	43
5. Исследование характеристик холодильного поршневого компрессора	49
5.1. Расчёт характеристик одноступенчатого поршневого компрессора паровой холодильной машины	49
5.2. Тепловой расчёт одноступенчатого поршневого компрессора паровой холодильной машины при работе на различных рабочих веществах	56
СПИСОК ЛИТЕРАТУРЫ	58

ЭНИВЕРСИТЕТ ИТМО

Миссия университета – открывать возможности для гармоничного развития конкурентоспособной личности и вдохновлять на решение глобальных задач.

КАФЕДРА ХОЛОДИЛЬНОЙ ТЕХНИКИ И ВОЗОБНОВЛЯЕМОЙ ЭНЕРГЕТИКИ

Современная цивилизация не может существовать и развиваться без техники низких температур. Кафедра холодильной техники и возобновляемой энергетики одна из старейших кафедр университета. Кафедра выпускает бакалавров и магистров по направлению «Холодильная, криогенная техника и системы жизнеобеспечения», «Холодильная техника и технологии», «Промышленные холодильные системы и тепловые насосы». При кафедре имеется аспирантура. Основное направление работы кафедры – научно-исследовательские и проектные работы, направленные на совершенствование систем производства и использования холода в различных областях народного хозяйства. Кафедра проводит научно-исследовательские работы и в области низкопотенциальной энергетики – использования вторичных энергетических ресурсов. Абсорбционные теплоиспользующие преобразователи теплоты широко применяются в системах кондиционирования воздуха, установках совместного получения холода и теплоты в тепловых насосах.

Татаренко Юлия Валентиновна

ТЕПЛОВЫЕ РАСЧЕТЫ ЦИКЛОВ ХОЛОДИЛЬНЫХ МАШИН

Учебно-методическое пособие

В авторской редакции Редакционно-издательский отдел Университета ИТМО Зав. РИО Н.Ф. Гусарова Подписано к печати Заказ № Тираж 20 экз. Отпечатано на ризографе

Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики 197101, Санкт-Петербург, Кронверкский пр., 49 Институт холода и биотехнологий 191002, Санкт-Петербург, ул. Ломоносова, 9

