ЭНИВЕРСИТЕТ ИТМО

А.В. Зайцев, О.В. Пахомов, Е.И. Борзенко

АВТОМАТИЗИРОВАННОЕ ПРОЕКТИРОВАНИЕ КРИОГЕННОГО ГЕНЕРАТОРА ХОЛОДА

Санкт-Петербург 2019

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

УНИВЕРСИТЕТ ИТМО

А.В. Зайцев, О.В. Пахомов, Е.И. Борзенко

АВТОМАТИЗИРОВАННОЕ ПРОЕКТИРОВАНИЕ КРИОГЕННОГО ГЕНЕРАТОРА ХОЛОДА

УЧЕБНОЕ ПОСОБИЕ

РЕКОМЕНДОВАНО К ИСПОЛЬЗОВАНИЮ В УНИВЕРСИТЕТЕ ИТМО по направлению подготовки 16.04.03 Холодильная, криогенная техника и системы жизнеобеспечения в качестве учебного пособия для реализации образовательных программ высшего образования магистратуры

ЭНИВЕРСИТЕТ ИТМО

Санкт-Петербург 2019 Зайцев А.В., Пахомов О.В., Борзенко Е.И. Автоматизированное проектирование криогенного генератора холода – СПб: Университет ИТМО, 2019. – 60 с.

Рецензенты:

Бараненко Александр Владимирович, доктор технических наук, профессор, советник при ректорате, Университет ИТМО.

Приведены теоретические основы кинематики и механики механизма движения криогенного генератора холода. Представлены методики расчета давления, массы и расхода рабочего газа в машине. Рассмотрены методики расчета теплообменных аппаратов и регенератора, а также определение потерь холодопроизводительности криогенной газовой машины. Для полного понимания сущности автоматизации процесса расчета приведен текст компьютерной программы.

ЭНИВЕРСИТЕТ ИТМО

Университет ИТМО – ведущий вуз России в области информационных и фотонных технологий, один из немногих российских вузов, получивших в 2009 году статус национального исследовательского университета. С 2013 года Университет ИТМО – участник программы повышения конкурентоспособности российских университетов среди ведущих мировых научно-образовательных центров, известной как проект «5 в 100». Цель Университета ИТМО – становление исследовательского университета мирового уровня, предпринимательского по типу, ориентированного на интернационализацию всех направлений деятельности.

© Университет ИТМО, 2019 © Зайцев А.В., Пахомов О.В., Борзенко Е.И., 2019

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	4
1. КИНЕМАТИКА И ДИНАМИКА МЕХАНИЗМА ДВИЖЕНИЯ	5
1.1. Симметричный ромбический механизм движения	5
1.2. Кривошипно-шатунный механизм движения	9
2. ДАВЛЕНИЕ РАБОЧЕГО ТЕЛА В МАШИНЕ	12
3. МАССА И РАСХОД РАБОЧЕГО ГАЗА	16
4. ТЕПЛООБМЕННЫЕ АППАРАТЫ	19
4.1. Расчет теплообменника нагрузки	19
4.2. Расчет холодильника	24
5. РАСЧЕТ РЕГЕНЕРАТОРА	28
6. ОПРЕДЕЛЕНИЕ ПОТЕРЬ	
ХОЛОДОПРОИЗВОДИТЕЛЬНОСТИ КГМ	37
6.1. Потери от неэффективности теплообмена в регенераторе	37
6.2. Потери, вызванные осевыми тепловыми потоками	
по насадке и стенкам регенератора	38
6.3. Определение потерь холодопроизводительности вследствие	4.4
гидравлических сопротивлений теплообменных аппаратов	41
7. АЛГОРИТМ И ПОДПРОГРАММА ГЛАВНОГО СЕГМЕНТА.	44
СПИСОК ЛИТЕРАТУРЫ	47
ПРИЛОЖЕНИЕ	48

введение

В «Криогенные курсовом проекте ПО курсу машины» предусматривается раздел по расчету динамики кривошипно-шатунного механизма криогенного генератора холода с целью определения нагрузок, действующих на узлы и детали механизма движения, а также расчеты конструктивных элементов машины. Основы теории различных И методики расчета элементов криогенных газовых машин различные приводятся в различных учебных изданиях и справочниках [1–5]. Для получения более полной расчетной информации о характере действующих сил, тепловых процессах и потерях расчет может быть выполнен с применением прикладной компьютерной программы. Текст программы приведен в приложении.

1. КИНЕМАТИКА И ДИНАМИКА МЕХАНИЗМА ДВИЖЕНИЯ

1.1. Симметричный ромбический механизм движения

Кинематическая схема симметричного ромбического механизма движения приведена на рис. 1.

Рис. 1. Кинематическая схема механизма криогенной газовой машины с ромбическим приводом

Из геометрии механизма движения (см. рис. 1) следует

$$L\sin\beta = R\sin\alpha - E, \qquad (1.1)$$

где β – угловое перемещение шатуна. $\beta = \arcsin[\lambda(\sin \alpha - K)]$, причем $\beta > 0$ при отклонении шатуна от плоскости движения малой головки шатуна в сторону направления вектора окружной скорости кривошипа при его положении, соответствующем принятому началу отсчета угла α . Из условия непрерывности существования функции $\beta - 1 \le \lambda(\sin \alpha - K) \le 1$ получаем зависимость между конструктивными параметрами механизма, при которых реализуется условие

$$\frac{1}{\alpha} \ge 1 + K,$$

что в размерных величинах имеет вид $L \ge R + E$. Отсюда получаем условие проворачиваемости механизма: длина шатуна *L* должна быть больше суммы радиуса кривошипа *R* и дезаксиала *E*.

Перемещение рабочего поршня от его положения в верхней и нижней мертвых точках

$$SC = R\left(\sqrt{\left(\frac{1}{\lambda}+1\right)^2 - K^2} - \cos\alpha - \cos\frac{\beta}{\lambda}\right); \qquad (1.2)$$
$$SC' = R\left(\cos\alpha + \cos\frac{\beta}{\lambda} - \sqrt{\left(\frac{1}{\lambda}-1\right)^2 - K^2}\right). \qquad (1.3)$$

Полный ход от верхней и нижней мертвой точки

$$SC_{\max} = R \left[\sqrt{\left(\frac{1}{\lambda} + 1\right)^2 - K^2} - \sqrt{\left(\frac{1}{\lambda} - 1\right)^2 - K^2} \right].$$
(1.4)

После дифференцирования уравнений (1.2) и (1.3) получим выражения для скорости *VC* и ускорения *JC* рабочего поршня:

$$VC = \omega R \frac{\sin(\alpha + \beta)}{\cos\beta}; \qquad (1.5)$$

$$JC = \omega^2 R \left[\frac{\cos(\alpha + \beta)}{\cos\beta} + \lambda \frac{\cos^2 \alpha}{\cos^3 \beta} \right].$$
(1.6)

Перемещение вытеснительного поршня от его положения в верхней мертвой точке

$$SE = R\left(\sqrt{\left(\frac{1}{\lambda} + 1\right)^2 - K^2} - \cos\alpha - \cos\frac{\beta}{\lambda}\right).$$
(1.7)

Полный ход вытеснительного поршня от верхней до нижней мертвой точки

$$SE_{\max} = R \left[\sqrt{\left(\frac{1}{\lambda} + 1\right)^2 - K^2} - \sqrt{\left(\frac{1}{\lambda} - 1\right)^2 - K^2} \right].$$
(1.8)

Дифференцируя, получим выражения для скорости VE и ускорения JE вытеснительного поршня:

$$VE = \omega R \frac{\sin(\alpha - \beta)}{\cos\beta}; \qquad (1.9)$$

$$JE = \omega^2 R \left[\frac{\cos(\alpha - \beta)}{\cos \beta} - \lambda \frac{\cos^2 \alpha}{\cos^3 \beta} \right].$$
(1.10)

Исходя из приведенных кинематических зависимостей, можно написать выражения для определения текущих и максимальных объемов рабочей теплой – *VC* и холодной – *VE* полостей:

$$VC = 3,14 \left(DKO^{2} - DBO^{2} \right) R^{3} \times \left[\sqrt{\frac{1}{\lambda^{2}} - (1 - K)^{2}} - \sqrt{\frac{1}{\lambda^{2}} - (\sin \alpha - K)^{2}} \right];$$
(1.11)

$$VE = 3,14 \cdot DBO^2 R^3 \left[\sqrt{\left(\frac{1}{\lambda} - 1\right)^2 - K^2} - \cos\alpha + \frac{\cos\beta}{\lambda} \right]; \quad (1.12)$$

$$VC_{\rm max} = 3,14 \left(DKO^2 - DBO^2 \right) R^3 \times$$

$$\times \left[2\sqrt{\frac{1}{\lambda^2} - (1 - K)^2} - 2\sqrt{\frac{1}{\lambda^2} - (1 + K)^2} \right];$$
(1.13)

$$VE_{\text{max}} = 3,14 \cdot DBO^2 R^3 \left[\sqrt{\left(\frac{1}{\lambda} + 1\right)^2 - K^2} - \sqrt{\left(\frac{1}{\lambda} - 1\right)^2 - K^2} \right]. \quad (1.14)$$

Отношение максимальных объемов холодной и теплой полостей

$$W = \frac{VC_{\text{max}}}{VE_{\text{max}}} = \frac{DKO^2 - DBO^2}{DKO^2} \cdot \frac{2\sqrt{\frac{1}{\lambda^2} - (1 - K)^2} - 2\sqrt{\frac{1}{\lambda^2} - (1 + K)^2}}{\sqrt{\left(\frac{1}{\lambda} + 1\right)^2 - K^2} - \sqrt{\left(\frac{1}{\lambda} - 1\right)^2 - K^2}}.$$
(1.15)

Угол фазового сдвига между максимумами объемов теплой и холодной полостей

$$\varphi = \frac{\pi}{2} - \arcsin\left(K\frac{\lambda}{1+\lambda}\right). \tag{1.16}$$

Расчет кинематики и динамики симметричного ромбического механизма производится в подпрограмме **ROMB**.

1.2. Кривошипно-шатунный механизм движения

В случае если в исходных данных задан второй вариант механизма движения – кривошипно-шатунный, расчет производится подпрограммой **CRIVO**.

Машиностроительный чертеж кривошипно-шатунного механизма приведен на рис. 2. На чертеже упрощенно изображены звенья механизма. Кинематическая схема механизма приведена на рис. 3.

Рис. 2. К построению кинематической схемы: 1 – кривошип; 2 – шатун; 3 – ползун; 4 – направляющая; 5 – подшипники

Описанные рабочим и вытеснительным поршнями объемы *VKO* и *VBO* вычисляются по следующим формулам:

$$VKO = 0,785 \cdot DK^2 \cdot 2 \cdot RK;$$
(1.17)

$$VBO = 0,785 \cdot DB^2 \cdot 2 \cdot RB. \tag{1.18}$$

Отношение описанных объемов $Z = \frac{VKO}{VBO}$.

Угол сдвига фаз между максимальными описанными объемами теплой и холодной полостей

$$FI = \operatorname{arctg} \frac{z \cdot \sin \beta}{z \cdot \cos \beta - MU} , \qquad (1.19)$$

где $MU = 1 - \left(\frac{DS}{DK}\right)^2$ – коэффициент, учитывающий влияние штока

вытеснителя (DS – диаметр штока вытеснителя).

Отношение максимально изменяющихся объемов полостей сжатия и расширения определяется по формуле

$$W = \sqrt{z^2 \cdot MU^2 - 2z \cdot MU \cdot \cos\beta + 1}. \qquad (1.20)$$

Текущие значения перемещений компрессорного и вытеснительного поршней составляют:

компрессорного

$$UE = RB \cdot \omega \left[\sin \alpha + \frac{RB}{LB} \frac{\sin 2\alpha}{2} \right]; \qquad (1.21)$$

$$UC = RK \cdot \omega \left[\sin(\alpha - \beta) + \frac{RK}{LK} \frac{\sin 2(\alpha - \beta)}{2} \right]; \quad (1.22)$$

вытеснительного

$$JE = RB \cdot \omega^2 \left[\cos \alpha + \frac{RB}{LB} \cos 2\alpha \right]; \qquad (1.23)$$

$$JC = RK \cdot \omega^2 \left[\cos(\alpha - \beta) + \frac{RK}{LK} \cos 2(\alpha - \beta) \right].$$
(1.24)

Текущие значения описываемых рабочим и вытеснительным поршнями объемов

$$VE = \frac{VBO}{2} (1 - \cos \alpha); \qquad (1.25)$$

$$VC = \frac{VBO \cdot W}{2} \left[1 - \cos(\alpha - FI) \right].$$
(1.26)

В этой подпрограмме вычисляется также относительная величина приведенного дополнительного мертвого объема полости сжатия для схем с соосными расположениями поршней. Она примерно равна

$$AD = \left(1 - \frac{DB^2}{DK^2}\right) \frac{z}{2} \left(1 - \frac{z - \cos\beta}{\sqrt{z^2 - 2z\cos\beta + 1}}\right).$$
 (1.27)

2. ДАВЛЕНИЕ РАБОЧЕГО ТЕЛА В МАШИНЕ

Давление в идеализированной машине изменяется в зависимости от угла поворота коленчатого вала α по закону

$$P = P_{\min} \frac{1+\delta}{1-\delta\cos(\alpha-\theta)},$$
(2.1)

где δ – безразмерный коэффициент;

θ – угол фазового сдвига между максимальным давлением и минимальным объемом полости расширения.

Угол фазового сдвига в определяется по уравнению

$$\theta = \operatorname{arctg} \frac{W \cdot \sin \varphi}{\tau + W \cdot \cos \varphi}, \qquad (2.2)$$

где *W* – отношение максимально меняющихся объемов полостей сжатия и расширения (определение *W* см. в п. 1);

τ – отношение температур холодильника и охладителя.

$$\delta = \frac{\left(\tau^2 + 2\tau W \cdot \cos \varphi + W^2\right)^{\frac{1}{2}}}{\tau + W + 2S},$$
(2.3)

где *S* – относительный приведенный «мертвый» объем.

$$S = \sum \frac{V_i}{VO} \cdot \frac{TC}{T_i},$$
(2.4)

где V_i – мертвый объем *i*-й полости машин;

 T_i – средняя температура рабочего вещества в *i*-м объеме;

VO – максимальный объем полости расширения;

TC – температура холодильника.

В случае расчета одноступенчатой машины уравнение (2.4) принимает вид

$$S = \frac{VX}{VO} \cdot \frac{TC}{TC} + \frac{VR}{VO} \cdot \frac{TC}{TR} + \frac{VTH}{VO} \cdot \frac{TC}{TE},$$
(2.5)

где VX, TC – «мертвый» объем и средняя температура полости сжатия и холодильника;

VR, *TR* – «мертвый» объем и средняя температура регенератора;

VTH, *TE* – «мертвый» объем и средняя температура теплообменника нагрузки и полости расширения.

В случае расчета двухступенчатой машины уравнение (2.4) принимает вид

$$S = \frac{VX}{VO} \cdot \frac{TC}{TC} + \frac{VR}{VO} \cdot \frac{TC}{TR1} + \frac{VMM}{VO} \cdot \frac{TC}{TM} + \frac{VR2}{VO} \cdot \frac{TC}{TR2} + \frac{VTH}{VO} \cdot \frac{TC}{TE},$$
(2.6)

где VX, TC – «мертвый» объем и средняя температура холодильника первой ступени полости сжатия;

VR, *TR1* – «мертвый» объем и средняя температура регенератора первой ступени;

VMM, *TM* – «мертвый» объем и средняя температура промежуточной полости и промежуточного теплообменника;

VR2, *TR2* – «мертвый» объем и средняя температура регенератора второй ступени;

VTH, *TE* – «мертвый» объем и средняя температура теплообменника нагрузки второй ступени и полости расширения.

В случае расчета схемы с соосным расположением поршней следует учитывать еще одну составляющую относительного приведенного «мертвого» объема – *SD*,

$$SD = \frac{VC_{\min}}{VO} \cdot \frac{TC}{T_{c*}},$$
(2.7)

что для машины с кривошипно-шатунным механизмом движения примерно равно

$$SD = \left(1 - \frac{DB^2}{DK^2}\right) \cdot \frac{z}{2} \cdot \left(1 - \frac{z - \cos\beta}{\sqrt{z^2 - 2z \cdot \cos\beta + 1}}\right).$$
 (2.8)

Вывод основных формул в теории Г. Шмидта позволяет формально схему двухступенчатой машины Стирлинга привести к одноступенчатой. Смысл приведения заключается в том, что при вычислении безразмерного коэффициента δ по уравнению (2.3) и угла θ по уравнению (2.2) параметры τ и W для двухступенчатой машины выражаются по-новому.

Отношение температур

$$\tau = \frac{TC}{T_{\rm np}},\tag{2.9}$$

а величина $T_{\rm np}$ определяется из соотношения

$$\frac{1}{T_{\rm np}} = \frac{AM_{\rm I}}{T_{\rm I}} + \frac{AM_{\rm II}}{T_{\rm II}},$$
(2.10)

где T_I и T_{II} – температуры расширения в полостях первой и второй ступеней;

 $AM_{\rm I}$ и $AM_{\rm II}$ – соответственно доли описанных объемов полостей расширения первой и второй ступеней, отнесенные к суммарному объему полостей расширения ($AM_{\rm I} + AM_{\rm II} = 1$).

Величины АМ_I и АМ_{II} определяются уравнениями

$$AM_{\mathrm{I}} = \frac{VO_{\mathrm{I}}}{VO_{\mathrm{I}} + VO_{\mathrm{II}}}; AM_{\mathrm{II}} = \frac{VO_{\mathrm{II}}}{VO_{\mathrm{I}} + VO_{\mathrm{II}}}.$$

В уравнения (2.2) и (2.3) подставляется следующее значение τ_{II} :

$$\tau_{II} = \tau_{I} A M_{II} + \frac{TC}{TM} A M_{I}$$
или $\tau_{II} = \tau_{I} A M_{II} + \frac{TC}{TM} (1 - A M_{II}).$ (2.11)

Параметр W определяется формулой

$$W = \frac{VC_{\text{max}} - VC_{\text{min}}}{VO_{\text{I}} + VO_{\text{II}}}$$
(2.12)

и вычисляется по тем же формулам, что и для одноступенчатой машины, но отношение *z* определяется уравнением

$$z = \frac{VC}{VO_{\rm I} - VO_{\rm II}}.$$
(2.13)

Все остальные выражения не меняются.

Также вычисляется среднее за цикл давление рабочего тела $P_{\rm cp}$ и степень расширения (или сжатия) σ :

$$PCP = P_{\min} \sigma^{\frac{1}{2}}; \qquad (2.14)$$
$$\sigma = \frac{1+\delta}{1-\delta}. \qquad (2.15)$$

Расчет по вышеизложенной схеме производится подпрограммой СІСЬ.

3. МАССА И РАСХОД РАБОЧЕГО ГАЗА

Количество рабочего газа в полостях машины изменяется в зависимости от угла поворота коленчатого вала α и определяется по уравнению состояния

$$PV = MRT, \qquad (3.1)$$

где *P*, *V*, *M*, *T* – соответственно давление, объем, масса и температура газа; *R* – газовая постоянная.

Количество рабочего газа в полости сжатия *MC*, кг, определяется по уравнению

$$MC = P \cdot 10^{6} \cdot VC / (R \cdot TC), \qquad (3.2)$$

где *P* – давление рабочего газа в машине, изменяющееся в зависимости от угла поворота, МПа;

VC – мертвый объем полости сжатия;

TC – средняя температура в полости сжатия, К.

Количество рабочего газа в полости расширения МЕ, кг,

$$ME = P \cdot 10^6 \cdot VE/(R \cdot TE), \qquad (3.3)$$

где *VE*, *TE* – объем, м³, и средняя температура, К, полости расширения.

Количества рабочего газа в холодильнике *МХ*, кг, и теплообменнике нагрузки *МН*, кг, определяются по следующим уравнениям:

$$MX = P \cdot 10^6 \cdot VX / (R \cdot TC), \qquad (3.4)$$

$$MH = P \cdot 10^6 \cdot VTH / (R \cdot TE), \qquad (3.5)$$

где *VX*, *VTH* – «мертвый» объем холодильника и теплообменника нагрузки, соответственно, м³;

TC, *TE* – соответственно температура охлаждения генерации холода, К. Количество рабочего газа в регенераторе *MR*1, кг,

$$MR1 = P \cdot 10^6 \cdot VR/(R \cdot TR1), \qquad (3.6)$$

где *VR* – «мертвый» объем регенератора, м³; *TR*1 – средняя температура регенератора, К,

$$TR1 = \frac{TE + TC}{2}.$$

Если рассматривается двухступенчатая КГМ, то рассчитываются также количества газа в регенераторах первой и второй ступеней *MR*1, *MR*2 и количество газа в промежуточной полости *MM*, кг,

$$MM = P \cdot 10^6 \cdot VM / (R \cdot TM); \qquad (3.7)$$

$$MR1 = P \cdot 10^{6} \cdot VR/(R \cdot TR1); \qquad (3.8)$$

$$MR2 = P \cdot 10^6 \cdot VR2 / (R \cdot TR2), \qquad (3.9)$$

где VM, TM – объем и температура промежуточной полости;

VR, *VR*2 – «мертвые» объемы регенераторов первой и второй ступеней; *TR*1, *TR*2 – средние температуры в регенераторах первой и второй ступеней,

$$TR1 = \frac{TC + TM}{2}, \quad TR2 = \frac{TM + TE}{2}.$$

Расход газа изменяется в зависимости от угла поворота коленчатого вала.

Дифференцируя зависимость массы газа в полости от времени, получим скорость изменения массы газа, кг/рад,

$$G(I) = \frac{M(I+1) - M(I)}{\alpha(I+1) - \alpha(I)}.$$
(3.10)

Затем определяются абсолютные значения производных по углу поворота коленчатого вала, эти значения усредняются на всем интервале изменения угла поворота. В результате получаем средний расход газа за цикл:

$$SG = \sum_{\alpha=0}^{2\pi} \left| G(I) \right|; \tag{3.11}$$

$$GW = \frac{SG \cdot \omega}{NNN \cdot 60},\tag{3.12}$$

где *GW* – средний расход газа за цикл, кг/с;

ω – угловая скорость вращения коленчатого вала, рад/мин;

NNN – число участков, на которые разделен интервал изменения угла поворота.

Массы газа в полостях определяются в подпрограмме **MACCA**, а расход газа через полости определяется в каждом отдельном случае обращением к подпрограмме-функции **GW(M,OMEGA)**.

4. ТЕПЛООБМЕННЫЕ АППАРАТЫ

Теплообменные аппараты обеспечивают связь машины с внешними тепловыми источниками. B холодильниках теплота отводится OT циркулирующего В машине рабочего газа окружающую В среду. Теплообменники нагрузки предназначены для подвода теплоты в цикл (теплота подводится от охлаждаемого объекта при низкой температуре) [2].

Особенности конструкции аппаратов внешнего теплообмена определяются прежде всего тем, что аппарат является непосредственным элементом машины. Внутренняя часть аппарата – это составная часть рабочего, точнее, «мертвого» объема КГМ. При выборе внутренней теплообменной поверхности приходится искать компромиссное решение, позволяющее обеспечить приемлемую эффективность аппарата при «мертвого» объема гидравлического допустимых значениях его И большие трудности при одновременном сопротивления. Возникают стремлении к компактной внутренней поверхности и развитой внешней теплопередающей поверхности. Следует заметить, что ограничения по холодопроизводительности КГМ определяются сложностью создания аппаратов внешнего теплообмена для крупных машин [2].

В рассматриваемом случае в качестве теплообменников рассматриваются трубчатые аппараты кольцевого исполнения. Внутренняя втулка теплообменников используется как часть цилиндра вытеснителя, по внутреннему диаметру трубок протекает поток рабочего газа.

4.1. Расчет теплообменника нагрузки

При расчете теплообменника нагрузки задаемся высотой трубок *HK*, м, и их размером (*DBK*, *DHK* – соответственно внутренний и наружный диаметры трубок).

Действительная тепловая нагрузка на теплообменник нагрузки (конденсатор) определяется по формуле

$$Q = QT \cdot z, \tag{4.1}$$

где *z* – коэффициент пересчета холодопроизводительности, с помощью которого в первом приближении оценивают несовершенство процессов, протекающих в КГМ, и неучтенные потери холодопроизводительности

от неидеального теплообмена в регенераторах, от гидравлических сопротивлений, от теплопритоков по тепловым мостам и т.д.; *QT* – теоретическая холодопроизводительность машины, Вт,

$$QT = \frac{\omega}{120} \cdot PCP \cdot 10^6 \cdot VO \cdot \sin \theta \frac{\delta}{1 + (1 - \delta^2)^{\frac{1}{2}}}, \qquad (4.2)$$

где ω – угловая скорость вращения коленчатого вала, рад/мин;

РСР – среднее давление в машине за цикл, МПа;

VO – максимальный объем полости расширения, м³;

δ – безразмерный коэффициент;

θ – угол фазового сдвига между максимальным давлением и минимальным объемом полости расширения.

Начальные значения скоростей потоков рабочего *SHE* и охлаждаемого *SBZ* газов и физические параметры потока охлаждаемого газа (плотность *ROBZ*, кг/м³, коэффициент теплопроводности *LABZ*, Bт/(м·К), динамическая вязкость *MUBZ*, Па·с, теплота конденсации *RBZ*, Дж/кг) задаются. Физические параметры потока рабочего газа определяются при температуре *TE* и давлении *PCP* с помощью подпрограмм-функций: приведенная плотность рабочего газа W - CRW(PCP, TE, 2.9); удельный объем – *OBK* = 0,014393/*W*, м³/кг; коэффициент теплопроводности – **CRLA(TE, W, PCP)**, кВт/(м·К); динамическая вязкость – **CRMU(TE, W)**, Па·с; изобарная теплоемкость – **CRCE(PCP, TE, W)**, кДж/(кг·К).

Далее определяются критерии RE, PR, NU потока рабочего газа по формулам

$$REK = \frac{SHE \cdot DBK}{OBK \cdot CRMU (TE, W)};$$
(4.3)

$$PR = \frac{CRMU(TE, W) \cdot CRCP(PCP, TE, W)}{CRLA(TE, W, PCP)}; \qquad (4.4)$$

$$NU = 0,023 \cdot REK^{0,8} \cdot PR^{0,4}. \tag{4.5}$$

Коэффициент теплоотдачи от рабочего газа к стенке, $BT/(M^2 \cdot K)$,

$$ALFHE = \frac{NU \cdot CRLA(TE, W, PCP) \cdot 10^3}{DBK} .$$
(4.6)

Коэффициент теплоотдачи от охлаждаемого газа к стенке, Bт/(м²·K),

$$ALF = 1,134 \sqrt{\frac{RBZ \cdot ROBZ^2 \cdot CRLA (TE, W, PCP)^3}{CRMU (TE, W) \cdot HK \cdot TET1}} = B \cdot TET1^{-0,25}, (4.7)$$

где *TET*1 – разность температур между охлаждаемым газом и стенкой, К.

Обозначим разность температурой между стенкой и потоком рабочего газа *TET*2, К.

Общая разность температур между охлаждаемым и рабочим газами G = TBZ - TE, причем TET1 + TET2 = G.

С учетом равенства тепловых нагрузок со стороны охлаждаемого газа и потока рабочего газа можно записать

$$QM = ALF \cdot DHK \cdot TET1 = ALFHE \cdot DBK \cdot TET2; \qquad (4.8)$$

$$QM = B \cdot TET1^{0,75} = A \cdot TET2, \qquad (4.9)$$

где A и B – коэффициенты ($A = ALFHE \cdot DBK$).

Удельный тепловой поток конденсатора криогенной газовой машины можно определять разными способами. В данном случае использовался метод половинного деления. Идея метода заключается в том, что в искомой точке функция *у*, определяемая как разность *QM*1 и *QM*2 (удельных тепловых потоков со стороны охлаждаемого газа и со стороны рабочего газа) должна быть равна нулю:

$$y(I) = B \cdot x(I)^{0.75} - A \cdot [G - x(I)].$$
 (4.10)

Задавшись граничными значениями аргумента x(1) = 0, x(3) = G определяем значение аргумента на середине заданного интервала x(2) = [x(1) + x(3)]/2 и вычисляем значение функции во всех трех точках. Затем определяем значение величины $c = y(1) \cdot y(2)$. Если c < 0, то правую границу интервала сдвигаем на середину x(3) = x(2) и, найдя середину нового интервала, повторяем все вышеизложенные действия. Если c > 0, то

на середину сдвигаем левую границу интервала. Если же c = 0 (или $c \approx 0$), то считаем, что решение найдено: TET1 = x(2), TET2 = G - x(2).

После определения разностей температур определяем удельный тепловой поток *QM* и коэффициенты теплоотдачи *ALF* и *ALFHE*:

$$QM = A \cdot TET2; \tag{4.11}$$

$$ALF = \frac{QM}{TET1 \cdot DHK}; \qquad (4.12)$$

$$ALFHE = \frac{QM}{TET2 \cdot DBK}.$$
(4.13)

Коэффициент теплопередачи, отнесенный к внутренней поверхности трубок, Вт/(м²·К),

$$KTK = \frac{1}{\frac{1}{ALF} \cdot \frac{DBK}{DHK} + \frac{1}{ALFHE}}.$$
(4.14)

Необходимая поверхность теплообменника, принятая с 20 % запаса,

$$FK = 1, 2\frac{Q}{KTK \cdot G}.$$
(4.15)

Далее следует конструктивный расчет теплообменника нагрузки. Необходимое количество трубок при заданной высоте определяется по формуле

$$NSK1 = \frac{FK}{\pi \cdot DHK \cdot HK}.$$
 (4.16)

Диаметр, по которому размещается первый изнутри ряд трубок,

$$DT = DB + 0,004 + S1K, \qquad (4.17)$$

где *DB* – диаметр вытеснительного поршня, м;

S1К – радиальный шаг расположения трубок в конденсаторе, м;

0,004 – принятая в расчете толщина стенки цилиндра вытеснителя, м.

Далее определяется порядок размещения трубок в конденсаторе, величина диаметра, по которому располагается последний изнутри ряд трубок, и уточняется значение количества трубок. Диаметр расположения *К*-го ряда трубок определяется по формуле

$$DKT = DT + 2 \cdot S1K(K-1).$$
(4.18)

Количество трубок в К-м ряду

$$NK(K) = \frac{\pi \cdot DT}{S2K}, \qquad (4.19)$$

где *S2К* – окружной шаг размещения трубок.

Общее количество трубок

$$NSK = \sum_{K} NK(K) . \qquad (4.20)$$

Вначале значение *К* принимается равным 1 и определяется диаметр размещения трубок первого ряда и их количество. Если количество трубок в первом ряду меньше, чем вычисленное ранее значение *NSK*1, то принимается K = 2, и вычисляется диаметр расположения трубок, количество трубок во втором ряду и суммарное количество трубок. Если найденное значение, то число рядов *m* принимается равным последнему значению *K*, число трубок *NSK*1 изменяется на *NSK*, а к диаметру расположения трубок последнего ряда добавляется *S*1*K*, и эта величина принимается равной наружному диаметру конденсатора. Если же *NSK* < *NSK*1, процедура повторяется.

После определения поперечного профиля конденсатора уточняется значение скорости потока рабочего газа:

$$WK = \frac{GW(MH, OMEGA) \cdot OBK}{0,785 \cdot DBK^2 \cdot NSK}.$$
(4.21)

Если принятое вначале и вычисленное по формуле (4.21) значение скорости не совпадают, то принимается вновь вычисленное значение скорости и производится пересчет, начиная с вычисления значения критерия RE для потока рабочего газа.

Расчет теплообменника нагрузки производится подпрограммой **KONDEN**.

4.2. Расчет холодильника

При расчете холодильника водяного охлаждения задаемся следующими величинами: размером трубок (*DBX* и *DHX* – соответственно внутренний и наружный диаметры трубок холодильника); температурами воды на входе *T*3 и выходе *T*4 из холодильника, К; скоростью потока воды *SB*, м/с, и его физическими параметрами: изобарной теплоемкостью *CPB*, кДж/(кг·К); удельным объемом *OBB*, $M^3/k\Gamma$; коэффициентом теплопроводности *LAB*, Вт/(м·К); динамической вязкостью *MUB*, Па·с. В тестовой задаче этим величинам присвоены следующие значения:

T3 = 293 K; T4 = 298 K; SB = 1,5 м/с; CPB = 4,203 кДж/(кг·К); OBB = 0,0010017 м³/кг; LAB = 0,603 Вт/(м·К); MUB = 0,010015 Па·с.

Задается также начальное значение скорости потока рабочего газа SH, м/с. Наружный диаметр холодильника DX из конструктивных соображений принимается равным наружному диаметру теплообменника нагрузки DT, определенному ранее в подпрограмме **КОNDEN**.

Тепловая нагрузка на холодильник в предположении изотермичности процесса сжатия рабочего газа определяется по формуле

$$QT = \frac{OMEGA}{120} \cdot PCP \cdot 10^6 \cdot VO \cdot W \cdot \delta \cdot \frac{\sin(\varphi - \theta)}{1 - (1 - \delta^2)^{\frac{1}{2}}}.$$
 (4.22)

Адиабатные потери (дополнительная работа, затраченная на сжатие рабочего газа в компрессоре) учитываются введением коэффициента *KS*:

$$KS = \frac{k \cdot \left(\sigma^{\frac{k-1}{k}} - 1\right)}{(k-1) \cdot \ln \sigma},$$
(4.23)

где k – показатель адиабаты (для He – k = 1,66).

Тогда с учетом адиабатности процесса сжатия тепловая нагрузка на холодильник

$$QS = QT \cdot KS . \tag{4.24}$$

Температура рабочего газа в конце адиабатного сжатия (на входе в холодильник)

$$T1 = TC \cdot \sigma^{\frac{k-1}{k}}, \qquad (4.25)$$

где *TC* – температура рабочего газа на выходе из холодильника.

Средняя температура рабочего газа в холодильнике, К,

$$T12 = \sqrt{T1 \cdot TC} \ . \tag{4.26}$$

Далее определяются физические параметры потока рабочего газа в холодильнике: приведенная плотность W12; удельный объем OBX, м³/кг; изобарная теплоемкость, кДж/(кг·К); динамическая вязкость, Па·с; коэффициент теплопроводности, Вт/(м·К).

Определяются критерии RE, PR и NU потоков рабочего газа:

$$REH = \frac{SH \cdot DBX}{CRMU (T12, W12) \cdot OBX};$$
(4.27)

$$PRH = \frac{CRMU(T12,W12) \cdot CRCP(PCP,T12,W12)}{CRLA(T12,W12,PCP)}; \quad (4.28)$$

$$NUH = 0,023 \cdot REH^{0,8} \cdot PRH^{0,4} \tag{4.29}$$

и воды

$$REB = \frac{SB \cdot DHX}{MUB \cdot OBB}; \qquad (4.30)$$

$$PRB = \frac{MUB \cdot CPW \cdot 10^3}{LAB}; \qquad (4.31)$$

$$NUB = 0,25 \cdot REB^{0,6} \cdot PRB^{0,3}. \tag{4.32}$$

Коэффициенты теплоотдачи, $BT/(M^2 \cdot K)$, от рабочего газа к стенке *ALFH*, от стенок трубок к воде *ALFB* определяются по формулам

$$ALFH = \frac{NUH \cdot CRLA(T12, W12, PCP) \cdot 10^{3}}{DBX}; \qquad (4.33)$$

$$ALFB = \frac{NUB \cdot LAB}{DHX}.$$
(4.34)

Коэффициент теплопередачи от рабочего газа к охлаждающей воде (отнесенный к внутренней поверхности трубок), Вт/(м²·К),

$$KTP = \frac{1}{\frac{1}{ALFH} + \frac{1}{ALFB} + \frac{DBX}{DHX}}.$$
(4.35)

Среднелогарифмическая разность температур, К,

$$TAUM = \frac{(T1 - T2) - (T4 - T3)}{\ln \frac{T1 - T2}{T4 - T3}}.$$
(4.36)

Теплопередающая поверхность холодильника с учетом 10 % запаса, м²,

$$FX = \frac{1, 1 \cdot QS}{KTP \cdot TAUM}.$$
(4.37)

Число рядов размещения трубок в холодильнике рассчитывается по формуле

$$AM = \frac{DX - DB - 0,004}{2 \cdot S1X},$$
(4.38)

где *DB* – диаметр вытеснительного поршня, м;

*S*1*X* – радиальный шаг размещения трубок в холодильнике, м;

0,004 м – принятая в расчете толщина стенки цилиндра вытеснителя.

Число окружностей округляется до целого значения *М*. Далее определяется порядок размещения трубок по окружностям в каждом *I*-ом ряду. Количество трубок *NX*(*I*) определяется по формуле

$$NX(I) = \frac{\pi \cdot \left[DB + 0,004 + S1X + 2 \cdot S1X(I-1) \right]}{S2X}, \qquad (4.39)$$

где *S*2*X* – окружной шаг размещения трубок в холодильнике.

Общее количество трубок определяется суммированием всех значений *NX(I)*.

Высота трубок холодильника, м,

$$HX = \frac{FX}{NSX \cdot \pi \cdot DHX}.$$
 (4.40)

После определения поперечного профиля холодильника уточняется значение скорости потока рабочего газа

$$WX = \frac{GW(MX, OMEGA) \cdot OBX}{0,785 \cdot DBX^2 \cdot NSX},$$
(4.41)

где **GW(MX,OMEGA)** – подпрограмма-функция, определяющая средний расход рабочего газа через поперечное сечение теплообменного аппарата за цикл.

Если принятое вначале и вычисленное по формуле (4.41) значения скорости не совпадают, то принимается вновь вычисленное значение скорости и производится пересчет, начиная с вычисления критерия для потока рабочего газа.

Расчет холодильника производится подпрограммой HOLOD.

5. РАСЧЕТ РЕГЕНЕРАТОРА

Основной причиной снижения эффективности КГМ являются потери в регенераторе. В зависимости от уровня термостатирования, размеров и типа машины потери могут составлять ОТ 30 ЛО 90 % располагаемой холодопроизводительности. Это объясняется спецификой работы встроенных регенераторов. При проектировании последних вынуждены учитывать существенное влияние потерь гидравлического ОТ сопротивления, осевых тепловых потоков, а также от теплообмена газа со стенками корпуса регенератора (два последних вида потерь в обычных регенераторах столь малы, что их не принимают во внимание при проектировании ВРУ).

Одна из особенностей встроенных регенераторов заключается в повышенных значениях КПД, что объясняется малыми значениями удельной холодопроизводительности КГМ, т.е. холодопроизводительности, отнесенной к расходу газа через расширительную (детандерную) полость. Удовлетворительные характеристики машин можно получить при КПД регенератора не менее 0,98–0,99, в то время как КПД обычных регенераторов ВРУ колеблется в пределах 0,90–0,95.

Следующая особенность состоит в том, что газовые полости регенератора включены в рабочий объем машин. Они составляют около 70 % всего «мертвого» объема КГМ, т.е. являются одной из основных причин уменьшения удельной холодопроизводительности, а, следовательно, и эффективности машин. Следствием этого являются жесткие ограничения на размеры регенератора.

Третьей особенностью является повышенная частота циклов, которая совпадает с частотой циклов самой машины. Это позволяет не устанавливать второй, параллельно работающий регенератор в клапаны для последовательного переключения аппаратов.

Перечисленные особенности аппарата определили специфику конструкций встроенных регенераторов КГМ. Это, прежде всего, очень большие удельные поверхности насадки (от 10⁴ до 4.10⁴ м²/м³), а также малые поперечные размеры теплопередающих элементов и малый гидравлический диаметр каналов насадки (от 0,2 мм и менее), благодаря чему она является высокоэффективным фильтрующим материалом. Встроенные регенераторы чувствительны к степени чистоты рабочего тела. Затвердевающие примеси и продукты газовыделений, осаждаясь на средних

28

сечениях, резко увеличивают гидравлическое сопротивление регенератора и уменьшают производительность машины.

Среди различных видов насадок наибольшее распространение получили насадки из проволочных сеток [2]. В таблице 1 приведены геометрические характеристики стандартных сеток, используемых для изготовления КГМ. Сетки изготавливают из мягкой отожженной бронзовой проволоки.

Таблица 1

№ п/п	Номер сетки	$d_{ m sym}$ в свету, мм	$d_{\rm пр}$, мм	Масса 1 м ² <i>М</i> _н [*] , кг	ε_0 , M^3/M^3	$\varepsilon_0, \mathrm{m}^2/\mathrm{m}^3$	$d_{\scriptscriptstyle \Im}$, мм
1	004	0,040	0,030	0,18	0,658	45662	0,0577
2	0056	0,056	0,040	0,23	0,672	32820	0,0815
3	0063	0,063	0,040	0,22	0,686	31393	0,0874
4	0071	0,071	0,050	0,29	0,669	26480	0,106
5	01	0,100	0,060	0,31	0,705	19670	0,143
6	025	0,25	0,120	0,54	0,743	8565	0,347
7	0355	0,355	0,160	0,68	0,757	6060	0,498
8	05	0,500	0,250	1,15	0,737	4200	0,701

Геометрические характеристики сетчатых насадок (ГОСТ 6813-73), выполненных из фосфористой бронзы [2]

Основные геометрические характеристики насадок – это пористость, удельная поверхность и живое сечение канала с насадкой.

Пористость [2]

$$\varepsilon = \frac{V_{\rm pr} - V_{\rm M}}{V_{\rm pr}}; \qquad (5.1)$$

$$\varepsilon = \frac{V_{\rm p}}{V_{\rm pr}},\tag{5.2}$$

где $V_{\rm pr}$ – геометрический объем регенератора;

*V*_м – объем, занимаемый материалом насадки;

 $V_{\rm p}-$ свободный газовый («мертвый») объем регенератора.

Значение є для насадок определяют также, исходя из полной массы насадки $M_{\rm H}$ и плотности материала $\rho_{\rm H}$:

$$\varepsilon = 1 - \frac{M_{i}}{\rho_{i} V_{\tilde{o}\tilde{a}}}.$$
(5.3)

Пористость насадки во многом определяется условиями укладки и сжатия сеток в пакете.

Пористость идеальной сетчатой матрицы ϵ_0

$$\varepsilon_0 = 1 - \frac{M_{\rm H}^*}{2d_{\rm IID}\rho_{\rm H}},\tag{5.4}$$

где $M_{\rm H}^*$ – масса 1 м² сетки, кг/м²;

*d*_{пр} – диаметр проволоки.

Удельная поверхность теплообмена насадки [2]

$$S_0 = \frac{F_{\rm H}}{V_{\rm pr}},\tag{5.5}$$

где *F*_н – полная поверхность теплообмена.

Для сетчатых насадок с идеальной упаковкой

$$S_{0} = \frac{4(1-\varepsilon_{0})V_{\rm pr}}{d_{\rm np}} = \frac{2M_{\rm H}^{*}}{d_{\rm np}^{2}\rho_{\rm H}}.$$
(5.6)

Живое сечение регенератора [2]

$$f_{\rm p} = \varepsilon_0 \cdot d_{\rm p}^2 \frac{\pi}{4},\tag{5.7}$$

где $d_{\rm p}$ – диаметр регенератора.

За определяющий геометрический размер насадки принимают эквивалентный диаметр канала

$$d_{\mathfrak{H}} = \frac{4\varepsilon_0}{S_0}.$$
 (5.8)

Для сетчатых насадок

$$d_{\mathfrak{H}} = \frac{\varepsilon_0 \cdot d_{\mathfrak{np}}}{1 - \varepsilon_0}.$$
(5.9)

Такие сетки – пока наилучший материал для изготовления насадки регенератора. Однако существенным недостатком сетчатых насадок является малая теплоемкость. Объем металла в них составляет около 30 % общего объема. Попытки устранить этот недостаток прессованием и спеканием пакета сеток не привели к успешным результатам. Прессование вызывает резкое увеличение потерь от осевого теплового потока по насадке; возрастает гидравлическое сопротивление; несколько уменьшается теплопередающая поверхность из-за «омертвления» участков проволок на деформированных перекрестьях.

Насадка второго распространенного вида состоит из сферических элементов, засыпаемых в объем корпуса регенератора. Геометрические характеристики насыпных насадок приведены в таблице 2.

Таблица 2

№ п/п	Тип насадки	Размер <i>d</i> _ш , мм	$\overline{d}_{\mathrm{III}}$, мм	<i>М</i> _н [*] , кг/м ²	ε_0 , m^3/m^3	$\epsilon_0, m^2/m^3$	$d_{\scriptscriptstyle \Im}$, мм
1	Свинцовые	0,100-	0,112	7000	0,38	33500	0,0453
	шары	0,125					
2	Свинцовые	0,125–	0,141	7000	0,38	26400	0,0575
	шары	0,160					
3	Свинцовые	0,200–	0,223	6900	0,39	16400	0,095
	шары	0,250					
4	Свинцовые	2,75	1,75	6900	0,39	2085	0,747
	шары						
5	Стальные	4,00	4,00	4790	0,39	915	0,710
	шары						

Геометрические характеристики насыпных насадок

Удельная поверхность теплообмена насыпной насадки

$$S_0 = \frac{6(1 - \varepsilon_0)}{\overline{d}_{\text{III}}},\tag{5.10}$$

где $\overline{d}_{\text{III}} = \sqrt[3]{2 \cdot d_1^2 \cdot d_2^2 / (d_1 + d_2)}$ – средний размер насадки;

*d*₁ и *d*₂ – соответственно максимальный и минимальный диаметры шариков.

По аналогии с сетчатой насадкой эквивалентный диаметр канала насыпной насадки

$$d_{\mathfrak{I}} = \frac{4\varepsilon_0}{S_0} = \frac{2\varepsilon_0 d_{\mathfrak{I}\mathfrak{I}}}{3(1-\varepsilon_0)}.$$
(5.11)

Применение насыпной насадки [2] оправдано лишь в тех случаях, когда недопустимо мала теплоемкая масса регенератора, т.е. в области низких температур, так как при одинаковых гидравлических сопротивлениях и объемах газовых полостей регенераторов с различными насадками увеличивается теплоемкость насыпной насадки, что уменьшает теплообменную поверхность аппарата более чем в 4 раза.

B предусматривается возможность данной работе расчета регенераторов одноступенчатой КГМ и первой ступени двухступенчатой КГМ с насадкой из бронзовой сетки и регенератора второй ступени с насалкой ИЗ свинцовых И стальных шариков. Геометрические характеристики, значения плотности материала и уравнения для расчета теплоемкости материала насадки как функции от температуры всех приведенных в таблицах 1 и 2 типов насадок введены в программу, и пользователь может выбирать любой из них по своему усмотрению, вводя порядковый номер насадки *L*.

На практике широко используют три варианта конструктивного размещения регенератора в КГМ: выносной, неразборный и регенератор кольцевого размещения. В данной работе рассматривается кольцевое размещение регенератора вокруг цилиндра машины. Этот вариант позволяет существенно уменьшить размеры низкотемпературной части КГМ, хотя конструктивно и более сложен.

Внутренняя втулка регенератора используется как часть цилиндра вытеснителя. Поэтому

$$DBR = DK + 0,004, \qquad (5.12)$$

где *DBR* – внутренний диаметр регенератора, м;

DK – диаметр компрессорного поршня, м;

0,004 — величина толщины стенки внутренней втулки регенератора, принятая в данной работе постоянной.

Из конструктивных соображений принимается DHR = DT, где DHR - наружный диаметр регенератора, м; DT - наружный диаметр теплообменника нагрузки, м.

Средний массовый расход рабочего газа за цикл определяется подпрограммой-функцией **FW(M,OMEGA)**, принцип работы которой описан в п. 3.

Далее расчет производится по следующей схеме.

$$VRK = \frac{VR}{EN(L)},\tag{5.13}$$

где VRK – конструктивный объем регенератора, м³;

VR – «мертвый» объем регенератора, м²;

EN(*L*) – пористость насадки выбранного типа.

$$FR = 0,785 \left(DHR^2 - DBR^2 \right), \tag{5.14}$$

где FR – площадь поперечного сечения регенератора, м².

$$HR = \frac{VRK}{FR},\tag{5.15}$$

где *HR* – высота регенератора, м.

Объем, занятый металлом насадки, м³,

$$VM = VRK \left[1 - EN(L) \right].$$
(5.16)

Масса насадки, кг,

$$MN = VM \cdot ROM(L), \tag{5.17}$$

где ROM(L) – плотность материала насадки выбранного типа, кг/м³. Поверхность насадки, м²,

$$FN = ST(L) \cdot VRK, \qquad (5.18)$$

где ST(L) – удельная поверхность выбранного типа насадки м²/м³.

Удельная массовая скорость потока рабочего газа в свободном сечении регенератора, кг/(м²·с),

$$WYD = \frac{WR}{FR \cdot EN(L)},\tag{5.19}$$

где *WR* – средний массовый расход рабочего газа за цикл.

Средняя температура рабочего газа в регенераторе, К,

$$TCR = \frac{T1 - T2}{\ln \frac{T1}{T2}},$$
 (5.20)

где *T*1 и *T*2 – температуры рабочего газа на теплом и холодном концах регенератора.

Далее рассчитывается параметр В

$$B = \frac{HR}{DA(L)},\tag{5.21}$$

где *DA*(*L*) – эквивалентный диаметр выбранного типа насадки. Критерий Рейнольдса

$$RER = \frac{WYD \cdot DA(L)}{MU}, \qquad (5.22)$$

где MU – динамическая вязкость, $H \cdot c/m^2$, определяется подпрограммой – функцией **СRMU(TCP,WHE)**.

Критерий Нуссельта

$$NU = \begin{cases} 1, 21 \cdot RER^{0,047} \cdot B^{-\frac{0,8}{RER^{0,25}}}, & \text{при } B \le 200; \\ 0, 05 \cdot RER^{0,85}, & \text{при } B > 200. \end{cases}$$
(5.23)

Коэффициент теплоотдачи, $BT/(M^2 \cdot K)$,

$$ALF = \frac{NU \cdot LA}{DA(L)},\tag{5.24}$$

где *LA* – теплопроводность рабочего газа, Вт/(м·К), определяется подпрограммой–функцией **CRLA(TCP,WHE,PCP)**.

Коэффициент теплопередачи, *k*, Bт/(м²·К), рассчитывается по приближенной формуле

$$k = \frac{ALF}{2} \tag{5.25}$$

в предположении, что коэффициенты теплоотдачи прямого и обратного потоков равны.

Тепловая нагрузка на регенератор, кВт,

$$QN = WR \cdot CP \cdot (T1 - T2), \qquad (5.26)$$

где *СР* – изобарная теплоемкость рабочего газа, Дж/(кг·К), определяется подпрограммой–функцией **СRСР(РСР,ТСР,WHE)**.

Большая часть расчетных исследований регенераторов КГМ основана на одномерных расчетно-теоретических моделях, в которых расход газа, теплоемкость насадки и коэффициент теплоотдачи в регенераторе принимают постоянными во времени и по длине и равными их среднеинтегральным значениям для среднего сечения регенератора.

Для определения КПД регенератора можно использовать уравнение

$$KPD = 1 - \frac{1}{9 \cdot \left(\frac{WH}{WG}\right)^2} - \frac{1}{1 + NTU},$$
(5.27)

где *WN* и *WG* – соответственно приведенные теплоемкости материала насадки и рабочего газа;

NTU – приведенная длина Гаузена, кВт/К.

В этом уравнении первое слагаемое правой части учитывает потери в регенераторе, обусловленные разностью температур газа и насадки, а второе слагаемое – потери, обусловленные колебаниями температуры насадки.

Приведенные теплоемкости материала насадки WN и рабочего газа WG, кВт/К, определяются по уравнениям

$$WN = \frac{MN \cdot CPN \cdot OMEGA}{376,8};$$
(5.28)

$$WG = WR \cdot CP, \qquad (5.29)$$

где *CPN* – теплоемкость материала насадки, кДж/(кг·К);

ОМЕGА – угловая скорость вращения коленчатого вала, рад/мин;

$$CPN = \begin{cases} -0,1044703 + 0,517617 \left(\frac{TCP}{100}\right) - 0,193082 \left(\frac{TCP}{100}\right)^2 + 0,025026 \left(\frac{TCP}{100}\right)^3, \text{для бронзы;} \\ -0,84583 \cdot 10^{-2} + 0,517314 \left(\frac{TCP}{100}\right) - 0,738185 \left(\frac{TCP}{100}\right)^2 + 0,355781 \left(\frac{TCP}{100}\right)^3, \text{для свинца;} \\ -0,1007954 + 0,4616741 \left(\frac{TCP}{100}\right) - 0,1155124 \left(\frac{TCP}{100}\right)^2 0,00778301 \left(\frac{TCP}{100}\right)^3, \text{для стали.} \end{cases}$$

Приведенная длина Гаузена, кВт/К, определяется по формуле

$$NTU = \frac{ALF \cdot FN}{WR \cdot CP},\tag{5.30}$$

где WR, CP – расход и теплоемкость рабочего газа;

FN – поверхность насадки, м².

Несмотря на то, что приведенные зависимости не полностью отражают существо действительных процессов в регенераторах, выражения (5.27)–(5.30) широко применяют при расчетах КГМ, так как они позволяют относительно просто выявить зависимости потерь в регенераторе от конструктивных соотношений машины.

Расчет регенератора производится подпрограммой **REGEN**.

6. ОПРЕДЕЛЕНИЕ ПОТЕРЬ ХОЛОДОПРОИЗВОДИТЕЛЬНОСТИ КГМ

Представление о реальности процессов в термодинамическом понимании тесно связано с представлениями об их обратимости. Численное определение потерь от необратимости процессов тепловой машины и оценка их влияния на ее термодинамическую эффективность – одна из главных задач расчета машины при ее конструировании.

Полезную холодопроизводительность КГМ, работающих по циклу Стирлинга, определяют как разность теоретической холодопроизводительности ее расчетного цикла *QT* и суммы потерь *QSUM*:

$$Q = QT - QSUM . (6.1.)$$

За расчетный цикл КГМ принимают ее идеальный цикл в температурных границах внешних источников тепла *TC* и *TE*. Сумма тепла, Вт,

$$QSUM = Q1 + Q2 + Q3H + Q3B + QGID$$
, (6.2)

где *Q*1 – потери холодопроизводительности от неэффективности теплообмена в регенераторе, Вт;

*Q*2, *Q*3*H*, *Q*3*B* – потери от осевого теплового потока по насадке, наружной и внутренней стенкам регенератора, Вт;

QGID – потери холодопроизводительности вследствие гидравлических сопротивлений теплообменных аппаратов.

6.1. Потери от неэффективности теплообмена в регенераторе

$$Q1 = (1 - KPD) \cdot QN, \qquad (6.3)$$

где КРО – коэффициент полезного действия регенератора;

QN – тепловая нагрузка на регенератор, Вт.

6.2. Потери, вызванные осевыми тепловыми потоками по насадке и стенкам регенератора

Насадки регенератора КГМ обладают высоким гидравлическим сопротивлением; следствиями этого являются малая высота аппарата и большой градиент температуры. Последнее обусловливает наличие существенного влияния на эффективность машин теплопроводности насадки и стенок регенератора в осевом направлении. И, хотя тепловой поток по насадке и стенкам составляет доли процента тепловой нагрузки, он уменьшает полезную холодопроизводительность машины на 5–10 %.

Влияние продольной теплопроводности насадки на эффективность КГМ мало изучено. Это обстоятельство во многом объясняется сложным механизмом теплообмена в насадке, поскольку она представляет собой сложную дисперсную среду. Такую сложную среду рассматривают обычно как некоторое квазиоднородное вещество с коэффициентом эффективной теплопроводности, формально применимым в уравнениях теплопроводности для твердых тел.

Теплообмен в дисперсной среде осуществляется различными путями: теплопроводностью вдоль отдельной частицы элемента твердого скелета насадки; контактной теплопроводностью; теплопроводностью в среде, промежутки заполняющей между частицами Условия И т.д. контактирования волокон сеток, как и всех дисперсных материалов, имеют ряд особенностей по сравнению с контактированием поверхностей твердых тел. Для сетчатых насадок контактирование во многом определяется взаимным расположением сеток в общем объеме насадки. В процессе пористость матрицы. прессования насадки меняется Соотношение объемных деформаций сетчатой насадки контактных влияет И на эффективную теплопроводность насадки. Число контактов и нагрузка на них также зависят от объемной деформации насадки и взаимного Трение сеток расположения волокон сетки. ПО обечайке корпуса регенератора в процессе прессования сопровождается неравномерным распределением давления в осевом и радиальном направлениях. Это приводит к неоднородности уплотнения сеток и, следовательно, к неравномерности пористости и нагрузки на контакты.

Известно, что толщина одиночно свободно уложенной сетки с саржевым плетением несколько превышает два диаметра проволоки, поэтому при небольших усилиях сжатия деформируются волокна сеток, образуются контакты, на которых возникают сначала упругие, а затем пластические деформации. По мере увеличения усилия сжатия зоны

38

пластических деформаций, распространяясь от контактов вглубь насадки, постепенно охватывают все сетки. При этом перемещение волокон сеток в процессе нагружения происходит в осевом направлении регенератора, т.е. толщина сетки уменьшается.

Под действием нагрузки P (далее принято P = 0,2 МПа) волокна сетки деформируются, и толщина DL уменьшается до значения, определяемого по формуле

$$DL = 2 \cdot XB \left[1, 1 - 13, 6 \frac{P}{E} C^2 \left(\frac{XA}{XB} \right)^3 - 2, 621 \sqrt{\frac{P^2}{E^2} \left(1 - MU^2 \right) C^2} \right], \quad (6.4)$$

где ХА – диаметр ячейки в свету, мм;

ХВ – диаметр проволоки, мм;

Е – модуль упругости материала насадки, Н/м;

М – коэффициент Пуассона;

C = XA/XB + 1.

Эффективный коэффициент теплопроводности сетчатой насадки *R*, Вт/(м·К), определяется по уравнению

$$R = \frac{1}{C^2} \frac{\sigma \cdot LM}{\sqrt{\left(P/E\right) \cdot C^2 \left(1 - MU^2\right)}} + 1,274 \left(\frac{XA}{XB} + 1\right)} + \frac{LM \cdot LA}{\varepsilon \cdot LM + \left(1 - \varepsilon\right)LA},(6.5)$$

где *LM* – теплопроводность материала насадки регенератора, Bт/(м·K);

LA – теплопроводность газа, определяемая по среднему давлению и температуре в среднем сечении регенератора, Bt/(м·K);

 σ – степень уплотнения насадки, $\sigma = DL/(2XB)$;

ε – пористость насадки под нагрузкой,

$$\varepsilon = 1 - DL0(1 - EL)/DL; \qquad (6.6)$$

*DL*0 – толщина одиночной свободно уложенной сетки;

EL – пористость свободно уложенного пакета сеток.

Приближенная зависимость (6.5) не учитывает реального состояния контактирующих поверхностей, наличия окисных пленок на них; весьма условно выбраны число контактов и взаимная ориентация проволок. Учет

этих факторов приводит к снижению эффективного коэффициента теплопроводности.

Для регенераторов с насыпной насадкой из свинцовых шариков коэффициент эффективной теплопроводности определяется в соответствии с формулой

$$R = 0,25 \cdot LA(1+3EN) + LM \frac{3(1-EN)\left(\frac{1-MU^2}{E} \cdot \frac{\pi}{1-EN}P\right)^{\frac{1}{3}}}{\pi \left[1+0,6\left(\frac{1-MU^2}{E} \cdot \frac{\pi}{1-EN}P\right)\right]^{\frac{1}{3}}}, (6.7)$$

где *LA* и *LM* – коэффициенты теплопроводности газа и материла насадки соответственно;

EN – пористость насадки;

Е, *MU* – модуль упругости, Н/м, и коэффициент Пуассона материала насадки соответственно.

Тепловые потери вследствие теплопроводности насадки регенератора

$$Q2 = \frac{1,35 \cdot R \cdot FR(T1 - T2)}{HR} \tag{6.8}$$

где *FR* и *HR* – площадь сечения и высота регенератора;

*T*1 и *T*2 – температуры на теплом и холодном концах регенератора соответственно.

Потери от теплового потока по стенкам корпуса регенератора составляют:

- наружная стенка $Q3H = 1,35 \cdot LM \cdot \pi \cdot DHR \cdot 0,002(T1-T2)/HR$, (6.9) внутренняя стенка – $Q3B = 1,35 \cdot LM \cdot \pi \cdot DBR \cdot 0,002(T1-T2)/HR$, (6.10)
- где *LM* коэффициент теплопроводности материала стенки корпуса при температуре в среднем сечении регенератора, Bт/(м·K);

DHR, DBR – наружный и внутренний диаметры регенератора, м;

0, 002 – толщина стенок корпуса регенератора, м.

Далее в расчетах в качестве материала для изготовления стенок корпуса регенератора выбирается сталь.

6.3. Определение потерь холодопроизводительности вследствие гидравлических сопротивлений теплообменных аппаратов

В работе для определения потерь тепла вследствие гидравлических сопротивлений теплообменных аппаратов используется формула

$$QGID = \oint DPdVE, \qquad (6.11)$$

где *DP* – потери давления, МПа, в машине в зависимости от угла поворота коленчатого вала.

Значение *QGID* вычисляется по следующей формуле:

$$QGID = \sum_{I=1}^{NN} \frac{DP(I+1) + DP(I)}{2} \left[VE(I+1) - VE(I) \right]$$
(6.12)

где I = 1 при $\alpha = 0$ и I = NN при $\alpha = 2\pi$.

$$DP(I) = DPX(I) + DPK(I) + DPR1(I) + DPR2(I)$$
(6.13)

где *DPX*, *DPK*, *DPR*1, *DPR*2 – соответственно мгновенные значения потерь давления в холодильнике, конденсаторе, регенераторах первой и, в случае двухступенчатой машины, второй ступени.

В теплообменниках-рекуператорах потери давления определяются по формуле

$$DP = CI \cdot \frac{W^2 \cdot RO}{2} \cdot \frac{H}{DA}$$
(6.14)

где *W* – скорость потока газа, м/с;

RO – плотность газа, кг/м³;

Н – высота теплообменника, м;

DA – эквивалентный диаметр теплообменника, м.

Плотность газа принимается не постоянной, а изменяющейся в зависимости от угла поворота коленчатого вала по закону

$$RO = RO_0 \cdot \frac{P(I) \cdot T0}{P0 \cdot TCP}, \qquad (6.15)$$

где RO_0 – плотность газа при нормальных условиях (T0 = 273 K; P0 = 0,098 МПа; $RO_0 = 0,1785$ кг/м³ для Не);

TCP – средняя температура в теплообменнике, К;

P(*I*) – текущее значение давления, МПа.

Коэффициент сопротивления трения *CI* определяется в зависимости от величины критерия *RE*:

$$CI = \begin{cases} \frac{0,3164}{RE^{0,25}} & \text{при } RE \le 10^5; \\ \frac{1}{\left(1,82\lg RE - 1,64\right)^2} & \text{при } RE > 10^5. \end{cases}$$
(6.16)

Эквивалентный диаметр вычисляется по формуле

$$DA = DBH\sqrt{NSX}$$

или $DA = DBK\sqrt{NSK}$. (6.17)

В регенераторе потери давления определяются по формуле

$$DP = CI \cdot \frac{WYD^2}{RO} \cdot \frac{HR}{DA}, \qquad (6.18)$$

где *WYD* – удельная массовая скорость потока рабочего газа, кг/($m^2 \cdot c$);

HR, *DA* – высота и эквивалентный диаметр регенератора, м;

RO – плотность газа, кг/м³, определяется также, как и при определении потерь в теплообменниках рекуператорах;

CI – коэффициент сопротивления трения, определяется от величины критерия *RE* и вида насадки регенератора.

Для насадки из бронзовой сетки

$$CI = \begin{cases} \frac{59}{RE^{0,74}} \cdot \left(\frac{\varepsilon}{EN}\right)^{1,35}, & \text{при } RE \le 40; \\ \frac{19}{RE^{0,44}} \cdot \left(\frac{\varepsilon}{EN}\right)^{1,35}, & \text{при } RE > 40. \end{cases}$$
(6.19)

Потери давления от гидравлических сопротивлений в теплообменных аппаратах рассчитываются в программах **KONDEN**, **HOLOD**, **REGEN** (см. текст подпрограмм), а потери холодопроизводительности из-за наличия гидравлических сопротивлении определяются в основной программе.

7. АЛГОРИТМ И ПРОГРАММА РАСЧЕТА КГМ

Разработанная программа предназначена для проведения проверочного расчета криогенной газовой машины, когда заданы геометрические размеры машины и необходимо решить вопрос о ее работоспособности.

Программа написана на языке Фортран и может применяться на персональных компьютерах.

В качестве рабочего газа в криогенных газовых машинах обычно применяются гелий или водород, благодаря высоким значениям теплоемкости, коэффициента теплопроводности и достаточно низкому значению динамической вязкости, но водород используется реже из-за взрывоопасности. В данном случае в качестве рабочего газа рассматривался гелий. Для определения свойств гелия использовался пакет прикладных программ **КРИАГ**, разработанный на кафедре криогенной техники.

Исходные данные, вводимые в программу, различаются в зависимости от вида механизма движения и количества ступеней машины.

Вид механизма движения задается параметром NM, который может принимать два значения: NM = 1, если механизм движения симметрично ромбический; NM = 2, если механизм движения кривошипно-шатунный.

Количество ступеней в машине задается параметром NC: NC = 1, если машина одноступенчатая; NC = 2, в случае расчета двухступенчатой КГМ. Здесь же задаются виды насадки регенератора в соответствие с данными таблиц 1, 2: L1 – номер насадки первого регенератора; L2 – номер насадки второго регенератора, если он предусматривается (в случае расчета двухступенчатой КГМ).

Далее задаются геометрические характеристики механизма движения. При NM = 1 это: радиус кривошипа R, м; длина шатуна L, м; эксцентриситет *E*, м. При NM = 2: радиус кривошипа и длина шатуна компрессорного поршня RK, LK, м; радиус кривошипа и длина шатуна вытеснительного поршня КВ, LB, м; угол между кривошипами компрессорного и вытеснительного поршней BETA, рад. Задаются также диаметры компрессорного *DK* и вытеснительного *DB* поршней, м; диаметр штока вытеснителя DS, м; температуры полостей сжатия TC, расширения TE и промежуточной *TM* (в случае *NC*=2), К; угловая скорость вращения коленчатого вала OMEGA, рад/с; отношение объема полости расширения второй ступени к суммарному объему полостей расширения АМ (при «мертвые» объемы холодильника VX, регенератора VR и NC=2); теплообменника нагрузки VTH, а также (при NC = 2) регенератора второй

ступени *RV*2 и промежуточной полости *VMM*, M^3 ; число участков, на которые разбивается интервал изменения угла поворота коленчатого вала *NNN*; высота теплообменника нагрузки *HK*, м; внутренний и наружный диаметры трубок, радиальный и окружной шаги их расположения в конденсаторе *DBK*, *DHK*, *S1K*, *S2K* и холодильнике *DBX*, *DHX*, *S1X*, *S2X* м; температура *TBZ*, K; плотность *ROBZ*, кг/м³; коэффициент теплопроводности *LABZ*, Bт/(м·K); динамическая вязкость *MUBZ*, Па·с; теплота конденсации *RBZ*, Дж/кг, охлаждаемого газа.

Далее, перебирая все NNN + 1 значения угла поворота

$$\alpha(I) = \frac{(I-1) \cdot 2\pi}{NNN},$$

программа обращается к подпрограммам **ROMB** (или **CRIVO**), **CICL**, **MACCA**, работа которых описана в разделе 1.

Вычисляется теоретическая холодопроизводительность машины

$$QT = \frac{OMEGA}{120} \cdot PCP \cdot 10^6 \cdot VO \cdot \sin \theta \cdot \frac{\delta}{1 + \sqrt{1 - \delta^2}}, \quad (7.1)$$

где *OMEGA* – угловая скорость вращения коленчатого вала, рад/мин;

РСР – среднее давление рабочего газа в машине, МПа;

VO – максимальный объем полости расширения, м³;

θ – угол фазового сдвига между максимальным давлением и минимальным объемом полости расширения;

δ – безразмерный коэффициент.

Вводится начальное значение коэффициента пересчета холодопроизводительности *z*.

Далее программа обращается поочередно к подпрограммам KONDEN, **HOLOD** и **REGEN** (в случае NC = 2 к подпрограмме **REGEN** вызывающая обращается дважды). перечисленных программа В подпрограммах и конструктивный расчет теплообменников, тепловой производится профиль поперечного сечения и потери определяется давления ОТ гидравлических сопротивлений в зависимости от угла поворота. В подпрограмме **REGEN** определяются также потери холодопроизводительности от неэффективности теплообмена и от тепловых потоков по насадке и стенкам регенератора QPOT1 и QPOT2 (при NC = 2). Все значения потери давления *DPK*, *DPX*, *DPR*1, *DPR*2 и холодопроизводительности передаются в основную программу. Суммарные потери давления в машине в зависимости от угла поворота определяются как сумма всех составляющих потерь:

$$DP(I) = DPK(I) + DPX(I) + DPR1(I) + DPR2(I).$$
(7.2)

Потери холодопроизводительности от гидравлических сопротивлений определяются по формуле

$$QGID = \sum_{I=1}^{I=NNN+1} \frac{DP(I+1) + DP(I)}{2} |VE(I+1) - VE(I)|.$$
(7.3)

Затем все составляющие потерь холодопроизводительности суммируются,

$$QSUM = QGID + QPOT1 + QPOT2$$
(7.4)

и уточняется значение коэффициента пересчета холодопроизводительности

$$z1 = \frac{QT - QSUM}{QT}.$$
(7.5)

Если принятое первоначально и вновь вычисленное значения коэффициента пересчета холодопроизводительности не совпадают, то принимается новое значение z = z1, и вновь производится расчет теплообменных аппаратов. В случае совпадения z и z1 программа останавливается, и расчет считается законченным.

Текст программы расчета криогенного генератора холода – КГМ – приведен в Приложении.

СПИСОК ЛИТЕРАТУРЫ

1. Машины низкотемпературной техники. Криогенные машины и инструменты: учебник / А.М. Архаров, И.А. Архаров, А.Н. Антонов и др. – М.: Изд-во МГТУ им. Н.Э. Баумана, 2011. – 582 с.

2. Г.И. Бумагин. Криогенные машины: Учебное пособие: Омск: Изд-во ОмГТУ, 2007. 216 с.

3. Расчет криогенных установок. Учеб. пособие для холодильных и технологических вузов / Под. ред. С.С. Будневича. – Л.: Машиностроение, 1979. – 367 с.

4. Криогенные машины: учебник для вузов по спец. «Техника и физика низких температур» / В.Н. Новотельнов, А.Д, Суслов, В.Б. Полтараус. – СПб.: Политехника, 1991. – 335 с.

5. Справочник по физико-техническим основам криогеники / Под. ред. М.П. Малкова. – М.: Энергоатомиздат, 1985. – 431 с.

ПРИЛОЖЕНИЕ

Программа расчета криогенного генератора холода

PROGRAM ARKM АВТОМАТИЗИРОВАННЫЙ РАСЧЕТ КГМ REAL JE, JC, ME, MC, MM, MR1, MR2, MX, L, LB, MH, LABZ, MUBZ, LK, MU, LAZ, MUZ DIMENSION VE(100), VC(100), UE(100), UC(100), JE(100), JC(100) COMMON /J/DPK,DPX,DPR1,DPR2 COMMON /G/P(100)/M/ALFA(100)/O/MX(100),MH(100),MR1(100),MR2(100), & MM(100),MC(100),ME(100) COMMON /E/DBK,DHK,S1K,S2K/K/DBX,DHX,S1X,S2X/Z/NNN COMMON /Q/TBZ,ROBZ,LABZ,MUBZ,RBZ COMMON /R/HX,HK COMMON/C5/VC0 ! NC-ЧИСЛО СТУПЕНЕЙ МАШИНЫ (1-ОДНОСТУПЕНЧАТАЯ, 2-ДВУХСТУПЕНЧАТАЯ); ! NM-ВИД МЕХАНИЗМА ДВИЖЕНИЯ (1-РОМБИЧЕСКИЙ, 2-КРИВОШИПНО-ШАТУННЫЙ); ! L1,L2-ВИД НАСАДКИ РЕГЕНЕРАТОРА (L1-СЕТКА ИЗ ФОСФОРИСТОЙ БРОНЗЫ,L2-ША́РИКИ ИЗ СВИНЦА); ! R-ДЛИНА КРИВОШИПА; ! L-ДЛИНА ШАТУНА; ! Е-ЭКСЕНТРИСИТЕТ В РОМБИЧЕСКОМ МЕХАНИЗМЕ ДВИЖЕНИЯ; ! RK-ДЛИНА КРИВОШИПА КОМПРЕССОРНОГО ПОРШНЯ; ! RB,LB-ДЛИНЫ КРИВОШИПА И ШАТУНА ВЫТЕСНИТЕЛЯ; ! ВЕТА-УГОЛ МЕЖДУ RK И RB; ! DK,DB-ДИАМЕТРЫ КОМПРЕССОРНОГО И ВЫТЕСНИТЕЛЬНОГО ПОРШНЕЙ: ! DS-ДИАМЕТР ШТОКА; ! ТС, ТМ, ТЕ-ТЕМПЕРАТУРЫ, К; ! ОМЕGА-СКОРОСТЬ ВРАЩЕНИЯ ВАЛА, 1/МИН; ! PMIN-МИНИМАЛЬНОЕ ДАВЛЕНИЕ ГЕЛИЯ, МПА. OPEN(1,FILE='ARKGM.DAN') OPEN(2, FILE='REZ.TXT') WRITE(2,*)'ИСХОДНЫЕ ДАННЫЕ:' READ(1,*)NC,NM,L1,L2 IF(NM==1)READ(1,*)R,L,E IF(NM==2)READ(1,*)RK,LK,RB,LB,BETA IF(NC==1)READ(1,*)AX,AR,ATH IF(NC==2)READ(1,*)AX,AR1,AMM,AR2,ATH,DMM READ(1.*)DK.DB.DS.HX.HR.HMM.HR2 IF(NC==1)READ(1,*)Q,TC,TE,PMIN,OMEGA IF(NC==2)READ(1,*)Q,TC,TM,TE,PMIN,OMEGA,DV0 READ(1,*)NNN,KPP READ(1,*)HK,DBK,DHK,DBX,DHX,S1K,S2K,S1X,S2X READ(1,*)TBZ,ROBZ,LAZ,MUZ,RZ LABZ=LAZ/1000. MUBZ=MUZ/1000000. RBZ=RZ*1000. NN=NNN+1 IF(NM==1)WRITE(2,8)NM,NC,L1,L2,NNN,R,L,E IF(NM==2)WRITE(2,9)NM,NC,L1,L2,RK,RB,LK,LB,BETA WRITE(2,12)DK,DB,DS,PMIN,OMEGA IF(NC==1)WRITE(2,13)Q,TC,TE,AX,AR,ATH IF(NC==2)WRITE(2,14)Q,TC,TM,TE,AX,AR1,AMM,AR2,ATH,DV0,DMM WRITE(2,15)HK,DBK,DHK,DBX,DHX,S1K,S2K,S1X,S2X WRITE(2,16)TBZ,ROBZ,LABZ,MUBZ,RBZ 8 FORMAT(10X,'NM=',I2,2X,'NC=',I2,2X,'L1='I2,2X,'L2=',I2,2X,'NNN=', & I2/10X, 'R=', F7.3, 2X, 'L=', F7.3, 2X, 'E=', F7.3) 9 FORMAT(10X,'NM=',I2,2X,'NC=',I2,2X,'L1=',I2,2X,'L2=',I2/10X,'RK=', & F7.3,2X, 'RB=', F7.3,2X, 'LK=', F7.3,2X, 'LB=', F7.3,2X, 'BETA=', F7.3) 12 FORMAT(10X, 'DK=', F7.3, 2X, 'DB=', F7.3, 2X, 'DS=', F7.3/10X, 'PMIN=', & F7.3,2X,'OMEGA=',F10.3)

13 FORMAT(10X,'Q=',F8.3,2X,'TC=',F8.3,2X,'TE=',F8.3/10X,'AX=',F8.3, & 2X,'AR=',F8.3,2X,'ATH=',F8.3)

14 FORMAT(10X,'Q=',F8.3,2X,'TC=',F8.3,2X,'TM=',F8.3,2X,'TE=',F8.3/ & 10X, 'AX=', F8.3, 2X, 'AR1=', F8.3, 2X, 'AMM=', F8.3, 2X, 'AR2=', F8.3/10X, & 'ATH=',F8.3,2X,'DV0=',F8.3,2X,'DMM=',F8.3) 15 FORMAT(10X,'HK=',F5.3,2X,'DBK=',F5.3,2X,'DHK=',F5.3,2X,'DBX=', & F5.3,2X,'DHX=',F5.3/10X,'S1K=',F5.3,2X,'S2K=',F5.3,2X,'S1X=',F5.3 & .2X.'S2X='.F5.3) 16 FORMAT(10X, 'TBZ=', F8.3, 2X, 'ROBZ=', F8.3, 2X, 'LABZ=', F8.3/10X, 'MUBZ=' & ,F10.8,2X, 'RBZ=', F10.1) WRITE(2,*);WRITE(2,*)'РЕЗУЛЬТАТЫ АНАЛИЗА:' DO I=1,NN ALFA(I)=(I-1)*6.28/NNN MU=1.-(DS/DK)**2 IF(NM==1)CALL ROMB(ALFA(I),R,L,E,DK,DB,OMEGA,VE(I),VC(I), & UE(I),UC(I),JC(I),JE(I),V0,AD,W,FI,DB1,DS,DV0) IF(NM==2)CALL CRIVO(ALFA(I),RK,RB,LK,LB,MU,BETA,DK,DB,OMEGA,V0, & VE(I), VC(I), UE(I), UC(I), JE(I), JC(I), AD, W, FI, DB1, DV0) CALL MOB(NC, V0, VX, VR, VTH, VR2, VMM, TE, TC, TM, AX, AR, AR1, AR2, AMM, ATH) ENDDO NF=0 IF(KPP/=1)THEN WRITE(2,*)' ALFA Ρ VE VC MC & MF MX MR1 MH MM MR2' WRITE(2,*)' -----':ENDIF DO I=1,NN ALFA(I)=(I-1)*6.28/NNN MU=1-(DS/DK)**2 IF(NM.EQ.1)CALL ROMB(ALFA(I),R,L,E,DK,DB,OMEGA,VE(I),VC(I), & UE(I),UC(I),JC(I),JE(I),V0,AD,W,FI,DB1,DS,DV0) IF(NM.EQ.2)CALL CRIVO(ALFA(I).RK.RB.LK.LB.MU.BETA.DK.DB.OMEGA.V0. & VE(I), VC(I), UE(I), UC(I), JE(I), JC(I), AD, W, FI, DB1, DV0) CALL CICL(NC,ALFA(I),PMIN,W,FI,TE,TR,TC,TM,TR2,VX,VR,VR2,VMM, & VCM,V0,DV0,P(I),AD,SIGMA,PCP,TETA,DELTA) CALL MACCA(NC,P(I),VE(I),VC(I),VX,VR,VTH,VR2,VMM,TE,TC,TM, & ME(I), MX(I), MR1(I), MR2(I), MM(I), MH(I), MC(I)) IF(KPP.NE.1)GO TO 106 IF(KPP.EQ.1)GO TO 107 106 WRITE(2,11)ALFA(I),P(I),VE(I),VC(I),ME(I),MC(I),MX(I), & MR1(I),MH(I),MM(I),MR2(I) 11 FORMAT(2X,2(2X,F6.3),9(2X,E10.3)) **107 CONTINUE ENDDO** QT=OMEGA/120.*PCP*1.E6*V0*DELTA*SIN(TETA)/(1+SQRT(1-DELTA**2)) !4.22 ! ТЕПЛОВАЯ НАГРУЗКА НА ХОЛОДИЛЬНИК В ПРЕДПОЛОЖЕНИИ ИЗОТЕРМИЧНОСТИ ПРОЦЕССА СЖАТИЯ IF(NC==2)QT=QT*DV0/(1-DV0) Z=1000*Q/QT CALL HOLOD(NC,TC,OMEGA,DELTA,W,FI,TETA,DK,V0,PCP,SIGMA,DB,VX,DX) WR1=(GW(MR1,OMEGA)+GW(MC,OMEGA)+GW(MX,OMEGA)) W1R=GW(MR1.OMEGA) T2=TE IF(NC==2)T2=TM CALL REGEN(NM,L1,HR,DB,DK,OMEGA,TC,T2,VR,PCP,W1R,WR1,DPR1,QPOT1) IF(NC/=1)THEN WR2=(GW(MR2,OMEGA)+GW(ME,OMEGA)+GW(MH,OMEGA)) W2R=GW(MR2,OMEGA) CALL REGEN(NM,L2,HR,DB1,DMM,OMEGA,TM,TE,VR2,PCP,W2R,WR2,DPR2,QPOT2) !WRITE(2,99)WR2,L2,MR2 99 FORMAT(5X,'WR2=',F8.3,2X,'L2=',I3,2X,'MR2=',F8.3) ENDIF PRINT*, 'GOTOVO - THERE ARE ERRORS IN SUBS KONDEN, HOLOD, REGEN'; READ* NFFF=0. IF(NC==2)THEN;DB=DB1;DK=DMM;ENDIF 19 CALL KONDEN(QT,Z,PCP,TE,DB,OMEGA,DK,VTH) DPP=DPK+DPX+DPR1+DPR2 QGID=2.24*(V0/TE)*DPP*V0/(V0/TE+VC0/TC) QSUM=QGID+QPOT1+QPOT2

Z1=(QT-QSUM)/QT WRITE(2,22)QSUM,QGID,QPOT1,QPOT2,Z,Z1 22 FORMAT(10X,'QSUM=',F10.3,2X,'QGID=',F10.3,2X,'QPOT1=',F10.3/10X, & 'QPOT2=',F10.3,2X,'Z=',F6.3,2X,'Z1=',F6.3) IF(ABS(Z1-Z)<=0.005)GO TO 25 IF(Z1<0.00001)GO TO 27 Z=Z1 **GO TO 19** 25 CONTINUE 27 NF=NF+1 END SUBROUTINE ROMB(ALFA,R,L,E,DK,DB,OMEGA,VE,VC,UE,UC,JC,JE, & V0,AD,W,FI,DB1,DS,DV0) REAL L,LAMDA,JE,JC,K COMMON/C5/VC0 ВЫЧИСЛЕНИЕ КИНЕМАТИЧЕСКИХ ПАРАМЕТРОВ РОМБИЧЕСКОГО МЕХАНИЗМА ПРИВОД LAMDA=R/L K=E/R DK0=DK/(R*2.0) DB0=DB/(R*2.0) SBM=R*(SQRT((1/LAMDA+1)**2-K**2)-SQRT((1/LAMDA-1)**2-K**2)) V0=3.14*DB**2/4*SBM VC0=3.14*SBM/4.*(DK**2.-DS**2.) EE=E/L ADS=L*(SQRT((1+LAMDA)**2-EE**2)+SQRT((1-LAMDA)**2-EE**2)-2* & COS(BETA))+.001 AD=.785*(.001*DK**2+ADS*(DB**2-DS**2))/V0 V01=V0*DV0/(1-DV0) DB1=SQRT(V01/(.785*SBM)) BETA=ASIN(LAMDA*(SIN(ALFA)-K)) A1=SQRT(1/LAMDA**2-(1-K)**2) A2=SQRT(1/LAMDA**2-(1+K)**2) A3=SQRT((1/LAMDA+1)**2-K**2) A4=SQRT((1/LAMDA-1)**2-K**2) W=((DK0**2-DB0**2)/DB0**2)*(2*(A1-A2)/(A3-A4)) FI=1.57-ASIN(K*LAMDA/(1+LAMDA)) VE=3.14*DB0**2*R**3*(-A4-COS(ALFA)+COS(BETA)/LAMDA) VC=6.28*(DK0**2-DB0**2)*(R**3)*(A1-SQRT(1/LAMDA**2-(SIN(ALFA)-K)**2)) UE=OMEGA*R*SIN(ALFA-BETA)/COS(BETA) !(1.9) СКОРОСТЬ ВЫТЕСНИТЕЛЬНОГО ПОРШНЯ UC=OMEGA*R*SIN(ALFA+BETA)/COS(BETA) !(1.5) СКОРОСТЬ РАБОЧЕГО ПОРШНЯ JC=OMEGA**2*R*(COS(ALFA+BETA)/COS(BETA)+ & LAMDA*(COS(ÀLFA)**2/COS(BETA)**3)) !(1.6) УСКОРЕНИЕ РАБОЧЕГО ПОРШНЯ JE=OMEGA**2*R*(COS(ALFA-BETA)/COS(BETA)- & LAMDA*(COS(ALFA)**2/COS(BETA)**3)) !(1.10) УСКОРЕНИЕ ВЫТЕСНИТЕЛЬНОГО ПОРШНЯ RETURN END SUBROUTINE CICL(NC,ALFA,PMIN,W,FI,TE,TR1,TC,TM,TR2,VX,VR,VR2,VMM, & VTH,V0,DV0,P,AD,SIGMA,PCP,TETA,DELTA) TAU=TC/TE IF(NC.EQ.1)TR1=(TC+TE)/2. IF(NC.EQ.2)TR1=(TC+TM)/2. IF(NC.EQ.2)TR2=(TE+TM)/2. S=(VX/V0)+(VR/V0)*(TC/TR1)+VTH/V0*(TC/TE) S=S+AD IF(NC.EQ.2)S=S+VMM/V0*(TC/TM)+VR2/V0*(TC/TR2) IF(NC.EQ.2)TAU=TAU*DV0+(1-DV0)*TC/TM DELTA=SQRT(TAU**2+W**2+2*TAU*W*COS(FI))/(TAU+W+2*S) SIGMA=(1+DELTA)/(1-DELTA) PCP=PMIN*SIGMA**(1/2.) TETA=ATAN(W*SIN(FI)/(TAU+W*COS(FI))) P=PMIN*(1+DELTA)/(1-DELTA*COS(ALFA-TETA)) RETURN END

SUBROUTINE MOB(NC, V0, VX, VR, VTH, VR2, VMM, TE, TC, TM, AX, AR, AR1, & AR2.AMM.ATH) IF(NC.EQ.1)TR1=(TC+TE)/2. IF(NC.EQ.2)TR1=(TC+TM)/2. IF(NC.EQ.2)TR2=(TE+TM)/2.0 VX=AX*V0 IF(NC.EQ.1)VR=AR*V0*TR1/TC IF(NC.EQ.1)VTH=ATH*V0*TE/TC IF(NC.EQ.2)VR=AR1*V0*TR1/TC IF(NC.EQ.2)VMM=AMM*V0*TM/TC IF(NC.EQ.2)VR2=AR2*V0*TR2/TC IF(NC.EQ.2)VTH=ATH*V0*TE/TC RETURN END 1== SUBROUTINE MACCA(NC,P,VE,VC,VX,VR,VTH,VR2,VMM,TE,TC,TM,ME,MX,MR1, & MR2,MM,MH,MC) REAL ME, MX, MR1, MR2, MM, MC, MH DATA R/2078./ IF(NC.EQ.1)TR1=(TC+TE)/2. !СРЕДНЯЯ ТЕМПЕРАТУРА РЕГЕНЕРАТОРА ПРИ ОДНОЙ СТУПЕНИ IF(NC.EQ.2)TR1=(TC+TM)/2. !СРЕДНЯЯ ТЕМПЕРАТУРА РЕГЕНЕРАТОРА 1 СТУПЕНИ IF(NC.EQ.2)TR2=(TE+TM)/2.0 !СРЕДНЯЯ ТЕМПЕРАТУРА РЕГЕНЕРАТОРА 2 СТУПЕНИ МЕ=Р*1.Е6*VE/(R*TE) !(3.3) КОЛИЧЕСТВО РАБОЧЕГО ГАЗА В ПОЛОСТИ РАСШИРЕНИЯ MR1=P*1.E6*VR/(R*TR1) !(3.6) ΚΟЛИЧЕСТВО РАБОЧЕГО ГАЗА В РЕГЕНЕРАТОРЕ МН=Р*1.Е6*VTH/(R*TE) !(3.5) КОЛИЧЕСТВО РАБОЧЕГО ГАЗА В ТЕПЛООБМЕННИКЕ IF(NC.EQ.2)MR2=P*1.E6*VR2/(R*TR2) !(3.9) КОЛИЧЕСТВО ГАЗА В РЕГЕНЕРАТОРЕ ВТОРОЙ СТУПЕНИ МХ=Р*1.Е6*VX/(R*TC) !(3.4) КОЛИЧЕСТВО РАБОЧЕГО ГАЗА В ХОЛОДИЛЬНИКЕ IF(NC.EQ.2)MM=P*1.E6*VMM/(R*TM) !(3.7) КОЛИЧЕСТВО ГАЗА В ПРОМЕЖУТОЧНОЙ ПОЛОСТИ МС=Р*1.E6*VC/(R*TC) !(3.2) КОЛИЧЕСТВО РАБОЧЕГО ГАЗА В ПОЛОСТИ СЖАТИЯ RETURN END _____ SUBROUTINE CRIVO(ALFA, RK, RB, LK, LB, MU, BETA, DK, DB, OMEGA, V0, & VE,VC,UE,UC,JE,JC,AD,W,FI,DB1,DV0) REAL JE, JC, MU, LB, LK ВЫЧИСЛЕНИЕ КИНЕМАТИЧЕСКИХ ПАРАМЕТРОВ КРИВОШИПНО-ШАТУННОГО МЕХАНИЗМА ДВИЖЕНИЯ VK0=3.14*DK**2/4*(2*RK) !(1.17) ОБЪЕМ, ОПИСАННЫЙ РАБОЧИМ ПОРШНЕМ VKO VB0=3.14*DB**2/4*(2*RB) !(1.18) ОБЪЕМ, ОПИСАННЫЙ ВЫТЕСНИТЕЛЬНЫМ ПОРШНЕМ VBO V0=VB0 SBM=2*RB V01=V0*DV0/(1-DV0) DB1=SQRT(V01/(.785*SBM)) Z=VK0/VB0 ! ОТНОШЕНИЕ ОПИСАННЫХ ОБЬЕМОВ FI=ATAN(Z*SIN(E)/(Z*COS(BETA)-MU)) !(1.19) УГОЛ СДВИГА ФАЗ МАКС. ОПИСАННЫМИ ОБЬЕМАМИ ТЕПЛОЙ И ХОЛОДНОЙ ПОЛОСТЕЙ W=SQRT(Z**2*MU*2-2*MU*Z*COS(BETA)+1) !(1.20) ОТНОШЕНИЕ МАКС. ОБЪЕМОВ ПОЛОСТЕЙ СЖАТИЯ И РАСШИРЕНИЯ UE=RB*OMEGA*(SIN(ALFA)+(RB/LB)*SIN(2*ALFA)/2.0) !(1.21) UC=RK*OMEGA*(SIN(ALFA-BETA)+(RK/LK)*SIN(2*(ALFA-BETA))/2.0) !(1.22) JE=RB*OMEGA**2*(COS(ALFA)+(RB/LB)*COS(2*ALFA)) !(1.23) JC=RK*OMEGA**2*(COS(ALFA-BETA)+(RK/LK)*COS(2*(ALFA-BETA))) !(1.24) VE=VB0/2.*(1.-COS(ALFA)) !(1.25) VC=VB0*W/2.*(1.-COS(ALFA-FI)) !(1.26) AD=(1-DB**2/DK**2)*Z/2*(1-(Z-COS(BETA))/SQRT(Z**2-2*Z*COS(BETA)+1)) !(1.27) RETURN END 1____ SUBROUTINE HELIUM REAL LLL **DIMENSION SAVEY(85)** COMMON /A/TK,VK,R/B/PK,OM1/C/C1,C2 COMMON /X/ALL(10),BLL(10),CLL(10),DLL(10),ELL(10)/Y/FLL(7), & GLL(7),HLL(7),LLL(7),QLL(7)

```
DATA SAVEY/0.,-0.0952426,-0.00412116,0.000965381,-0.001478587, &
0.000385145,-4.04213E-5,4*0.,0.8853308,0.06419341,-0.05472136, &
0.07660029,-0.02068234,0.002123534,3*0.,1.,0.5736679,0.01857956, &
-0.00503396,0.00543497,-0.000609572,5*0.,0.9,-2.692995,8.9865164, &
-4.4483362,-7.2433935,9.3056234,-4.3097793, &
0.92399394. &
-0.07710676,0.,0.4,-1.9228434,4.5056286,-5.3236254,3.4369598, &
-1.250620,0.24284309,-0.01958436,0., &
0.3035636,-1.335531,-0.0101968,-0.00006945,4*0,,-0.2823762, &
0.0810073,3*0.,-4.1242084,0.00903666,-0.0582075,0.105,0.046117333, &
-0.01591775,0.,0.0004603,0.,-0.05053309,0.07581814,4*0., &
0.0004529,-0.0415299,0.,0.92899,-1.3638926,0.55265989,-0.076680383/
C2=5.450839
C1=13.13487
OM1=2.9
PK=2.29064
VK=0.014393
TK=5.1994
R=2.07723
DO 111 I=1,10
ALL(I)=SAVEY(I)
BLL(I)=SAVEY(I+10)
CLL(I)=SAVEY(I+20)
DLL(I)=SAVEY(I+30)
111 ELL(I)=SAVEY(I+40)
DO 117 I=1,7
FLL(I)=SAVEY(I+50)
GLL(I)=SAVEY(I+57)
HLL(I)=SAVEY(I+64)
LLL(I)=SAVEY(I+71)
117 QLL(I)=SAVEY(I+78)
RETURN
END
1-
  ПРОЦЕДУРА ОПРЕДЕЛЕНИЯ ВЯЗКОСТИ
FUNCTION CRMU(T,W)
COMMON /A/TK,VK,R/B/PK,OM1
RO=W/(VK*10**3.)
XX=ALOG(T)
XMU=-0.135311743/XX+1.00347841+1.20654649*XX &
-0.149564551*XX**2.+0.0125208416*XX**3
BT=-47.5295259/XX+87.6799309-42.0741589*XX &
+8.33128289*XX**2.-0.589252385*XX**3
CT=547.309267/XX-904.870586+431.404928*XX &
-81.4504854*XX**2.+5.37008433*XX**3.
DT=-1684.39324/XX+3331.08630-1632.19172*XX &
+308.804413*XX**2.-20.2936367*XX**3.
IF(T.GE.100.)GO TO 3
YMU=BT*RO+CT*RO**2.+DT*RO**3
CRMU=EXP(XMU+YMU)*10.**(-7.)
GO TO 4
3 CRMU=5.023*T**0.647*10.**(-7.)
4 RETURN
END
!=
  ПРОЦЕДУРА РАСЧЕТА ТЕПЛОПРОВОДНОСТИ
FUNCTION CRLA(T,W,P)
COMMON /A/TK,VK,R/B/PK,OM1
RO=W/(VK*10**3.)
XX=ALOG(T)
ZT=-4.3611622157+1.9250159286*XX-0.52544120165*XX**2. &
+0.090045763885*XX**3.-0.0054773874708*XX**4.
XLAM=EXP(ZT)
BT=EXP(4.7470660612-5.3641468153*XX+3.4639703698*XX**2. &
-1.0702455443*XX**3.+0.1571349306*XX**4.-0.00892140047*XX**5.)
```

CT=2.2109006708+187.74174808/T-1281.0947055/T**2. & +3645.23932161/T**3.-3986.6937948/T**4 YLAM=EXP(BT*RO+CT*RO**2.) T1=11.83 W1=CRW(P,T1,0.) DCP=CRCP(P,T,W)-CRCP(P,T1,W1) ZLAM=0.002600260734*DCP CRLA=(XLAM*YLAM+ZLAM)*10.**(-4.) RETURN END !_____ ! ПРОЦЕДУРА ОПРЕДЕЛЕНИЯ ПРИВЕДЕННОЙ ПЛОТНОСТИ ПО ДАВЛЕНИЮ И ТЕМПЕРАТ FUNCTION CRW(P,T,XN1) **REAL IL** COMMON/A/TK,VK,R/B/PK,OM1/C/C1,C2 K=0 L IF(ABS(P-PK).GE.1.E-6.AND.ABS(T-TK).GE.1.E-6)GO TO 8 CRW=1. **GO TO 10** 8 BL=T IL=P W=XN1+0.01 IF(P.LT.PK.AND.T.LT.TK)GO TO 99 IF(ABS(IL-PK).LT.1.E-6.AND.BL.LT.TK)GO TO 13 IF(IL.GT.PK.AND.BL.LE.TK)GO TO 13 **GO TO 15** 99 IF(BL.LT.(CRT(P)-1.E-4))GO TO 13 **GO TO 15** 13 W=OM1-0.01 K=0 15 AL=CRPN(W,T,0)-P Y=CRPN(W,T,1) K=K+1 IF(Y.EQ.0)Y=1.E-6 14 AL=AL/Y W=W-AL IF(W.GT.OM1)GO TO 13 IF(K.GT.20)GO TO 5 IF(ABS(AL).GT.10.E-6)GO TO 15 5 CRW=W 10 RETURN END ПРОЦЕДУРА ОПРЕДЕЛЕНИЯ ИЗОБАРНОЙ ТЕПЛОЕМКОСТИ ГЕЛИЯ I. FUNCTION CRCP(P,T,W) REAL LLL,A(10) COMMON /X/ALL(10),BLL(10),CLL(10),DLL(10),ELL(10)/Y/FLL(7), & GLL(7),HLL(7),LLL(7),QLL(7)/A/TK,VK,R/C/C1,C2 DW=CRWT(W,T,CRPT) V=TK/T V1=1./(1.8+V*100.) AL=1./V**2 BL=1 DO 1 I=1,10 1 A(I)=0DO 2 I=1,7 AL=AL*V BL=BL*V1 A(1)=A(1)+FLL(I)*AL*(I-1) A(2)=A(2)+FLL(I)*AL*(I-1)*(I-2) A(3)=A(3)+GLL(I)*BL*(I-1)A(4)=A(4)+GLL(I)*BL*(I-1)*I A(5)=A(5)+HLL(I)*AL*(I-1) A(6)=A(6)+HLL(I)*AL*(I-1)*(I-2) A(7)=A(7)+LLL(I)*BL*(I-1)

A(8)=A(8)+LLL(I)*BL*(I-1)*I A(9)=A(9)+QLL(I)*AL*(I-1)2 A(10)=A(10)+QLL(I)*AL*(I-1)*(I-2) A(1)=A(1)-A(3)*100 A(2)=A(2)+A(4)*V*V1*1.E4 $A(3) = A(5) - A(7) \times 100$ A(4)=A(6)+A(8)*V*V1*1.E4 A(5)=0A(6)=0AL=1 BL=1/W DO 3 I=1,10 AL=AL*W BL=BL*W A(5)=A(5)+AL*(CLL(I)*A(2)+DLL(I)*A(4)+ELL(I)*A(10))/I 3 A(6)=A(6)+BL*(BLL(I)+CLL(I)*A(1)+DLL(I)*A(3)+ELL(I)*A(9)) CRCP=R*TK*(A(6)*DW-A(5)/T)-P*VK*DW*100/W**2+2.5*R RETURN END ПРОЦЕДУРА ОПРЕДЕЛЕНИЯ ДАВЛЕНИЯ НАСЫЩЕНИЯ ПО ТЕМПЕРАТУРЕ НАСЫЩЕНИЯ I FUNCTION CRP(T) **DIMENSION A(9)** DATA A/1.00363,4.6234257,6.399,2.541,0.00612, & 0.5197,7.,14.14,0.00133322/ X1=A(2)-A(3)/T+A(4)*ALOG(T)+A(5)*T**2/2 X2=A(6)*(A(7)*A(8)/(A(8)**2+1)-1/T)*ATAN(A(7)*T-A(8)) X3=A(7)*A(6)/(2*(A(8)**2+1))*ALOG(T**2/(1+(A(7)*T-A(8))**2)) CRP=EXP(X1-X2-X3)*A(9)/A(1) RETURN END !======== _____ ПРОЦЕДУРА ОПРЕДЕЛЕНИЯ ДАВЛЕНИЯ И ДВУХ ПЕРВЫХ ЧАСТНЫХ ПРОИЗВОДНЫХ П I ПРИВЕДЕННОЙ ПЛОТНОСТИ ПРИ ПОСТОЯННОЙ ТЕМПЕРАТУРЕ L FUNCTION CRPN(W,T,N) REAL LLL, IL, NV1 COMMON /X/ALL(10),BLL(10),CLL(10),DLL(10),ELL(10)/Y/FLL(7),GLL(7), & HLL(7),LLL(7),QLL(7)/A/TK,VK,R VLL=TK/T NV1=1./(1.8+VLL*100.) AL=0 BL=0 IL=0 AL1=1./VLL**2 DO 2 I=1,7 AL1=AL1*VLL AL=AL+FLL(I)*AL1 BL=BL+HLL(I)*AL1 2 IL=IL+QLL(I)*AL1 AL=AL+(GLL(2)*NV1+GLL(3)*NV1**2+GLL(7)*NV1**6)/VLL BL=BL+(LLL(2)*NV1+LLL(3)*NV1**2)/VLL AL1=0 IF(N.EQ.0)BL1=W IF(N.EQ.1)BL1=1. IF(N.EQ.2)BL1=1./W DO 3 I=1,10 BL1=BL1*W IF(N.EQ.0)M=1 IF(N.EQ.1)M=I+1 IF(N.EQ.2)M=(I+1)*I 3 AL1=AL1+BL1*M*(ALL(I)/VLL+BLL(I)+CLL(I)*AL+DLL(I)*BL+ELL(I)*IL) IF(N.EQ.0)BL1=W/VLL IF(N.EQ.1)BL1=1./VLL IF(N.EQ.2)BL1=0. CRPN=R*TK*(AL1+BL1)*0.01/VK

RETURN END !==== ПРОЦЕДУРА ОПРЕДЕЛЕНИЯ ТЕМПЕРАТУРЫ НАСЫЩЕНИЯ ПО ДАВЛЕНИЮ НАСЫЩЕНИЯ FUNCTION CRT(PN) COMMON/A/TK.VK.R BL=TK 17 AL=CRP(BL)-PN BL=BL-10.E-6 AL=AL*10.E-6/(AL-CRP(BL)+PN) BL=BL+10.E-6-AL IF(ABS(AL).GT.1.E-4)GO TO 17 028 CRT=BL P=PN RETURN END ПРОЦЕДУРА ОПРЕДЕЛЕНИЯ ЧАСТНОЙ ПРОИЗВОДНОЙ ПРИВЕДЕННОЙ ПЛОТНОСТИ ПО ТЕМПЕРАТҮРЕ ПРИ ПОСТОЯННОМ ДАВЛЕНИИ FUNCTION CRWT(W,T,CRPT) REAL LLL,A(4) COMMON /X/ALL(10),BLL(10),CLL(10),DLL(10),ELL(10)/Y/FLL(7), & GLL(7),HLL(7),LLL(7),QLL(7)/A/TK,VK,R DO 1 I=1,4 1 A(I)=0V=TK/T V1=1./(1.8+100*V) $AL = 1./V^{**}3$ DO 2 I=1.7 AL=AL*V A(1)=A(1)+(I-2)*FLL(I)*AL A(2)=A(2)+(I-2)*HLL(I)*AL 2 A(3)=A(3)+(I-2)*QLL(I)*AL A(1)=A(1)-(100*V1+1./V)*(2*GLL(2)*V1+3*GLL(3)*V1**2 & +7*GLL(7)*V1**6)/V A(2)=A(2)-(100*V1+1./V)*(2*LLL(2)*V1+3*LLL(3)*V1**2)/V AL=W DO 3 I=1.10 AL=AL*W 3 A(4)=A(4)+AL*(-ALL(I)/V**2+CLL(I)*A(1)+DLL(I)*A(2)+ELL(I)*A(3)) CRPT=-R*V**2*(A(4)-W/V**2)*0.01/VK CRWT=-CRPT/CRPN(W,T,1) RETURN END SUBROUTINE KONDEN(QT,Z,PCP,TE,DB,OMEGA,DT,VTH) COMMON /G/P(100)/M/ALFA(100)/E/DBK,DHK,S1K,S2K COMMON /O/MX(100).MH(100).MR1(100).MR2(100).MM(100).MC(100).ME(100) COMMON /Q/TBZ,ROBZ,LABZ,MUBZ,RBZ/Z/NNN COMMON /J/DPK,DPX,DPR1,DPR2 COMMON /R/HX,HK DIMENSION NK(100), Y(50), X(50), U(50), QM1(50), QM2(50) REAL NU,KTK,MX,MH,MR1,MR2,MM,MC,ME,LABZ,MUBZ DATA SHE/15./ Q=QT*Z !4.1 ІДЕЙСТВИТЕЛЬНАЯ ТЕПЛОВАЯ НАГРУЗКА НА ТЕПЛООБМЕННИК WRITE(2,*)'Q=',Q,' QT=',QT,' Z=',Z PCR=PCP*10. CALL HELIUM W=CRW(PCR,TE,2.9) OBK=0.014393/W 91 REK=SHE*DBK/(OBK*CRMU(TE,W)) !4.3 **КРИТЕРИЙ RE ПОТОКА РАБОЧЕГО ГАЗА** PR=CRMU(TE,W)*CRCP(PCR,TE,W)/CRLA(TE,W,PCR) !4.4 ΙΚΡИΤΕΡИЙ PR ΠΟΤΟΚΑ ΡΑБΟΥΕΓΟ ΓΑЗΑ

```
NU=0.023*REK**0.8*PR**0.4 !4.5
!КРИТЕРИЙ NU ПОТОКА РАБОЧЕГО ГАЗА
ALFHE=NU*CRLA(TE,W,PCR)*1.E3/DBK !4.6
КОЭФФИЦИЕНТ ТЕПЛООТДАЧИ ОТ РАБОЧЕГО ГАЗА К СТЕНКЕ
A=ALFHE*DBK
88 B=1.13*DHK*(RBZ*ROBZ**2.*LABZ**3./(MUBZ*HK))**0.25
G=TBZ-TE
X(1)=0.2
X(3)=G
83 X(2)=(X(1)+X(3))/2.
DO 82 I=1,3
!? СТРАНИЦА 18
QM1(I)=A^{*}(X(I))
QM2(I)=B*(G-X(I))**.75
Y(I)=QM1(I)-QM2(I)
PRINT 186, I, X(I), Y(I), QM1(I), QM2(I)
186 FORMAT(2X,I2,2X,4F10.3)
82 CONTINUE
C=Y(1)*Y(2)
IF(C.LT.0)X(3)=X(2)
IF(C.GT.0)X(1)=X(2)
CA=ABS(Y(2))
   U(I+1)=U(I)
IF(CA.GT.0.1) GO TO 83
   IF(I.GT.50)GO TO 83
TET1=X(2)
TET2=G-X(2)
QM=A*TET1 !4.1 ? НЕ ХВАТАЕТ СТЕПЕНИ
G=TET1+TET2
ALF1=QM/(DHK*TET1)
ALF2=QM/(DBK*TET2)
KTK=1/(1/ALF1*DBK/DHK+1/ALF2)
FK=Q/(KTK*G)
FK1=Q/QM*3.14*DHK
WRITE(2,57)B,A,QM,TET1,TET2,CA,FK1
57 FORMAT(2X,7E10.3)
NSK1=FK/(3.14*HK*DHK)+.5
DTK=DB+4.E-3+S1K
NSK=0
DO K=1,100
DTK=DTK+2*S1K*(K-1)
NK(K)=3.14*DTK/S2K
NSK=NSK+NK(K)
M=K
DKT=DTK+2*S1K
   IF(NSK.GT.NSK1)GO TO 95
I
IF(DKT>DT)EXIT
ENDDO
IF(REK.LE.1.E5)CI=0.3164/REK**0.25
IF(REK.GT.1.E5)CI=1/(1.82*ALOG10(REK)-1.64)**2
NN=1+NNN
DO 86 I=1,NN
DPK=CI*WK**2*248.625*PCP*HK/(TE*DBK*NSK**0.5)
86 CONTINUE
VTH=NSK*HK*.785*DBK**2
WRITE(2,79)
79 FORMAT(30X, 'PACЧET КОНДЕНСАТОРА')
WRITE(2,92)(J,NK(J),J=1,K)
92 FORMAT(20X,I3,I4)
WRITE(2,93)NSK,FK,HK,DT,NSK1,DTK
93 FORMAT(10X,'NSK=',I5,1X,'FK=',E10.3,1X,'HK=',E10.3/10X,'DT=', &
E10.3,1X,'NSK1=',I5,1X,'DTK=',E10.3)
WRITE(2,47)WK,PCP,OBK,REK,NU,KTK
47 FORMAT(10X,'WK=',E10.3,1X,'PCP=',E10.3,1X,'OBK=',E10.3/10X,'REK=' &
,E10.3,1X,'NU=',E10.3,1X,'KTK=',E10.3)
```

RETURN **FND** 1____ FUNCTION GW(M,OMEGA) REAL M COMMON/M/ALFA(100)/O/MX(100),MH(100),MR1(100),MR2(100),MM(100) & ,MC(100),ME(100)/Z/NNN DIMENSION G(100), M(100) SG=0. DO 80 I=1,NNN G(I)=(M(I+1)-M(I))/(ALFA(I+1)-ALFA(I))80 SG=SG+ABS(G(I)) GW=SG*OMEGA/(NNN*60.) RETURN END 1== SUBROUTINE HOLOD(NC,TC,OMEGA,DELTA,W,FI,TETA,DK,V0,PCP,SIGMA,DB,VX,DX) REAL MUB, LAB, NUB, NUH, KS, KTP, MX, MH, MR1, MR2, MM, MC, ME COMMON /K/DBX,DHX,S1X,S2X/M/ALFA(100)/O/MX(100),MH(100),MR1(100), & MR2(100),MM(100),MC(100),ME(100)/J/DPK,DPX,DPR1,DPR2/G/P(100)/Z/NNN COMMON /R/HX,HK **DIMENSION NK(30)** DATA T3,T4,CPB,OBB,MUB,LAB,SB,SH/293.,298.,4.203,0.0010017,0.0010015,0.603,1.5,20./ QT=OMEGA/120.*PCP*1.E6*V0*W*DELTA*SIN(FI-TETA)/(1+SQRT(1-DELTA**2)) !4.22 ТЕПЛОВАЯ НАГРУЗКА НА ХОЛОДИЛЬНИК В ПРЕДПОЛОЖЕНИИ ИЗОТЕРМИЧНОСТИ ПРОЦЕССА KS=1.66*(SIGMA**(0.66/1.66)-1)/(0.66*ALOG(SIGMA)) ! 4.23 ! АДИОБАТНЫЕ ПОЕРИ (ДОПОЛНИТЕЛЬНАЯ РАБОТА ПОТРАЧЕННАЯ НА СЖАТИЕ РАБОЧЕГО ГАЗА В KOMПPECCOPE) QS=QT*KS ! 4.24 ! ТЕПЛОВАЯ НАГРУЗКА НА ХОЛОДИЛЬНИК T1=TC*SIGMA**(0.66/1.66) ! 4.25 ! ТЕМПЕРАРАТУРА РАБОЧЕГО ГАЗА В КОНЦЕ АДИОБАТИЧЕСКОГО СЖАТИЯ (НА ВХОДЕ В ХОЛОДИЛЬНИК) T2=TC ! ТЕМПЕРАТУРА РАБОЧЕГО ГАЗА НА ВЫХОДЕ ИЗ ХОЛОДИЛЬНИКА T12=SQRT(T1*T2) ! 4.26 ! СРЕДНЯЯ ТЕМПЕРАТУРА РАБОЧЕГО ГАЗА В ХОЛОДИЛЬНИКЕ CALL HELIUM PCR=PCP*10. W12=CRW(PCR,T12,2.9) OBX=0.014393/W12 65 REH=SH*DBX/(CRMU(T12,W12)*OBX) ! 4.27 REB=SB*DHX/(MUB*OBB) ! 4.30 ! КРИТЕРИЙ RE PRH=CRMU(T12,W12)*CRCP(PCR,T12,W12)/CRLA(T12,W12,PCR) ! 4.28 PRB=MUB*CPB*1.E3/LAB ! 4.31 ! КРИТЕРИЙ PR NUH=0.023*REH**0.8*PRH**0.4 ! 4.29 NUB=0.25*REB**0.6*PRB**0.3 ! 4.32 ! КРИТЕРИЙ NU ALFH=NUH*CRLA(T12,W12,PCR)*1.E3/DBX ! 4.33 ! КОЭФФИЦИЕНТ ТЕПЛООТДАЧИ ОТ РАБОЧЕГО ГАЗА К СТЕНКИ ALFB=NUB*LAB/DHX ! 4.34 ! КОЭФФИЦИЕНТ ТЕПЛООТДАЧИ ОТ ТРУБОК К ВОДЕ KTP=1./(1./ALFH+1./ALFB*DBX/DHX) ! 4.35 ! КОЭФФИЦИЕНТ ТЕПЛОПЕРЕДАЧИ ОТ РАБОЧЕГО ГАЗА К ОХЛАЖДАЮЩЕЙ ВОДЕ TAUM=(T1-T2-T4+T3)/ALOG((T1-T2)/(T4-T3)) ! 4.36 ! СРЕДНЕЛОГОРИФМИЧЕСКАЯ РАЗНОСТЬ ТЕМПЕРАТУР FX=QS/(KTP*TAUM) ! 4.37 ! ТЕПЛОПЕРЕДАЮЩАЯ ПОВЕРХНОСТЬ ХОЛОДИЛЬНИКА С УЧЕТОМ 10% ЗАПАСА NSX1=FX/(3.14*DHX*HX)+.5 DTX=DB+4.E-3+S1X NSX=0 DO L=1,30 DTX=DTX+2*S1X*(L-1) NK(L)=3.14*DTX/S2X

NSX=NSX+NK(L) M=L DX=DTX+2*S1X ! IF(NSX.GT.NSX1)GO TO 86 IF(DX>DK)EXIT **ENDDO** IF(REH<=1.E5)CI=0.3164/REH**0.25 IF(REH>1.E5)CI=1/(1.82*ALOG10(REH)-1.64)**2 K=1+NNN DO I=1,K DPX=CI*WX**2*248.625*PCP*HX/(T12*DBX*NSX**0.5) ENDDO VX=.785*HX*NSX*DBX**2 WRITE(2,70) 70 FORMAT(30X, 'RASTCHTET HOLODILNIKA') WRITE(2,71)(J,NK(J),J=1,L) 71 FORMAT(20X, I4, I5) WRITE(2,72)NSX,FX,HX,DK,NSX1,DTX 72 FORMAT(10X,'NSX=',I5,1X,'FX=',E10.3,1X,'HX=',E10.3/10X,'DK=' & ,E10.3,1X,'NSX1=',I5,1X,'DTX=',E10.3) WRITE(2,73)SH,QT,QS,KTP,TAUM,REH 73 FORMAT(10X, 'SH=', E10.3, 1X, 'QT=', E10.3, 1X, 'QS=', E10.3/10X, 'KTP=' & ,E10.3,1X,'TAUM=',E10.3,1X,'REH=',E10.3) RETURN END SUBROUTINE REGEN(NM,L,HR,DB,DT,OMEGA,T1,T2,VR,PCP,WIR,WR,DPR,QPOT) REAL K,NTU,KPD,MU,LM,NU,KPD1,MN DIMENSION EN(12), ST(12), DA(12), ROM(12), XA(8), XB(8), E(2), MU(2), LM(6) COMMON /G/P(100)/Z/NNN/J/DPK,DPX,DPR1,DPR2 DATA ST/45662,32820,31393,26480,19670,8565,6060,4200,33500,26400,16400,2085/ DATA EN/0.658,0.672,0.686,0.669,0.705,0.743,0.757,0.737,2*0.38,2*0.39/ DATA DA/0.0577,0.0815,0.0874,0.106,0.143,0.347,0.498,0.701,0.0453,0.0575,0.095,0.747/ DATA ROM/8*8760.,4*11400./ DATA E, MU, LM/1.15E11, 0.17E11, 0.35, 0.42, 116., 45., 2*60., 2*.23/ DATA XA, XB/0.04, 0.056, 0.063, 0.071, 0.1, 0.25, 0.355, 0.5, 0.03, 0.04, & 0.04,0.05,0.06,0.12,0.16,0.25/ DBR=DB+4.E-3 !5.12 ВНУТРЕННИЙ ДИАМЕТР РЕГЕНЕРАТОРА DHR=DT FR=0.785*(DHR**2-DBR**2) !5.14 ІПЛОЩАДЬ ПОПЕРЕЧНОГО СЕЧЕНИЯ РЕГЕНЕРАТОРА VRK=FR*HR !5.13 VR=VRK*EN(L) VM=VRK*(1-EN(L)) MN=VM*ROM(L) FN=ST(L)*VRK WYD=WR/(FR*EN(L)) TCP=(T1-T2)/ALOG(T1/T2) CALL HELIUM PCR=PCP*10. WHE=CRW(PCR,TCP,2.9) RER=WYD*DA(L)/CRMU(TCP,WHE)*1.E-3 B=HR/DA(L)*1.E3 IF(B<=200.)NU=1.21*RER**0.047*B**(-0.8/RER**0.25) IF(B>200.)NU=0.05*RER**0.85 ALF=NU*CRLA(TCP,WHE,PCR)*1.E6/DA(L) K=ALF/2 QN=WR*CRCP(PCR,TCP,WHE)*1.E3*(T1-T2) IF(L<=8)CPN=-0.1044703+0.517617*TCP/100.-0.193082*(TCP/100.)**2 & +0.0250267*(TCP/100.)**3. IF(L>8)CPN=-0.84583E-2+0.517314*TCP/100.-0.738185*(TCP/100.)**2. & +0.355781*(TCP/100.)**3. WN=MN*CPN*1.E3/(376.8/OMEGA) WG=WR*CRCP(PCR,TCP,WHE)*1.E3

```
NTU=ALF*FN/WG
KPD=1-1/(9*(WN/WG)**2)-1/(1+NTU)
Q1=WIR*CRCP(PCR,TCP,WHE)*1.E3*QN/(FN*K)
KPD1=(QN-Q1)/QN
IF(L>8) GOTO 1
C=XA(L)/XB(L)+1
DL=2.*XB(L)*(1.1-13.6*0.2E6/E(1)*C**2*(XA(L)/XB(L))**3-2.621* &
((0.2E6/E(1))**2*(1-MU(1)**2)*C**2)**(1/3.))
\hat{S}IGM=DL/(\hat{2}^*XB(L))
EPS=1-2.2*XB(L)*(1-EN(L))/(2*XB(L)*SIGM)
R=1/C**2.*SIGM*LM(1)/(0.694*(0.2E6/E(1)*C**2*(1-MU(1)**2))**(-1/3.)+ &
1.274*(XA(L)/XB(L)+1))+LM(1)*CRLA(TCP,WHE,PCR)*1.E3/(EPS*LM(1)+ &
(1-EPS)*CRLA(TCP,WHE,PCR)*1.E3)
IF(RER<=40.)CI=59/RER**0.74*(EPS/EN(L))**1.35
IF(RER>40.)CI=19/RER**0.44*(EPS/EN(L))**1.35
GO TO 2
1 IF(RER.LE.50.)CI=195/RER+3
IF(RER.GT.50.)CI=180/RER+7.5/RER**0.2
B=((1-MU(2)**2)*0.628E6/(E(2)*(1-EN(L))))**(1/3.)
R=0.25*CRLA(TCP,WHE,PCR)*1.E3*(1+3*EN(L))+LM(2)*0.955*(1-EN(L))* &
B/(1+0.6*B)
2 Q2=1.35*R*FR*(T1-T2)/HR
IF(NM==2)LM(3)=LM(5)
IF(NM==2)LM(4)=LM(6)
Q3H=1.35*LM(3)*3.14*DHR*1.E-3*(T1-T2)/HR
Q3B=1.35*LM(4)*3.14*DBR*1.E-3*(T1-T2)/HR
QPOT=Q1+Q2+Q3H+Q3B
DPR=CI*WYD**2*TCP*HR/(DA(L)*PCP)
WRITE(2.3)
WRITE(2,4)DBR,DHR,FR,HR,MN,FN,WYD,QN,KPD,KPD1
WRITE(2,5)
WRITE(2,6)Q1,Q2,Q3H,Q3B,QPOT
3 FORMAT(30X, 'RASTCHTET REGENERATORA')
4 FORMAT(10X,'DBR=',F8.5,1X,'DHR=',F8.5,1X,'FR=',F10.6,1X,'HR=', &
F8.3,1X,'MN=',F8.3/10X,'FN=',F8.3,1X,'WYD=',F5.2,1X,'QN=',F10.3, &
1X, 'KPD=', F5.3, 1X, 'KPD1=', F5.3)
5 FORMAT(/30X, 'POTERI V REGENERATORE')
6 FORMAT(10X,'Q1=',E12.5,1X,'Q2=',E12.5,1X,'Q3H=',E12.5,1X,'Q3B=' &
,E12.5/10X,'QPOT=',E12.5)
RETURN
END
```

Зайцев Андрей Викторович, Пахомов Олег Всеволодович, Борзенко Евгений Иванович

Автоматизированное проектирование криогенного генератора холода

Учебное пособие

В авторской редакции Редакционно-издательский отдел Университета ИТМО Зав. РИО Н. Ф. Гусарова Подписано к печати Заказ № Отпечатано на ризографе

Редакционно-издательский отдел Университета ИТМО 197101, Санкт-Петербург, Кронверский пр., 49