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Basics of the control theory
Let start course of the modern theory of control systems from the basics of classic control theory. All
physical processes are described by differential equations. Let’s consider typical simple structural automatic
control scheme, that is shown in the Fig. 1:

o e u ¥

generator —»@—» controller plant

Fig. 1 - Structural scheme of automatic control system.

v
v

The Plant is the Control Object and it’s a physical device, for example DC motor, electrical circuit,
combustion engine, etc. Plant’s behavior is described by some differential equations. Task of the Controller
according to Error signal e(t) = g(t) — y(t), which is equal to difference between reference signal g(t) from
generator and output y(t) of the Plant, generate control signal u(t) leading Plant to desired state and behavior.
Output y(t) in real object can be, for example, velocity or rotation angle of motor shaft.

Linear dynamic Plant (control system) can be described in two forms: Input-State-Output or Input-
Output.

1. Inafirst form, typical equations system is:

x = Ax + Bu,
y = Cx,

where x € R™ is a state vector (it can consists of voltages in nodes of electrical circuit, for example); u € R¥ is
asystem input; y € R!is a system output, A - matrix of coefficients, called «state matrix» and described current
state x(t), dimension is n X n; B - matrix of coefficients, called «control matrix» and described control u(t) to
each state, dimension is n X k (in case of system with single input is n X 1); C - matrix of coefficients, called
«output matrix» and described output y(t) of the Plant, dimension is [ X n (in case of system with single output
is 1 X n). In continuous time, all variable x, y, u depend on time.

Let’s introduce algebraic variable s and calculate characteristic equation of the Plant as:
det(A—sl)=s"+a,_4s" 1+ -+a;s+ay,=0,
where [ - identity matrix, s;,i = H are roots of the system, a;,j = 0,n — 1 are polynomial coefficients.

Characteristic equation corresponds to differential equations of the system and roots s; are determined
elementary behavior of the Plant.

2. Now, let’s consider the second form: Input-Output.

In a previous case system is described by n-differential equations of first order. In this case we will
describe Plant’s behavior using one differential equation of n-order:

dny dn—ly dy d™u dm—lu
W'*‘an 1dtn1+ +a1d +a0y b +b

du
m T —_— - +b1d + by.

In the case instead of three matrices A4, B, C we have two sets of coefficients: a;,i = 0 n—1landb;,j =

,m. These sets are characterized system behavior.

Equation m < nis a condition of physical feasibility. What is a derivative? It's a limit of the ratio function
increment to argument increment with the argument increment tends to zero:
F1(x) = f (c + Ax) — ()
Ax

;é ITMO UNIVERSITY 3
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Fig. 2 - Derivative in the point x, mathematically it’s correct.

But in case of physical systems axis x is an axis of time ¢, so, in a moment t we can’t know value of
f(t + At), because the moment (t + At) in the future. And due to this fact in a control theory we have limitation
m < n.

Let’s introduce algebraic variable s as a differentiation operator s = %, then our n-order differential
equation will take the form:
Sy + ap_ 1SV ly + o+ aysy + agy = by s™u + by s™ u + -+ + bysu + bou.
Variables y and u put beyond the bracket:

Y™+ ap_1s" 4+ -+ ags + ag) = u(byS™ + byp_1s™ L+ -+ bys + by).
characteristic equation
Let’s divide this equation to « and to characteristic equation:

Y bypS™ 4 by_s™ T+ -+ bys+ by
US4 a,_ sVl 4+ ags+ag

= W(s).

W (s) is a Transfer function and it’s a ratio output to input with zero initial conditions.
Roots of the Transfer function denominator are called polesand described system’s free motion.

Roots of the Transfer function numerator are called zerosand described system’s forced motion.

Example:
d?y(t) y(t) ( )
2 -7
o+ +y(0) = —=+u(®),
_ Y
W(s) = ) ?
+1
W(S) 52+25+1
s+1=0=s=—-1-zero;
s?+2s+1=0=s;, =—1-two poles (second order pole).

Let’s consider conversion from input-state-output to input-output form:
W(s) =C(A—sD™B.

In case of several inputs and/or several outputs we will obtain 7ransfer matrix! X k dimension, consists
of several transfer functions W; ;(s) linking i-th output and j-th input. In a simple case with single input and
single output (SISO-system) we will obtain only one transfer function.

4 #3333 ITMO UNIVERSITY



2017 © Sergei Shavetov The modern theory of control systems:
s.shavetov@corp.ifmo.ru Basics of the control theory

Ok, we considered two forms describing dynamic systems. Now, let’s consider behavior of output
variable y. Typical transient is shown in the Fig. 3.

)
= N(l)

I. st

0) t,
Fig. 3 - Typical transient in automatic control system.

t;, - transient time: Vt > t;: |h(t) — 1| < A, A> 0;

h(t) - transient function;

A= 0.05 (5% deviation from steady value h,);

in general case hy, = tlim h(t), but in case of constant reference signal g(t) = const = g: ho, = W(s)|5=0" 9-
—00
We can calculate other important parameter - overcontrol (is noted as §):

h, .. —hy
5= ‘%‘ -100%.

For typical systems § = 0 --- 30%.
Ok, now let’s try to create a model of a simple abstract Plant.

Example:

Let A = B _01];3 = B];C =[3 -2

F=Ax+Bu (AT X tu
{ =Cx = X2=2x1+2u.
y y = 3x; — 2%,

For modelling we will use integrators, because due to condition m < n we can’t use differentiators:

#3333 ITMO UNIVERSITY 5
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Fig. 4 - Scheme of system modelling.

Let’s find out a transfer function:

W(s) =C(A—sD™'B;

a=si=l G-l J=15"  Ld=n

A* -1 — 1
detA*

(adjan)T;

adjA* - adjoint (or allied or interconnected) matrix;

elements of adjoint matrix are algebraic complements a; ;= (=D - M; s

where i - row number, j — column number, M;; - minors of A%,

detd*=(1-5)(—=s)— (2)(-1) = —s+5s2+2=52—5+2;

—_ —_ T —_—
A*_l = 52—1s+2 [ 1S 1 —25] = sz—ls+2 [—; 1 is];

CA ' =[3 —2] = [_s 1]— L. [—3s44 3-2+2s];

sZ—s5+2 T s2-s+2

-2 1-s

1
s2—s+

W(s) =

sZ—5+2

2
Now, let’s try to create a model from the transfer function:

_Y(s) _ s+6 _ i
W(S) T U(s)  s2-s+2’ = dt’

s?y — sy + 2y = su + 6u;

6

5 [-3s+4 1+25]-[1]= : (—35+4+2+4s)=525_;

S+

Let’s divide equation to s a power of differential equation order:

s’y —sy+ 2y =su+6u|:s?
y—§y+2512y =§u+6si2u;

Now, let’s leave only y on the left:
y =§u+§y+6sizu—25i2y;

Rewrite equation:
y =< @+y)+ (6u—2y);

And create a model:

>
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Fig. 5 - Scheme of system modelling.

Structural transformations
Let’s consider typical transformation for structural schemes, how to simplify some of them.

1. Consecutively k-connected elements.

X,(s) X(s) X(s) X,(s) X(s)
—» W(s) > W(s) — = — W) —

Fig. 6 - Scheme of consecutively connected elements.

X3(s)
W(s) =3

from the scheme is visible, that:

X, = WiXy, _ X3(s) _ .
{X3 — WZXZ — W2W1X1 = M/e(s) - Xl(s) - WZ(S)Wl(S):

We(s) = I, Wi ()

2. Parallel k-connected elements.

X(s)

Y

W (s)
X.(s) X (s)

v

w,
A(S) X(s)

Fig. 7 - Scheme of parallel connected elements.
Using the similar logic obtain: W, (s) = ¥¥_, W; (s).
3. Elements with a feedback.

X.(s)

X‘(S_)’@_’ W.(s) TX‘?(S)
L W.(s)

X [(s)

Fig. 8 - Scheme of elements with a feedback.

X, = X1 — Xy, X3 = Wi (X; — Xy),
X3 = W1X2, = X3 = W1X1 - W1W2X3,
X4_ = W2X3, (1 + W1W2)X3 = Wle.

W1
We(s) = X, 1rww,

i =,. ITMO UNIVERSITY
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Stability
Now, let’s consider one of the most important property of dynamic systems: «stability». What is
stability? Stability is the system ability to return to initial position after stopping action to system external
disturbances. For example, let’s see to the picture:

Fig. 9 - Stable system.

[s this system stable? Yes! If we move a ball to left or to right side and leave it there, the ball returns to
stable bottom position.

Fig. 10 - Unstable system.

And, is this system stable? No, system is unstable, but the current position is the equilibrium. In our life,
this picture is like a Segway, two-wheeled balancing pendulum platform.

Fig. 11 - Segway.

In control theory identify several kinds of stability. We consider three of them. The first and the weakest
kind of stability is Lyapunov stability.

1. Lyapunov stability

Lyapunov stability guarantees bounded of all trajectories, but not guarantees convergence to some
steady value. Geometrically it can be shown in Fig. 12:

8 #3333 ITMO UNIVERSITY
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A x(O)

Fig. 12 - Lyapunov stability geometrical interpretation.

where x4, x, are state coordinates, €, § - some small numbers; as norm of x; and x, can be used quadratic
norm, for example; x(0) - initial position of trajectory.

The equilibrium x = 0 is Lyapunov stable if for any small number € > 0, exists small number §(¢) > 0,
that for all trajectories starting from the initial conditions |[x(0)|| < §(¢) for any time Vt > 0 following
inequality is satisfied: ||x(t)]|| < e.

Let’s consider Root stability criterion for the system:

x =Ax + Bu
y=Cx

Characteristic polynomial of matrix A isdet(4 — sI) = s™ + a,_1s" 1 + -+ a;5 + ay, = 0, where s;,i =
,n - are roots of polynomial.

So, if all roots have negative real parts Res; < 0,i = 1, n, then the system is stable. On the complex plane,
they are:

Fig. 13 - Roots distribution in a stable system.
where Im - imaginary axis, Re - real axis. Imaginary axis is a stability border.
If one or more than one root is more than zero system is unstable.
As sub kinds of Lyapunov stability we can distinguish two stability borders.
1.1.Stability border of neutral type.

Root stability criterion claims that the dynamic system is on the border of neutral type if one or two
roots of characteristic polynomial are equal to zero and rest roots have negative real parts:

S12 = 0,Res; <0,i = 3,n.

1.2.Stability border of oscillatory type.

#3333 ITMO UNIVERSITY 9
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Root stability claims that the dynamic system is on the border of oscillatory type if the characteristic
polynomial has pair of purely imaginary roots and rest roots have negative real parts.

S12 = Hjw,w > 0 Res; < 0,i = 3,n, where j - imaginary unit.

Fig. 14 - Stability border of oscillatory type.
So, all these sub kinds are Lyapunov stability. The next kind of stability is asymptotic stability.
2. Asymptotic stability.

The equilibrium x = 0 is asymptotically stable if the position is Lyapunov stable and for any motion
trajectories x(t) from the arbitrary initial conditions x(0) the condition tlim [|x(®)]| = 0.

Fig. 15 - Transient in an asymptotic stable system.
Stronger than an asymptotic stability is an exponential stability.
3. Exponential stability.

The equilibrium x = 0 is exponential stable if for any motion trajectories x(t) from the arbitrary initial
conditions x(0) exists numbers 8 < 0 and p = 1 that for any time Vt > 0 the inequality is satisfied: ||x(t)|| <

peP’ - [lx(0)]l.

A vt)
\'(II,I'\ 1)
N
— \-_Z‘:'

\ ] - -
\;,/' \_—c"

”

Fig. 16 - Transient in an exponentially stable system.

Constant {3 is the convergence degree and characterizes convergence velocity to equilibrium. From
exponential stability implies asymptotic stability, and from asymptotic stability implies Lyapunov stability.

10 233338 ITMO UNIVERSITY
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Ok, system can be stable or unstable. But in both these cases control purpose must be fulfilled. There
are many different methods and approaches for developing control laws (algorithms) exists. Now we
considered one of the most popular method «modal control».

Modal control
Behavior of the system is uniquely determined by the state matrix eigenvalues. To make system
behavior in a certain way it is necessary to develop controller which delivers desired eigenvalues to a given
state matrix A. We should construct reference (modal) model that has desired quality indicators.

The Plant is given by the system of differential equations:

{J’C(t) = Ax(t) + Bu(t),
y(t) = Cx(2),

Modal modelis an autonomous dynamic system of the form:

{Z‘(t) =Tz(t),
n(t) = Hz(t),

where z(t) € R" - n-dimension state vector, n(t) € R' - [-dimension output vector; I - square state matrix of
dimension n X n; H - output matrix [ X n. Matrices (I', H) are completely observable (observable matrix No =
[H Hr HI2 .. Hrn—l]T should has the full rank). State matrix I characterized by eigenvalues 4;,i = 1,n,
providing a predetermined dynamic performance quality of the system. Eigenvalues of A matrix are not equal
to eigenvalues of I' matrix.

It is necessary to synthesize a control algorithm that generates control signals u(t) for dynamic Plant
with the quality indicators defined by the eigenvalues of matrix I'. Let’s choose proportional control:

u(t) = —Kx(t),
where K - matrix of linear stationary feedbacks.

Substituting control signal u(t) in a vector-matrix description of the Plant we obtain a closed feedback
system:

x = Fx,
y = Cx,

where F = A — BK - matrix of the closed system.

To matrix K provides quality indicators for given dynamic system like in a reference model, it’'s
necessary the condition of similarity is satisfied:

x(t) = Mz(t) = z(t) =M 1x(t),t =0,
where M - coordinate transformation or similarity matrix.

Output of the reference model is a control signal for the given model. Using this relation obtain the
control law:

u(t) = —Hz(t) = —HMx(¢).
Let’s introduce notation:
K=HM™! & H=KM.
Substituting obtained expressions to Sylvester type matrix equation obtain:
MI' — AM = —BKM.

With the notation F = A — BK matrix equation leads to a similarity condition I" and F:

#3333 ITMO UNIVERSITY 11
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MI' = FM,

therefore matrix F has eigenvalues I'.

Example:
7 3 14 0
A=|6 5 -8[,B=]0,C=[1 0 0]
4 -1 -7 1

Required to ensure the transition time in a closed system t; = 1.7 seconds.

A=1[7314;65-8;4-1-7]; % MATLAB code
B=1[0;0; 1];
C=[100];

1. Checking system stability:

s, = —11.3921,
det(A — sI) = s® — 552 —131s + 635 = {sz = 11.5776 > 0, = system is unstable.
53 = 4.8145 > 0,

roots(poly(A)); % MATLAB code or

eig(A);
2. Checking system for complete controllability (matrix Nc = [B AB A%B --- A" 1B] should has
the full rank):
0 14 -24
rank N, = rank [0 -8 100] = 3 = n = system is completely controllable.
1 -7 113

rank(ctrb(A, B)); % MATLAB code

3. Form reference model:

To form the reference model, we should find a desired characteristic polynomial in accordance with a

normalized transient time t; for a n-order system. Normalized time can be calculated from transients of
.(11: 2i—1

Butterworth (overcontrol not more than 15%) Db(s) = []i-, (s — we’ 5+7")) or Newton (overcontrol 0%)

Dn(s) = (s + w)™ polynomials:

1.3 y T 3 o S W | - f _f.‘
» 5.‘1 _.\. l'.‘ - ) ‘nl
=3\ \ \ H ‘\
nw-2 \ SR
! S L = A
' | A e e T

4 0 L(..,..A’/ e " 4

0 % _; 6 8 10 12 U 2 4 l‘_: ';‘ 10 12
Fig. 17 - From left to right Butterworth and Newton polynomials transients accordingly.

In case n=3: t; =6.2 seconds, D;(s) =s>+3ws? +3w?s + w® - the desired characteristic
polynomial (third-order Newton polynomial).

12 2533238 ITMO UNIVERSITY
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w= Z—t = % =3.65,D4(s) = s + 10.94s% + 39.9s + 48.51.
¢ .

Now, write out the matrix I" of reference model in a canonical controllable form with help the desired
polynomial:

0 1 0
['= 0 0 1

—48.51 -399 -10.94

,H=[1 0 0]

G=[010;00 1;-48.51-39.9 -10.94]; % MATLAB code
H=[100];

4. Finding matrix transformation M:

The solution of the Sylvester matrix equation with respect to the matrix M:

—0.1497 -0.0084 -0.0020
M= 02111 0.0215 0.0028 |.

0.0365 —0.0054 0.0014

M = sylv(-A,G,-B*H); % MATLAB code

5. Calculation of matrix K:

K=HM™! =[36.2969 18.2453 15.94].

K=H *inv(M); % MATLAB code

6. Checking calculations:

7 3 14
F=A-BK= 6 5 -8 |,
—32.2959 —19.2453 —22.94
det(F —sI) = s3 + 10.94s% + 39.9s + 48.51 = D;(s) - characteristic polynomial coincides with the
reference, hence controller coefficients found correctly.

F=A-B*K; % MATLAB code
poly(F)

7. Calculation of the direct linking coefficient:

K, = —(C(A—BK)™'B)~! = —0.5161.

Kg = -inv(C * inv(A - B *K) * B); % MATLAB code

8. Form control signal u(t) = K;g(t) — Kx(¢).

Discretizing

The last point of this lecture is how to use this controller in a real life. Let’s consider approach to
discretize continuous system and try to write simple program code. In continuous time, the Plant is described
as follows:

{J’C(t) = Ax(t) + Bu(t),
y(t) = Cx(2),

#3333 ITMO UNIVERSITY 13
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:‘53}7
5

v
NS -

Fig. 18 - Scheme of closed system with a modal controller.
Digital electronic microcontrollers work in a discrete time, so:

wik) ¥ )

0 At ' A A £, s

-~

¥ A+1k42 5 steps

Fig. 19 - Continuous and discrete processes.
T = At - discrete interval.

{x(k +1) = Ad - x(k) + Bd - u(k),
y(k) = Cd - x(k).

Discrete matrix A we can find as a matrix exponent: Ad = e“7, discrete matrix B we can find using
formula: Bd = A™1(e4T — I)B|34-1 and Cd = C.

T =0.1; % MATLAB code

Ad = expm(A * T);

Bd =inv(A) * (Ad - eye(n)) * B;
Cd=C(;

1 | . . :
But, to avoid division by zero in A~ we can decompose matrix exponent to series with k-members:

14 ;*é-s 33 ITMO UNIVERSITY
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AT vk AT
e ~ Zi:o T Ad;

A

Bd ~ (Z{'{:1Ai—‘1'ri) B

il

Example:

a=1° LlB=["}c=n o,7=001u=124dB8d,cd-

A=101;-2-3]; % MATLAB code

B =[0; 1];

C=[10];

T =0.01;

Ad =0;

Bd =0;

k=10;

fori=0:1:k
Ad = Ad + (A™i * T"i / factorial(i));
if(i > 0)

Bd =Bd + (A*(i- 1) * T"i / factorial(i)) * B;

end;

end;

Cd=C(;

ad=[ 09999 00099 gy 1 0

—0.0197 0.9703 0.0099]'Cd=[1 0.

Ok, integrator is a memory element which saves previous value. Now, let’s construct transient in a
discrete view:

x1 = 0; % MATLAB code

x2 = 0; %initial conditions

u=1;

form = 0:1:100000
x1dot =Ad(1,1) *x1 + Ad(1,2) *x2 + Bd(1) *u;
x2dot = Ad(2,1) *x2 + Ad(2,2) *x2 + Bd(2) *u;
y(m) = Cd(1) *x1 + Cd(2) * x2;
k(m)=m/T;
x1 = x1dot;
x2 = x2dot;

end;

plot(k,y);

Fig. 20 — Transient in a discrete time.

.
Y
e

23333317 ITMO UNIVERSITY 15



2017 © Sergei Shavetov The modern theory of control systems:
s.shavetov@corp.ifmo.ru Stability types and Lyapunov equations

Stability types and Lyapunov equations

Stability types
What is stability? Stability is the system ability to return to initial position after stopping action to
system external disturbances. The first and the weakest kind of stability is Lyapunov stability.

1. Lyapunov stability guarantees bounded of all trajectories, but not guarantees convergence to some
value. Geometrically it can be shown as the picture:

ld=¢

Pic. 1 - Lyapunov stability geometrical interpretation.

where x4, x, are state coordinates, €, - some small numbers; as norm of x; and x, can be used quadratic
norm, for example; x(0) - initial position of trajectory.

Equilibrium x = 0 is Lyapunov stable if for any small number € > 0, exists small number §(g) > 0, that
for all trajectories starting from the initial conditions [|x(0)|| < §(¢) for any time Vt > 0 following inequality
is satisfied: |[x(t)|] < «.

Roots stability criterion.

Let’s consider the next continuous system:
x=Fx,x ER",F—nXn.

Characteristic polynomial of matrix F is det[F — sI] = s™ + a,_;s" 1 + -+ + a;5 + @, = 0, where s - is
a differential operator, I - is an identity matrix, and s;,i = 1, n - roots of our polynomial.

So, if all roots have negative real parts Res; < 0,i = 1,n, then the system is stable. On the complex plane
they are:

AUNNANNRN ANNRRN NN
'z

Fig. 2 - Roots distribution in a continuous stable system.
where Im - imaginary axis, Re - real axis. Imaginary axis is a stability border.

If one or more than one root is more than zero system is unstable.
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Let consider this Root stability criterion in discrete case. In this case instead of function derivative we

use the value on the next discrete step: f(t)~f(m + 1), where m - number of discrete interval, t = mT -
continuous time, T - value of discrete interval.

Let’s consider the next discrete system:
x(m+1) = Fyx(m),x € R™", F; —n Xn.

Characteristic polynomial of matrix F,; is det[F; — zI] = z™ + a,_1z" ' + -+ a4z + ay = 0, where z -
is a delay, I - is an identity matrix, and z;,i = 1,n - roots of our polynomial.

So, if all absolute values of roots less than one |z;| < 1,i = 1,n, then the system is stable. On the complex
plane they are:

Fig. 3 - Roots distribution in a discrete stable system.
The unit circle is a stability border.
If one or more than one absolute values of roots more than |z;| > 1, the system is unstable.

Let’s return to Lyapunov stability. As sub kinds of Lyapunov stability we can distinguish two stability
borders.

The first one is the border of neutral type. Root stability criterion claims that the dynamic system is on
the border of neutral type if one or two roots of system characteristic polynomial are equal to zero and rest
roots have negative real parts.

In continuous case:

S12 = 0,Res; < 0,i = 3,n.

| I

Fig. 4 - Continuous system is on the border of neutral type.

In discrete case, one or two roots are equal to one and rest roots are in the unit circle:

|ZL2| =1,z <1,i=3,n

..
o
e
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o |

Fig. 5 - Discrete system is on the border of neutral type.

The second one is the border of oscillatory type. Root stability claims that the dynamic system is on the
border of oscillatory type if the system characteristic polynomial has pair of purely imaginary roots and rest
roots have negative real parts: s; , = +jw,w > 0 Res; < 0,i = 3,n.

S 5}?

Fig. 6 - Continuous system is on the border of oscillatory type.
So, all these sub kinds are Lyapunov stability. The next kind of stability is asymptotic stability.

2. Asymptotic stability. The equilibrium x = 0 is asymptotic stableif the equilibrium is Lyapunov stable
and for any motion trajectories x(t) from the arbitrary initial conditions the condition tlim |x(®)|| = 0 is

satisfied.

In discrete case lim ||x(m)|| = 0.
m-—oo

n}‘n‘l

[}

S5

Fig. 7 - Asymptotically stable continuous and discrete processes.

Stronger than an asymptotic stability is exponential stability.
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3. Exponential stability. The equilibrium x = 0 is exponential stable if for any motion trajectories x(t)
from the arbitrary initial conditions exists positive number @ > 0 that for any time Vt > 0 inequality: ||x(t)|| <
pe~%||x(0)|l; p = 1is satisfied.

Fig. 8 - Exponentially stable continuous process.
Constant « is the convergence degree and characterizes convergence velocity to equilibrium.

In discrete case: [[x(m)|| < pA™||x(0)]; p= 1,1 < 1.
4

1,,-rn)

UR b4

Fig. 9 - Exponentially stable discrete process.
Number A characterizes convergence velocity. The smaller A the faster convergence.
From exponential stability goes asymptotic stability.

The next kind of stability and the strongest type is the qualitative exponential stability. We consider this
type on the next lecture in details after considering Lyapunov equations, but now short brief about it.

4. Qualitative exponential stability. The equilibrium x = 0 is qualitative exponential stable if for any
motion trajectories x(t) from the arbitrary initial conditions exists numbers @ > 0, r> 0, p = 1 that for any
time Vt > 0 the following inequality: ||x(t) — e"*x(0)|| < p(e‘(“”)t — e7%)||x(0)|| is satisfied.

In discrete case: ||[x(m) — a™x(0)|| < p((a + )™ —a™)||x(0)|],0 < a<1-—r7.
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e |l ()| 4 pfe 0T — o) L |l (0)]]

qlt:

> =)

r(()) e || 2(0)||

)

[ &7+ ||2(0)]| - ple™ T — ™) || 2(0)]

Fig. 10 - Qualitatively exponentially stable continuous process.

So, besides parameter a characterizes convergence to equilibrium in exponential stability, in qualitative
exponential stability introduces parameter r characterizes trajectory average deviation.

Lyapunov equations
Now, let’s consider Lyapunov functions for investigation stability of linear systems.

Lyapunov functions have the next properties:

1. Lyapunov function V(x) must be positive definite: for any Vx € R"™ Lyapunov function V(x) is
positive definite and V(x) = 0 in case x is null-vector.

2. Lyapunov functions must increases (decreases) uniformly with uniform increasing (decreasing) of
x-vector norm.

3. The surfaces of constantlevel V(x) = C, where C - is a constant, must cover the origin of coordinates
or equilibrium.

The simplest and the most frequently used class of Lyapunov functions are quadratic forms: V(x) =
xTPx, P - is a positive definite symmetric square matrix of n X n dimension.

Fig. 11 - Lyapunov functions.
C, <y,

P = I - identity matrix,

xTPx = [X1 X2] [))2] =C,

2
x2+x2=C=|x|> = (fo +x22) .

20 gET
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Lyapunov Theorem.

The equilibrium x = 0 is asymptotic stable if exists Lyapunov function V(x) such that for any motion

trajectories x(t) starting from the arbitrary initial conditions for any time ¥t > 0 the derivative of the function
. . av(x(t
is negative: % <0

dV(x(t)) _ 6V(x)6_x _ov(x) |
at ox ot ox *

Time derivative of Lyapunov function is equal to partial derivative of Lyapunov function with respect to
x multiply to partial time derivative of x.

x — state vector with dimension of n, so:

av(x) _ vV (x) av(x) T
. _[ax1 c o ] grad”V(x).

Geometrically shown as follows:

-

Vir)

Fig. 12 - Derivative of Lyapunov function.

where V(x) = C - surface of constant level.

So, condition of Lyapunov theorem: v (x(t)) = gradTx - x.
Example:
Consider following system: x = —x3. Let’s choose Lyapunov function from the class of quadratic forms:
V(x) = x2.
dv(x(t

( ())—Zx x = 2x-(—x3) = —2x*.

dt
This function is negative anytime, so, the system x = —x? is asymptotically stable.

We can extend this result to the case of exponential stability. For this we should modify inequality from
theorem as follows: V(x(t)) < —ZaV(x(t)), a>0.

In case of qualitative exponential stability, we obtain this inequality:
V(@) + r+a)x@®) <2V (x(D))
Let’s consider Rayleigh ratio and geometrical interpretation of Lyapunov functions:

CEllxlI? < x"Px < CFllxlI?,
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where x = Fx,x € R",F —nxn, V(x) = xTPx, P - is a positive definite symmetric square matrix of n X n
dimension.

So, omitting intermediate calculations we get the inequality ||x(t)|| < %e‘“tllx(O)ll,p = % > 1.
1 1

Fig. 12 - Geometrical interpretation of Rayleigh ratio.

From the Lyapunov theorem we can write Lyapunov equation omitting intermediate calculations:
FTP + PF = —Q,

where F - is a state matrix of closed system, P,(Q - positive definite symmetric square matrices with
dimensions are of the same of F.

Positive definite matrices are all eigenvalues of it more than zero.

For investigation system to asymptotic stable we should choose matrix @, solve Lyapunov equation with
respect to matrix P and check it for positive definition.

In case of exponential stability, we should to modify the Lyapunov equation as follows:
FTP + PF + 2aF = —Q.

In case of qualitative exponential stability we obtain matrix equation of Riccati type:
(F+ @ +a)DTP(F + (r +a)l) —1r?P = —Q.

Example. Investigation system to asymptotic stability:

x = Fx,

[Jél] - [ ° ! ] [;Cﬂ is this system stable?

X -1 -2
A~_[1 0 _[P1 P3
Choose: Q = [0 1], P = [p3 pz]’
—DP3 —P2 —P3 P1— 2p3]
FTp = PF =
[Pz —2p3 p3— sz]' —p2 Pz —2p2)
—p3 —p3 =-—1
—p,+p1—2p3=0 _ [1,5 0,5]
p—2ps-p2=0 T =|os o5

p3s — 2p; + p3 — 2p, = —1

All eigenvalues of matrix P > 0 are more than zero, so system is asymptotically stable.
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Qualitative exponential stability for discrete and continuous linear

systems
Ok, let’s talk about qualitative exponential stability. This term is narrower than just exponential stability
due to additional conditions. The conditions bounded changing values velocity of system state vector. Using
additional conditions is possible to localize system process properties with some good characteristics: smaller
oscillation and smoother processes. Despite these characteristics, developer can estimate convergence
velocity and stability margin of the system.

Let’s consider following linear discrete system:
x(m+1) = F(x(m)) . (D

So, equilibrium x = 0 of system (1) is exponential stable, if exists numbers p > 0, @ > 0, d,(a) > 0 that
for all initial values of ||x(0)|| < d,(a) for any number of discreetness interval m > 0 the following inequality
is satisfied:

lx(m)|l < p-e™*™ - [lx(0)I. ()
Let’s introduce following notation: 1 = e™%, where 0 < 1 < 1, so inequality (2) takes the form:
lx(m)|l < p - 2™ - llx(0)]I. (3)

From these inequalities we can conclude, that all trajectories of exponential stable system are in
«estimated tube» bounded by surfaces:

lx@m)II? = (p- 2™ - Ix(0)11)?, (4)
those bounded by circles of radius p - 2™ - ||x(0)]|.

In case of quadratic norm (or Euclidean norm), the trajectories of exponential stable system are shown
on this picture:

2 %) = d?

Fig. 1 - Estimated tube of exponential stable system.

Introduce local term of «qualitative exponential stability». Equilibrium x = 0 of system (1) is qualitative
exponential stable, if system is exponential stable with parameters a (1 = e™%), d(a) and additionally exists
positive number 0 < A5 < 1 + 4 that for any number of discreetness interval m > 0 the following inequality
is satisfied:

l(m) — 2(O)| < Aop T X112 (0| = Aop 2 [1(0)] )
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Additional condition (5) constrains deviation of state vector current values from initial condition. The
highest practical importance of qualitative exponential stability is under conditions: A, < 1, because in this
case inequality (5) is strongest, so processes in system have very qualitative parameters.

So, ifinequalities (4) and (5) are valid, then all trajectories are bounded by surfaces (4) (center of these
circles is at the origin) and:

IxGm) = xOI = [10p 22 0, ©)

those bounded by circles of radiuses Aop d with center of these circles is at the point x(0).

«Estimated tube» cross-section of qualitative exponential stability system is shown on this picture:

4
.
v" ‘ '
L~ i
/ ‘~ \‘.
“_‘ \ qﬂ, '
%\ L
2 Yy
Y \ \
3 \xp(e) My,
A\ g ITY
' B A P "A‘II J. ' Y
) 2, \ -—
<A A 7 — ~n-m"f‘ l‘
.;“-\\ st Tl " Oy
..q_,'ﬂ‘l
PR~ " i

Fig. 2 - «Estimated tube» cross-section.

Estimated values of the first ejection and overcontrol can be derived from (4) and (6):

* (p—1DAy
0X ™ Q+20-1" ™)
x _ A=ply—1

Ox = 1-A+21g ®

Ok, let’s vector norm is determined by equation:

lxll = [, x5, )

where v is an integer and v = 1, 2, ..., and x; - /-th component of state vector x. If v = 2 the norm is Euclidean,
if v = 1 the norm is absolute. So, if we have the system with two state vector components, then the surfaces of
a constant level ||x||” = 1 (x € R?) are shown on the Fig. 3. Remark, for deterministic processes (not for
stochastic) from the convergence by some norm follows convergence by any norm.

Ok, let’s consider Lyapunov function V(x) from a class of KV and some conditions of this function is
necessary: function is convex positively homogeneous power of v and following inequality is satisfied:

CElxll” V() < Glix|l”. (10)
Let’s consider Lyapunov functions from a class of quadratic forms:
V(x) = xTPx, (11)

where P - symmetric positive definite square matrix from a class of K2, values C? and C# are minimum and
maximum eigenvalues of matrix P respectively.
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Fig. 3 - Geometric interpretation of different norms.

The sufficient conditions of qualitative exponential stability: for system (1) sufficiently existing number
of 0 < 4 < 1, for any number of discreetness interval m > 0 the following inequality is satisfied:

V(x(m+1)) < 2V (x(m)), (12)

where p = % and existing number 1 — 1 < 45 < 1 + A, that for the system (1) following inequality is satisfied:
2

V(x(m+ 1) —x(m)) < A5V (x(m)). (13)

From these sufficient conditions, we can get two consequences.

Consequence 1. For qualitative exponential stability of system (1) are sufficiently existing numbers 0 <
r <1 and 0 < a <1 — 2r that for any number of discreetness interval m > 0 the following inequality for
system (1) is satisfied:
A—Ag+1 A+do-1\Y
|74 (x(m +1) — T"x(m)) < (TO) V(x(m)). (14)
Consequence 2. For qualitative exponential stability of system (1) are sufficiently existing numbers 0 <

A<land1l-1< A5 <1+ Athatfor any number of discreetness interval m > 0 the following inequality for
system (1) is satisfied:

V(x(m+1) — (r + a)x(m)) < r’V(x(m)), (15)

whereA=2r4+a,1=1-—a.

At first, let’s consider geometric interpretation of exponential stability. In case of quadratic form of
Lyapunov function the condition of exponential stability is:

V(x(m+1)) < 22V (x(m)). (16)
From the condition follows, the next value of state vector x(m + 1) must belongs to area:
Q, () = {x:xTPx < 22xT (m)Px(m)} (17)

if the previous value of state vector was on a surface x” Px = xT (m)Px(m). This case is shown on the Fig. 4.

..
o
e

33 ITMO UNIVERSITY 25



2017 © Sergei Shavetov The modern theory of control systems:
s.shavetov@corp.ifmo.ru Qualitative exponential stability for discrete and
continuous linear systems

I-)‘

el

X Py w X" (m)Pxim)

¥ Pr= 3" (m)Px{m)

vim+1)

Fig. 4 - Geometric interpretation of exponential stability.
Let’s consider geometric interpretation of Consequence 1.
1. System (1) must be exponential stable.

2. The inequality (13) must be valid. For Lyapunov functions from a class of K2 the inequality (13) takes
form:

(x(m+1) - x(m))TP(x(m +1) — x(m)) < A3xT(m)Px(m). (18)

From this condition follows, that each next value of state vector x(m + 1) with fixed x(m) must belongs
to area:

Q,.(Ay) = {x: (x - x(m))TP(x —x(m)) < A%xT(m)Px(m)} (19)

The border of this area is ellipsoid with center at the point x(m).

(x—=x(m)) f [x = xlm)) = Asx"{m)Pxi(m)

Xz A
DA Ay) = 12,(A) N1, 14)
,(A) ’ 12,.(1g)

X1

T Px = x7(m)Px(m)

x"Px = Ax"(m)Pxi{m)

Fig. 5 - Geometric interpretation of Consequence 1.

3. Inequalities (12) and (13) requires for each fixed arbitrary value x(m) the next value of state vector
x(m + 1) belongs to area:

Qe (4, 20) = Qe (D) N Qe (o). (20)
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As a conclude, local conditions of qualitative exponential stability distinguish from all values of state
vector Q, (1) some part Q,(4, 4¢). This fact localized behavior of system motion trajectories.

And let’s consider geometric interpretation of Consequence 2. For Lyapunov functions from a class of
K? the inequality (15) takes form:

(x(m+1)—(r+ a)x(m))TP(x(m +1) — (r + @)x(m)) < r2xT(m)Px(m), (21)

From this condition follows, that each next value of state vector x(m + 1) with fixed x(m) must belongs
to area:

Q.(r,a)= {x: (x—(r+ a)x(m))TP(x - (r+a)x(m)) < rsz(m)Px(m)} (22)

.1‘2 ‘

2,(4, 4)

2.(r,a)

e
X4

tTPx = xT(m)Px(m

x"Px = F*x"(m)Px{m)

Fig. 6 - Geometric interpretation of Consequence 2.

In the Fig. 6 the area Q,(r, @) is shaded. In case, when A = 2r + a, A, = 1 — a the area belongs to
intersection areas ., (1y) and Q. (1). Imean Q,.(r, @) € Q,(4, 1y).

As a conclude, if the system is satisfied for (r, @)-restrictions, then the strongest boundaries are for
motion trajectories and system has good quality indicators.

Now, let’s consider system (1) in matrix form:
x(m+1)=F- (x(m)), (23)
where F - square matrix of n X n dimension.

So, we should use matrix inequality and modified Lyapunov equation for investigation of qualitative
exponential stability. In case of Lyapunov function from a quadratic form class, the inequality is:

(F-(T+a)D"P(F—(r+a)]) <r?P, (24)
whereA=2r+a,1=1-—«a.
The inequality (24) is valid in case of valid following modified Lyapunov equation:
(F-(+a)DTP(F—- (@ +a)l)—1r%P =-0Q, (25)

where P > 0 - positive definite symmetric square matrix, ¢ = 0 - positive semi-definite symmetric square
matrix.

Let’s consider connections of matrix inequalities and modified Lyapunov equations with areas of roots
distribution in linear systems.

_a:o;o
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Fig. 7 - Areas of roots distribution.

In case of satisfied equation (25) the eigenvalues of system are in the shaded circle 7a. This case relates
to Consequence 2.

In case of —r = a and r = A the eigenvalues of system are in the shaded circle 7b. This case relates to
Consequence 1. The value 1 — 4 is stability margin.

In case a + r = 1 and r = 4, the eigenvalues of system are in the shaded circle 7c.

a

) - ‘
Ymi £2(4.4) (4. 2) Ymy {£(ra)

Fig. 8 - Intersections of stability areas.

The picture 8a relates to Consequence 1. The sufficient condition of qualitative exponential stable
system is existing number 1 — 4 < 45 < 1 + A such following equation is satisfied:

(F=DTP(F—1)—23P = —Q. (26)

The picture 8b relates to Consequence 2. The sufficient condition of qualitative exponential stable
system is existing numbers 0 < r < 1and 0 < @ < 1 — 2r such equation (25) is satisfied.

Now, let’s consider continuous case. Let’s consider following continuous linear system:
x =F(x), (27)
where x - state vector of n-dimension.
Local conditions of qualitative exponential stability for continuous linear systems:

1. There is a number a > 0 such for any time t > 0 following inequality is satisfied:

V(x(t) < —2aV(x(t)), (28)
2. There is a number 1y = a such for any time t > 0 following inequality is satisfied:
V(x(t)) < 22V (x(®), (29)
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where V(x(t)) - Lyapunov function from a class K? of quadratic forms.

Let’s consider geometric interpretation of Condition 1. Rewrite (28) in the partial differential equation
form:

POk < —2aV (), (30)

and we can image this condition on a complex plane:

X;
4 ov
0 »
\u
2.(A) (1)
-~ - ¢
” \
7 ‘B
/ < ,J‘
/ ‘/ .;
/ Pa ]

Fig. 9 - Geometric interpretation of exponential stability.

The second condition means that all possible values of state vector must belong to area €, (4,) bounded
by surface:

xTPx = 23V (x(D)). (31)

Simultaneous performing both conditions means that values of state vector must belong to area
Q. (a, 1) = Qe (@) N Q,(4p). It's shown on the Fig. 10.

xZ‘

xTPx = V(x(t))

Fig. 9 - Geometric interpretation of qualitative exponential stability.

Local conditions of qualitative exponential stability as one condition. Let’s Lyapunov function from class
K? of quadratic forms. System (27) is qualitative exponential stable if existing numbers @ > 0 and r > 0 such
for any time t > 0 following inequality is satisfied:

V(x() + (r + a)x(®)) < r2V(x(D)), (32)

where A = a, Ay = 2r + «.
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From condition (32) follows that for any time ¢t > 0 and for any state vector x(t), velocity vector x(t)
must belongs to area Q.. (r, «) bounded by surface:

(i + (r + @)x(®) P(x + (r + )x (D) = r2V(x(D)), (33)

where area Q. (r, @) belongs to area Q,(a, Ap): Q, (1, @) € Q. (a, Ap).

Fig. 10 - Geometric interpretation of qualitative exponential stability (r, a).

Now, let’s consider roots distribution in linear continuous systems.
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Fig. 11 - Roots distribution in linear continuous systems.

Fig. 11a - exponential stability, Fig. 11b - qualitative exponential stability, pic 11c - qualitative
exponential stability (7, a).

So, in case considering system (27) in matrix form, the sufficient condition of qualitative exponential
stability is existing numbers (r, @) 1 = a, g = 2r + a, that Lyapunov equation is satisfied:

(F+ (@ +a)DTP(F + (r + a)I) —r?P = —Q, (34)
or following matrix inequality:

(F+ (@ +a)DTP(F + (r + a)I) <1r?P. (35)
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Port-Hamiltonian Control

In this section the port-Hamiltonian passivity-based control theory, which will applied to the control
of the DFIM and the BZB, is presented. We start with a review of the basic ideas of passivity and of
control by interconnection, move to the Interconnection and Damping Assignment— Passivity-based
Control (IDA-PBC), and finally discuss two improvements of the basic IDA-PBC framework, namely
Simultaneous Interconnection and Damping Assignment (SIDA), and a variant of the method which
improves the robustness of the controller in front of uncertain parameters.

1 Introduction

According to one of the acceptions “to control” means “to exercise restraint or direction over”. In an
engineering context, we can translate this to “to stabilize a system in a desired equilibrium point or trajectory”.
Although a variety of techniques are available for linear control theory, most nonlinear control theory revolves
around Lyapunov’s method and its variants. Lyapunov theory was introduced originally as an analysis tool
and became an useful technique for feedback control design.

Lyapunov-based control design is a quite difficult task which involves the construction of a suitable
Lyapunov function. This function can be interpreted, in physical systems, as the energy (or storage) function.
The main difference between many nonlinear control techniques is the way in which the appropriate
Lyapunov function is constructed, as is the case, for instance, of backstepping, forwarding or adaptive control.
Some other techniques also use the Lyapunov method to design controllers, for instance Sliding Mode Control,
a technique for robust control where the trajectories are forced to reach a sliding surface.

Passivity-based Control (PBC) uses the fact that passive nonlinear systems are described by an storage
function (which is a proper Lyapunov function). The control design main goal is then to reshape the original
energy function by means of the controller. Based on PBC, the IDA-PBC (Interconnection and Damping
Assignment-Passivity-based Control) technique, which uses the passive properties of Port Hamiltonian

Systems, was presented.

2 Passivity-based control

Traditionally, control problems have been approached adopting a signal-processing viewpoint. This is
very useful for linear time-invariant systems, where signals can be discriminated via filtering. However, for
nonlinear systems, frequency mixing invalidates this approach due to the following reasons:

e Computations are far from obvious.

e Very complex controls are needed to quench the large set of undesirable signals, and the result is
very inefficient, with a lot of energy being consumed and always on the verge of instability (a typical example
is provided by bipedal walking machines).

Most of the problem stems from the fact that no information about the structure of the system is used.
A change of control paradigm is needed, and this can be summarized in the catch expression “control systems
as energy exchanging entities”.

2.1  Energy-based control
Definition 1. The map u — y is passive if there exists a state function H(x), bounded from below, and

a nonnegative function d(¢) = 0 such that

..
o
e
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f
$333%° ITMO UNIVERSITY 31




2017 © Anton Zhilenkov The modern theory of control systems:

aazhilenkov@corp.ifmo.ru Port-Hamiltonian Control
Iut (S)y(s)a’sl = H (x(2)) - H(xJ(O)) +d(2). (1)
s Y e

dissipated
stored energy lssipated energy

energy supplied to the system

Example 1. (A mechanical system). The simplest example of passive system is probably the forced
mass-spring-damper arrangement of Figure 1, where g is the mass position, (%) is an external applied force,
mis the mass and band kare the damping and spring coefficients, respectively. One has

1 s
1 — -«
/ |

f k m

/

[1111771177777777777777

Figure 1: Example of a mechanical passive system
(with v = g as mechanical velocity)

jF(S)V(S)dS = j(mv(s) + kq(s)+bv(s))ds

t

= (% mv>(s)+ % kq® (S)j

+b j V2 (s)ds
0

0

=H(x(t))— H(x(0))+ ijz (s)ds.

Remark 1. Notice that, a passive system (1), if x*is a global minimum of #(x) and d(t) > 0, and setting
u = 0, H(x) will decrease in time and the system will reach x* asymptotically. The rate of convergence can be
increased if the energy is extracted from the system with
u=-K,y
with K] =K, >0. A

The key idea of passivity-based control (PBC) is as follows; use feedback
u(t) = p(x(2)), @

where £(x(t)) is a function depending on the states, so that the closed-loop system is again a passive system,
with new energy function H, with respect to @ — y;, such that Az has the global minimum at the desired point.
Passivity for the closed-loop system is far from obvious: physically, the controller is injecting energy into the
system. PBC is robust with respect to unmodeled dissipation, and has built-in safety: even if #is not known
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exactly, if passivity is preserved, the system will stop somewhere instead of running away and finally blowing

up.
With (2), H,is defined as (minus) the energy supplied to the system,

H,=~[ " (x(s)y(s),

then the closed-loop system has energy function H,(x)=H(x)—H (x). One has the following energy

balance equation (EBE), which yields an interpretation to PBC:

H ,(x(2)) = H(x(?)) - IﬂT (x(s)y(s).

Remark 2. For an affine dynamical system
{x = f(x)+g(x)u
y =h(x)

9

the EBE is equivalent to the PDE
—B" (x)h(x) = 0H,,(f (x)+ g(x) B(x)). 3

Example 2. (Electrical system). As an example, consider the electrical system in Figure 2,

r L
—WW\—Tip:

Figure 2: Example of an electrical passive system

_ X2
0
x = L +|: :|V
N % 1
C L

A
where x = [q, A]T is the state, u = Vis the control input and y = Z (inductor current) is the passive output.

The map V- 7is passive with energy function

1 1

and dissipation
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t
r
d(@) = | —==x3(s)ds.
() f 55 (5)
Notice that the natural minimum is [0, 0], but forced equilibrium points are of the form
[xl*, 0]. The PDE (3) is in this case

b 1 r 1
f@Hd _[Exl +zx2 —,B(x)j@Ha = —zxz,B(x).

Since x; = 0 is already a minimum of #, its only necessary to shape the energy in x7. Hence, taking A,

= H, (x1) and solving the above PDE
OH ,
Ox,

B(x) =

Le. it defines a closed-loop control. Then, one has to choose A, so that H;has the minimum at xl*.The simplest

Ha(xl)zixf—[i+cijx;“xl

solution is

2C C

a a

where C; is a design parameter. The closed-loop energy H,;can then be computed and it is seen that it has a
minimum at [xl*, 0] if ¢, > — C. Finally, the control is computed as

OH 1 1 1) .
u= = — X+ =+—|x.
Cc C

a

This control is an energy-balancing PBC that stabilizes x* under stated parameter restrictions.
Example 3. (Electrical system). Consider now the slightly different circuit of Figure 3.

Figure 3: Example of an electrical passive system

With the same states, energy, input and outputs than the preceding system, the equations of the motion

are now
—1 x, + X
- 1 2 0)
x = rC + | 4
1 1
C
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Only the dissipation structure has changed, but the admissible equilibria are of the form

T
x =[CVd,£Vd]

r

X
for any constant V< The power delivered by the source, p = V; = VTZ , is nonzero at any equilibrium point

except for the trivial one. Hence, the source has to provide an infinite amount of energy to keep any nontrivial
equilibrium point, a task which is clearly not feasible. This situation will reappear later into the discussion of
invariant and Casimir functions. Notice that pure mechanical systems are free of this problem, since any
equilibrium has velocities equal to zero and hence no power in necessary to keep the system at the equilibrium
point.

2.2  Control as an interconnection

To give a physical interpretation of PBC, one can think the controller as a system exchanging energy
with the plant. Consider two systems, Y, and )'c, exchanging energy through an interconnection network given
by Y1, as depicted in Figure 4.

U U

Figure 4: Network interpretation of control

The condition for the interconnection to be power continuous is
u (DY@ +u" (@)y()=0 vt

Example 4. (Feedback interconnection). As an example, consider the typical negative feedback
interconnection displayed in Figure 5

Controller |——

Figure 5: Typical negative feedback interconnection

The interconnection is given by

..-:o
0.0
.
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and is clearly power continuous.

Suppose now that some extra inputs u — u+v, u.— u: +v.are added to the interconnected system.
Then is easy to show the following.

Remark 3. Let £ and Z. have the state variables xand & If ¥ and X are passive with energy functions
H(x)and H.(§)and % is power preserving, then the map [ v, v] = [, ¥ is passive for the interconnected system
with energy function Hu(x, § = H(x)+HA{$. Or, in short, A

Proposition 1. Power continuous interconnection of passive system yields passive system.

The resulting system of the interconnection of the plant and the controller is a passive system with
energy function

H,(x,6)=H(x)+H_.(5)

but this is not very useful unless the energy function depends only on x. To solve this, the dynamics are
restricted to a submanifold of the (x, £) space parametrized by x:

Qp =(x,8);=F(0)+K,

and dynamically invariant:
(an)é,‘:F(x)JrK =0.

Instead of solving this in general, it is convenient to formulate the problem for a port-controlled
Hamiltonian systems.

2.3  Casimir functions and the dissipation obstacle

A port-controlled system in explicit form given by (1), remind,
{x = (J(x) = R(x))OH (x) + g(x)u
y=g" (x)0H (x)
with /7= —/, RT= R> 0 and H > 0, satisfy the following relation
H =—(6H)" ROH + y"u.

Integrating, from 0 to ¢ the energy balance equation, is recovered

H (x(?)) — H(x(0)) = j u” () y(s)ds — j (6H)" ROH .

More precise results about the possibility of obtaining invariant manifolds expressing the controller
variables in terms of the variables of the system can be formulated if both systems and controller are PCHS.
Let thus

5. {x = (J(x) — R(x)OH (x) + g(xX)u
- y =g (x)0H (x)

define the plant and
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;{f = (J(&) = RAENOH (&) + g.(Eu,
. =gl (&)eH (&)

define the controller. With the power preserving, standard negative feedback interconnection u= —y, u.=y,

one gets

H _ [J(x) —R(x) —g(x)g.(&)" J[aﬂd (x)}
& g2.(&Hgx)" J(E—R.(E) || 0H,(E)

where Hi(x, §) = H(x) + H:(¢). Let us look now for invariant manifolds of the form
Cr(x,8)=F(x)—c+ K.

Condition CK =0 yields

[or.1, ] [J (D-RE) g2 (& }[wd (x)} .
2.(Og(x)" J(E—-R.(E) || O6H,(E)

In order to keep the freedom to choose H,, one demands that the above equation is satisfied on Cxfor

every Hamiltonian, ie one imposes on Fthe following system of PDE’s:
J(x)—R — g
[oF, Im]T[ () =R(x)  —2()g.(&) }
g.()gx)  J.(H—-R.(S)

Functions Cx(x, &) such that Fsatisfies the above PDE on Cx= 0 are called Casimir. They are invariants
associated to the structure of the system (/R g /. R, g-), independently of the Hamiltonian function.
One can show that the PDE for Fhas solution iff, on Cx= 0,

1. (GF)TJﬁF:Jc,

2. ROF =0,

3. R. =0,

4, (OoF)' J=g.g".

Conditions 2 and 3 are easy to understand: essentially, no Casimir functions exist in presence of
dissipation. Given the structure of the PDE, R. = 0 is unavoidable, but one can have an effective 2 = 0 just by
demanding that the coordinates on which the Casimir depends do not have dissipation, and hence condition
2.

If the preceding conditions are fulfilled, an easy computation shows that the dynamics on Cxis given
by

x = (J(x) —R(x))CH,,

with Hu(x) = H(x) + H.(F(x) + K). Notice that, due to condition 2,

ROH ,(F(x)+ K) = R(OF) aalé < (F(x)+K) =0,

=0

so, in energy-balancing PBC, dissipation is only admissible for those coordinates which do not require energy

shaping.
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For regulation problems in mechanical systems, where the state consists of positions and velocities,
dissipation only appear associated to the later, while energy shaping is necessary only in the position part,
since the kinetic energy already has the minimum at the desired point (that s, at velocity equal to zero). Hence,
the dissipation obstacle is always absent for mechanical regulation problems. For the first of the two simple
RLC circuits considered previously (Figures 3.2 and 3.3), dissipation appears in a coordinate, xz which already
has the minimum at the desired point. For the second one, the minimum of the energy has to be moved for
both coordinates, and hence the dissipation obstacle is unavoidable.

3 Interconnection and damping assignment - Passivity-based control

The Interconnection and damping assignment-Passivity-based control (IDA-PBC) was introduced to
combine the passivity properties of PCHS with control by interconnection and energy-based control. This
technique has been applied to many different plants: mechanical systems, magnetic levitation systems, mass-
balance systems, electric machines, power converter.

The key idea is that using the Hamiltonian framework, solving the PDE associated to the energy-
balance equation (3) can be done with an appropriate selection of the interconnection /and dissipation R
matrices and the energy function A of the desired closed-loop system (which will be denoted with subindex
d.'/d, Rsand Hd).

3.1 IDA-PBC technique
One can get a method with more freedom if not only the energy function is changed but also the
interconnection /and dissipation £, ie. if one aims at a closed-loop system of the form

x =(J,(x) =R, (x))OH ,(x), 4

where J; = —J4Tis the desired interconnection matrix, Ry = Rs7 = 0is the desired dissipation matrix and Hd
(with a minimum at x*) is the desired Hamiltonian function.
Proposition 2. Consider the system

x = f(x)+g(x)u )

Assume there are matrices J;= —/;7, Rs= Rs7 = 0 and a smooth function A, that verify the so-called
matching equation

S () +g(0u = (J,(x) — R, (x))OH ,(x). (6)

Then the closed-loop system with control u= (%),

L) =(g" (g g(x)(J,(x) = R, (x)OH ,(x) — f(x)) @)

is asymptotically stable.
Proof. Substituting (7) into (5) the closed-loop system becomes

X = (J, ()~ R, (x)OH,,.

which, following Proposition 1, is asymptotically stable.

[t is thus clear that the problem is how to solve the matching equation (6). Notice that there is a huge
amount of freedom in selecting /; Rsand Hysatisfying the previous assumptions (Jo= —/7, Ri= Rs7= 0 and
x* = arg min H,). In Non-Parameterized IDA, the structure and damping matrices (J«(x) and Ru(x)) are fixed,
the matching equation is pre-multiplied by a left annihilator of g(x) and the resulting PDE in Hyis then solved.
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o In Algebraic IDA the desired Hamiltonian function Hyis first selected (for example a quadratic
function in the error terms) and then the resulting algebraic equations are solved for J;and Rd.

o In Parameterized IDA, applicable mainly to underactuated mechanical systems the knowledge
of a priori structure of the desired Hamiltonian is used to obtain a more easy to solve PDE, giving constraints
on Jyand Ra

o In Interlaced Algebraic-Parameterized IDA the PDE is evaluated in some subspace (where the
solution can be easily computed) and then matrices /; R are found which ensure a valid solution of the
matching equation.

There is not a bestmethod to solve the matching equation. Each control problem requires an individual
study to find out which of the above strategies provides an acceptable solution of the matching equation.

The first papers on IDA-PBC introduced new matrices /, R,and a Hamiltonian function A, such that

J (X)) £ T () +J,(x),
R,(x) & R(x)+ R, (x),
H,(x) & H(x)+ H,(x)

referred to as the structure matrix, damping matrix and Hamiltonian function, respectively, contributed by
the controller. With this notation, and using a PCHS description of the system (5), the matching equation (6)
becomes

() +J,(x)=R(x)—R,(x)0H, =—(J ,(x) =R, (x))OH +g(xX)u,  (8)

where the available degrees of freedom for the design are the matrices are /, R,and the function A..

In order to clarify the methodology, and to compare later the classic IDA-PBC controllers to the
designed ones using the new approaches presented in this Thesis (see subsection 3.2 and Section 4), we
present here two examples: a classical DC motor and a nonlinear toy model.

Example 5. (A DC motor). Consider a permanent magnet DC motor (or either a field DC motor (Fig.
5.1) for which the field dynamics, Ay, is neglected).

Figure 5.1: Shunt-connected dc machine

From the PCHS model of the DC motor and using K = L4rir= ct, called the torque constant, the port-
controlled Hamiltonian system is described by

x=(J—-—R)YOH(Xx)+g+g,u

with the variables x € k2
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x = [/"L,pm]T

where A is the inductor flux (or A, in the generic case), and p,, is the angular momentum. The interconnection,
dissipation and port matrices are

s=[o Tl sl e )

with the control input = v (to simplify the notation the voltage v, in now called v). Notice that the system
inputs have been split according to whether they can be controlled or not when the machine acts as a motor.
In this case, the mechanical torque can be seen as an external perturbation. rand B,represent the electrical
and mechanical losses respectively, and the Hamiltonian function is given by
1 1
H(x)=—A1"+——p>
2L 2J, "

where L is the inductance and /, the inertia of the motor.

Assume that the control objective is a desired speed w<. In terms of w4, the equilibrium values of 7and
vare

ok

1
i :E(Bra)d +7,)
u =ri +Ko'.

To apply the IDA-PBC technique (following the algebraic approach) a desired Hamiltonian function Ay
is fixed as

H,(0)=H() =ﬁm—ﬂ*>2 +§<pm P,

m

which implies (recall the energy and co-energy variables relationship, A = Liand pm, =/nw)

aHd{H }
o—wd

In order to solve the matching equation of the IDA-PBC method, we consider generalized
interconnection and dissipation matrices given by

_I/‘ — /
Jd—Rd{ g J"}- ©
Ji b

The first row of the matching equation will yield the desired control action, while the second row
imposes

J,(i-i)=b(w-0")=K,-Bw-1,.

Setting bs= B, and using the equilibrium point expression, j;is computed as
Ja = K,
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Figure 6: Simulation results: Mechanical speed w), for different r;values

where ryis a still free parameter to tune the controller. Finally, substituting into the first row of the matching
equation,
u=—r,(Gi—i)-ri+Kao’ (10)

Notice that this is just a proportional + constant compensation controller.

Figures 6-8 show the system behavior with the control law (10). The motor parameters are: r= 0.05(),
L=2mH, K=0.07N-m-A-1, B.= 0.0001N-m-rad-1s-1, /,, = 0.0006Kg-m2 and the nominal torque is T, = 2N-m.
The desired mechanical speed is fixed at ws= 250rad-s—1 for Os < t < 0.5s and changes at ws= 300rad-s-! for
0.5s<t<1s.

Figure 6 shows the mechanical speed for different damping r;values. Notice that for a higher value of
rq the transient becomes more damped, which gives a physical interpretation of the R; matrix (9). Figure 7
shows the inductor current j with a similar behaviour to that of w. Finally, the space-state trajectory for 0s <
t < 0.5s, which converges to the equilibrium point, is depicted in Figure 8
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Figure 8: Simulation results: State space [w, 1] trajectory, for different ryvalues

Example 6. (A toy model). Consider the following 2-dimensional nonlinear control system

where € > 0. This can be cast into PCHS form

- 2
X =-x+8x;,

X, =—XX, +u,

(11)
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X, =(J—R)0H + gu (12)

T N Pl

1 1
H(X)szlz +5§x22

with

The control objective is to regulate, for example, x-to a desired value xj (nevertheless the control law

for aregulated x, yields the same control law). The equilibrium of (11) corresponding to this is given by
X =&(x5)%, ur=4(x])".

Using the IDA-PBC technique, also within the algebraic approach, we match (12) to
x =(J, —R,)0H,

J:[ 0 a(x)}Rd:[l 0}
—a(x) 0 0 r

1 . 1
Hd(x)za(xl —X )2 +g(x2 _xj)z,

with
and

where a(x;, xz) is a function to be determined by the matching procedure and y > 0, r> 0 are adjustable
parameters.

From the first row of the matching equation (J —R)0H + gu =(J, — R,)0H , one gets

2 n, X d
—x, +&x, =—(x _'xl)+;(‘x2 —-X;),

from which

a(x,x,) = %xd@xi —x) = rE(x, — Y.

2
Substituting this into the second row of the matching equation

N
XX, +u=—a(x _xl)_;(xZ -x;),

yields the feedback control law

= x5, = 7E(% —x)(%, +x) == (x, —x). (13)
V4
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Figure 9: Simulation results: x> behaviour for different rand yvalues

This control law yields a closed-loop system which is Hamiltonian with (/4 R4 Hz), and which has
(x]* , xf) as a globally asymptotically stable equilibrium point.
Figures 9 to 12 show the behavior of the system controlled by the IDA-PBC controller (13). The

parameters are £ = 2 and x} x?,= 1. Figures 9 and 10 show x, (#) and x,(¢) for different rand y values, while

in Figures 11 and 12 the phase portrait is depicted. Notice that the y parameter has more influence on the
trajectories. This is due to the fact that y modifies the Hamiltonian in the x; direction (see Figure 13) and
tuning this parameter makes trajectories of xzrestricted (or semi-bounded).

3.2  Simultaneous IDA-PBC

The standard two-stage procedure used in IDA-PBC, consisting of splitting the control action into the
sum of energy-shaping and damping injection terms, is not without loss of generality, and effectively reduces
the set of systems that can be stabilized with IDA-PBC. This assertion is, of course, not surprising since it is
clear that, to achieve strict passivity, the procedure described above is just one of many other possible ways.
This point is illustrated with the IDA-PBC design methodology proposed in (see the previous subsection). To
enlarge the set of systems that can be stabilized via IDA-PBC we suggest to carry out simultaneously the
energy shaping and the damping injection stages and refer to this variation of the method as SIDA-PBC.

As we said before, the key for the success of IDA-PBC is the solution of the matching

44 4332233 ITMO UNIVERSITY



2017 © Anton Zhilenkov The modern theory of control systems:
aazhilenkov@corp.ifmo.ru Port-Hamiltonian Control

gamma="1

G-
-

w
T
- -
oo

o

o
~1
i

Q
-
w
-
X
"
-
-

9 10

1
gamma=0 1
3t — gamma=1 [
~ gamma=3

s
(& ]

o |
]

1
¢ 1 2 3 - o b 7 8 9 10
tme fg]

Figure 10: Simulation results: x; behaviour for different r and y values

PR POYan gamira -

2 T T T
o —— 0.5
e |
—*
15+ 3
|
‘— r J R
|
|
nh=- \ = -4
|
o =
ns
1
o ] o -
-2 L . -
0 0% ' . 2 1 3
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Figure 12: Simulation results: State space [ x;, x7] trajectory, for different y values

Figure 13: Desired Hamiltonian function H,for differenty values

equation
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S +g(xu=(,-R,)0H,. (14)

With the motivation of enlarging the class of systems for which this equation is solvable we propose
to avoid the decomposition of the control into energy-shaping and damping injection terms. Instead, we
suggest to carry out simultaneously both stages and replace (14), with the SIDA-PBC matching equations

J () +g(x)u = F,(x)oH,, (15)
and to replace the constraints
JI@)=-J,(x), R,(x)=R,(x)" 20 (16)
by the strictly weaker condition
F,(x)+F/](x)<0, (17)
and define the control as
-1
=[g"()g(®)| " ()(F,(x)oH,, — f(x)). (18)

Since the set of skew-symmetric matrices is strictly contained in the set of matrices with negative
semi-definite symmetric part, it is clear that the set of functions {fx), g(x)} for which (14) (subject to the
constraint (16)) is solvable is strictly smaller than the set for which (15), subject to (17), is solvable.

Remark 4. Similarly to IDA-PBC, application of SIDA-PBC also yields a closed-loop PCH system of the
form (4) with

J,(x,1) = [F(xt)F(xz)] R, (x,0)= [F(xz)+F(xt)]

The SIDA-PBC can be summarized in the following Proposition.
Proposition 3. A dynamical system in an affine the form

x=f(x)+g(x)u,
with the control law (18)
=[g"(g™)] &' NE @M, - f(x),
is asymptotically stable to x* iff
x =argmin H,

and
F,(x)+F,(x)" <0.

Example 7. (A toy model) Now we apply this technique to the toy model described before. We have to
solve the new matching equation (15), which implies the control law (18). The model (11) can be written in
the form x = f(x)+ g(x)u with

Splitting the Fzmatrix as
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the control law (18) has the following form

u=F,0,H,+F,0,H,+xx,

where F21 and F; are free parameters satisfying (17) and x*= arg min A« x). Notice that we have more degrees

of freedom than in the conventional IDA-PBC technique.

In this case the more evident choice is to take a quadratic energy function, for example

1 * § *
H, :E(x1 - X, )2 4—5(x2 —x2)2

which implies

0.H,=x —xl*,and 0,H,=&(x, —x;).

k
Setting /21 = —x; and F,, = ——, the control

u=xx,—k(x,—x).

The A1 and £, are still free and must satisfy

law yields
(19)

the matching equation for the x; dynamics,

X +§x22 =F,(x, _x;)"'FIzg(xz _x;)-

In order to simplify the calculations, we set Fi1 = —1, which implies

Fy, =x,

Finally, to prove stability we only have to be
-2
F+F' =

*

X

and, applying Schur’s inequality,

1,., 1
k>—CEx ==
452 4

Figure 14 shows the simulation results of the control law (19). The parameter values are § = 2, xf =2

+X,.

sure that the F+ F7matrix is negative-semidefinite, ie.

*

X,
k<0

g

E3

X, .

and k= 1. Notice that the system goes to the desired fixed point x*.
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Lad €

Figure 14: Simulation results: x; and xz for a SIDA-PBC controller

4 Improving the robustness of the IDA-PBC technique

One of the problems of the IDA-PBC technique for practical applications is the robustness of the
designed controllers.

In this case, the robustness problem was partially solved adding an integral term to the error of the
passive output. This dynamical extension partially solves the problem for relative degree one outputs but the
main problem remains open for higher relative degree outputs. In this case the dynamical extension is not
clear because, in general, it breaks the skew-symmetric property of the /; matrix.

4,1 Adding an integral term

In this subsection we explain why the integral term can be used in a PCHS framework for relative
degree one outputs, or in other words, passive outputs. To expose the basic idea, consider a fully actuated
control system of the form

{xl = fi(x,x,) 20)

x2 =f2(x19x2)+g(xlax2)u

where x1 € R%, x; € Rmand u € R#, and g is full rank. Assume the IDA-PBC technique can be applied to (20) so
that in closed-loop the system becomes

e

u= g71 ((Omxn Imxm )(Jd _Rd )aHd _f‘2)

with control law

Under the stated assumptions, the x; are relative degree one outputs. We can easily add a dynamical

extension to them by means of
z=-a0,H,, (21)
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where a € Rm<m, The whole closed loop system can be rewritten in Hamiltonian form as

‘).Cl 0 aII{dz

.| J, d _Rd T o.H

X = 0 a 21 4
—a

z 0] o6.H,

with a new Hamiltonian function

The new controller is

v=u+g 'ka'z=u —g_lkaTaI 0,H,.

Notice that (21) forces x, = xZ to remain a fixed point of the extended system.

The same procedure, when applied to the higher relative degree output x1, requires a closed loop
system of the form

X, J R 0|/0,H,
562 = _Z Od b a2Hdz
z 0 aszz

where now a € R»zand b € Rmxa, The a term is used to force the equilibrium point xl* of the output, while b

is necessary to put the integral action into the control law. In this case stability cannot be proved using the
PCHS properties, since the g, bterms break the semi-definite positiveness of the dissipation matrix:
a'/2

= ¢ ~b/2|.
a/2 -b" /2 ()/

Indeed, consider a matrix of the form

A B'
M = .
B D

A simple application of Schur’s complement shows that if D=0, then B+ 0 implies < 0. In our case,
this would mean a = 0 and b = 0, which makes no sense.

4.2  Influence of unknown parameters on the PCHS structure

In this subsection we point out the kind of problems that can appear in the closed-loop structure
obtained by IDA-PBC methods for relative degree one outputs, when nominal values are used in a system with
uncertain parameters.

Although the IDA-PBC method has some built-in robustness coming from its PCHS structure, the use
of anominal ufor systems with uncertain parameters can give a closed loop system which is not exactly PCHS.
One may thing that for nominal parameters in a small neighborhood of the actual ones, the “/—R’ structure
will not be destroyed; however, we will see that the resulting closed-loop system has interconnection and
dissipation matrices depending on the state of the system, even if the closed-loop system for the actual
parameter values does not; this has as a consequence that the effect of small parameter changes is not uniform
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in state space and, in particular, is unbounded in a neighborhood of the desired regulation point. In addition
to this, the closed-loop system obtained with a nominal control does not have, in general, x* as a fixed point.
As is well known from elemental control theory, this last problem can be corrected by adding control terms
proportional to the integral of the error. Integral control has been discussed in the PCHS setting in the previous
subsection 4.1, where it is shown that adding as state variable the integral of the natural passive output of the
closed-loop system yields a system which is again PCHS.

Consider the dynamical system (20) of subsection 4.1,

{xl = fi(x,x,)

. (22)
X, = fo(x, %)+ g(x;,x, )u

where x1 € R4, x; € R, u € Rmand det g #0, so that the x- are relative degree one outputs which we want to

regulate to desired values x; . Given x;, the fixed point values of x; and v are obtained by equaling to zero the

right-hand sides of (22).
Applying the IDA-PBC technique, we match the system to the desired partitioned PCHS

Y T T
|:xl}_{Jdll_Rdll _JdZI_Rd21i||:alHdi|
. - s
X i =R Jim =Ry, |0,
where each /- and Rs- represents the interconnection and dissipative terms of the /; and R, matrices,

respectively. This implies that /;1 and /22 must be skew-symmetric and similarly Rx1 = R7n1 = 0 and Rap2 =
R7422 > 0. Hence, the desired interconnection and damping matrices are

T T
J _|:Jd11 _Ja'21:| R _|:Rd11 Rd21:|
d= > g = :
Jd21 ‘]d22 Rd21 Rd22
Equaling the first x; rows of both systems yields the IDA-PBC matching equation
Si = —Ri)0H, +(_J§21 _Rgm)asz- (23)

Assume that this equation can be solved, giving /4 Rsand Hysatisfying the proper structural and control
objective conditions. Substituting then into the equation coming from the last x> rows, one gets the feedback
control

u=g" I:(JdZI —R,»)0,H, +(J;22 _Rdez)asz _fzj

Assume now that the system (22) depends on some uncertain constant parameters &, for which we
assume nominal values f The unknown parameters creep into the formalism through #(and £;), making the

solution to the matching equation (23) depend on them, and also through the desired values x*;, which appear
in Hyand which may depend on € due to the fact that they must obey £1(x*1, x2) = 0. Hence, the nominal control
is given by

U= g_l |:(sz1 _Rd21)alHd +(Jd22 _RdZZ)asz _fz}

The closed-loop system computed with the nominal control is
X =y —Ry)OH, +(_J521 _R§21)82Hd’ (24)

x, =1 _gé_lfz +g§_1 |:(jd21 _I’édZI)al[:[d + (jd22 _I’édZZ)azl:ld]'
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In the equation for x;, (24), we can change Hs by I:Id and put the balance terms into d7 denoting

0, =1, —ggflfz, , we get a system of the form
|:xl:|:|:Bll B12:| all_Id +|:51:|
X, B, By, 52[:1d 0,
The components of &1 can be made proportional to components of 82[:Id by dividing by the

corresponding factors; likewise, the components of &, can be made proportional to components of 0,/, (one

has a large amount of freedom in selecting the components of 0H, to which the extra terms are made
proportional). After doing this, one gets

R
- - d*

X, B, + EZl B, azﬁd

Notice that there are no singularities in the differential equations (25), since the singular terms in 4,

are canceled by 0H ,.
Since any matrix can be decomposed into symmetric and skew-symmetric parts, we write

A,=J,~R,,J; =-J,, Rl =-R,.

Due to the l§21 and élz terms, the corresponding elements of J, and R, will contain terms which are
singular at x, = fcl* or X, = x;. This is no formal problem for J,, but the presence of off-diagonal singular
terms in R, will destroy its positive semidefiniteness at least in a neighborhood of (fcl*,x;) . Notice, however,

that due to the presence of &1, & the closed-loop system has fixed points which differ from (i;,x;); if Iéd is

positive semidefinite in a neighborhood of the closed loop fixed points, LaSalle’s theorem can still be invoked
to proof local asymptotic stability, albeit not for the desired regulation point.

In order to ensure the regularization objective in presence of the unknown parameter, an integral term
is introduced in basic control theory. For relative degree one outputs, this can be given a Hamiltonian form as
well (see previous subsection). Keeping the unknown parameters assumption, we can rewrite the closed-loop

system as follows. First of all, we write u =# +v in the original system. This yields

x=(J,—R,)0.H,+gv.

Because of asz| . =0, we can enlarge the state space with z€ Rz so that

Xy =Xy

z=—ad,H, =-ad,H,,

with a = 4T € Rmxmalso diagonal and positive definite. The closed-loop enlarged system can be written as
X, n R 0
X, |= - a |oH b
z 0

where
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A=A, %

As discussed in subsection 4.1, due to the equation for z’, the only fixed points of the new closed-loop

system are those with x, =x,. The equation for X, determines then x4 in terms of x, and the actual
parameter values; finally, the equation for X, sets the equilibrium value of z z in terms of the nominal

parameter values. However,

1% 0
R, = d 0
0 0 0

has the same singularity problems that fad in a neighborhood of x: , and a proof of stability based on LaSalle’s

theorem cannot be given. Nevertheless, we will present an example in the next Section where the desired

regulation point seems to be asymptotically stable.

Example 8. (A toy model again). To illustrate the quite general previous remarks, consider the toy
model studied in subsection 3.1, equation (11),

. 2
X, ==X, +8x;,

X, =—XxX, +u,

where § > 0 is an uncertain parameter. The control objective is to regulate x; to a desired value x%. The IDA-
PBC control law obtained was (13),

. r
u=xx, = y5(x —x )(x, +xj)_;(x2 _xzd)-
This control law yields a closed-loop system which is Hamiltonian with (/4 R4 Hz), and which has

(xl* , xzd) as a globally asymptotically stable equilibrium point. However, if we use an estimated value f of the

uncertain parameter &, the feedback control is
A o) Ak d r d
u=xx,—y5(x, —x )(x, +x3)——(x, —x3),
Y
where

n¥ 2o odN\2 *
X, =6(x) ==x.

e |

For later convenience, we also define
A Z d
a=ys(x, +x3).

Using this #, the closed-loop system equation for X, is
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2 A r
X, ==& (x, —x; )(x, +x;)_;(x2 _xzd)

. o 1
=—a(x,—Xx)-r—(x, _xj)
4
= —G0,H, -rd,H,,,

where

The equation for x, is not changed by the feedback, but can be rewritten as
X, =—x, +&Ex)
=~ &) - &+ +(E -0
==0,H, +&(x, + ), = x)) + (£ =)
=-0,H, +0?%(x2 —x)+(E-E)x]
=—0,H,+60,H, +(&-&)x2.

These two equations can be cast into Hamiltonian form as

2
. ~ 2 X. n

|:xl:|_ -1 a+y(-6)—| o,H,
. - xz_xz A
Xy N 0,H,

= A,0H,=(J,-R,)oH,,,

where J, is the skew-symmetric part, giving the closed-loop interconnection matrix, and

. _r(E-9)x
5 A~ 2 x,—x)
Ry =2 (4, + )= oo
y (E-9)x, -
| 2 X, — Xy |

One has

trf?d =1+r>0,

detR, =r— Gl :
¢ 4 (x, —xz) 2

Hence, in order to ensure that Rd >0, it is necessary that

(x-x) (- &)

e
X, 4r

(26)

which is globally true if é = & but fails in a neighborhood of x, = xzd ,as well as for | x;| large enough, if € # é
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Notice that, for é # &, the closed-loop system does not have x; = x, x, = )21 as a fixed point, even

though these are critical points of I:Id , due to the 1/(x2 —xdz) term in Izld. In

16 T T T

14+

121

|

10

61

6

+ X224

Y 2z .‘»I‘J\

- L

> £ .

(L

> Il 1 —

Figure 15: Simulation results: IDA-PBC controller for a toy model

general, due to the state dependence of A ,» other solutions may appear anyway. In fact, computing the fixed
points yields the relation (depending only on the actual value of €)

X, =8x,,
while the value of x; comes from the solutions to
0=y E(Ex; = F)(x, = x3) +r(x, =X,
If éf = &, one gets

y*E 0 —()")(x, +x7) +r(x, —x7) =0

which only has a real solution, namely x; = x%. For & # é one has, in general, three solutions, at least one of
them real, all different from x4,

Figure 15 shows a simulation of the controller. The asymptotic value of x; is ~ 2.666 instead ofxd2 =2
, while x1 goes to & X (2.666)2, as expected. As discussed in this Chapter, local asymptotic stability can be
proved using LaSalle’s theorem, but extensive simulations with very broad initial conditions seem to indicate
that the stability is in fact global.

Following the general theory, an integral term is introduced next, so that the equation for x» gets
modified by an azterm while the dynamics of zis

Z':—al(x2 +x5).
I
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All the fixed points of the closed-loop system have x; = x%; from the equation for X, , one gets again

2
X, =x%=¢ (xdz) . Finally, the equation for X, determines now the fixed point value of z z+, which depends

on the nominal value f, instead of determining the fixed point for x».

Figure 16 shows a simulation of the new controller, for the same parameter values than the simulation
for the old controller and a = 50. The variable z the integral of the error in x, starts from zero an goes
asymptotically to z. A longer transitory appears, as is characteristic of integral controllers. Simulations with
initial values in a wide range of points, seem to point to the global stability of the closed loop system.

However, if r is decreased oscillations do appear. For instance, for r= 20 and the same values of all the
other parameters, one gets the response displayed in Figure 17. The disappearance of the oscillations when r
is increased corresponds to a (reversed) Hopf bifurcation. In fact, linearizing the closed loop system around

2
(§(xd2) ,x%,,2") yields asystem which is asymptotically stable as long as
7 A A A
;+75(?63)2(5—5)—(5—7/5)2(?63)2 >0,

which is true for r sufficiently large. Numerical simulations seem to imply that the fixed point of the nonlinear
system is globally asymptotically stable. Computing the time derivative of H b

G =~ =5 (B =) 0 e

it can be seen that the region where (27) is nonpositive is much larger than what is implied by (26), due to
the state-space dependence of the closed-loop dissipation matrix; in fact, for rlarge enough, the nonpositive
region is pushed away from the desired regulation point, except for a bounded shrinking region whose
boundary contains the later and which contains most of the periodic orbit. Although the details are quite
particular to this example, we hope to obtain some insight into any existing mechanism which could be
generalized.

4.3  Robust control via structure modification

As discussed in the previous Section, it is not clear how to generalize the integral extension for higher
relative degree outputs in the PCHS framework. We present here a different approach, which can be applied
to a larger class of systems. Examples include the DC motor, the electrical part of a doubly-fed induction
machine or the buck power converter.

Consider a dynamical system of the form

{xo :.f(‘)(xo’xu"f)

X, = f,(x,,x,)+g(x,,x Ju (28)

where x, € Re are higher order relative degree outputs, x, € R4, u € Rr are the controls and € is an uncertain
parameter. To simplify the presentation we consider p = u= oand that g is full rank.

As a control target we fix a desired xdo , which implies that the fixed point value of x, is given by the

following equation

Jo (x5, x,,6) =0, 29)
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Figure 16: Simulation results: IDA-PBC+integral controller (with r= 50) for a toy

model
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Figure 17: Simulation results: IDA-PBC+integral controller (with r= 20) for a toy
model

and depends thus on the uncertain parameter &.

Applying the IDA-PBC technique, we match the system to the desired port Hamiltonian structure,
where (Js— Rg) is partitioned as
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XO _ ‘]doa _Rdoo _J;ao _Rz’:w aOHd
x| |J, -R, ~J,. —R, |[0.H,]|

duo duo duu

Each /;. and Rs. represents the interconnection and dissipative terms of the /;and R; matrices,
respectively. This implies that /i, and Ja., must be skew-symmetric and similarly R = R7400= 0 and R =
R74,, = 0. Hence, the desired interconnection and damping matrices are

J _ Jdoo J;;)o R _ Rdao Rj;)o
d — st T .
Ju, R R

duu duo duu

Notice that we need a Hy such that 8Hd|x_x* =0 to obtain an equilibrium point inx* = (x’,x)) .

Equaling the u rows of the IDA-PBC the control lawyields
u= g71 [(Jduo duo)a H +(']d duu)a H f ]

Since Hyis a free function, it is chosen so that d,H;does not depend on § (Notice that x: depends on it,

equation (29)). In the same way, € can appear in d,Hsthrough x: , which can be removed from the control law

setting
J,

duu

- Rduu = 0’

and the robustified IDA-PBC control law is
[(']duo duo )a()H f ]

As we set R = 0, again Schur’s complement shows that in order to keep the semipositiveness of Ry,
we are forced to Ra.,= 0, and consequently

-1
u= g [( duo oHd _fz;] (30)
From the o rows of the IDA-PBC, the following equation must be satisfied, were we fixed Rauo =0,
f; = (Jdoo doo)6 H Jdm)@uH (31)
Selecting Jauo full rank,
( duo) [f(; - (Jdoo doo )8 H ] (32)

Rewriting £, as
f; = A(‘x)aaHd + B(‘xu )7

and choosing (Jio — Rioo) SO that
Ax)=J,,—R

doo >

the PDE (32) simplifies to
= ( du()) B(x )
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Notice that /s.c must be a function of x, only, /s = Jaue(xu). Fixing a part of the Hamiltonian and then
finding the rest of H;solving the PDE was also proposed. Stability can be discussed, using LaSalle’s theorem.
Dissipativity is assured if

R, =R, >0.
This is equivalent to
A(x)+ A(x)" <0.

Notice that this condition depends only on £, irrespectively of u. Convergence to the equilibrium point,

defined by 82Hd L= 0, follows from the condition

O’H,

. >0,

X=X

or, in other words,

8. (=(J! y'B(x, ))\ >0,

We can summarize this Section in the following Proposition.
Proposition 4. Consider a dynamical system given by (28), so that £, can be expressed as,

Jo =A(x)0,H, +B(x,) (33)

where 0,H;is a design function of x, such that

0,H,(x,)| _.=0
and
0,H,(x,)| _,>0. (34)
Then the control law
u=g"'[J,,(x)0,H,~f,]. (35)
where Ju.o(xu) is another design function of x,, is robustly stable in front of variations of € as long as
A(x)+ A(x)" <0, (36)
(~(J7.,) " BG))|_. =0, (37)
and
0,(~(J,) ' B(x)| _. >0. (38)

Notice that condition (36) implies that the dynamics of the output variables x, is dissipative, and this
is the only dissipation of the closed-loop system (due to Ryuu= Rauo =0).

Proposition 5. (The toy model). Consider once more the toy model studied in subsection 3.1, equation
(11), where € > 0 is an uncertain parameter. In this case, differing from the previous subsection, the desired

output is fixed by xd1 . Notice that x1 is now a relative degree two output, and theintegral term discussion is

not clear.
Applying the classical IDA-PBC method to the system, the following feedback control law is obtained
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* r *
u=xx,-y5(x, _xld)(xz +xz)_;(x2 - X,),

where r > 0, y > 0 are control parameters. Notice that the control law uz depends on x4 and x*, where x*; is
function of €,

1
* d
X, = |=x.

4

In this case the control law is not robust with respect to an uncertain f .

Let us calculate a new controller following the previous discussion. In this case the x, output variable
is x1 and the x, variable is x;. First we fix d,Hzas

_ d
aoHd =X T

which ensures conditions (34) and (35). Then from (33), A(x) and B(x,) must be
A(x)=-1B(x,) =&(x; —x7).

Notice that condition (36) is achieved.
The easiest choice of /.., is a free constant, for instance & > 0, but for this nonlinear example it is
necessary to add a more complicated a(xz) function.
The a(x) function is included to avoid stability restrictions on the space-state. The same procedure
with a= 1 implies
1 0
O’H,| .= .
“hes 10 2%2
which is negative for x*; < 0. Consequently, the globally asymptotically stability is not achieved.
Then the final choice is

Jduo = J;uo = _a(‘x2 )k
with &> 0 and
I, x,>0
a(x)=<b, x,=0 (39)
-Lx, <0

where b € [—1, 1] is a parameter that would be used to choose the equilibrium point of x; (see discussion on
the closed-loop dynamics at the end of the example). This selection ensures conditions (37)
1
a(x,)k

=0

*
Xy =Xy

05 —x,)

and (38),

>0

1 2o
(a(xz)ké(xz Xy j

Finally, the controller is obtained from (3.30) yields

*
Xy =Xy
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u=xx, —ak(x, —x/). (40)

The example seen as a classic IDA-PBC design. This design can be also obtained following the
traditional IDA-PBC method in order to show the Hamiltonian structure of the closed-loop system. Consider
the matching equation of the system (11) with the PCHS dynamics (4) where

{ 0 a(xz)k} {rc 0}
J, = R, =
—a(x,)k 0 0 0

where &> 0, a(xz) is described in (39) and a Hamiltonian function such that

—
0.H, = A (41)
axZHd

From the second row of the matching equation we obtain the same robust control law as (40)

u=xx, —ak(x,—x)

which does not depend on &. From the first row we must compute 8x2 H , and verify the stability properties of

the closed loop system. The matching equation yields

—x, +&x; =—7.(x, _x1d) +ako, H,
and, using r.= 1 and x/ = £x,°,

0,H,= %(xi —x;)- (42)

To show stability, with the desired structure (4) and /;= —/74, Rs= R7;> 0 we only need positiveness
of the Hessian of /H;evaluated at x*,

1 0

O:H,| .= Nt
=10 2§a(x2)x2

X

which is true for all x*, as long as &> 0 and & > 0. Notice that

O’H, = < (O(x,)(x2 = X,7) +2a(x,)x, ),
ak

where ©(x,) is the Heaviside function.
The Hamiltonian function can be found integrating d.H; (equation (41) with (42))

5 1 2 *2 1 dN\2
H, =a(x,))=x,| —x;—x, |+=(x,—x )",
d ( Z)k 2 3 2 2 2( 1 1 )
which has two local minima, both with first coordinate xd1 .H; is depicted in Figure 3.18 (using the same

simulation parameters than for Figures 19 and 20). Notice that two equilibrium points appear, given by

1 4
=% |—=x,
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and these points yield the same value for x4. In the classical controller, this ambiguity did not appear, basically

because we were fixing the desired value of x*, , while in the robust controller both values of x; are possible.

Figure 18: Desired Hamiltonian function, Hy

Simulations. Figures 19 and 20 show simulation results testing both controllers, the robust method

presented above and the classic IDA-PBC. The parameters are § = 2, f = 1, with initial conditions x(0) =
(0,—1.5), and the desired output is x“'1 = 2 .The control parameter for the robust control law is 4= 10, while

for the classical IDA-PBC r=1 and y=1 are selected.

The robust controller achieves the desired value of x1 even with a wrong parameter estimation, while
the classical IDA-PBC controller is sensible to the € variations. Notice that the variations on change the x*
equilibrium point.

Study of the closed-loop dynamics. Now we focus on to study of the dynamical behavior of the
controller designed above. Fig.21 shows the phase portrait of the closed-loop system (the values of the
parameters are as above).

Two stable fixed points,x* = (2,%1), are present. To select x*, , let us to write the system (11) with the

feedback control law (40),

{xl =—x, +&x;

X, =—ak(x, _xld)

The dynamics after reaching x; = 0 there is described by

X ==X,

so xi tends to x; = 0, and simultaneously the x; dynamics is

%, = —ak(x, ~x)
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Figure 20: Comparison between the robust method and the classic IDA-PBC, behavior of x»
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e2(t)

'L i T T N

x10)

Figure 21: State space; trajectory and vector field

where k> 0 and a(x;) = b with b € [—1, 1]. Notice that for x, > x“’1 , and sufficiently far of the equilibrium

point, x; = 0 is an attractor set. Besides, for x, < xdl and x2 = 0 the dynamics of x; for 5= 1 is increasing, while

if b= —1 the dynamics of x, decreases. In other words, for b=1

limx, =+ flxld
t—00 é:
limx, =— /lxld.
t—0 éf

Figure 22 shows a phase portrait of two different simulations, for 4 = 1 with a continuous line and b

and for b=-1

f 1
= —1 with a dotted line. The behavior is as expected from the discussion above, for b= 1, x, tends to + E xld

, 1
while forb = —1 x; tends to — EXId . In Figure 23 the same simulations are depicted in function of time.

For numerical simulations, we modify a(x) (39) as
1, X, >&
a(x)=1b, —e<x,<¢

-1, x,<e¢

where € > 0 is a constant, so that numerical errors do not bring the trajectory to the wrong fixed point.
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Figure 22: Phase portrait of xfor two different »values. b= 1 with a continuous line and
b= —1 with a dotted line

J
o
-

Figure 23: Simulations for two different b values

Example 9. (The DC motor). This robust IDA-PBC technique can also be applied to the DC motor speed
control problem. Consider the DC motor described earlier, in PCHS form given by

x=(J—-—R)YOH(Xx)+g+g,u

with x € R2
x = [/1, Do ]T
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and where A is the inductor flux and p,, is the angular momentum. The interconnection, dissipation and port

Lo el s]e o)

with the control input # = v, rand B-represent the electrical and mechanical losses respectively, and the

matrices are

Hamiltonian function is given by
1 1
H(x)=—A1>+——p>
2L 2J, "™

where L is the inductance and /,, the inertia of the motor. Assume that the control objective is a desired speed
w?and in that the unknown parameter is the external torque 1.

Following the procedure described in Proposition 4, where the x, (output) variable is themechanical
speed w and the x, variable is the inductor current ; we choose

1
aoHdZJ—(pm—pi)zw—a)d, (43)

m

which ensures (34). Now £, from equation (33) can be written as
fi=K,—Bw—1, = A(x)(@w—w")+ B(x),

and into taking account 7, = K. — Bra)d ,, A(x) and B(x) are given by

A=-B_,
B=K(@G—1i),
which fulfill the conditions (36), (37) and (38), with
Jduo =V > O’ (44)

Finally, the control law is obtained from (35),

u=y(w—w’')—ri—K

w@

with (43), (44) and
f, =—ri—K

w*

Figure 24 shows the behaviour of the DC motor with the IDA-PBC robust control law. The motor
parameters are: r= 0.05Q, L=2mH, K= 0.07N-m-A-1, Br=0.01N-m-rad-1s-1, /,, = 0.0006Kg-m2, the nominal
torque is T, = 1.25N-m and y =0.05. The system starts at w = 170rad-s-1 with w?= 120rad-s-1. For £= 1s the
desired mechanical speed is changed to w?= 170rad-s—1, and for ¢£= 2s the external torque decreases until
T, = 0.25N-m. Notice that the mechanical speed regulation is achieved even with the change of the external
torque.
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Figure 24: Simulations of the IDA-PBC robust for a DC motor

We have witnessed that one of the advantages of the port-Hamiltonian (pH) framework is that the
Hamiltonian can be used as a basis to construct a candidate Lyapunov function, thus providing insight into
various system properties like stability, passivity, finite L: gain, etc.

Another key feature of pH systems is that a power-preserving interconnection of pH systems results
in another pH system, with total Hamiltonian being the sum of the Hamiltonian functions and with a Dirac
structure defined by the composition of the Dirac structures of the subsystems. These features have led to a
research focus on the control of port-Hamiltonian systems.

‘e’
o
.-?

3320 'TMO UNIVERSITY 67



2017 © Anton Pyrkin The modern theory of control systems:
pyrkin@corp.ifmo.ru Control approaches for time-delay systems

Control approaches for time-delay systems

@ Introduction

© Tsypkin's criterion of stability
© Smith predictor

© State-feedback predictor

© Output-feedback predictor

Intreduction

Time-delay systems

Time-delay systems can be separated to three classes
— plants with input delay
— plants with state delay
— plants with output delay
— plants with several delays

The most complicated and popular in literature are systems with
input delay and with input and state delays.
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Introduction

Technical systems with time delays

Chemical reactor Combustion engine
Delay
Internal Lambda
combustion Exhmst gascs SENS0;
engine
Lambda

regulagor

Remote control

o
B &

Introduction

Systems with delays and external disturbances

Towing of an underwater vehicle Extraction of nodules
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Intreduction

Present-day view at the problem

External system

. Disturbance
| s 6
‘.: : _Z'm 2 lﬂput
Control | T ;f‘—;;-i—-r-iumug ; variables
o |
Delay || _Plant || Delay
| ' st ﬁ-_ 1 |
B i ol "\
| (LAY
[ | e \,_. Contrel system -——|
d’f"? !

Introduction

General problem formulation

AN

Extemal
disturbance

s ][
I 22 N U

Reference Controller Delay Plant Output
signal

Closed-loop system with delays
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Intreduction

Closed-loop system with PID-controller

Referesce Onatprat

sl

Iuc—xr aor

Structural scheme of the system Transients for the output

Introduction

Closed-loop system with delay

[0

Chutpest

Structural scheme of the system Transients for the output
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Intreduction

Basic control approaches

@ Tsypkin's criterion of stability

o Smith predictor

e Predictor for unstable systems

Taypkin's critenon ol stability

The first work devoted to the time-delayed systems m

(3 Tsypkin Y.Z. Stability of systems with retarding ferd-back //
Avtomat. | Telemekh., 1946, V. 7, N. 2-3, P. 107-129.

This approach using Bode r- SETo e o4
magnitude and phase plots and i
Nyquist stability criterion allows
to define the maximum delay for
which the closed-loop system
keeps stability.

Phese {Dngree ) Magnitud e (48]
& A
8 5 &
/ ; /
:
g ik '
£ 2 B
g 3 z
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Taypkin's critenon ol stability

Maximum allowable delay in the closed loop m
| R ={R(s)— P(s) -
Reference Delay Controller  Plant Output
signal

Bode plot for R(s)P(s)

Transfer function
of the delay

Wh(s) = e 4

Smuth predictor

Smith predictor

Smith predictor is a special structure of the controller proposed by
Otto Smith in 1957.

[ Smith O.J.M., Closer control of loops with dead time // Chem.
Eng. Prog., 1959, N. 53, P. 217-219.

[§ Smith O.J.M., A controller to overcome dead time // ISA,
1959, V. 6, P. 28-33.

The main goal of the Smith predictor is to predict which signal will
appear before it will happen.

°3‘-'3" ITMO UNIVERSITY

73



2017 © Anton Pyrkin The modern theory of control systems:
pyrkin@corp.ifmo.ru Control approaches for time-delay systems

Smith predictor

Smith predictor

+ '-, :‘ +> [I’{S] > I)l")( <D

E——-I M{s)e 2

Control system supplied with Smith predictor

M(s) is a model of the plant
¢~ is a transfer function of the delay
R(s) is a structure of the nominal controller

P(s)e * is a transfer function of the plant with the input delay

Smuth predictor

Smith predictor

Assume that the model of the plan is ideal, i.e. M(s) = P(s).
Then the error between real output and output estimate will be
zero (= — (). Thus, we have

R PR
=7 .'-‘QD p—— T s ' 1
S (1+H;\1) (1+m* )' (1)
The term (T%%) is a transfer function of the closed-loop system

without delay.

It means that the delay does not exist in the feedback loop and
does not affect the stability and performance of the closed-loop
system. In other words controller does the job independently on the
time delay. The delay exist only in 2 numerator of the transfer
function that means the output after regulation is delayed.
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Smith predictor

Smith predictor

Consider the Smith predictor without assumption ¢ = (). In this
case the model of the closed-loop system will be

y = Pe "”l')ff(r' —&e—Mu),e=y— Me Py
gy = Pe” "'Du,, (2)
hence i
~sD
— - 29 \' 3
4 1 + RM + R(]’ — \I)( #D 4 ( )
One can see that the error M — P converges to zero if the model is

precise, and the exponential term in denominator associated with
the delay disappears (in square brackets (3)).

Smuth predictor

Modified Smith predictor

Using topological transformations one can get several equivalent
structures of Smith predictor.

' 2 \
+ ¥ - R(s)

Plg)e ™"

Mis) o e
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Smuth predictor

Modified Smith predictor

£ a ’<+_ f(‘ .l RI'S}
.\]l:..ﬁ.' J — ;\[l‘(S e

Smuth predictor

3 !
P(s)e ¥ ¥

x1)

Modified Smith predictor

Predictable proportional-integral controller (PPl-controller) is a
modified Smith predictor which is widely utilized in automatic
control. Its structure presented on the figure below
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Smith predictor

Remarks

Tsypkin's approach and Smith predictor are effective only for linear
stable systems with known parameters.

The closed-loop system is very sensitive to accuracy of model,
Parametric disturbances can be reason of an instability.

State-feedback predictor

Problem formulation

Consider a linear plant
x(t) = Ax(t) + Bu(t — D), (4)

where & € R™ is a state vector, the pair (A, B) is completely
controllable, and control u(t) is delayed on D seconds.

The trivial controller for the system (4) may be constructed in the
form

u(t — D) = Ka(t). (5)

where the vector K guaranties that the matrix A + BK is Hurwitz.
Hence we have the nominal controller (ideal, although not
realizable)

u(t) = Kz(t + D). (6)
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Control law

However using the solution of (4) for ()

o
x(l)= ¢;'“.1'(‘(')) + / ("4“_":'311(7' — D)dr (7)
JO
we get
l \
z(t + D) = e Pa(t) 4 / eM 7 Bu(r)dr, ¥t>0, (8)
1—D
hence we have the state-feedback controller
ot
u(t) = K [c’m;r(f) . / M Bu(rydr|, ¥t>0, (9)
f—D

which is realizable.

But this controller has an infinite-dimensional term with distributed
delay [,f Dc"‘“‘”b’u(r)dr.

State-teedback predictor

Closed-loop system

Delay has been eliminated in the model of the closed-loop system
#(t) = (A + BK)x(t), ¥t > D. (10)

Equation (10) holds only after D seconds. Before DD seconds the
state of the plant corresponds to the following expression

{
2(t) = eMr(0) + / e Bu(r — D)dr, Yte[0,D]. (11)
o)
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Original source

Control law (9) was firstly proposed in terms of finite-dimensional
systems (Ordinary Differential Equations)

[3 Kwon W.H., Pearson A.E., Feedback stabilization of linear
systems with delayed control // IEEE Transactions on
Automatic Control, 1980, V. 25, P. 266-269.

[3 Manitius A.Z., Olbrot A.W., Finite spectrum assignment for
systems with delays // IEEE Transactions on Automatic
Control, 1979, V. 24, P. 541-553

and reduced approach

[A Arstein Z., Linear systems with delayed controls: A reduction
/| |EEE Transactions on Automatic Control, 1982, V. 27, P

869-8709.
Such intuitively clear solution looks simple, however the proof of
stability of the closed-loop system is not obvious.

tate-teedback predict

Backstepping approach

Further we will consider the “backstpping” approach for time-delay
systems, which was proposed by Miroslav Krstic

[} Kristic M., Delay compensation for nonlinear, adaptive, and
PDE systems. Birkhauser, 2000, 466 p.

The delay may be presented as partial differential equation (PDE)
of the first order

Uz,t) = U;(z,1), (12)
U(D,t) = u(t), (13)

where subscripts z and { mean partial derivatives with respect to
corresponding arguments.
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M i’
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State-feedback predictor

PDE model of the delay

Solution of (12), (13) is
U(z,t) = u(t+z—D), (14)
where the output of the delay
U, t) = ult—D) (15)

describes the delayed control signal

(1 (t— D) : : , xit)
M) een M D) T — Az + Bult — D) o
U(D,t) U{0.t)

s

D 0

Linear plant with the input delay

State-teedback predictor

Backstepping transformation

Consider the following transformation [1]

Wz, t) = U(:,I)—/ (=, QUIC, )d¢ —v(z)Tx(t),  (16)
0

which maps the system (4), (12)-(15) to internally stable system

i(t) = (A + BK)z(t) + BW(0,1), (17)
Wiz, t) = Walz.t), (18)
W(D.t) = 0. (19)
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Control law

Computation of derivatives W;(z.1) and W.(z.t), it is not difhcult
to find ¢(2.¢) and 4(z):

q(z.¢) = Ke?*=9B, ~(2)T = Ke?*. (20)

Substitution ¢(z,() and 4(z) into (16) together with z = D yields
the control law

S
U(D,t) = f\'(-"""n—c'\l?l..’((;, £)dC + l\"r-"’”):r(l). (21)

JO

which equals to (9).

Stability proof

Consider the Lyapunov candidate

~

I
Vit) _-;,:T(r,)P.-,,-(xH‘—z'/ (14 2)W(z,t)%dz, (22)
JUO)

where P = P! = () is a solution of the Lyapunov equation
P(A+ BK)+ (A+ BK)Y'P=-Q (23)
for any arbitrary Q + QT > () and
v = AAmax(PBBT P [ Amin(Q).

Then
Vit) < =CV(t),

= "llrl(Q) 1
C = nuu{)\m“” I+ D[

where
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ODutput-feedback predictor

Problem formulation

Consider a linear plant
(t) = Az(t) + Bu(t — D), y(t) = Cz(t), (24)

where » € R" is a state vector, y(t) € & is a measurable output,
and control u(f) which is delayed on D seconds.

It is assumed that pair (A. B) is completely controllable, and pair
(A, (') is completely observable.

State observer

Consider the state observer
2(t) = A&(t) + Bu(t — D)+ L(y(t) - §(t)), #(t) = C&(t), (25)
where L makes the matrix (A — LC') Hurwitz.
For the error &(t) = x(f) — &(t) and y(t) = y(t) — y(t) we have
#t) = (A= LOYE(L), §(t) = CE(1). (26)

hence it is easy to show that Z(f) exponentially converges to zero,
i.e. each term of this vector is bounded by decaying exponent.
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ODutput-feedback predictor

Backstepping transformation

Consider backstepping transformation like (16)

Wiz t) = Ulzt) — Ket*3(t) — l"_/.J e BU (¢, t)d

]
D Nty
-~ I\'/ eAEFP=QO LY (¢, t)dC, (27)
Y(z,t) = j(t+2— D), (28)
Yi(2,t) = Ya(2.1), (29)
Y (D, t) = j(t). (30)

Control law

Choosing z = D and equating W(D, ) to zero in (27) we get a
realizable control law

f 5\
u(t) = Ke*Pi(t) + I\'/ eM=7) Bu(r)dr, (31)
=1

which uses estimates of the state #(t).
Substitute in (24) the transformation (27) with z = ()

D
i(t) = Az(t) + BK&(t) + K / AP-Qry (C.1)d{ + BW (0. 1)
JIA)
= (A + BK)2(t) + BW(0.t)
v [ , . .
— BK#(t) + BK / AP0 LY (¢ t)de

= (A + BK)z(t) + BW(0,t) + Bz(t). (32)
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Output-feedback predictor

The closed-loop system

The model of the closed-loop system

i(t) = (A+ BK)x(t) + BW(0,t) + Be(t), (33)
y(t) = Cz(t), (34)
Wiz, t) = W.(z.1). (35)
W(D.t) =0, (36)

where

'D » -
(1) = —Kz(t) + 1\’/ eMP-O LY (¢, t)dC¢
1]

is an exponentially decaying function due to exponential
convergence to zero of &(t) and, correspondingly, 7(t).

Stability of the closed-loop system (33)-(36) may be shown with
the Lyapunov function (22) in the similar way.

Output-feedback predictor

Conclusion

Predictor for unstable systems is one of the basic and fundamental
solutions that allows to stabilize plants by state or output feedback.

Presented solution is suitable only for linear systems (and additional
calculations are necessary for a class of nonlinear systems). The
plant parameters are required with good accuracy.

Using this approach it is possible to solve more complicated
problems with external disturbances and parametric uncertainties of
the plant model.
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Periodic signals online parameter estimation

Problem
; Sinusoidal 1 Saw
IAVAVARE RN REN)
; : . - _ ome L : " . T
,,, Multi-sinusoidal 1 Square |
\/\/\ N W\/\f”\/\ 5) o \ |
u:" VA, (. : . | . ome
Noisy signals Triangle

3) :W = 6) ;V\/\/ -

‘
Q0 5 10 15 4 5 10 i%

Application

1. Measuring systems

2. Compensation system of
~ hard drives
- ship
- active suspension vehicle
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History

1. Hsu L, Ortega R, Damm G. A globally convergent frequency estimator [/ IEEE
Transactions on Automatic Control, 1899.

1. Marino R, Tomel R. Global Estimation of Unknown Frequencies [/ IEEE
Transactions on Automatic Control, 2002. Vol. 47,

1. Obregon-Pulido G., Castillo-Toledo B., Loukianov A. A Globally Convergent
Estimator for n—Frequencies [/ JEEE Tronsoctions on Automatic Control. 2002.
Vol. 47,

1. Xia X. Global frequency estimation using adaptive identifiers» [/ IEEE
Tronsactions on Automatic Control, 2004. Vol. 47, No. 7, pp. 1188-1193,

1. M. Hou. Estimation of Sinusoidal Frequencies and Amplitudes Using Adaptive
Identifier and Observer // IEEE Transactions On Automatic Control, Vol. 52, No. 3,

March 2007
Introduction
Input signal (1)
Sinusoidal y(t) = o+ usin(wt+ @) + 6(t)

K
Multi-sinusoidal y(t) =0+ 8(t) + z ug sin{w;t + @;)

% (=1
Triangle Yer(t) = Z all sin((2k — 1)wt)
k=1
o
= Yew(t) = Z ap” sin(kwt)
- k=1
Square Ysa(t) = Z a%sin((2k — 1)wt)
=1
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Introduction

Input signal y(t) = o + psin (wt + ¢) (1}

¥(t) = —w?y(t) (2l

Linear filter (3)

(4)

2 1253

O =Gz ?® @O =Gimr® ©

"Ideal" identification law

6 = ké* (0 - 6) &
Linear filter
§(t) §() Filter outputs
y(t) 1 I. 1 §(t) _ A
LA £6) = 3 7?©®)
. A’s
0 22— O =G
2 A2g2
T $6)= 53 02?®

For signal (1) the following equation is satisfied
E(t) = 0E() + £¢(), 8 = —w?
Additional variable

x(t) = 6(t) — ké()é(e)
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Estimation algorithm

w(t) = Ié(t)l (7)

B(t) = x(t) + kE@)E) (8)

x(t) = —k&2(D)B(t) — kE*(0) (©)
Estimation error l@(t)] < pe Pt vt =0 (10)

@
1

0 - < time
30 40 50
With disturbance
Estimation algorithm
a@t) = [|6()] (7)
8(0) = x(0) + KEQEQ) ®
1) = —kE2(0)B(t) — kE* (D) (9]
Estimation error  |&@i(t)]| < pe Pt +C,,Vt = 0 (11)
a
1 Bt il A
. - : «  time
20 30 40 50
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Special signals

Graph of a signal Saw Fourier series decomposition
- 2 A
h \[\ Yew (t) —ZE sin (kwt) (12)
Square
1 o
4 A
0 \ Ysq@) = ) = sin ((2k - Dwt) (13)
| | q ;nZR -1
) 5 nme 10 15
Triangle
8 (—1)* A
Jl/\//\/ Yer(t) = Zn’z EZk) 1)25 in ((2k — 1wt) (14)
5 Thme

Estimation of the frequency

|
| | a(ty = [|6(®)] 13)
"’//’ saw

T a e wm  w wm 9) = x(@®) + k& (DE(t) (16)
| 2() = —k&E(OI(L) + kEZ(t) (17)

r.-aj,//’ I 314
d | '. Square £ (s) = m y(s) (18)

§2(s) = s§;(s) (19)

Triangle |

0 20 aa 0 0 00

«
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Estimation of the amplitude

10

na(t)

5 | ' | Ae(t) = 5 (20)
E" Y % ® W w Aer(t) = 2‘;(‘) (22)
?zﬁ]uuuuuuuuuuuuuu o-fy o

80 80

A = Jﬁ O+ (f"’((:)) ) L

fW\/W / \/\/W\/\/\/W‘ 0= 5o os

Adaptive algorithm
k = 10e73t + 0.001 (33)
20 |
5
@ 15 simple adaptive
&
©
E
i
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Non-linear filtration

15 B | -1 T -
g
8 10 -
g | |
@ J
g s
= ! without = with non-linear filter
W |

00 5 10 15 20 25

Time
@(t) ('sz tn
vV > Op(t) = f J&‘)(r) — @y (T)dT (34)
0
Conclusions

Algorithm works online in continuous time

Advantages

v Different types of input signals
v'The algorithm works in the presence of noise
v’ Speed and accuracy of convergence can be adjusted
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Adaptive and robust control

Outline

mIntroduction to adaptive and robust control
mLyapunov functions method short tutorial
mSimple example of adaptive controller design
mSimple example of robust controller design

mError models

1. Introduction

Problems and motivation

mathematical models have limited accuracy over the whole

range of plants operating

Aircraf
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DC motors

DC motor dynamics

=—§-l —-1&4(1)+1-U.
L L L
K, |

b==201-—M,,
) ¥ 3

o1 a=m

Spark ignition engines
Fucl evaporation process dynamics

: I K,
m, =-—m; +—m,
TI‘ r

m, =m; + (1=K )m,

[n this context, the approaches of control theory that can
come up with the problems of plants uncertainties are of
special interest.

Can the control system choose the correct control to
improve the performance of the plant operating in presence
of uncertainties?

How to design an adaptive control?

.°:°-33" ITMO UNIVERSITY
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Definitions, clarifications:

1. Model with uncertainties that is the potential basis for
controller design belongs to some class of models and is
called nominal.

2. Characteristics of the nominal model are called nominal.

3. Uncertainties — unknown or not known precisely
characteristics, structure or parameters of the plant .

4. Uncertainties of the plant = uncertainties of the model.
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Parametric uncertainties imply that the parameters
of the plant model are constant and unknown.

Spark ignition engines

Signal uncertainties imply that the plant model
contains unknown functions of time.

DC motors

DC motor dynamics

l'=-5| -Eicwlu,

L
w=-—1] —lM,_.

J

[R = R(tempefaturé} = R(ttmc;)
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Functional uncertainties imply that plant model
contains unknown functions of state.

Tail-shaft dynamics equation
Jo=M-M,

M isthe engine effective torque

M, isthe viscous friction

M,=M,(0)=c, +c,oo+c2w2

Structural uncertainties imply that the plant model
contains unknown structures.

i
| sensor | |
Pt
- / o LN / o :
| S':' \
| drive
A‘,, l. 1y
| o =
% eocC
Manifold air pressure dynamics equation: P+Ekn ()P =kn (P)o,(PXp,(a)
Pressure sensor dynamics: P =—aP +bP 'v,—\ ;
'ﬁé&li
Throttle drive dynamics: Y = y -7
. A ==co+da B
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The modern theory of control systems:
Adaptive and robust control

Delinitions:

Adaptive and robust control are the controls providing
desired performance of the plant operating in presence of

uncertainties

£

Adaptive control  implies the compensation of

uncertainties.

2. Robust control does not imply the compensation of

uncertainties, but using high gain control.

2. Lyapunov functions method short tutorial

Upiversal approach of stability analysis for autonomous plants

x= f(x), x(0), (1

at equilibrium x’, where xe R" is the state vector, f €¢R" is the

continuous nonlinear mapping.

Lyapunov functions Vi(x) :

)

‘s

V(x) is monotonic
V(x)>0, if |x]=0,
V0)=0 ;

Vix)eC' (continuous and diferentiable) .

o
L
O
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Time derivative of Lyapunov function in amount of (1):

6\’(:() c"V(x)

V(x)=
) ax ax

(x) = grad (Vi) fx)= | Oofjcos e

grad {V(x)}

Vi(x)

x(1)
solution x= f(x)

X,

Stability criterias:

I. If V{x)=0,thenthe equilibrium x" =0 is Lyapunov stable:

2. If V(x)<0 .thenthe equilibrium x" =0 is asymptotically

stable:

3. If V(x)<-BV(x), >0 . then the equilibrium x" =0 is
exponentially stable;

ViX)<=BV(x) =  Vx)=sexp(=povio)

asl A
x(t) 0‘: ". '{;\k-cxp('-—[il)
oz | N\
x o |\ S
iy
ag /—keexp(=p) e
0 2 @ & @ 10 i
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Examples of Lyapunov functions:
I, Linear system
x=Ax, x(0) (2)
where A is the ime-invariant matrix.
Lyapunov function candidate
V(x)=x'Px, (3)
where p = " »=() 15 the time-invariant matrix.
Vix)=x"Px+x'Px=x"A"Px+x"PAx =
=x" (AP +PA)x=-x"Qx<0
Conclusion: If there exists P=P" =0 such that
A'P +PA=-Q, (4)

where Q=Q" 0. system (2) is asymptotically stable.

where £ is the gravity acceleration,

2. Pendulum 7
X = X, W
. . k (5) Vil
X, ==glsin( X, )——Xx, / N
g .
" x) // ] ‘\
)
|

| is the length of rod, k is the friction m; o s
coefficient,
Lyapunov function candidate: sum of potential and Kinetic energy

Vix)=mg(1-cos(x))l + m\, (6)
Time derivative:
V(x)=mg sin(x, )1 +mx, X, = mg sin(x )x,1 —mx, gl sin( x,) — mx;.
or
V(x) =-mx; <() (7)

Conclusion: pendulum is asymptotically stable at the equilibrium x =[0:0].

°-:-'3°' ITMO UNIVERSITY



2017 © Dmitry Gerasimov The modern theory of control systems:
dngerasimov@corp.ifmo.ru Adaptive and robust control

3. Simple example of adaptive controller design
Motivation

Can the classic theory come up with the
problems of uncertainties?

3. Simple example of adaptive controller design
Motivation

Problem statement:

Plant:

X=06x+u, (8)
where X is the scalar state, u is the control,0 is the known parameter.
Objective is to design a control providing the following limiting equality:

lim x=0. ©)
Solution:

u =-60x-Ax, (10)

where & is the positive constant parameter.
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- — —

(w=-Bx=2x, ) (£=6x+u) = fm—ix = x(O)=exp(- HOX(0). (11

oS

Let us the design parameteris A =1 and plant parameter =5,
1.e.

control: u=-6x

system  x=-x is stable.

Now let us imagine, the plant parameter 6 unpredictably be changed

from 5 to 13: i

7

o

Control ; u=-6x

el ' '
1 ' A
] ' X=X
7 L] }
1
]
B s ) :
X=—X ]
|
P v 2 6 ¥ B
2.,, —

P R ———
|
- e

t
Y% 8 4 & & T B8

Classical control is not reliable and does not work properly in

presence of uncertainties

#3333 ITMO UNIVERSITY 101



2017 © Dmitry Gerasimov The modern theory of control systems:
dngerasimov@corp.ifmo.ru Adaptive and robust control

Problem statement of adaptive control:
Plant:

X=0x+u, (12)
where 8 is the unknown parameter.

Objective 1s to design a control providing the following limiting equality:

lim (x,, ~ x)=0, (13)

| =

where X, is the output of reference model

%, =—Ax, +Ag. (14)
£ Is the reference signal, A is the positive parameter responsible for
transient time.

Solution:
1. Let the parameter 6 is known.

Let us for the error signal € = x,, — x and take its derivative in amount of

plant and reference model equations:
€= X, —x=(=Ax,, +Ag)=(0x+u)
What control to choose to provide the

exponential decaying of error?

102 é=*--‘==" ITMO UNIVERSITY
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Solution:
1. Let the parameter 6 is known.

Let us for the error signal € = x,, — x and take its derivative in amount of
plant and reference model equations:

£=X, —Xx=(=Ax,, +Ag)=(0x+u)
Let é=—ke=—hx, +2x = &(t)=cxp(-At)e(0). Therefore
(—2x, +2g)—(0x+u)=—2x, +2Ax

u=—0x—AX+Ag (15)

Solution:
2. Let the parameter 6 is unknown. Therefore the control
U=-0x-Ax+Ag

is not implementable. Substitute estimate 6 for 6 and obtain
implementable adjustable control:

u=—0x—hx+Ag (16}

Substitute (16) into the plant equation X=6x+u :

i=9x—6x—lx+kg. (17)

Take the derivative of the error

&= Xy —X=(—Axy +1.g)—(6x—éx-?~x+}.g)

Signal Error Model £=—2e - 0x, (18)

where §=0-0 is the parametric error.
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The modern theory of control systems:

Solution:

3. Let us choose the algorithm generating estimate § :
6= Q1)
where €2(t) is implementable (measurable) function.

Taking into account that §=0-0 and

b=—b
we get

Parametric Error Model

6=-Q)

How to choose the function (t)???

Solution:

4. Models

Signal Error Model L E=—he—0x,
Parametric Error Model é: ~Q(1)

Choose the Lyapunov function candidate
V(e,0) = lt»: )3, y>0

and take its time derivative using (18) and (20):

\"(s.())zcs':-i-lé@:—)x’ -éxs-léﬂ(l) g
T Y
If Q(t)=-yxe then V(s,é.):-},s: <0

8= —yxe (22)

(19)

(20)

(18)

(20)

104
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Summary
Adjustable controller:
u=—0x—Ax+Ag (16}
Adaptation algorithm:
. p— (22)

with €=X, —X and rcfcrcnu, model
u =—AK +Ag (14)

u X

pam i

&-‘—C—Qd—x i
Xy S

g
—— = AN A

Summary
Properties of the closed-loop system:

I. All signals in the system are bounded;

S

Control error &= x,, — x asymptotically tends to zero:

()

Parametric error §= 9 § in general case tends to a constant:

V(s.0) -—s‘ +———O
2 2y

V(g,0)=-2&" <0
4. There is an optimal adaptation gain ¥ corresponding the fastest
parametrical convergence;
5. There can be parametric drift phenomena in presence of noise,
Le., if
X=0x+4+u+0d,

where o is bounded disturbance. 8—>w |,

*ITMO UNIVERSITY 105
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Example: Classical stabilizing control for unstable plant  x=5x+u
u=—06x

7|

10 20 30 40

n

15
x(l)‘

Example: Adaptive stabilizing control for unstable plant  x=5x+u
n=-6Hx-0x,

.
-

0==2xe, €£=x,-X

X = —0X,
8
7
0 g
5.
|
30 40
t
30 40
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Example: Adaptive tracking control for unstable plant x=5x+u
u=-6x-0x+6g,

g e
0=-2xe, e€=x,,-X%

=—6x,, +0g, g=sin6t+3cost
6

B,

i~

2
0
2
* 4 5 4 10
20 u |
20
4 . |
b 2 4 6 8 10
Definitions:

Adaptive and robust control are the controls providing

desired performance of the plant operating in presence of

uncertainties

1. Adaptive control implics the compensation of

uncertainties.

2. Robust control does not imply the compensation of
uncertainties, but using high gain control.

N

°-’-'3°' ITMO UNIVERSITY
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4. Simple example of robust controller design

Problem statement of adaptive control:

Plant:
X=0x+u+d, NEE (23)

where 6 is the unknown parameter, 8(t) is unpredictable bounded noise.

Objective is to design a control providing the following inequality:
%, (1) =x(t)| <A foranyt=T, (24)

where X, is the output of reference model
Ky ==AX,, +AL, (25)
g is the reference signal, & is the positive parameter responsible for

transient time.

Solution:

How to prevent unbounded growth of the
estimates 0 in presence of noise in

adaptation algorithm 6 = —yxg?

108 °3°-'=°' ITMO UNIVERSITY
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Solution:
Proposition 1.
Adjustable controller:
u=—0x-2x+Ag (26)
Adaptan orithm: — Nonlinear static feedback:
0= —vyxe (27)

with €=x, —X and reference model
Xy =—hXy T AR (28)

Substitution of (27) into (26) gives “high-gain™ tvpe controller:
u=yx’g=Ax+Ag.

Then substitute this control into disturbed plant x =0x+u+4.

X =0x+yx’s=Ax+Ag +d.

Solution:
Proposition 1.
Again, take the derivative of the error 8 =Xy =X

B= %, — %x=(-Ax, +ig)-(0x+yx’e~Ax+Ag+3d)

1

E=—e—-Ox-7xe-J , (29)

Choose the Lyapunov function candidate

V(e.0) = %e:

and take its time derivative using (29):

S (o »’\
V(g,0) = g8 = -Ae’ —Oxe - yx’e’ -os--gs'-(’-)—s r\ﬁxs ‘rxe »—'bs
B e ——— __/

—— -
—— -
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Solution:
Proposition 1.
Again, take the derivative of the error 8= X =X

=X, - x=(-Ax, +Ag)-(0x+yx’e-Ax+Ag+3)

£=—2g—Ox—-7xE-d , (29)

Choose the Lyapunov function candidate

V(e) =%8:

and take its time derivative using (29):

V(e)=gé=—he’ —Oxe—yxe’ —be-—%a’—%e’—()u-, yx'e’ — 8¢ =

e —— ——d_

P3N
-‘-—-2-8\— —ba:t‘)g& J\(x8—0m+y/

Solution:

Proposition 1. —

! I 0
V(8)<——8 e o e
2A 4y

V[C)s—;"c’ﬂ—s

> —_

where A= -!-'S-’ + v is constant
2A 4y

—
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Solution:
Proposition 1. ——
- ‘ \\
y IR GA
V(S)—"‘—? I- +—8~ J?XS-P-’? +4—)
20y /{
V() <—ﬁal +L.51 + O—
2 24 Y
V(s)s-?ie‘ +LSI 4.2-_
2 2). 4y
| o 24 ¥
where A=-—35" 4+— isconstant
2A 4y
ViE)<-AV(e)+ A (30)
Solution:
Proposition 1. -
: - A A
Vig)<-AVie)+ A = V(llScxp(—}u)V(U)[l—I})—V(O)

Exponential convergence of € (o bounded set is proved

elt)

v .v"l:.' - 3

AN K-exp(—Atl)

0.2 ‘|' - ‘\_. -------------

0 | \ ;W—-'"-'\J'W\

22 '._.“",'//-" -------------

24/ =k-exp(—At)

28 / t
0 20 40 60 80 00 120
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Summary
Adjustable controller:
u=—0x—Ax+ Lg
Nonlinear static feedback :
0= —yxe

with €=Xx, —-X and rcfcrcnu modd

{6

x=0x+u+d

X

Q‘— -
=) X

——t ==X, AR

Summary
Properties of the closed-loop robust system:

I. All signals in the system are bounded;

S

Zero;

3. The radius of neighborhood can be arbitrary reduced by

How?

V(E)S-AV(E)+A where A=—20 +—

1 i

(26)

(27)

(28)

Control error &= x,, — x exponentially tends to the neighborhood of

112 5:3.6:5"
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Summary
Properties of the closed-loop robust system:

I. All signals in the system are bounded;

2

Control error &= x,, — x exponentially tends to the neighborhood of

Zero;

3. The radius of neighborhood can be arbitrary reduced by

4. There is no compensation of uncertainty!
Even, if the plant is not disturbed ( =3 =0 ), the error

£=Xx,, —x does not go to zero!

Example: Classical stabilizing control for unstable plant |x=0x+u+06

u=—6x 0=35
S =0,5sin(dt)+0,75¢cos(2t)

0 10 20 30 40

x(1) °
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Example: Robust stabilizing control for unstable plant  |x=0x+u+06

u = —6x—Ox, 0=5

é=—',!xs. =X, —X, S =0,5smn(4t)+0,75cos(2t)
Xy =—0Xy

0 10 20 30 40

Example: Robust stabilizing control for unstable plant  |x=0x+u+06

u = —6x—Ox, 0=5
é=—?xs. =X, —X, S =0,5smn(4t)+0,75¢cos(2t)
Xy =—0Xy
8
7
0 g
5‘
t
% 10 20 30 40
1
05
=20 OANNNNNNANNNANY
05
t
R 0 20 a0 40
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Example: Robust tracking control for unstable plant X =0x+u+0
u-—6x—éx+6g. D=5
0= €= X, —X, S =0,5smn(4t)+0,75c0s(2t)

‘ _6\“ -}-617‘ g =sin 6t +3cost

u
< 40- i . "
20
o
U
l 4 |
40 q) 10 20 0 40

Adaptive control provides the complete
compensation of uncertainties,

but can be not reliable under disturbance
condition O — o
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Adaptive control provides the complete
compensation of uncertainties,

but can be not reliable under disturbance
condition O — o

' .
’ trade off ?
o

e
Robust control guarantee the strongest

exponential stability,
but does not compensate the

uncertainties, therefore € -4 (

Solution:

Proposition 2
Adjustable controller:
u=—Ox-2x+Ag (31)
M: —> Robust modification of AA:
) = —yxe -0 (32)

where & is a positive feedback gain,
E= Xy =X, Xy is the output of reference model
Xy ==AX, +AL. (33)
Then substitute control (31) into disturbed plant x =8x+u+38.
% =Ox—Bx—Ax+hg +8.
i=6x—}.x+}.g+6. (é=9—-é)

116 °3°-‘3°' ITMO UNIVERSITY
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Solution:
Proposition 2.
Again, form take the derivative of the error £=x, - x
&= %, — %=(-x, +hg)—(Bx—Ax+khg+3)
Signal Error Model &=—26—0x—5 ‘ (34)
0=-yx£-60 ——> BH=-0
Parametric Error Model 6= YXE + ot / (35)

Choose the Lyapunov function candidate

V[F())—-lF +L63 y>0 (36)

2 71{

Solution:
Proposition 2.
Take the time derivative of Lyapunov function using (34) and (35):

Signal Error Model g=—2e—0x—5

Parametric Error Modyl 6:'{)&;-’:-0@

V(g,0) = &8 + léé =g’ —Oxe— léQ(l)
P ¥

V(a,é) =gE+ l()@ = (—M:z —Bxe —&;)+lé(yxz +06)
v Y

V(g.0)=-Ag’ -85+ géé

Ve, B)=—2e’ -8

117
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Solution:

Proposition 2.

- A+ Ox 1 » ©
Vie.0)s——¢* ——0' +—5°+—0°
2 2y 2h 2y

Ve, 9)‘:—18 - +—5 +—9
2 2y 2 2y

Solution:
Proposition 2.

/

. =< v 1 l =7
Vieg )= -;t)" - s

G z> =
—8 +—0" +
2y 2A 2y

8?

Ve, 0)<——a ——0 +A
2 %

— l . 6 * .
where A=—3"+—0" 1s aconstant.
2A 2y

V(e.0)<—kV(e.0)+ A k = min {L.E
Y

[ an
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Solution:
Proposition 2.
/ — .
. - A A
V(e)<—kVig)+ A = V(t)<exp(-ki w(ml [ I] + ’va)
\

Exponential convergence of € (o bounded set is proved

e(t)
A\ L Cx —Al
o4l 1\, pe )
02 " S et e L T
01 ")‘Q\‘__‘_'W' e N St e
a5 \f"T | eemememccecememca=.
24 /S —r-exp(—At)
L6 / t
0 2 40 60 80 00 120

Summary
Adjustable controller:
u=—éx-).x+).g (31}
Robust modification of adaptation algorithm:
0 = —yxe - of (32)
with €=x, - x and reference model
Xy =—AX,, +AL, 4 (33)

X=0x+u+d

——t X, = —AXy AR
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Summary
Properties of the closed-loop robust system:

I. All signals in the system are bounded;

2

Control error &= x,, — x exponentially tends to the neighborhood of
Zero;

3. The radius of neighborhood can be arbitrary reduced by

How?
ey < bV et s A = l= O
Vig)=-kV(e)+A where A=—§" +—0
2A 27
Summary

Properties of the closed-loop robust system:

I. All signals in the system are bounded;

S

Control error &= x,, — x exponentially tends to the neighborhood of
Zero;

3. The radius of neighborhood can be arbitrary reduced by

A // or Y

V(e)<-kV(e)+A where A= _.l._53+_?.9?
2A 2y

o ¢

x

4. Algorithm provides the compensation of uncertainty.
If the plant is not disturbed (8=8=0 ), the error

E=X, —X cangotozero,if o=0.

120
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Example: Classical stabilizing control for unstable plant |x=0x+u+06

u=—6x 0=35
S =0,5smn(4t)+0,75cos(2t)

0 10 20 30 40

x(1) °

Example: Adaptive robust stabilizing control for the plant  |[x=0x+u+06
u =-6x —fx,

B=3
0 = —yxe -6, E=Xy =X, & =0,5sin(4t) +0,75cos(2t)
Xu =—0x,

0 10 20 30 40

5 10 20 a0 40
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Example: Adaptive robust stabilizing control for the plant  |x=0x+u+06
u =-6x —fx,

0=35
B=—yxe-0, e=x,-%x |0=0,5sin(d)+0,75¢c0s(2)
Xy =—0x,
8
7
0 g
5‘
1
% 10 20 30 40
1
0.5
=20 s MAAAAAANAAAN,
0.5
1
t
e ) 20 a0 40
Example: Adaptive robust tracking control for the plant X=0x+u+0
.u=-—6x—91+6g, 5=3
f=—2xe -0, =Xy —X 6 =0,5sin(4t) +0,75cos(2t)
g =sin6t +3cost
8 P )
af
10
2
= 10
.4‘" 1 [ t
S Lo 10 20 30 a0
10
:
y
M’\/‘W\F\/‘\f\/“\f\/”\f\
| t
WD 10 20 30 40
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5. Direct and indirect adaptation

Adaptive control
Parameters Parameters
adjusted in the framework adjusted in the framework
of minimization of minimization
of the control error of the identification error

Direct adaptive control
Adjustable controller:
u=—0x—hx+hg (h
Adaptation algorithm:
(:3 = —YXE (2)
with €= X, =X and reference model
=—AK, +Ag (3)

_.> @ X=Bx+u -
T ]

T_Glﬂ—x .
Koy S

.

Xyg ==AXy +AR
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Indirect adaptive control
Problem statement:
Plant:
X=0x+u, 4)
where 6 1s the unknown parameter.
Objective is to design a control providing the following limiting equality:

lim (x,, —x)=0, (5)

where X, is the output of reference model

Ky = —Axy, +Ag, (6)
2 is the reference signal, 2 is the positive parameter responsible for
transient time.

Indirect adaptive control
Solution:

1. Let the parameter @ is known.
Let us for the error signal &= x,, = x and take its derivative in amount of
plant and reference model equations:
£€=xX, —X=(-Ax,, +Ag)—(Ox+u)
Let E=—Ahe=—kx, +2x = (t)=exp(-At)e(0). Therefore

(=Ax, +2g)=(0x+u)==hAx, +Ax

U

u=—Ox—Ax+Ag (6)
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Indirect adaptive control

Solution:
2. Let the parameter 6 is unknown. Therefore the control
u=-0x—-Ax+Aig

is not implementable. Substitute estimate 6 for 8 and obtain
implementable adjustable control:

I u=—0x—Ax+Ag J (7)

7~

A Hey,what's the

”

Indirect adaptive control

Solution:

Statement: the plant < =6x+u can be represented in another parametric

form:
x=(k+0)g, +&,,
&, =—kE +x, ®)
¢, =—k&, +u,

where Kk is some positive constant.

( Is it wue??? \
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Indirect adaptive control
Solution:

Statement: the plant < =6x+u can be represented in another parametric
form:

= (k+0)E, +£,,

=—k£,+x

g e

e

(8)

&, =—kE&, +u,

is some positive constant.
Proof: Take the derivative of x=(k+8)S +&,

where k

x=(k+0), +&,
x=(k+0)—kE, + x)+(—kE, +u)
x=-KkE, +kx—k0OE, +0x—kE, +u

A M
X=—kx+kx+ = 0=0 Ok!!!

¢ .:.'

Indirect adaptive control
Solution:

Form the emor e=x-x , where x is generated by adjustable
parametric model

x=(k+0)§ +&,,

&, =—k&, +x,

&, =—kE, +u,

is some positive constant.

Take the derivative of the error in amount of plant X=0x+u

where k

6=%—-X= ex+u—(k+é)c',, E,
e= 0x+[ (k+6)(- k5,+x) (kf.,‘+/)

é=0x+k’ & - kx+k&,, Gx+k._,:,

Signal Error Model

¢ = —ke + Ox l

(10)
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Indirect adaptive control

Solution:

3. Let us choose the algorithm generating estimate  :

6 = Q1) (11
where Q1) is implementable (measurable) function.

Taking into account that @=0-0 and
6=-0
we get

Parametric Error Model

~£t) (12)

D
I

Indirect adaptive control

Solution:
4. Models
Signal Error Model e = —ke+ éx (13)
Parametric Error Model é: -Qt) (14)

Choose the Lyapunov function candidate

Vie.0) = —e +—0‘ v>0 (15)
2" T2y 4

and take its time derivative using (18) and (20):

Vie.0)= ee'+léé= —he* +Oxe -léﬂ(t )
E { T

If Q(t)=yxe , then V(e.0)=—ie’ <0
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Indirect adaptive control

Summary

Adjustable controller:

u=—0x—Ax+Ag (7)
Adaptation algorithm:

6= 1xe (15)
with e=x—X .
Adjustable model:

X=(K +C
Filters: - =—kE +x (9}

Indirect adaptive control
Summary

u

X=08x+u

128 ézé--‘==" ITMO UNIVERSITY



2017 © Dmitry Gerasimov The modern theory of control systems:
dngerasimov@corp.ifmo.ru Adaptive and robust control

Indirect adaptive control

Summary
Properties of the closed-loop system:

I. All signals in the system are bounded:

2. Control error £ = x,; —x asymptotically tends to zero;
3. Identification error e=x—x asymptotically tends to zero;
4. Parametric error §—=g—g in general case tends to a constant;
V(e,8) =~ + 1,
2 2y
Vie,0) = -Ae’ <0
5.

There is an optimal adaptation gain ¥ comresponding the fastest
parametrical convergence:

Example: Classical stabilizing control for unstable plant  x=5x+u
u=—0x

10 20 30 40

n g

15
x(t)‘
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Example: Adaptive stabilizing control for unstable plant X =5x+u
u=-6Hx—0bx,

0=08xe, e=x-x

i=(k+g)i]+fl2' 5] =~k‘i]+x. &2=~k6\2 +U
8

7
k=3 0 6
5‘
i t
0 10 20 A, 30 40
1 x(t) = B(t) .
0.8 ’,./
1
0.5/ /
|
04 ~ e ___,/
, e
0.2\ // \\_. ’
'.\ - ___/ \\ o t | ] 1
% 10 20 30 0 9 i0 20 30 40
Example: Adaptive tracking control for unstable plant x=5x+u
u=-06x—06x+6¢g,

.
-~

B=08xe, e=x-X,

= |\+B)51+’~“ iu =—k'::|+§~ &, =—k&, +u
Xs % 3]
P R *
&5 —
4
t ) '.l ) '\ l. i" \ ' 'n;ﬂ ! |
'J | .n '/. {\ | I (| \, 'l«\\ 'I od 1
o'l .4' 'l (I | 4 1 N1 || f || 2
2 -l." ‘ ( |r Qanl lv'.l -'.l . 1
¥ oy ¥ . r»w v QA t
4 0 20 % 40 10 2 % a0
u
20 i
h-’l |“I| 'l.ln "Jﬂ' I".'\ “r'
\ f | N | i
()l | 'v" | J ", | I |H 'l‘ W I“ ) ' q l/ lf
k = 3 | l, )
| N I }‘ |‘\‘ 'ﬂl ) I\.' oy ln (! " 'fl
.go|| \ v \ \
: 1
M 10 20 30 40
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Generalized algorithm of adaptive and robust
controller design

How to design an adaptive control?

Generalized algorithm of adaptive and robust
controller design

1. Problem statement of adaptive control:

Plant;
x= f(0,x,u,d), x(0), (34)

where 6 1s the vector of unknown parameters (or functions),
f e R" Is continuous nonlinear mapping, § = R*

Objective is to design a control y providing the following inequality:

18] < § 1s the disturbance.

Xy ()= x()| €A for any t2T, (35)

where x,, is the output of reference model
Xg = —70(“ +)~g.. (36)

g is the reference signal, J is the positive parameter.

131
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Generalized algorithm of adaptive and robust
controller design

2. Nonadaptive controller design:
Let the plant parameters (functions) 0 be known,
Luggage of classical control theory

Noenadaptive control

: u =U(e. X.C‘.g). (37)

where ¢ = x,, = x is the control error, U is the nonlinear static or
dynamical scalar function.

Generalized algorithm of adaptive and robust

controller design
3. Adaptive robust controller design

Parameters (functions) 0 are unknown.
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Generalized algorithm of adaptive and robust

controller design
3. Adjustable controller design

Parameters (functions) 0 are unknown.

Substitute estimates § for 0 in control (37)

and obtain adjustable controller:

Iu =U(H. x.e.g) (38)

Substitute (38) into the plant x= f(0,x,u,8) :
%= £(0,xU(0, x,e.8).5)

Form the error ¢ = x,, —x  and take its derivative;

Generalized algorithm of adaptive and robust
controller design

Form the error e = x,, —x and take its derivative:

é=X, —x=(-hx, +ig)- F(0.xU (0, x.£.2).8)

J

Signal Error Model é=E(e,6.l)

(39)

where E is the nonlinear static vector function,

f=0-0 is the parametric error,
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Generalized algorithm of adaptive and robust
controller design

4. Adaptation algorithm design

Form the parametric error model

6=Q(e.l).

Parametric Error Model

(40)

where  is the implementable (measurable) function to be determined.

Adaptation algorithm:

é:-()(e.l),

(41)

Generalized algorithm of adaptive and robust
controller design

5. Determination of ()

= E(c.f),l)

Signal Error Model ¢

Parametric Error Model é=Q(C.l).

Choose a Lyapunov function candidate
V =V(e.b,0).

Take its derivative in amount of (39) and

(40) Vie.0).

(39)

(40)

134
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Generalized algorithm of adaptive and robust
controller design

=Q(e.t),

(eOt)

\/

Vie.0).
Condition
Vie,0) <0.
gives U
Adaptation algorithm: e.t)
| 8=—0fe.t) ‘ (a1

Generalized algorithm of adaptive and robust
controller design

Summary
Adjustable control
u=U(9.x.?..g) (38)
Adaptation algorithm
6=-0e.t) (41)
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Generalized algorithm of adaptive and robust
controller design

There is no any universal approach of
Lyapunov function choice!
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Introduction and Conceptual Problems

Qutline

© Course Structure

© Elements of Robotic Systems

© Conceptual Problems in Robotics

© Experimental Studies of the Department of CSI

© Recommended Literature

Coarse Strectune

Course Structure

Introduction and Conceptual Problems

Kinematics: Rigid Motions and Homogeneous Transformations
Kinematics: Forward And Inverse Kinematics

Kinematics: Velocity Kinematics - the Jacobian

Path and Trajectory Planning

Dynamics. Euler-Lagrange Equations

Independent Joint Control

Multivariable Control of Robot Manipulators
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Elermunts of Robiotic Systums

Types of Robot Joints

Revolute

-+ -+

—L

Prismatic

Fig : Symbolic representation of robot joints types: revolute (relative rotation
between adjacent links) and prismatic (relative displacement between adjacent
links)

Elcimuets of Robotic Systum

Revolute Joints vs. Prismatic Joints

_— -y

( .. — I

— -

e d 'l

N /777

Fig.: Revolute Joints vs. Prismatic Joints
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Elermumts of Robiotic Systums

Elements of Robotic Systems

Typical elements of robotic systems are
e Power supply
o Robot controller
@ Robotic arm
@ Sensors (encoders, force /torque sensors, cameras, etc.)

o End-effector (grippers, hands, various tools for welding, polishing,
etc.)

@ Teach pendant
e Optional elements (e.g. pneumatic compressor)

werts of Robiotic Systums

Examples of Various End-Effectors

Fig.: 3-fingered hand Fig.: 2-fingered gripper Fig.: Pneumatic gnpper
of the KUKA youBot by Festo
robot
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Elermumts of Robiotic Systums

Articulated 3-DOF Manipulator

Elbow

Foreanm

Body

<3
Z

Fig: Kinematic chain of articulated 3-DOF manipulator

Base

lml

Elcmunts of Robotic Systum

Articulated 3-DOF Manipulator (2)

Fig.: Workspace of the articulated 3-DOF manipulator
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Concuptusl Probles in Rubotca

Conceptual Problems in Robotics

Forward Kinematics

Inverse Kinematics

Velocity Kinematics

Dynamics Analysis

Path Planning

Reference Trajectory Computation
Motion Control

Force Control

Computer Vision Implementation

Concuptusl Problkms in Rubotcs

Polishing Operation

Clunmra

Home 5

....................

S B

Fig.: Polishing operation carried out by the 2-DOF planar robot

Let us consider this task as en example to illustrate all typical problems
of robotics.
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Concuptusl Problems in Rubotca

Forward and Inverse Kinematics

To carry out this task, we need to know at least two things

e where the wall is located (its Cartesian coordinates) with respect to
the absolute coordinate system
e set of all joint variables corresponding to the robot touching the wall

We need to solve two fundamental task of robotics:

Forward Kinematics: the position (x, y) of the end-effector as a
function of joint angles {#,.6,),

Inverse Kinematics: angles (#,. 04} as functions of (. y)

Concuptusl Problkms in Rubotcs

Forward Kinematics

'}
U frovorrranvanes
: v
AR 7
2
.
U :
i :
: : : -
J
r = I+ 23 = aycosby + agcos(fy +03)
Yy Y+ w2 = aysinfy + agsin(fy + ;)
142 8sssnet
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Concuptusl Problms in Rubotca

Forward Kinematics (Tool Frame Orientation)

a

£ ) ('UN‘:UJ_ + 02] U B _ | = sind 0[ {- 0.;)
Ty yo|  |sin(@ +8)|° ya-yo| | cos(ty +0s)
P — L

" 0
3

0

Concuptusl Problkms in Robotcs

Inverse Kinematics

Elbow up

*s
"

Elhow down

FHLELT

Fig.: Uncertainty of inverse kinematic solution
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Concuptusl Problms in Rubotca

Inverse Kinematics

4
U frerrersanrernany
v
L4
W '(n’_)'
i
-
.
a
A
N -
g
E=dy+a =|d° = |d +al|*

2 2? . -
C e y" = {a +a
o 2
2+ —-n, + a3
r + y* ~ul+(.,'

Concuptusl Problkms in Robotcs

Inverse Kinematics

A LAY

2 2 2 2
I+ Yy® —ai —as
coslly =

=) {[sinf)-,g]g + (ensfy)® = l}

2ayay

144 ?335‘3" ITMO UNIVERSITY



2017 © Oleg Borisov, Vladislav Gromov
borisov@corp.ifmo.ru, gromov@corp.ifmo.ru

Modeling of systems and complexes:
Introduction and Conceptual Problems

Concuptul

Inverse Kinematics

Probilems ir

Hobolas

................

L)

X
T

x? + y") - uf

2
. !

cosbly = .
2a, a9

= flg = tan '(

Concuptual

Inverse Kinematics

Problens i

2._p {: sin by = +4/1— U'~’}

s
= tan S—

sin fly

D

COs (’-_7

Hobolcs

(&

A AST A

by = tan™" (

= () = tan ' (

V11— D?
D

)

19 Sin s

i
))—tan"(

&£

)

a) + azcosby
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Concuptusl Problms in Rubotca

Velocity Kinematics

Geometrical relations between (x. i) and (&4, 0)2)

r=aycosl) +ascos(fy +82), y=apsind; + az=in(f; + #a)

imply the relations between velocities

-'f-a-((f) = ~a.l:sin£)l;'f7()l as sin(fy + &, )(Tol + nf t2)
dr”(” = a4 (“1*91‘}—':91 + ag cos(#y + Ha) (WHI + "!"f(; )

In compact form it is

i ay sin 0 — agsin(fy + 0) | —agsin(@y + 0:)] [,
| | apcosby +azcos(fy +#82) | agcos(fy + H;) 05

-_'.]“?1.’.7;)

The matrix J{-) is called the Jacobian of the manipulator.

Concuptusl Probilees in Rubotca

Velocity Kinematics

The relation between the joint velocities and the tool velocity

i 6,
H — J(6:.02) [(} ]

allows to compute the joint velocities #;(t), f(1) to achieve the
particular velocity of the tool!

Indeed, #,(t), #2(t) are found by

f, NE:
S o= J(y, )
l()?] J(0y, 0z L.I]

F-3 | azcas{é) + &) A aaslnldy, + 0z)
.  ayagsinfs ay cos fy — ag cos(ly 4 ) oy #in 8y — exsin(dy | &)
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Concuptusl Problms in Rubotca

Velocity Kinematics

It is clear that the inverse of the Jacobian

j_l O | ascoaidy + &) e Suldy ”_l
T ayassin fa ay cosfly — ag cos(fiy 4 0y) ay sindly — assin{idy 4 #3)
is not defined when
sinfa=0 {= o=mw-k k=...-1,0,1,...}

Concuptusl Problkms in Robotcs

Singular Configurations

PN
AL

If #2 = 0, then the Jacobian .J(-) looses rank and cannot be invertad
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Concuptusl Probles in Rubotca

Dynamics Analysis

© Kinematics and velocity kinematics define the relations between
variables irrespective of actuation, and physical (Newton) laws;

© Dynamics is a set of differential equations that defines variables as
functions of time and models the effect of control action;

© For instance, the dynamics of the planar double pendulum is

L D% crxt £ 3
Mot peH 2pscostly pa b pycosidy | | IU, ] s sl B

iy by —0 ][]
Pa + pg cas P32 0

& 1 Ha

fp,,q(_u..l!. t prgcosity + 0z) o
Doy - 0y) " ’

where
@ pi,.--,p5 are constants defined by physical parameters;
@ u, us are control torques.

Concuptusl Problkms in Rubotcs

Path Planning

Path is a curve in configuration space of the robot that connects an
initial configuration and a final one avoiding collision with obstacles in

the workspace.

There is a number approaches dealing with path planning problem
e Sampling-based algorithms (e.g. probabilistic roadmap)
e Cell decomposition

® Method using a potential function with repulsive and attractive
components and gradient descent methods
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Concuptusl Problms in Rubotca

Reference Trajectory Computation

Trajectory is a parametrization of time for generalized positions,
velocities and accelerations of the robot.

One of the methods of trajectory generation is interpolation by spline
functions

Concuptusl Problkms in Rubotcs

Motion Control

Coupling effects
(treated as disturbance)

Reference
trajectory

Robot Joint

Fneoder F

Fig : Basic scheme of the independent joint contral

Controller
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Conctuptusl Probilies in Rubotcas

Force Control

Fig.: The robot Kawasaki FSO6N equipped with the force /torque sensor and
3-fingered hand

Concuptusl Probilems in Rubotca

Computer Vision Implementation

There is 3 number of computer vision elements which can be used in
robotic system to make them able to get the information about the
environment and manipulation objects.

® cameras

o stereo cameras producing PCL (point cloud data)
@ laser scanners

@ structured light
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Expurimentul Stedies of the Department ¢

Robotic Boat Setup

Fig.. Robotic boat

Fig.: Computer vision system

Expurimentiul Stedes of the Depurtmont of €SI

Manipulators

- Mitsubishi MELFA
Kawasaki FSO6N RV-3SDB KUKA youBot
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Expurimentul Stedes of the Depurtmont of €SI

Trajectory Planning Using Spline Functions

The purpose is to carry out
trajectory planning based on four
reference points using spline
functions.

The robot used is Kawasaki FSO6N,
The given input data is

o Denavit-Hartenberg parameters of the robot

o Cartesian coordinates of the four reference points: starting,
departing, arriving and final points

e time moments assigned to the given reference points

Expurimueniul Stedes of the Depurtmont of CSI
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Path Planning Based on Bitmap Image

The purpose is automatic code
generation to move the end-effector
along some counters represented on
the input bitmap image.

The robot used is Mitsubishi
RV-3SDB.

The given input data is a bitmap
image with the desired counters
specified.

Expur niul S of the Depurtment of CSI

Algorithm of Cod Generation

© Edge detection (in case of colorful image)
@ Tracing
@ Arc approximation
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Expunmentul Stedes of the Depurtmont of €SI

Drawing a Hypotrochoid

Expurimentiul Stedes of the Depurtmont of €SI

Drawing a Hypotrochoid
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Expunmentul Stedes of the Depurtmont of €SI

TR LML UL Y

Drawing a Hypotrochoid

Expurimentiul Stedes of the Depurtmont of €SI

T LML UL Y

Drawing a Hypotrochoid
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Expunmentul Stedes of the Depurtmont of €SI

FTLIMU UL Y

Drawing a Portrait of Alexander Pushkin

Expunmueniul Stedes of the Departmont of €SI

3T LTMU U Y

Drawing a Portrait of Alexander Pushkin
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Expunimentul Stedes of the Depurtmont of €SI

Drawing a Portrait of Alexander Pushkin

Expurimentul Stedes of the Depurtmont of €SI

Drawing a Portrait of Alexander Pushkin
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Tracking System for Moving Target

The purpose is 10 design a tracking
control system to follow a target
moving with multi-sinusoidal law.

The robot used is KUKA youBot

The given input data is a moving
target.

Expurimuentul Studes of the Depurtmont of £S

Client Server

X 1 @ is launched on the separate PC
@ is launched on the internal P

robot computer e receives data from the client

e processes data through the
control system

@ collects data from the sensors

@ sends data to the server _
e sends control signals to the

@ executes control commands 3
client

given from the server ) '
e graphical programming software

(e.g. Simulink)

C lang
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Given a LT system

#(t) = Ax(t) + Bult — h), (1)
y(t) = Cxl(t), (2)
elt) = g(t) — ylt). (3)

where
e z € K" is the state vector;
@ u & B is the input signal:
e /i is the known constant delay;
e y & R is the output of the system;
@ g < R is the reference signal as the desired output of the system;
@ ¢ = R is the error of reference signal tracking;
® A, ., is the state matrix;
e I3, is the matrix of the control inputs;
® (1., is the matrix of the output.
For the control signal u{t — i) = 0 holds for ¢ < /.

ul Stodies of the Deprtmont of CSI

In general the biased multi-sinusoidal signal
represents the reference signal a

iy
g{t) = o’ + Z g sin{w?t) 4 v cos{wit). (4)

paity, psels

The reference signals are chosen in the form |

‘Ql(f) — —11¢os (;;’) + 14 (‘DS('). (5) 3 W 0 ‘m o ||l. o~ n
' ) oyl peecls
e
g2(t) = —18cos (7.’) . (6) Fig.: A trajectory of the target
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Use the control (i) in the form

uft) = " + Z It sin(@'}' (t+h))+ &} (.'(xs(.;':;{t +h))

=1
I
="+ ) il sin(@ft) + ¢ cos(@t), (7)
J=1
where the coefficients
r.“ = /1 ' cos{o ’h J = f/"‘ qin(;i:'fh'). (8)
g) = i sinfw ’h) + 07 cos(] 'h). (9)

Recommended Literature

1. Spong, M. W., Hutchinson, S., & Vidyasagar, M. (2006). Robot
modeling and control (Vol. 3). New York: Wiley.

2. Siciliano, B., & Khatib, O, (Eds.). (2008). Springer handbook of
robotics. Springer Science & Business Media.

3. Siciliano, B., Sciaviceo, L., Villani, L., & Oriclo, G. (2010). Robotics:
modelling, planning and control. Springer Science & Business Media.

4. Corke, P. (2011). Robotics, vision and control: fundamental
algorithms in MATLAB (Vol. 73). Springer.
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Kinematics: Rigid motions and Homogeneous Transformations

Qutline

© Frames, Points and Vectors

© Rotations
e Rotations in 2 and 3 Dimensions
@ Transformations by Rotations

© Composition of Rotations
@ Rotations with Respect to the Current Frame
@ Rotation with Respect to the Fixed Frame

© Parameterizations of Rotations
@ Euler Angles
e Roll, Pitch and Yaw Angles
e Axis/Angle Representation

© Rigid Motions and Homogeneous Transformations

Frames. Pomts sad Vecton

Frames. Points and Vectors

Fig.: A coordinate frame in R?: the point ” = lri’, q,’ can be associated with
the vector V. Here .r:,', denotes r-coordinate of point P in (oq, #0. yo)-frame,
i.e. in the O-frame.
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Frames. Paints ond Vecton

Frames, Points and Vectors

Fig.: Two coordinate frames in R%: the point P = [z, yi] = [z}, ] can be
associated with vectors l’l and f‘i;. Here .r,‘, denotes z-coordinate of point £ in
the I-frame.

Frames. Paints ond Vecton

Frames, Points and Vectors

@ A point corresponds a particular location in the space

@ A point has different representation (coordinates) in different frames
e A vector is defined by direction and magnitude

® Vectors with the same direction and magnitude are the same
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Frames. Paints ond Vecton

Frames, Points and Vectors

£

1 01

Fig.: The coordinates of the vector V; in the O-frame [x2, y)].
What would be coordinates of 1} in the |-frame?

Frames. Paints ond Vecton

Frames, Points and Vectors

Fig.: We need to consider the vector V) of the same direction and magnitude
as V) but with the origin in o;. Conclusion: we can sum vectors only if they are
expressed in parallel frames.
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Hotaticm Reotatioss in 1 and 5 Dirsendicon

Rotations in 2D

.'In‘
('USO
J9
’
4
W, 3
n \\ ,’
~ 7 sin )
\\ p
~ /
\\ I,
\\ : i []
~|” 4
-
s N I

Fig.: To find an appropriate way to parametrize rotations in 2-D, let us track
vectors 77 (-), yi(-) as @ varies (courtesy Spang).

BN — cos(8) | O(ay _ 0 Ty _ [eos {04- 5] _ [—sin(6)
S |{() [?‘)”l‘”)“ \ !’] l(), J] (0+ 2) .‘i.lll '”—. 1:7) I(R\(OJ

Hotaticm Retatioss n 1 and 5 Dirsendicon

Rotations in 2D

The matnix

R(9) = [£1(0)]47(8)] = [

cos(f) sin(#)
sin(0) ('lH(f}:l

is called rotation matrix.
It has a number of interesting properties:

o det R(#) = cos?(8) 4 billl(f)} =1

cos(f) sin(#)

2y —1 —
o R(#) —sin(#) cos(d)

| = R"(60)
A n x n-matrix X that satisfies the property, X ! = X1
= {XXT = I, det(XXT) =1 = det(X) det(X7) = det(X)?)

is called orthogonal, X € O(n). Ifdet X =1 = X € SO(n).

164 £353338 ITMO UNIVERSITY



2017 © Oleg Borisov, Vladislav Gromov Modeling of systems and complexes:
borisov@corp.ifmo.ru, gromov@corp.ifmo.ru Kinematics: Rigid motions and Homogeneous
Transformations

Hotaticm Reotatioss in 1 and 5 Dirsendicon

Rotations in 2D

Let us consider another way for computing

p 0an 1000y < | €08(6) —sil;[(/]
R(9) = [2(8)|41(0)] [ sin(8)  c0s(d)

As known, the scalar product between two vectors is

ad-b=aby + agbs 4+ aaby = @ - |b cos | a,b
19 202 3

/

All vectors of coordinate frames have magnitude |, therefore

0/
") y ' . .t'l |()| = J'“ ‘ = ("l ()' ‘”
fitd) {J-“l'l")l Mo | i () - ¥1(8) - vo
2 }(8) - xq .111[9‘ - Ty J

= R(@) = [0 v(0)] = [}:'f'un-gu v3(0) - o

Hotaticm Retatioss n 1 and 5 Dirsendicon

Rotations in 3D

Rotation matrix for 3-dimensions is then

RYO) = [«0(0)4)(0)] 20 (8)]
2 (8) - xo | ¥900) x| 27(0) 2
o 2 (@) - wo | w3(0) - o «"fU) '/n
23(8) -z | w(0) - 20 | 29(0)-

.°3‘°'3" ITMO UNIVERSITY 165



2017 © Oleg Borisov, Vladislav Gromov Modeling of systems and complexes:
borisov@corp.ifmo.ru, gromov@corp.ifmo.ru Kinematics: Rigid motions and Homogeneous
Transformations

Hotaticm Reotatioss in 1 and 5 Dirsendicon

Rotations in 3D

Matrix properties of Special Orthogonal group SO(3)

e Columns (rows) of R{(:) are mutually orthogonal, for instance

[#40)z0, 23 @Y. 22(0)z0] [u(0)r0. 18 @), R (9)20] " =
= 21(0) - 17(0) |zo[* + 23(8) - 1() Jwol? + 23(0) - () - 20}
@ Columns (rows) of R{(:) are unit vectors
o RY(0) [R9(0)]" = 1Ls
o det RY(A) =1

Hotaticm Reotatioms n 1 and 5 Dirsendicon

Example 2.1: Rotation in 3D

siné
i

Fig.. Frame 1 is rotated about z,-axis by an angle # (courtesy Spong).

.’r"l) (@)ry = cost y',’[ ey = —sin¥ ::?(0‘)1'“ =
.r‘l' (@)yp = sind y‘f (f)ynp = cost (@ = 0
I?'ﬁ" s = 0 .l/'i'(H}Zn = { :(1'(0]:(; =:. ]
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Hotaticm Reotatioss n 1 and 5 Dirsendicon

Example 2.1: Rotation in 3D

After calculation we obtain the following rotation matrix (about zg-axis)

' cost) —sinf ()
H,l)(‘(” - sinf? cosl 1l =R.o
0 ) 1

This basic rotation matrix clearly satisfies the properties of SO(3)

R;,o = 1:1' R--..(:R:.:,u = R-;,r)n;,- [R;‘n] ' = R.;;_ ]

Hotaticm Retatioss n 1 and 5 Dirsendicon

Basic Rotations in 3D

In the way we have introduced the basic rotation matrix

cos#d —sinfé
H. g sinfl  cos@? 0
0 0 1

we can introduce basic rotation matrices

R.o. Rye

They are
| 0 (0 cost)
Rea= | 0 cosfl —sinfl |, R,o= 0
0 sinf)l  cosd —sind

0

0

sinf
()

cost)

L.
-
.
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Hotaticm Tramdfarmaetiune by Rotutions

Transformations by Rotations in 3D

-

~)

o

Fig.: The D-frame is our world, the 1-frame s attached to a rigid body
(courtesy Spong)

What will happen with points of the body (say p) if we rotate the
body, i.e. the l-frame?

Hotaticms Tramdfarmaetiune by Rotutions

Transformations by Rotations in 3D

Pa

(a) (b)
Fig.: We are interested in coordinates of the point p, which is constant in the

body attached 1-frame but it changes in the O-frame (courtesy Spong).

How to trace the change of position of body point p in the
(-frame?
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Hotaticm Tramdfarmaetiune by Rotutions

Transformations by Rotations in 3D

The coordinates of point p in the 1-frame is p' = [u. v, w|?, ie.
_n' =u-T14v-i +uw-

and the coordinates u, v, w do not change when the 1-frame is rotated.
We need to find the coordinates of p in the ()-frame.

Clearly, with the rotation the basis of the I-frame is changing and
we know how it does that!

Hotaticms Tramdfarmaetiune by Rotutions

Transformations by Rotations in 3D

For instance,

;I'] *4o .i’."; 3 .l‘() !"il LN 3'[' 'n l
1‘” = Iy - — Q. Do A 0
L 17 o = r1 o y(‘_ %) ‘, )
Ty - Zo {20 | wy 20 | 2 L " %0 0
R
1 () 0
=R|0|, !/=R|1 |, Y=R| 0
0 [ 1
u 0 0
P=u-aiteal+w A =R[0|+R|v|+R|0
0 0 i
u
p” =u- "'.11, “+ 17 1‘[‘; + e :lll —- 1{ U — ff‘l) p]
u’
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Camposttion of Hotsticm Rotatioms with Rapect to the Currest Framu

Rotation with Respect to the Current Frame

Suppose that we have 3 frames:
(9, T, vy 20)s oM. 21 ) (02, @2, Y2,22).
Any point p will have three representations.

il r T r T 2 T
P! = [up. o wa]’.  p'=[uvwn]”, PP = Jua, e un]?

We know that

p’=Rip'. p'=Rip' p'=Rp?
How are the matrices /1!, I} and /7 related?
We can compute p” in two different ways

p' = R{p' = R} Ry p°. p! = Ry p*

The combined rotation will be  RY = R{ i)

Camposttion of Hotsticm Reotatioss with Rapect to the Currest Framu

Example 2.5: Rotations w.r.t. Current Frame

Around the y-axis Around the z-axis Overall

-

-
¥
-

Fig.: Composition of rotations about current axes (courtesy Spong).

Suppose we rotate
@ first the frame by angle ¢ around current y-axis
@ then rotate by angle # around the current z-axis
Let's find the combined rotation.
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Camposttion of Hotsticn Rotatioss with Rapect o the Currest Framu

Example 2.5: Rotations w.r.t. Current Frame

The rotations around - and :-axis are basic rotations

cosd 0 sing cosfl —sind 0
—sing 0 cosgo ] () |

Therefore the overall rotation is

[ cos¢p 0 sing " cosf —sind 0
=Ry, .y { | ] sinf?/  cost¢! 0
singd O cosd | 0 0 |
[ cqco —CtSs  Sa [
— 86 Cp 0 , {-——-“ 1)“ = ’l'p:'}
| —84Co 838 Cp |

Camposttion of Hotsticm Reotatioss with Rapect to the Currest Framu

Example 2.5: Rotations w.r.t. Current Frame

Important remark: rotations do not commute!
R, B0 # R-0ly 4

So that the order of rotations is important!

Indeed
"'Q(.“ > '(.1';/‘.-‘."; S o
R‘n'.”[{?-” = Se (&) “
—SaCa S Cq
and
“l_*l Cl’) —&0 f'!?“‘,,‘;
ll’,s; N Il’t/. o = Spcay Cg Susg
- 5,.4, l] (.','g.
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Campostion of Rotaticm Reotation aith Repect to the Faed Framse

Rotation with Respect to the Fixed Frame

Around the y-axis Around the z-axis Overall

IO

o

Fig.: Composition of rotations about fixed axes (courtesy Spong).

How to compute the rotation if the basic rotations are done with
respect to fixed frames?

Camposition of Rotaticm Reotation aith Repect to the Faed Framse

Similarity Transformation

Given two frames and the rotation
(On, Tos Mo- 20).  (01,71,00, 21), PI') — R'{l"

Given a linear transform A, for which we know how it acts on vectors of
the (-frame
a = Ab”

How does it act on the vectors of the |-frame?
To compute its action, we need to observe that vectors in both frames
are in one-to-one correspondence, i.€

e given 1, then I = [R‘l'] Lpv
e given b', then i” = Rb'
To define A acting in the 1-frame, use its definition in O-frame
[R] " a® = [RY] " AP = [R)] " ARY "
N’ -

at b
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Campostion of Rotaticm Reotation sith Respect to the Faed Frame

Rotation with Respect to the Fixed Frame

Around the y-axis Around the z-axis Overall

Y

Fig.: Composition of rotations about fixed axes (courtesy Spong).

We have two rotations
© the basic rotation R} = R, s by angle ¢ about yy-axis
@ the rotation R = R, ¢ defined as the rotation by angle # about
z-axis (not z-axis)
The combined rotation will be

RS = R°R=R, 4R= Ryﬂ,c. [inym)“' n:,,,_l,nw,@]

f— ':R R.. n[? & —R ,UR

’J‘n-k’-', W

Camposition of Rotaticn Reotation sith Respect to the Faed Frame

Let's summarize what we have learned

Given N-frames in the 3-dimensional space
(oo.%a. M0, 20). (01,253 4,21), ... (ON-1 ZEN-1.UN—1.2N-1)

If we are given (V — 1)-rotation matrices

[

] - N
Ry &y wivo BYmcql

that represent consecutive rotations between the current frames

{{zowoz0). (zrva21)} « {{xrm21), (w2nza) }, ..o,

{(xn-2yy—22n—-2), (xnv-1yv—12x-1)}

Then we compute the position of the point p:
@ in O-frame knowing its position in 1-frame as p"' = Rp’
® in (-frame knowing its position in 2-frame as 1/ = Rp', = Rip?
@ in (-frame knowing its position in (/N — |)-frame as
pn: R‘].]JI, f’l = Rl‘l';’- Wl\'—:.l Rl\—|:pi\—la
@ in U-frame knowing its position in (/N — 1)-frame as
=RIRARE - RN 2D
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Camposition of Rotaticm Rotation aith Respect to the Faed Frame

Example 2.8: Composition of Basic Rotations

Find the rotation [? defined by the following basic rotations:
© A rotation of 4 about the current z-axis
© A rotation of ¢ about the current z-axis

The total rotation will be then

R=R.pR: 4

2

For any point of the 2-frame with coordinates p* = [.r';’,_u A
its coordinates in the (-frame are computed simply as

p(l - 11’])"' -— [«{zr.ﬂ [‘,:-L"] p“'

Camposition of Rotaticm Reotation sith Respect to the Faed Frame

Example 2.8: Composition of Basic Rotations

Find the rotation [? defined by the following basic rotations:
@ A rotation of # about the current x-axis
@ A rotation of ¢ about the current z-axis
© A rotation of & about the fixed z-axis

The total rotation will be then

R=R,pRsy Rz = [Rs0 Rep Rsg)

We have computed this rotation as

Rz =|RepRep|  -Rin- [RepReg)
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Camposition of Rotaticm Rotation aith Respect to the Faed Frame

Example 2.8: Composition of Basic Rotations

Find the rotation 17 defined by the following basic rotations:
© A rotation of # about the current r-axis
@ A rotation of & about the current z-axis
© A rotation of & about the fixed z-axis
Q A rotation of 7 about the current y-axis
The total rotation will be then

R == R),f? R..;,m R.’t Ry‘.i = {R:,n R.l K R: r,‘/: Rg.n

Camposition of Rotaticm Reotation sith Respect to the Faed Frame

Example 2.8: Composition of Basic Rotations

Find the rotation R defined by the following basic rotations:
© A rotation of # about the current r-axis
© A rotation of ¢ about the current z-axis
@ A rotation of o about the fixed z-axis
@ A rotation of [ about the current y-axis
© A rotation of § about the fixed x-axis
The total rotation will be then

R=R.nReoR.pRygRo=Ry5 -Ren Brg-Ren- Ry

We have computed this rotation as

[{.'1 - [[{;.f't [{;'r.'.' R:.f.‘r Ru.'A B g Rr.ﬁ . {[{:.n R.r.*) R:.-'x\ Ru..‘?]

- L
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Paramuterications of Rotaticns

Parameterizations of Rotations

A rigid body has at maost 3 rotational degrees of freedom.

e has dimension 3 x 3, i.e. it has 0 quantities
e belongs to SO(3), i.e. we have the following constraints:

e its 3 columns are unit vectors (3 equations)
e its 3 columns are orthogonal to each other (3 equations)

We have 6 independent equations and 9 unknowns that describe arbitrary
rotations in 3D.
There are 3 free variables to be assigned!

Paramuterications of Rotation Euler Angles

Euler Angles

Around the z-axis (¢) Around the y-axis Around the z-axis (v2)

0 Zhy 2] Y1

Fig.: Euler angle representation by 3 rotations about current axes (courtesy

Spong)
Rzvz = R.s Rya-Ryy
Cy S 0 [ Cy 0 S0 Co Sy ()
— S5 Ce () ' () 1 0 . Sy Co ()
0 ) 1 L =% 0 4 () 1
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Paramuterications of Rotationm Euler Angles

Determining Euler Angles from a Rotation Matrix

After calculating we have

‘ CACACy, — S8y —Cp a8y — SAC, CaSp
R=Rzyz= | 83€6€C0 + CoSu B84CASy + CyCy 8¢ 8¢
SEC S58¢ CH
i1 Ti2 Tia
Given the rotation matrix R = | rg1 re ros
31 732 133

How to find angles ¢, #, 7

2 2 L e - 1
Fyg T Tz tT3z =

2 2 2 X

' +Ta+tris = 1

Paramuterications of Rotationm Euler Angles

Determining Euler Angles from a Rotation Matrix

rig=7ras =191 =7"52=0
ras=1=>cosf=1sn#=0

=0, ¢+v=atan2(Y, X) = atan2(rq;,ry1;)

B vy £ 0,18, 41y 0
rsn =cosf, (sind)? + (cosf)? =1, sinf =%/ - r5,

§ = atan2(++/1 — r3,, 733)

¢ = atan2(=xrqy, =riz). U = atan2{xrss, Frai)
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Paramutericatioos of Hotations Reall, PRics and Yaw Angles

Roll, Pitch and Yaw Angles

zn

roll angle pitch angle

£y
vaw angle \» .?ln

Lo

Fig.: Yaw, pitch and roll angles of 3 rotations about the fixed axes =. i and 2.

Bxyz = Rzs Ry Rx.
tse —3S85 0 o) 0 s 1 D 1
= 35 ¢4 0 ]- 0 1 O [«]1 0 ¢ -8y
| 0 0 | —~80 0 cg 0 = Cy
Caly —SgCy -+ Cp8aSy Bafy + CaSgly
= Faly Caly + 828080 —Ca3w + Sa88Cy
| —Sa Casy Cacy

Paramuterications of Rotationm Aris/Angx Reprosatiation

123

Axis/Angle Representation for a Rotation Matrix

3

o
oo
T [
U: ~ ¥ b
M
o
0 b i on KRN S8R BA MY =

“n

Fig : Any rotation matrix can be expressed by a single rotation # about a
suitable axis k = [k, k. k.]" of unit length (courtesy Spong).

[tkj_’( — ,{ > If;JI * I( l. I{ — !f,‘”u s Iey,j
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Paramuterications of Rotation Avis/Angx Reprosetiation

Axis/Angle Representation for a Rotation Matrix

From an arbitrary rotation matrix i we can derive

tr( 12} -
fl = cos l(%)

1 32 — 123
V= aros 1713 =131
2sin(l) it — P

,———
where |[k]| = /&% + &7 + k2 = 1.
Note that the same rotation is defined by

Ryo= R g o

Paramuterications of Rotation Avis/Angx Reprosetiation

Unit Quaternions

Quarternions are generally written as a scalar plus a vector

RQ=s+T=s+ivy+jrot+kyy oo Q=s<v .15 >

with orthogonal complex numbers i? = j? = k¥ = ijk = —1.
A rotation by & about the unit vector i = [rz, ny,n:|" is uniquely

defined by the unit quaternion ||Q)| = /82 + v + 15 + v = 1

g . FEN
@ = cos (-;) + sin (—)) 17

From an arbitrary rotation matrix I we can derive

s =g \/ir(R) + 1

sgn(rag —raz) vryy —rep — rag + 1
sgn (ria — ra1) V1o — rag — 1y + 1
oz 41

...
-
|-

sgn (ra; — r12) v/raz —
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Rgid Motions and Homaguneous TramsSormaticns

Rigid Motions

A rigid motion is an ordered pair (R, d), where R = SQ(3) and d & B
The group of all rigid motions is known as Special Euclidean Group
dencted by SE(3).

In that way we can combine translation and rotation as

' =Rp +d'

If there are 3 frames corresponding to 2 rigid motions

p' = Rp*+dy
})(' — lll[)J <+ ""

then the overall motion is

= RVRip* + R)d3 + df

Fogid Motions and Homeguneous TramSormaticn

Concept of Homogeneous Transformation

HT is just a convenient way to write the coordinate transformation
p" = RYR)p* + Rd" +d"

Given two rigid motions (/7] d7) and (R}, d}), consider the product of
two matrices
RO & 1[ RY db] [ RIRY RO+l
Dixg 1 Oixz 1 | | Oixz 1

Homogeneous Transformation

Given a rigid motion (R, d) € SE(3), the 4 x 4-matrix

R d
H—[”lx:l l]

is called homogeneous transformation associated with (. d).
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Kinematics: Forward and Inverse Kinematics

Outline

€ Frames, Points and Vectors

© The Denavit-Hartenberg Convention

© Inverse Kinematics
® Problem Formulation
e Kinematic Decoupling

Frommes. Points aotl Vectoes

Kinematic Chains = Assumptions

Basic Assumptions and Terminology:
® A robot manipulator is composed of a set of links connected
together by joints.
e Joints can be either
e revolute joint (a rotation by an angle about fixed axis)
e prismatic joint (a displacement along a single axis)
e more complicated joints (of 2 or 3 degrees of freedom) are
represented as combinations of the simplest ones
o Each joint connects two links. A robot manipulator with n joints will
have (n + 1) links.
e We number joints from 1 to », and links from () to 1. So that joint ¢
connects links (i — 1) and .
e The location of joint i is fixed with respect to the link (i — 1}).
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Frames. Paoints ond Vecton

Kinematic Chains — Assumptions

Basic Assumptions and Terminology:
e The link 0 is fixed. We call it base.
o With the i*" joint, we associate joint variable

— #, if joint 7 is revolute
"= d;, ifjoint iis prismatic

e For each link we attach rigidly the coordinate frame, (o;x;1:2;) for
the link 1.

@ When joint i is actuated, the link ¢ and its frame experience 3
motion.

e The frame (oyxyy20) attached to the base is called inertial frame.

Frames. Paoints ond Vecton

Kinematic Chains — Assumptions

= Yo

\
|

I ”

Fig : Coordinate frames attached to elbow manipulater (courtesy Spong).
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Modeling of systems and complexes:
Kinematics: Forward and Inverse Kinematics

Frames. Paoints ond Vecton

Kinematic Chains — Transformation Matrix

Basic Assumptions and Terminology:

@ Suppose A, is a homogeneous transformation that gives

@ position
e orientation

of the frame (o0,x;1;2;) with respect to the frame

(”1 [RUFE B/ /R Bt l)»

@ The matrix A; is changing as the robot configuration changes.

e Homogeneous transformation

A; = A;lgqq).

A, is a function of 2 scalar vanable:

@ Homogeneous transformation that expresses the position and
orientation of (0;x;y;2;) with respect to (0;z;2,)

.‘1,,"].4,"'3"‘.") [.’1) |ff<J
'l'; = ! _ ifi=j
T} = (77)! ifi> g

is called a transformation matrix.

Frames. Paoints ond Vecton

Kinematic Chains — Forward Kinematics

Position and orientation of the end-effector (tool) frame with respect to
inertial (base) frame are denoted as

1)
O

I’

This can be expressed as homogeneous transformation composed of

Ty = A1) Aa(q) - An

with
A, (g )=

= 1":5‘“"4”!..‘

J

with _ .
B =Ry, R,

H"' !)U ]

l(’]n l,) , .“"l:qn) = [ 0 |

R - b= |
() 1

Ii’.", r.n",
B

0, =0;_1 4 Hj_,O’; ,

4'1_) | 4‘) —

L.
-
4
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The Denent-Hartenbery Comvemtion

DH Convention

The idea is to represent each homogeneous transformation A; as a
product

A; = Rot. g - Trans: 4. - Trans; . - Roty o

co, =80, 0 O[1 0 0 O]t 0 0 w1 © 0 0
se. ¢ 0 0[lo 1 0 oflo 1 0 0]/0 ¢, —5, 0
0 0 1 ofjo 0o 1 dflo 01 0[|0 sa, ca O
0 0 o 1fjo oo 1fjlo oo 1{lo o o0 1

The parameters of the four basic transformations are known as
@ a; is a link length
@ o, is a link twist
@ d; is a link offset

e #;is a link angle

The Denent-Hartenbery Comvemtion

BT LML LR Y

Conditions for Existence of 4 Unique Parameters

Fig.: Unique homogeneous transformation by 4 parameters (courtesy Spong).

@ Condition 1 The axis iy is perpendicular to the axis z,: 'z = 0
o Condition 2 The axis z, intersects the axis zy: o] = ol) + dz + az]
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The Denent-Hartenbery Comvemtion

Assigning Frames Satisfying DH Convention

Given a robot manipulator with
@ n revolute and for prismatic joints
® (r+4 1) links.

The task is to define coordinate frames for each link so that
transformations between frames can be written in DH conventicn.
The procedure for assigning (n + 1) frames ta (n + 1) links

@ is iterative by defining frame i using frame i — 1;

@ is generic although the assignment of coordinate frames is not
unique.

The Denent-Hartenbery Comvamtion

Procedure for DH Frame Assignment — Step 1

Step 1: Choice of :-axes:

o Choose z;-axis along the actuation line of the 1%*-link;

@ Choose z;-axis along the actuation line of the 2"%-link;

. JXR!

o Choose =, ,-axis along the actuation line of the n'/-link.
We need to finish the job and assign:

th_frame

@ point on each of z;-axis that will be the origin of the i
@ 1 ;-axis for each frame so that two DH-conditions hold

e Condition 1 The axis x, is perpendicular to the axis =,
e Condition 2 The axis r, intersects the axis =,

@ y;-axis for each frame
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The Denent-Hartenbery Comvemtion

Procedure for DH Frame Assignment — Step

Step 2 — Choice of z-axes and origins o:

@ Suppose that we have chosen the (i — 1)""-frame and need to
proceed with the i'"-frame.
@ For the i'"-frame, the 2, axis is already fixed.
o To meet conditions both conditions the x;-axis must intersect z; |
and 2;Lz;_1 and 2L %
@ 3 cases for assigning the new origin o; and the r;-axis:
@ = and =, are not coplanar:
= one common perpendicular line exists between both vectors
© :: and =, | are parallel:
== infinitely many common perpendicular lines to choose from

© :z: and z,.; intersect:
= normal vector of the plane spanned by z; and z;_,

The Denent-Hartenbery Comvamtion

Procedure for DH Frame Assignment — Step 3

Step 3 - Choice of y-axes: If we have already chosen the vectors z;, x;
and the point o, for the ""-frame, 1 can be assigned by cross-product
operation: i = I; X I,

Iy

.
e

joint ¢ +1 Ko
joint 2 — 1

Fig.: lllustration of Denavit-Hartenberg frame assignment (courtesy Spong).
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The Denent-Hartenbery Comvemtion

Assigning the End-Effector Frame n (Tool Frame)

LS D e AR L L e

Tn=1"N
Fig.: Tool frame assignment (courtesy Spong).
For most rohots z,, ; and z,, coincide so the final transformation is

e translation by d,, along =z, 1-axis

e rotation by #,, about z,,-axis

The Denent-Hartenbery Comvemtion

Example: Planar Two-Link Manipulator
P

A
TI 7T

Fig.: Planar two-link manipulator with z-axes pointing out (courtesy Spong).
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The Denent-Hartenbery Comvemtion

BT LML LR Y

Example: Three-Link Cylindrical Manipulator

DH-parameters:
Link I a, I v I d, | 6,
] U U (f; ("l
2 () o dg 0
3 () ) il 0

wi=

I'o Oy

Fig.: Three-link cylindrical
manipulater (courtesy Spong).

The Denent-Hartenbery Comvemtion

Example: Three-Link Cylindrical Manipulator

cosf@y —sinéy, 0 0

A sinfly, cosfy 0 0
e 0 0 1 o
.1'2' : . .'.’ . NI 0 0 ( |
1 0 0 L)
0 cos(—%) —sin(-%) 0
'42 o~ 3rsl o LS " ,
da U sin(—z) cos[—3) (i
) ( 0 0 |
( L 0 0 0
; [0 L0 0
S0 6 X dy
) 0 0 0 1

I'o Oy

Fig.: Three-link cylindrical
manipulater (courtesy Spong).
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lrvune Finemuetcs Problerm Formsdation

Problem Formulation

Given a 4 x 4 matrix of homogeneous transformation

H= [ R oo sem

0 1

The task is to find a solution (possibly one of many) of the equation
o (s Gn) = A1) Az(g2) -+ Aulgn) = H

Robetic manipulation is typically described for the tool with respect to
task frame but our control variables live in joint space!
We have 12 equations with respect to n variables gy, ¢2, ..., @

lrwvune Minemuetcs Problerm Formudation

Requirements on a Solution

It is often advantageous to find a solution of

hyy hia hyg hy
hgl ’l;m hgg {1.34

I) ( \ —— — e
LA (IR ) =H hyy hga hay  hag
0 ( 0 |
in analytical form
ge = fx (hirs B2y ooo, h3e), k=1,...,n

e For a closed-loop system gy = ¢ (1) are time references to follow, so
they must be computes as fast as possible.

o |f there are several solutions, then on-line numerical precedures could
find one that we do not like. Reference signals might have a jump!

e Constraints on the solution space are typically present (joint limits).
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lrwune Minemuatcs Kimematic Decuupling

Kinematic Decoupling

Given R c SO(3) and 0 ¢ B?

@ Problem of inverse kinematics is quite difficult in general
@ For particular robot manipulators with

e at least 6 joints
e the last 3 joint axes intersecting in one point
(spherical wrist, wrist center)

we can separate the two sub-problems

¢ inverse position kinematics
e inverse orientation kinematics

lrwune Minemualcs Kimematic Decuupling

Kinematic Decoupling

Fig.: Kinematic decoupling at the wrist center (courtesy Spong).

How to compute o and 1%, i3 ?

190 :- 3" ITMO UNIVERSITY



2017 © Oleg Borisov, Vladislav Gromov Modeling of systems and complexes:
borisov@corp.ifmo.ru, gromov@corp.ifmo.ru Kinematics: Forward and Inverse Kinematics

lrwune Minemuatcs Kimematic Decuupling

Kinematic Decoupling

If the last three joint axes intersect in one point then

0 1L T2 T13 0
0= 0:). } d(. R () = O? -+ (({ﬁ - 21 T2 Toq 0
1 ral Taz  Tag 1

with o and I? being desired position and orientation of the tool frame.

Therefore,
£y {) Oy — df;)‘;;;
O:) = Y. = 0 (’(, - R ) = Oy — liﬁ"".);j
Ze 1 0: — dgrsg

We know that

R=R)-R: = R=[RY'R=[RY"R

lwune Minemuatcs Kimmmatic Decuupling

Inverse Position Kinematics — Elbow Manipulater

Fig ' Inverse position problem: find angles &, #, and 6 (courtesy Spang)
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lwune Minemuatcs Kimematic Decuupling

BT LML LR Y

Inverse Position Kinematics — Elbow Manipulater

0 A

Fig.: Projection of the wrist center onto =
ry=yo plane (courtesy Spong). ]E
.

f; = atan2{y,.,r.) Fig.: Singular configuration
(courtesy Spong).

lwune Minemuatcs Kimmmatic Decuupling

Inverse Position Kinematics — Elbow Manipulater

Angles (5 and ;:

Su‘ e A

Fig.. Projection onto moving
plane of link 2 and 3 (courtesy

Spong).

Fig.: Inverse position problem (courtesy
Spong).
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lwune Minemuatcs Kimematic Decuupling

Inverse Position Kinematics — Elbow Manipulater

Angles (5 and 5:

Consider the vector sum

:tl‘
. 14 - -
€ = |[r. 8] =ads+a;
”ﬂlﬁ ||u-.» -+ (13“
re st = (g + @a) « (@2 + Ga)
rf48° = u::; + (l'; + 2dqdy
3 0 > 2
re+8° = ai+ a3+ 2az03cosf;
r? +s° — a3 — a3
Ao SAg= =g
('()60;; = " = 1)
.’a_m;;
(22 + y2) + (2. —dy)” — a3 — a3 Fig. Projection onto moving
= Y plane of link 2 and 3 (courtesy
2azaz
_ 4 2 Spong).
1 = (sind3)° + (cosls)
sinfy = +V1-D?

lwune Minemuatcs Kimematic Decuupling

Inverse Position Kinematics — Elbow Manipulater
Angles 0, and 0;:

03 = atan2(+y/1— D2 D) ST
s = atan2(s.r) y

— atan2{ag sin By, as + ay cosfy)

AHELLS

Fig. Projection onto moving
plane of link 2 and 3 (courtesy
Spong).

BT LML LR Y
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lwune Minemuatcs Kimematic Decuupling

Inverse Orientation Kinematics — Elbow Manipulator

o

What is the rotation matrix from O-frame to 3-frame (wrist center)?

olinkl:a=0,a=%,d=dy,0=6 = H
o Link2 a=az,a=0,d=00=0, = H;
e Link3:a=a3,a=0,d=080=60; = f!:‘f

lrwune Minemualcs Kimematic Decuupling

Inverse Orientation Kinematics — Elbow Manipulator

Given R & SO(3) and 0 & R,
We have computed HY = HYHIH3 = R} of =0
Therefore, we can compute the rotation matrix
o m T2 T3
Ri=|R;| R=|rn ra ra
31 732 733

We need to compute, e.g., Euler angles (¢, #, v) such that

R:=ReupRya- Ry

194 :- 3" ITMO UNIVERSITY



2017 © Oleg Borisov, Vladislav Gromov Modeling of systems and complexes:
borisov@corp.ifmo.ru, gromov@corp.ifmo.ru Kinematics: Velocity Kinematics - the Jacobian

Kinematics: Velocity Kinematics - the Jacobian

Qutline

© Skew Symmetric Matrices
© Linear and Angular Velocities of a Moving Frame
© Manipulator Jacobian

e Angular Velocity

@ Linear Velocity

e Example

© Analytical Jacobian

© Inverse Velocity and Manipulability

Angular Velocity for Rotatnon About a Fixed Axis

When a rigid body rotates about a fixed axis
e every point of the body moves in a circle;

e a perpendicular from any point of the body to the axis of rotation
sweeps out the same angle #;

e the angular velocity is given by

4.k

,-l'

with k = [k, ey K. ]” being a unit vector in the direction of the axis
of rotation;

@ the linear velocity of any point of the body is then
V=& %7

where 7 is the vector from the origin, which lies on the axis of
rotation.

*ITMO UNIVERSITY 195



2017 © Oleg Borisov, Vladislav Gromov Modeling of systems and complexes:
borisov@corp.ifmo.ru, gromov@corp.ifmo.ru Kinematics: Velocity Kinematics - the Jacobian

Shuw Symerstric Matrices

Skew Symmetric Matrices

A n x n matrix S is skew symmetric and denoted S € so{n) if

S48 =0

The matrix components of § € so(n) must obey
Fay +~“;‘ =0, »1=1L....,n,3=1,..., n

= {si=0 and s;=-s8; Yi#j}

For example, if n = 3, then any S € s0(3) has the form

0 * x U —.‘63 .‘(‘.)
o= A 0 » = S3 { S1
# = ) —83 8 0

Shuw Symerstric Matrices

Properties of Skew Symmetric Matrices

Given @ = |a,, a,, a:|" and defining

() L ay
S{a) = a. 0 a,
_‘?” (.f' ()

the following properties hold:
Q@ Silad + 3¢ =as (@) + 4S5 (€)
@ S(Mp=axj foranya pei’

0 -0z  (y 28 Py — Pyl
S(alpg = (1 0 - py | = | pear —p:as
-, d; 1] P Pyls — Priiy

@ RS(@) R =S(Ra) forany R SO(3), i € R°

R[S(@R'F| = R|d@xR'F|=R[axb]
= RixRh=RaixR(R'7)=Raxp
= S(Ra)j

Q@ »"Sr=0 forany S € s0(3), reR*
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Shuwe Symerstric Matrices

Derivative of Rotation Matrix

Consider a function of a scalar variable # — R{#) = SOI(3)
How to compute & ' R(6)?

For any 6 the matrix R(f) is a rotation so that

R(O)R™{6) = R*(6)R(H) = I

Therefore

40 [RIOIRT(0)] = F[R(9)] R™(0)+ R(0) 55 [R"(0)] = 51 =0

— N

S =87

=3 LR(0)] = SR(9)., S e s0(3)

Shuw Symerstric Matrices

Example 4.2: Derivative of Rotation Matrix

If R(f) = R.y, that is the basic rotation around the axis z, then

cosl —sinf 0 ][ cos® —sing 0717
S = m[H ,,] R ,= W sinf cosfl () sin#  cosf 0
() 0 1 ) () 1
[ —sinf —rcosf 0 cosfl  sinf ()
= cost sinf 0 sinf cos@ ()
0 0 0 0 0 1
[0 -1 D 0 a; g
= 1 0 D| = a. 0 -, | = 8(d)
(0 D D —Qy O 0

= Sk), k=I[0,0,1"
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Lincer and Anguler Velocitnes of 4 Movey Frame

Angular Velocity

If R(#) € SOL3) is time-varying, then its time-derivative is
ZR(t) = S(t)R(t) = S(w(t))R(t). S(-) € s0(3)

The vector w(l) will be the angular velocity of the rotating frame with
respect to the fixed frame at time ¢,
Consider a peint p rigidly attached to a moving frame, then

p(t) = B() p'
Differentiating this expression we obtain

L0 = Z[RI] p' = Slw(t)R(t)p' =w(t) < RI(t)p'
= w(l) X pnl!)

An angular velocity is a free vector
-
wi; (1)

that corresponds to | (‘1“ Ri(t)} expressed in coordinate frame k.

Lincer and Anguler Velocitnes of 4 Movey Frame

Addition of Angular Velocities

Consider two moving frames and a fixed one, all with a common origin
Then differentiate the left and right sides

m(t) = R"n‘f)H’(u
- ‘5(“’1)'“))1{“
= [5Gl (1) RY()] RA®) + RE() [S(wh o (1) R
= S(wo (1) Bi(t)Ra(t) +R7 (1) [Sle o(8)) R3 ()]
\— —

|l

=H5(t)
= S(w, ())Rt) + R(2)S(wi (1)) R R () R3(1)
—\,_/

=1
= Sfwh ()R(t) 4 n"ms.d., 2(t)) e',’w.' !f'(r)lu

aTg v

=S ()] 4(1)) =R3(1)

=[Sl (D) + S(RY(t)w] a(t))] RI(t)

= S(w ,(1) = S(wd 1 (1) + S(RT (t)ey 5(1))
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Lincer and Anguler Velocitnes of 4 Movey Frame

Addition of Angular Velocities

The relation
S(wg(t)) = S(wy 1 (1)) + S(RY(£)ws o(t))

together with the property S(a) + S(¢) = S{a + ¢) imply that the
angular velocity can be computed as

wo2(t) =wh 1 (8) + RY()wq 2(t) = wh  (2) + & 5(2)
Given ni-moving frames with the same origins as for the fixed one

RO(t) = ROMRY(E)--- RV = LRO(H) = S(wl),. ()R

'w':‘:,u[f) = w:{,ff'l *Wu'(” '-“z“) 1ivmie **t:_n alt)

a1
n—in

1 0 .2
p— w‘:’1+lel)*R).&;J+ +R” 1u/

Lincer and Anguler Velocitns of 4 Movey Frame

Linear Velocity of a Point

Given moving and fixed frames related by a homogeneous transformation

() N
HI(1) = l ”10“] "ll{” l

that is, coordinates of sach point of the moving frame are
p“n;f) — R",)(f‘)pl + o','(f}
Hence

() = F[RI®B)] ' + £[od)]
= S[w‘ll(f))n?(f)lp - —[”|“)
= wy(f) x [h",’l_l]plr + :7; [t)|{!)J

*ITMO UNIVERSITY 199



2017 © Oleg Borisov, Vladislav Gromov Modeling of systems and complexes:
borisov@corp.ifmo.ru, gromov@corp.ifmo.ru Kinematics: Velocity Kinematics - the Jacobian

Masipulator Jecolwan

Concept of the Manipulator Jacobian

Given an n-link manipulator with joint variables gy, ..., ¢,

@ Let T(q) be the homogeneous transformation between the
end-effector frame and base frame

i ) 1
T (q) = [ R"‘fq' ""](q) ] 4= [Q1se- 1]

so that ¥ p with coordinates p” its coordinates in the base frame are
= R p" +d)
@ As the robot moves joint variables become functions of time
t = q(t)= [r“(!).. ” .qnl'l]] ¥
so that

p(t) = R%(q(t)) p" + o (q(t))

Masipulator Jecolwan

Concept of the Manipulator Jacobian

@ We have already seen how to compute < p°(1) from
p'(1) = RY(q(t)) p™ + ol (¢(1))

e ltis

e (0) = F[Ee(®)] »" + g [oh(a(t))]
= S{w] (1) R lq(t})p“ +ohi(t)
= Wi lt) X ;m+."u)

with 7(£) = p"(t) — o (q(t))
e Therefore, to compute velocity of any point in the end-effector
frame, it is sufficient to know

e an angular vcl(x.ily wil (1) of the end-effector frame;
e a linear velocity v} (1) of the the end-effector frame origin
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Masipulator Jecolwan

Concept of the Manipulator Jacobian

Given
® a n-link manipulator with joint variables gy, ..., g,
@ its particular motion g(t) = [qll‘I] AREE ) {'I')E’

What do the functions )} ,.(t) and v}.(¢) depend on?

Lets compute them as

vh(t) = Jo(q(t)) Salt)  wf,.(f) = Ju(a(t)) Lalt)

The 6 x n-matrix function /() defined by

vnlf)

£(t) =

T(q(t)) ] J

] = J{g(t)) F4lt) = I {(a(t)) Talt)

“’U nl“

is the manipulator Jacobian; £(f) is a vector of body velocities.

Manipulator Jecolvan Angidier Vedodey

Angular Velocity

Given n-moving frames with the same origins as the fixed one

Ro(t) = RY(ORAE) - B (t) = ZR(t) = S(wi,, (1)) Ralt)

= woa(t) = wy(t)+uf(t) +whq(t)+-+ +wp_ .0

n
) , =1

n—1""n—-1n

2
= wo,+Rjwig+ RS+ -+

If i*"-joint is revolute (p; = 1), then
@ axis of rotation coincides with z;

e angular velocity is w!~] ; = ¢;{t) - K, where k = [(,0,1]"

If i*"-joint is prismatic (p; = 0), then angular velocity w} "}, = 0
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Masipulator Jecobuan Angidier Vddodey

Angular Velocity

Therefore
woalt) = wiy+Rwis+ Rusy+ -+ Rou)i’y,
= ik + paRYGak + -+ po R m,,#
" ’)1
=51 SO N Ml ] ' % 1 RIRRREE: - « Y
= Zpl’qi": | If)l'-li" P22y wvey Py IJ h ' ~i—1 ‘Rl l’"
z :T_ | & (.Ill

Masipulator Jecobwn Lisear Viedooty

Linear Velocity

The linear velocity +!!{1) of the end-effector is the time-derivative of
o (t) and 1) (1) =0 if g =0.
Therefore there are functions J,, (g(t}), ..., Ju. (g(t]) such that

f‘:;. ('} = r:f u(rJ = [\ { { )dl t ’ Uy ( )'.)2 o bies * ']‘ " ;:.:“‘I“
() ) (') ] N () % \ »
[i)m ('l:':(!.'] an [{) >” (1) I_ L LUmiE lf‘)t}n.‘)l')'”}] -
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Masipulator Jecobman Lisear Viedooty

Linear Velocity

Fig.: Motion of the end effector due to prismatic joint 7 along the z; - -axis
with velocity ., whereas all other joints are kept fixed (courtesy Spong).

Lol (t) = Ld()RY k = Fdi(t) 5oy = Jo, d;

Masipulator Jecobwn Lisear Viedooty

Linear Velocity

Fig.: Motion of the end effector due to revolute joint i about the 2, ;-axis with
angular velocity %0,z _, all other joints are kept fixed (courtesy Spong).

b)) = Ry [wid o x o] = [fizia] x fon — 01-1] = Jufl
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Manipulator Jecobuan Lissar Viedodity

Manipulator Jacobian

Each column of the Jacobian corresponds to a particular joint i of the
manipulator and takes the following form:

-

2i—1 % (On — 04— L etsn
[ i—1 % (0n — ')] if joint ¢ is revolute
1

0

]x —
[-f—!] if joint i is prismatic

Manipulator Jecobian Erergpin

Example: Jacobian of Planar Elbow Manipulator

() ] [ Lde(®) ][

b o (8] e lae)) L2

[l (t) ] [Jo (a(t))  Je,(q(t)) ] d:

_V"l'.l.nl.’)J—_"'-w(.‘ll,':l.) J-_'fq;“’ '}3
:'::({) 1 [20 x (02 —opn) Jug(qll)) 'r“
\'-'ll|’ n '() Ju'| ((['l:! “ ']-A-"' 1(1'”) (ll;'

[ ‘.t\)(') -_ s [U;_: —y) = X (r},-—(, -— ,‘
whal®)] | S (al2) et lé
:I[
|
¢

f[l]

[ "2“) ] -Iu X ((): — (h;) z1 X Iu> — )

1 y
; ) 20
Fig.: Planar elbow [t (£) - ( -
manipulater (courtesy 0 ) ai € a1Cy T+ G2C12
Spong). 2= 0], 00=|0}), 01 = |18 ]|, 02 = |1 8] + 2282
| 0 0 o |
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Analytical Jacobian

Given a robot and the homogeneous transformation to the end effector
T“fq [ R‘n'd) l) ((I) ] = e l(“, XA q"—\

A minimal representation for the end-effector orientation can be
Ri(g) = Rla) = R. 4R, oR.

with o = [, €, ¢’|" being the Euler angles (ZY Z-parametrization).
If the rohot moves q = qlt), then wy)  (t) is defined by

SR(g()) = S(wh (1) R{g(t) = FR(a(t)) = S{wy, (£} R(alt))

Angular velocity can be related to the end-effector pose parameters by

"'n Hlfl = Bt I),—’n(l‘)

Analytical Jacobian

The analytical Jacobian relates joint velocities to the time derivative of
pose parameters of the end effector

- _ [dala) - I[VR
X ["(q) = X= o =Ja(q) §

Both manipulator and analytical Jacobian are closely related

w0(t) o : A
l“‘n '..f) = Jlg{t))glt) = _B(‘o(‘f)}d(l‘]]
= [ ] () ] ”EU)
~ L0 Blalt) J ae(t)
= [ et
= | O Bla(t)) }',"(.‘N.')q(!.
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Singularities

The manipulator Jacobian J(g) is a 6 x n-matrix mapping

.'" Julg) | .
- []-smie 28]

01
= [.ll{q]. Jolgl, .... .I,,-lqu
(}n

Since £ € B = rank [.Il(q). JaAg). .o, J,,(q']} <6. ¥q
Configurations ¢* = [q{, q;j] for which

rank [.Iliq"l. Jolg™ ) o, .l.,(q"’]j = m‘z(xx {rnnk {:.ll (q), Jalq), ..., .l,,(qva] }

are called singular,

Singularities

Identifying manipulator singularities is important!

@ Singularities represent configurations from which certain direction
may be unattainable.

@ At a singularity bounded end-effector velocity £ may correspond to
unbounded joint velocities ¢

& = Jilqu.qe2 )i + Jolqr-q2)G2

e Singularities often correspond to points on the boundary of the
manipulator workspace.
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Anulylstul Jocobmn

Example: Singularities of Elbow Manipulator

2|2 2|7

Fig.: Singular configurations of the planar elbow manipulator (courtesy Spong).

Inverss Velocty end Muripulabality

Assigning Joint Velocities

The manipulator Jacobian .JJ(g) a 6 x n-matrix mapping

0

Iy

@

T . = "
[ “ ] =.J(q)qg = [.]1(q). Jolg). ... J,,f_q,'_
G
If the Jacobian is square and full rank, we can invert it

i=J"(q)

Hence, the joint angles might be assigned by integration

ot
qfl)-—/ J Hag(r )€ (7)dT + q(0)
Jn

or in simple discrete form: g(ti1) = qlte) + J glte))E™(tn) AL
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Inwverse Velocty end Maripulabaity

Assigning Joint Velocities — Redundancy Resolution

When 1 > 6 the kinematic chain is redundant such that many solutions
exist. Joint velocities can be calculated as follows

G=J " +(I—=J")go, Vg eR"

using the pseudo-inverse matrix J* = J" (JJ") o

Inwverse Velocty end Maripulabaity

Manipulability

Consider the n-DOF robot at a configuration ¢, at which the possible
joint velocities are restricted by the unit sphere

.I 2 AT . -~
lgl]” =47¢ <1
Hence, possible task space velocities are necessarily restricted by

P} = ¢ 4= [T"(qa)t "I (ga)€

-1
= € [Hga)d" ((la)j £ <1

The set defined by the inequality is called manipulability ellipsoid.
Its volume is proportional to the manipulability measure

w{aa) = \,.":d(-.t (G ) T (qa )]

208 :- 3" ITMO UNIVERSITY



2017 © Oleg Borisov, Vladislav Gromov Modeling of systems and complexes:
borisov@corp.ifmo.ru, gromov@corp.ifmo.ru Path and Trajectory Planning

Path and Trajectory Planning

Outline

o Concept of Configuration Space

© Path Planning
e Potential Field
@ Probabilistic Roadmap
e Cell Decomposition

0 Trajectory Planning
@ Smooth Joint Trajectories

© Trajectory Planning Using Spline Functions

Comtept of Conlguration Space

Ml TME UNVERSTY

Set of All Possible Configurations of a Robot

Given a robot with n-links:

e A complete specification of the location of every point on the robot
is called its configuration
@ The set of all possible configurations is known as the configuration
space Q = {q} represented by configuration variables
e Examples:
© all possible onentations of a 1-link revolute arm are

Q= {0} =8" or Q=150(2)
© for a 2-link planar arm with revolute pints
Q={0,0}=5"x3"=T" + torus
© for a 3-link Cartesian arm with prismatic joints
Q={d.dwds} =R"
© for a rigid object moving in a plane

Q={x,y 0} = R* x S’

#3333 ITMO UNIVERSITY

209



2017 © Oleg Borisov, Vladislav Gromov Modeling of systems and complexes:
borisov@corp.ifmo.ru, gromov@corp.ifmo.ru Path and Trajectory Planning

Conuept of Conliguration Sgucu

Collision-Free Configurations

Denote W ¢ B? as the workspace in which the robot moves

Denote O < W the obstacle region with polyhedra boundary as
union of several obstacles O = L,

Denote A < W the subset of the workspace which is occupied by
the robot at configuration ¢: A = A(g)

Describe a subset of the configuration space occupied by obstacles

QO = {q € Q:Alg)NO # 8}

Then collision-free configurations are

er-‘:a: - Q “‘» QC)

Concept of Conliguration Sgucu

Basic Path-Planning Problem

Given an initial point (position and orientation) in Wy, compute how
to gradually move the robot to a target point so that it never touches the
obstacle region.

o Avoid self collision of the robot

o Obstacles might be dynamic (other robots, humans)

@ Different kinds of objects are part of manipulation tasks
The goal is to describe a smooth path in Q... through a set of all
intermediate transformations of the robot.

The main difficulty is that usually all robotic tasks and obstacles are not
specified in configuration space but in the workspace of the robot.
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Conuept of Conliguration Sgucu

Example: End Effector that Translates in the Plane

S ITVO INIVER T

-
V
’n,“-
.
M

perinaminnna,,
.

Fig.: (a) The triangle-shaped robat end effector moves in a 2-D workspace that
contains a rectangular obstacle; (b) the boundary of the configuration space
obstacle region QO is the dashed convex hull

Conuept of Conliguration Sgucu

Example: Two-Link Planar Arm

A e

t;

Fig.: (a) The two-link robot moves in a 2-D workspace that contains a small
obstacle; (b) the configuration space obstacle region QC is gray

The computation of Q7 is more difficult for robots with revolute joints.
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Palh Planmny

Path Planning Problem

Find a path in the configuration space @
o that connects an initial configuration go to a final configuration g;
@ such that the robot does not collide with any obstacle as it traverses.
A collision-free path must be a continuous function +{-) such that

71 [0,1] = Qe with ¥(0) = go and 7(1) = a5

Common additional requirements:
e some intermediate points ¢'*
@ smoothness of a path

e optimality (length, curvature, etc.)

Palh Plansny Poturtiul Feld

|dea Behind the Potential Field Approach

@ Treat the robot as a particle under the influence of an artificial
potential field [7(-) that must provide:

e global minimum at q; = this point is attractive;
e maximum or +o¢ at QO = these points repel the robot.

@ Construct U(-) in a way that we can easily add or remove an
obstacle and change g;:

U(q) = Usi(g) 4 (I',’L‘P'w) UL (g) 4 -+ UL w))

typically defined in workspace due to complex geometry of the
configuration space.

e Path planning is converted into an optimization problem which can
be solved by gradient descent so that a generalized force drives the
robot along the path of steepest descent

r(g) = ~VU(q)
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Palh Planmsny Poturtiul Feld

Example: Potential Field for a Particle in the Plane

S ITVO INIVER T

x10* Local minimum

Global minimum
{goal)

Palh Planmny Probeledistic Roudmep

Probabilistic Roadmap Method

@ Sample randomly the configuration space Q
e Discard samples that belong to QO

e Connect pairs of configuration nodes, for instance
@ Introduce a distance measure d(-) in Q, e.g. 2-norm
@ Choose a radius = > ( and identify &k nearest neighbors to a
particular node
© Connect nodes and discard path segments for which collision occurs
The result is a roadmap of several disjoint components.

@ Enhance the roadmap by connecting as many disjoint components
as possible (e.g. sample additional nodes)

@ Connect ¢ and gy to the roadmap and run a path smoothing
algorithm

#3333 ITMO UNIVERSITY

213



2017 © Oleg Borisov, Vladislav Gromov Modeling of systems and complexes:
borisov@corp.ifmo.ru, gromov@corp.ifmo.ru Path and Trajectory Planning

Palh Planmsny Probelsdistic Rowdmep

Example: PRM for a 2-D Configuration Space

Fig.: Steps in constructing a probabilistic roadmap for a 2-D configuration
space containing polygonal obstacles

UL

Palt Plannny Gl Decompositan

Cell Decomposition

Principle

The idea is to decompose free configuration space into cells that are
trapezoids or triangles. Planning in each cell is trivial because it is
convex. A roadmap is made by placing a point in the center of each cell
and each boundary between cells. Any graph search algorithm can be
used to find a collision-free path quickly.

Fig.: The roadmap derived from the vertical cell decomposition.
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Palh Plawsny Call Decompositan

T LML U Y

Cell Decomposition Types

There are two types of cell decomposition:
e exact cell decomposition

@ approximate cell decomposition

Fig.: Exact and approximate decomposition types

Palh Plawsny Gl Decompositan

T LML U Y

Adjacency graph

An adjacency graph is obtained after the decomposition of the free
configuration space. It is comprised of nodes (correspond to cells) and
edges, which connects adjacent nodes. Two nodes are supposed to be
adjacent if they share a common boundary.

i)

Fig : Adjacency graph
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Palh Plawsny Call Decompositan

Trapezoidal Decomposition

Path planning is carried out in two steps. Firstly, cells containing the
initial and final configurations should be determined. Secondly, a path

within adjacency graph is searched

i

Fig.: Adjacency graph

Palh Plawsny Gl Decompositan

Trapezoidal Decomposition

Path planning is carried out in two steps. Firstly, cells containing the
initial and final configurations should be determined. Secondly, a path

within adjacency graph is searched

“1n

!

R

Fig.: Adjacency graph

by
e
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Trajucteey Planmsny

Trajectory Planning

Trajectory is a path v : [0, 1| = Q.. with explicit parametrization of
time
;f(..f‘(_? 3€ ~ s€ U~ ]] ' ‘I(t) [ .f{*“) € Q.’an

This means that we make specifications of the the motion quantities
e velocity $q(t)
® acceleration J=q(t)
e jerk %;q(()
° ...

In fact, it is common that the path is given as a family of snap-shots

{‘?tn ¢ty 49, @V, .. 'U}

so that we have substantial freedom in generating trajectories.

Tajuctoey Planmny

Decomposition in Fast and Slow Motions

Free Space Fast

Guarded Slow Guardedd Slow

Fig.: Decomposition of the end-effector trajectory in slow guarded motion
whenever precision or safety is required and fast free motion whenever no
obstacles are nearby
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Tiajuctoey Planmny Smocth Josel Trgeciores

Trajectories for Smooth Pomt to Point Motion

Consider a robot joint and suppose that the following specification is
given;
attime ! ={fo: gqlto) = qu, ﬁf;fll'fu] = 1o, "r_rll(fn} = Wy
at timet =1fy5: gqlts) =qy, ('Ti'qlff_{) = Uy, ;l—f’rq(ffl =y
Consider the polynomial

f)n

q(t) =po+ prt +pat* 4 -+ p

With a 5'%.order polynomial we obtain the following equations:

go = po+ o+ pg{f; + p,.f.”, b p'.!:', + p,:,(f-’.
vg = P1+ 2mip+ 3])3f3 - b ~lp|fa + 5})_3[&‘,
ay = 2]):_1 t G})_3f(] t l?.]) ;fﬁ 1 Q(Jp'.n';‘,

2 . 2 3 SRS
a5 = po+ ity + paty + psly + paty + psty
vy = p1+2paty + 3psty + Apaty + 5psty
ay = 2pa+6paty + I?p.;f?, -+ ?ﬂp:,f}‘

Tiajuctoey Planmny Smocth Josel Trgeciores

Trajectories for Smooth Pomt to Point Motion

With a 5'"-order polynomial we obtain the following equations:

] [L ot # B # 87 (e
Mo 0 1 200 3t2 43 56| [py
g 0 0 2 6ty 1265 2085 [p2
ar| (L tr &Gt} &5 th | |ps
vy 0 1 2y 3t7 45 5t} | [pa
lag| |0 0 2 6ty 1265 2003 |ps)

which can be resolved for the ceefficients p.
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Trapeciury Planning Wsing Spline Functicn

Trajectory Planning Using Spline Functions

The purpose is to generate function of time for generalized coordinates,
velocities and accelerations to follow a path specified by four reference
points.

The given input data is the following
e Denavit-Hartenberg parameters of the robot

e Cartesian coordinates of the four reference points: initial, departure,
approach and final points

@ time moments assigned to the given reference points

Trapeciury Planning Wsing Spline Functicnm

Forward Kinematics

DH parameters for the 6-DOF serial articulated manipulator with the
spherical wrist are

! (r; a; | di | &
1 0 01 0 | 6
21 -2(0]o0]|6
3 0 |az | 0 | &
1 -5 | 0 |dg |6
5| % 00|86
6|-5]|0)]| 0|68
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Trapeciury Planning Wsing Spline Functicnm

Forward Kinematics (cont'd)

The homogeneous transformation matrix for a link according to the DH
convention is given by

A; = Rot, g, - Trans. 4, - Trans, ., - Rot, .,

o, —so. 0 O 0 0 01 0 0 &1 0 0 0
so. c, 0 0[]0 1 0 offlop 1 0 O[]0 ¢a, —54 O
0 0 1 ofjo 01 &0 01 0[]0 86, €a 0
0 0 0 1{jo o 0o 1flo oo 1{lo 0 0 1

cosl, — sin #, () v
B sinf;cosmy; cosl;cosa; = sinog o~ sinaqd;
- sm#é; sina; cos;smo; COS oy CO8 ey
() [ { |

Then the overall matrix of homogeneous transformation can be calculated

11 12 "a Lo

A0 ‘ T\ g1 T22 Ta3 e
¢ =AidpAsdyAgdg= | & BT (1)

- e =y |

0 (0 0 1

Trapeciury Planning Wsing Spline Functicnm

Inverse Kinematics

For the 6-DOF articulated serial chain manipulator with the spherical
wrist inverse kinematics can be solved geometrically.

As result we get the generalized coordinates ¢,  as functions of the
Cartesian coordinates .., ., = and rotation matrix R of the end-effector.
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Trapeciury Planning Wsing Spline Functicnm

Relative Time Parametrization

q,‘

: . >t
0 ’.‘ 12 f;l; !
Fig.. Plots of the generalized coordinates

Use relative time for each part of the trajectory instead of absolute time
as follows

Trapeciury Planning Wsing Spline Functicm

Polynomials

Change of generalized coordinates is given by

u..ri' + u;g,r‘;’ + oy *',2 44Ty 4+ oss
\ ¢ 2
gs(7) = bay 7] + baer + by + boyy (3)
, p<
('1.7'3] + r';;,T{f + €9, 53 + €1: Ty + Co;-

Change of generalized velocities is given by
day i + 3ayTi,
gilr) = b7 + 2bays + by, (4)
degim3 + ey + 2ems + cyi
Change of generalized accelerations is given by
1'2(1“‘.":{'. } (;('(3,'71.

fj,‘ l“T'} — ﬁh;;,:rg -+ 2/}2,'. (5)
12c4;735 + 63Ty + 2¢0;.
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Trapeciury Planning Wsing Spline Functicn

Constraints

Take into account the following constraints on positions, velocities and
accelerations in order to consequently "stick” them

Departure part Mid-part Approach part
q:(0) =g, | qu(0) =g, qa:(0) = g,
q1:(0) = 0, G2:(0) = ¢qui(1), | G2:(0) = qai(1),
g1:(0) = 0, G2¢{0) = Gu(1), | G510) = Gae(1),
qu(l) = qf. gu(l) = g gsi(1) = qf

gaill) =0,

gs:{1) = 0.

Trapeciury Planning Wsing Spline Functicm

Result

0.2+
‘)‘5 -
N

0.1y

0054

Fig ' The trajectory generated by the spline-functions.
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Robot Control Design

Qutline

0 Conceptual Control Loop for One Joint

© Actuator Dynamics

o Dynamical Model of a Single-Joint Rebot

© Control Design

° Equations of Motion Including Actuator Dynamics
© Set-Point Regulation

@ Trajectory Tracking

@ Robust and Adaptive Motion Control

Conceptual Control Leop for Ome Joint

Conceptual Control Loop for One Joint

Coupling etfects
{treated as disturbance)

Reference +
trajectory

Robot Joint

Encoder IQ

Fig.: Basic scheme of the independent joint control

Controller

Independent joint control means that each joint is controlled as a SISC
system. And coupling effects are treated as disturbance.
Main objectives are trajectory tracking and disturbance rejection.
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Actlustor Dynemes

Actuator Dynamics: DC Motor

— = Working principle: a rotor with current-carrying coil
L7 ; ' {armature) in a magnetic field of the fixed stator produces a

torque.
The magnetic flux is measured per trespassed area as the density
B =ddb/dA

A current-carrying conductor experiences the Lorentz force
F=| (F x B

The resulting torque on the rotor is

r - RO
™m=F xd

With B =const. and 7,,JJ§ we can relate applied current with generated
motor torque by a torque constant:

Tm = I\m ta

Actustor Dynemes

DC Motor (2)

External force causes motion so that mechanical work is done as
5y l-_.
= / F(s)ds = / uy(t)iy(t)dt = F
gy Jiy

which must be equal to a loss of electrical energy in the circuit explaining
induced voltage (back emf) opposite to the current flow,
Induced voltage is proportional to the time change of magnetic flux

dd _dA - . (s
W':W—Bdr 13(7xf) (le)

With B =const., B_# and sufficiently large number of coil windings N
we can relate angular velocity of the rotor with induced voltage by a back
emf constant (inverse of speed constant):

10,,

4
Uy = Kpy—
L lu
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Actlustor Dynemes

DC Motor (3)

Circuit diagram for an armature controlled DC motor with inductance L,
resistance I and applied control voltage V':

L i
AW

vy () Wi

The differential equation for the armature current is

-
i ST PO | )
dt

where the induced voltage 1, = K; % is related to angular velocity of
the rotor shaft.

Dynumital Modul of & Single Jeint Robot

Dynamical Model of DC-Motor/Gears and Single Link

Lumped model of a single link with actuator/gear drive train
e DC motor is in series with a gear box
® Gearratiois r : 1 = #,, = 1,
e Sum of actuator and gear inertias is J,,, = J, + J,
@ Inertia of the link is .J; (assumed constant)

e Coeflicient of motor friction is 3,

The equation of motion for motor
angle 6, is then

TS =T —mfr — B, 45
~ I\"rn"u ([ ,-"l‘ . ,}m %f_
4533233 ITMO UNIVERSITY 225
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Dynumital Modul of & Single Jeint Robot

Dynamical Model of DC-Motor/Gears and Single Link

Augmenting the mechanical and electrical models, we obtain:

i ; i
L (m‘iu) +Rigz, = VK, ( ugm)
& d .
Jm (mam) } Um ( H’)m) = l\rn‘n TR

LTI system represented by linear ODEs with constant coefficients.
We can use classical methods for controlling it.
The Laplace transform yields

(Ls 4+ R)I,(5) = V{(s)— Kys0,(s)
(J.“.S ’* Bm)SHm l.‘q) — [\vulu('g) N T”:S:I,’fr

Dynumital Modul of & Single Jeint Robot

Dynamical Model of DC-Motor/Gears and Single Link

Block diagram for a DC motor system:

“'|-q}. | ,,‘(.V‘) . i g- " : f‘),,, f")
L.+N ]\“" FAEEY ™ :

N, |-

The electrical subsystem is typically much faster than the mechanical one.
Assuming % = ( leads to a reduced order actuator dynamics.

This can be justified by e.g. balanced model order reduction.

Let’s find the transfer fets from V(s) to O,,(s) and 71(s) to 6,,(s).

BT LML LR Y

BT LML LR Y
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Dynumital Modul of & Single Jeint Robot

Dynamical Model of DC-Motor/Gears and Single Link

The transfer function from Vis) to ©,,(s) is

('v ) ( ) = (-)IH( ) [\HI -
VSRS T Vs) T [([\+ RY(J,n5 + B.,,) + "m"'n s
Ko
¢4
R (fs+1) By (Frs+1) + Kk &
K
RB.,
= ( \ '.l
(.-Eq-% 1) (7{;“-5 + l) ' 1-’);—-’ "J
K,
~ i
(fms + 1) + Sl | s
l‘:llt I\'IJI
~ = 3 ~ it -
[Jms -+ Bn: } A—,‘{Ah} s ..’H -+ Ii] 8

Dynumital Modul of & Single Jeint Robot

Dynamical Model of DC-Motor/Gears and Single Link

The transfer function from 7{s) to ©,,(s) is

. S (_)m(.‘) | —([‘iﬁ-’{-
{8l T mrls) T [([\.;.R)(J,,,\ R"l]'*']\"'[\'
B —R(Es+1)
r

l“ (£s+1) By, ( s+ 1) + K..,Ix},] s

. —,+.,,
v [(%‘*s+ l) + —-"—-"RBI"J §
- 1 -1 1 -1
r [.l,,,.s + B + '—“—h’l’- 8 = r|Js+ Bls
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Dynumital Modul of & Single Jeint Robot

Dynamical Model of DC-Motor/Gears and Single Link

Lets simplify the open loop system to standard

3 (—),,,lsl |
Givsay(s) = 5 =

O (s) n -1

G- {s) =

Eay(s) Js+B

_'1_”[.\,: Js+ B

format;

I Ouls)

s  U(s)
O,.(8)
s D(s)

Block diagram of the simplified open-loop system:

015 {
: | Js+B

Om

ontsol Desagn

Control Design: PD Controllcr

Given the open loop system of the actuator (assuming J = B = 1)

Om{s) = Gols) [U(s) + Dis)] ,Gols) =

1

1

s(Js+ B) =

s(s+1)

Design a PD controller such that the closed-loop poles are at —3.

With the following plant and controller models

By(s) 1
Gols) = — ;. Clae) =
Al Ap(s) S(S t l} (

P(s)  Ky+ Kas

L(s)

the pole placement is equivalent to solving the equation

Ao(s) - L(s) + Bols)- P(s) =
(s+1)s-141. (K, + Kys)
F+(Kg+1)s+ K, =
= Ky =5,K,=9

-"ln‘ ': S]

1

(¢4 3)=4+3)

82 +68+9
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PID Controller

With the following plant and controller models

Lﬁ,l S) 1
Cols) = -
ol#) 44)"3) s(.s‘ - [)
oy — PO Kyt KastKifs _ sy + Kes) 4 K
ne) = = =

Lis) 1 s

the pole placement (all poles at —3) is equivalent to solving the equation

Ao(s) « I{s) + Bo(s) - P(s) = Au(s)
(s+1)s-8+1-(Kps+ Kqis* + K,) = [*+3l(-<2 +Gs+9)
'+ (1 + Kg)s® + K,s+ K, = s*+0s% +27s + 27

= K;=8,K,=27T,K; =27

Control Desagn

Trajectory Tracking: Fudfmward Control

' Feedforward signal is added to the control
" ; l 8 action U(s). Transfer function F'(s) is a new
i T design element. It must be designed such that:

Fi(s) is stable and proper.
A suitable choice is F'(s) =~ 1/G(s). Even though G(s) is typically not
proper, we can implement precomputed time derivatives of the reference
trajectory instead.

G(s) [F(s)+ H(s)|

il don Gls)
e(‘_\ — L / en‘ 3 \
W 1+ G(s)H(s) )+ t G(s)H{s)

D(s)

Choosing F(s) = 1 /G(s), even though G(s) is typically not proper we
can implement precomputed time derivatives of the reference trajectory,
. v ('< )
Os) = 0%(s) + I)( 3)
G(s)H(s)
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Saturation of Input Magnitude and /or Rate of Change

Second-order system with input saturation limiting the magnitude of the
input signal:

d

Py il
6, :% ' ! ¢
K p + Kps + 24— m: -

The closed-loop system can be drastically affected by input saturation
Increasing the control action beyond saturation limit does not propagate

to the plant.
We must check how the performance of the loop is influenced by input

saturation

as

Contsol Desagn

Saturation of Input Magnitude and /or Rate of Change

Typical signal limitations are the following NL functions:

e Suluration
ir 1 (" ) .\‘.:.‘ Urax

"l’llﬂi ’

u(t) = Sat [a(t)] = § w(t), if upmin < () < Upmaz

Weniden s if u(f) (; Uipsin
o Slew-Rate Limit
2 I -
Tnor if ;ﬁ?““) = Tmax
([ ’] q d 7 , y , -
— = oat | —u = <9 i R < Sult) < :
'.'f ( / N (n’-f ( ) ot ”(’]' If (Tr'nrl — ”(!) - (TFIIIJJ
: S
! Tminy if ,.7"(“ < Omin
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Control Desagn

Gear Box Dynamics: PIObiGﬂ‘S with Gear Boxes ™™™

Schematic of the actuator/gear dynamics for a single link:

Lossless transmission, i.e. Tl = 74f,, is impossible;
Gear box always introduces additional friction and delay;
Gear box can complicate the dynamics and limit the performance.

Control Desagn

Flexibility in Harmonic Drive Transmission

0,
I — —_— /@ Model of joint flexibility & in a
77777

harmonic drive gear box.

H"l
1,

The dynamic model is (where « is a control torque):

Dt + By + k(- 0,) = 0
Jm()‘m Bnigm -k {.Hf — Om ) = u

Compute the transfer functions relating the two variables and the control

input:
. k , 5 ‘
QH8) = J18% + Brs + kem = m(ﬁ)(':),,,l.ﬁ)
kOyis) + Ufs) | )
(-)rn §) = " - = k(s 0
\2) Jruf“' + an“'i‘;l' 711'1(-“] | f(“)-f- (“))
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Contsol Desagn

Flexibility in Harmonic Drive Transmission (2)

Block diagram of harmonic drive gear box:

k
o0
U -
1 > h
+ {"m"-‘ ) 9 I'?] N
m
k .
is) = ~{7(s5)
PSP (8) — k=
k

L'(s)

JonJist 4 (B + Jn Bi)s® + (k(Jw 4+ J;)

ke
Indpst + &(dye + ) 142

i

~L'(s)

Control Desagn

4 B,ul){l-“’z ‘ *‘(13"/ ‘ [}[ )-‘

PD controller with #,,, vs. @, feedbacks

).'
- H'" HI-
‘?_’ !\.p ! l\-l" 1, l.-' |‘-:- -
A
-t = . o H!u 6,‘
‘-T—’ K, + Kp) i P >
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Control Des

%"

PD controller with #,,, or #; feedbacks

Root locus of the closed loop system with ¢, -feedback

il
1

1
L]

I
L}

3t
o4
14
0+ %
14
o4
34
5 -4 -3

The PD controller was chosen as

PD=Kp+ Kps = K(s+a)

Control Des

"

PD controller with #,,, or #; feedbacks

Root locus of the closed loop system with ¢;-feedback

4 L
L '

'
)

2
]

' |
bodo
35

A
]

The PD controller was chosen as

PD=Kp+ Kps=K(s+n)
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Control Desagn

Elements of Linear State Feedback Control

We would like to analyze and control all states of the SISO system

i = Az+bu, reR",uekR!
! s = I3l
y = € &, yEcix

by the linear state feedback control law
u=—k"r+r

with a constant gains & and a reference input r so that the closed-loop
system is stable
d=(A—-")Yz+br

Typically, the gains are assigned such that the linear quadratic regulator
problem is solved as minimization of the cost function

J= / {a" (0)Qu(t) + 11’112(1)} dt —» min
JO

Control Desagn

Elements of Linear State Feedback Control (2)

Recall that we can derive the correponding SISO transfer function
G(s) = ) = ¢"(al — A) b

Since only a single output is measured we must estimate internal states
by an observer of the original state equation:
i = A+ bu+1 (y — "' #)
where the observer gain ! is used to drive the estimation error to 0
e=x—-2—eé=(A-lc")e

Recall that by the separation principle we can place observer poles
(A~ le") left of the poles of (A — bET).
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Control Desagn

Example: State Space Model of Flexible Joint

The dynamics of the flexible joint model is

Ig()g -+ B;().i + kB = kb,
'lm('jvn } Ijm(j.'n | ,'?0,,, = &k + u

Model of joint flexibility & in a harmonic drive gear box:

U Hllf 0’

Control Desagn

Example: State Space Model of Flexible Joint (2)

« & T
Lets choose the state variables as & = [0;. ([ (/,,f{.,,] and write the

state equation

(] — T4
Iy = Iy
)g = —%.1'1 <+ .-%;f‘g - ‘f—;'LJ;
ry = %‘l—'.LJ_)—%““J;'f—%U
{) () | §] ()
() 0 0 1 ()
r = k & B , r < 7]
R [
e e 9 B 3
y = |[1,0,0,0]z

The system is controllable and observable as long as & # (.
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Equatioes of Motion echeding Actustor Dynemes

Improved Dynamical Model

Given a system with n-degrees of freedom ¢ = [¢...., G|

L’(Q)q 2 C’(‘Iv‘i)d T ("{f” =T T=|T1y04es Tr-’]

‘l.-n.kgm.‘.‘ L [;m.kym.k s

where #,,, . is the k'™ motor angle; ry. is the k" gear ratio;
Jo ko By Koy x, Ry are parameters the Lt DC-motor.

Motor and the link angles are related by
”m,k = Ty k=1,
Then the actuator equations are

1\ nm.R

Ry

2 % 2 :
rl-.-lm Qe + r};Bm‘A'QA' =T Vi—7 =L vyl

Equatoes of Motion lechading Aclustor Dynemes

Improved Dynamical Model (2)

The dynamical systems

Dig)j+ Clg. Q)i +Clg) =7, 1= [r...., Ta]
Ky
I’ }mi-q& +7 Bm&‘{k —’&R—‘&—Tg =1 . |
i
can be combined, if we exclude =
Indeed, it is
M)+ Clg.4)g+ Bg+ Glq) = u
where M(q) = D(q) + ./ with .J = diag (r{Jm.1s-- -+ "o dmom)
B =[pIB., 5, 7§ Boa-<i; PaBam, ,.J being friction coefficients
= [uy, uz,... ty)" wnth g = rk —— =Ve, k=1...., n
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Saet Post Reyuletionm

Set-Point Regulation: PD-Controller Design

Given a mechanical system
Mg+ Clg.q)g+ Bqg+Glg)=u

We are interested to design a controller that stabilizes a particular
configuration of the robot: ¢ = s and to analyze the closed-loop system.
Assume that B =0 and C(q) = 0.

The first control law to analyze is

u=—Ky,(q—qq) — Kag

with K, and K, being diagonal matrices with positive elements.
To analyze the behavier of the closed-loop system

M{glg+Clg.qlg =u=—Ky (g — qa) — Kqg

consider a scalar function, the Lyapunov function candidate
NS . | S P
Vig.q) = 54 Mig)q = (g —qa)” Kplg—qa)

Saet Post Reyuletionm

PD-Controller Design (2)

Time-derivative along solutions of the closed-loop system is

(‘ﬂ‘ = ¢ M{g)g+q" ;%-;— (Mg}l g+ ¢" Ky (q — qa)
- Y X 35 a1 i e
= [u —C l.q.q)q] +q’ 5 \Mg)la+q¢" K, (q—qq)

= T [u+ Ky (¢ — qa) | +qG° { p ),\I{q, —((q,q)}

«r e 1 54 'l
= §" [u+K,(g—qa)] +4 { T )JD(W'“ J|—=Clg, ")}

N

o

i(')
= q7 [u + Ky (g — ([,f]]
= g’ [ — Ko{g—qa) — Kag+ K, (q— q,;]]
= —¢ K4
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Sat Post Reyuletiom

PD-Controller Design (3)

Its time-derivative along solutions of the closed-loop system is
lff‘ = —(}’ I\’dl} i 0
e V' is positive definite, V'(q.4) =0 = {q = qs.q = 0]}
e Viglt).q(t)) is monotonically decreasing
= 3 lim V{q(1),4(t)) = V. and 3‘ lim ¢(t) = () =0
—t+OC

=4+

If we substitute this limit trajectory into the dynamics, we obtain

M(Gx) G +C0xrGx) G = —Kp (g — qa) — Ka G
S~ S~ \,(./
=0 =0 =A)

0= ,‘.p {’]\'. qd :'

Ky = diag (K1, Kpa, -+ -, Kon) >0 = ¢oo =44

Set Post Reyuletioon

BT LML LR Y

PD-Controller Design with Gravity Compensation

Given a mechanical system
M@+ Clg.q)¢g+ B¢+ Glg) =u
We need to modify this controller if BB 3£ 0 and G(q) # O
u=—Kplq—qa) — Kag
The modified control law
= —K;,(q—qa) = Kaq+ Glq)
is stabilizing, if K, and K are diagonal matrices such that

K,>0 Kqi—B>0
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Frajectory Traching

Trajectory Tracking: Feedback Linearization

We consider a class of nonlinear systems of the form

[
ler? ueRr"
q

= fle)+glry, == [
The explicit state equation for a mechanical system is:
M{g)i+ Clg.4)qg+ Bg + Glg) = u

which in our case is fully actuated. The state equation is

j_

q
Mig) ™ Viu—Clg,¢)g — Bg — C.'{q)]]
We need a state feedback control

w=alz] + #x)v

and a change of variable = = T'(x) such that the closed-loop system is
linear and the pair (4., B, is stabilizable
i=A.2+ B.v

Frajectory Trackng

Feedback Linearization (2)

Let's choose z = r = [q;«j] and the control transformation
w= M(q)v+ Clq,q)q+ Bg+ Glq)
The dynamics of the closed-loop system is:

SRR i U - 0], .4
oL = ""[u., un]"*[ln N [

@ (¢ = v is known as double integrator system

o u= M(g)v+ Clq,q)g+ Bg + G(q) is called inverse dynamics
control that makes the close-loop system linear and decoupled.
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Frajectory Traching

Inverse Dynamics + PD Control

Given a mechanical system
Mg)g+ Clq.4)q+ Bq+ Gilg) = u
and the desired trajectory ¢4 = g4/t), intrcduce the controller
w = Migla,+Clq q)q+ Bg+ Glq)
a, = Galt) + Ka(qa(t) —q) + Kplqalt) = q)
Then the closed loop system is
G=aq = Ga(t) + Kq(galt) = ¢) + Kplaa(t) - q)
It can be rewritten in error variables as
E+ Kyt +Kpe=0, e=qult)—q

-2 &)

We could for instance choose K, = diag(wi. .. .. w?) and
Ky = diag(2w ..., 2w, ) to shape the tracking performance.

Frajectory Traching

Task Space Representation of Inverse Dynamics

Given a mechanical system and the linearizing feedback control
M(gyg+Clg.qyg+ B+ Glg) = u
u= M(gla,+ C{q.4)¢ + Bg+ Glq)

Let X = [(:;?({/;Il) ] & RY be the end-effector pose using a minimal

representation of S()(3) so that we get the relations

X = = Jalg) ¢
X = l.,\q q) g+ Julq) g

Now modify a, for a linearization and decoupling in task space:
ax = J,(q,4) §+ J.\q) Uy & G, = J”'l(q) 1u,\» — Julq.4) q]

resulting in the double integrator system X = ay for which we can also
design tracking controller. Use pseudoinverse if Jacobian is not square.
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Robust and Adaptive Motion Control

Given a mechanical system

Mg)j -+ Clg,q)qg+ Glg) = u
and the desired trajectory ¢; = ¢4t), the controller

w = Mg)v+Clq.q)q + Glq)
vo= gult) = Ky(g— qa(t)) — Kalg — qult))

cannot be safely implemented if the model parameters are uncertain
The approximation might be used

u = [M(g)+AM]v+ [Clg,q)+ AC| ¢+ [G(g) + AG]

© o ‘.lp'rf) =z I\'p(q = - ’]l.'(.’,:') - ]\’,l(f} " ()"41(,))

Robast sod Adeptive Mution Control

Robust and Adaptive Motion Control (2)

Parameter uncertainties and unmodelled effects of the robot dynamics
give rise for two control approaches:

u= [M(q) + AMv+ [Cilg.q) + AC] g + |Glg) + AG]
v = qa(t) — Kylq — qu(t)) - Kalg — qall))

Robust Control: Design K, K, and ¢q4(t) such that the error signal
e(t) = q{t) — g4(t) =0 Y{AM AC,AG}e W
Adaptive Control: Improve estimates for
Mlq), Clg.q), Glg)

in the course of regulating the system.
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Robust Feedback Linearization

Given a trajectory ¢ = gyl t], consider the closed loop system

Migld+Clg.q)g+Glg)=u
u= [M(q) + AM)u+ [Clq, ) + AC) ¢+ [Glg) + AG]

v =qalt) — K,(q—qalt)) — Kalqg — qalt))

Mg)g+ Clq,q)q + Glq) =
= [M(q) + &AM v + [Clg.q) + AC] g+ [G{q) + AG]

M{g)q = |M(qg)+ AMlv+ ACq+ LG
g = M(q) ' [M(q)+AMv+ M(q)™ ' [ACG+ AG)
i = v+ M) [AMe+ ACG+ AG)

g=v+ne.qv)

Robast sod Adeptive Mution Control

Robust Feedback Linearization (2)

Given a trajectory ¢ = gyl t), consider the closed loop system with w

Mgl +Clg.q)g+Glg)=u
u= [M(q) + AM)u+ [Clq, ) + AC) ¢+ [Glg) + AG]

v =gq(t) — Kylq —qalt)) — Kalg — quit)) + w
It can be rewritten as
g=v+nlqg.q,v)
(@ = dalt)) + Kalq— qa(t)) + K, (g — qalt)) = w+ 9lg,q.v)
d | Yaxn L, Onicn |1, o] 19— qult)
dt” [-/\',, 'Kd] " [ L |wtatbewl e=1i_ 5
~ v | C—

e

A b
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Robast sod Adeptive Mutiom Control

Robust Feedback Linearization (3)

To continue with design of w for the system
2 Ae + B[ b it eow))
dt A

we need to impose some assumptions on n(-), namely

lel] + 2 llell® +43(8) ,

In(tye, u)l| < o |w|| + 1 |le

The condition a = ||M~"{¢)AM — 1|| < 1 determines how close our

estimate AM must be the true inertia matrix
Matrix A is stable, therefore VQ > 0, 3P = P7 > () such that

AP+ PA=-Q

o<1

Robast sod Adeptive Mution Control

Robust Feedback Linearization (4)

Consider a Lyapunov function candidate as V" = ¢” Pe, then

i d
—V = —e"Pe+e"P—¢
dt B TS |
2¢” PB lu' + nlt. €, u')J

e"(A"P+ PA)e + 2

Let us look at the second term

f( = : : R
= —e"Qe+2e"PB [w+n(t.e;w
ll! e’ Qe ‘ [u nl i )l
ad
when w has the form
tw = —plt.e) > = B"Pe, p(i.e) is a function to choose
VELE-
(o2 n) < —olall+ 27l = el (ol
\. s p v
|| =1l {iwl
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Robust Feedback Linearization (5)

To sum up, we search for a scalar function p(i, ¢} such that
(=p+n} <0 < |7l <p
In(t, e, w)l| € o [lwl| + 1 el + vz llell” +alt), a<1
= —p(t; f)"—_.

~f~

These two inequalities imply the next one

pit, el ,__“ + 7 l|e
NEo

-z |lell* +7a(t) < plt.e)

ap(t,e) +7 [l +v2lle]l* +valt) < plt.e)

| r ‘
11 el + 2 [lell®
|

] —ax |

Robast sed Adeptive Mution Contrul

Robust Feedback Linearization — Final Controller ™™™

Given a trajectory ¢ = gyl ), consider the closed loop system

Miqlg + Clg,qlg + Glg) =u

u=[M(q) + AM]v+ [Cilg.q) + AC] g+ |Glg) + AG]
v = galt) — Kylg — qu(t)) ~ Kalg — qalt)) + w

' ——;)((.f')?’-x—_ , fz=B"Pe#0

“‘{ "0, fz=BTPe=0

where p(l, ¢) is any function that satisfies the inequality

plt€) 2 el +7a llell* + 7 ()]

with constants a, ;1,72 and ~3(f) obtained from the inequality

In(-)| < e lluwll + 1 llefl + 22 el +7a(t), o<1

n(q.4.0) = M~ [AMv + ACG+ AG), e= [". j‘;:gﬂ
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Adaptive Feedback Linearization

Given a mechanical system
Mq)ij+ Clg,q)g + Glq) = u
and the desired trajectory ¢ = qa(t), introduce the controller

u = .‘.I(q]I' - (:'(q.Q)q + C-v'(q,)
vo= qalt) = Kplg—qi(t)) — Kalq — galt)) +w
There is the difference with the robust design. In robust design, the

coefficients of M(-), C(-), G(-) were fixed. Now, they are variables to
tune and w = ().

Let us find the dynamical equations for updating values of M(-), C(-},
(i{-) provided that we measure {1}, (1), G{1).

Robast sodd Adeptive Mution Control

Adaptive Feedback Linearization (2)

Given a trajectory g = gyl t], consider the closed-loop system

Uiq,qH (9.9)§ + Glg) = u
°u= U(q): +0 (q, q)q+(.[q.
W= (hl(r) ,J((I '/d“], 1\4!':4 T ‘id“‘])

|

Mg+ Clg.q)g+ Glg) = AU(:[.)I' - (ﬂ'(q. q)q + (;[_l,'.)
Y{q,q,q)0 + Miq)q Mig)v + Clq.9)q + Glg) + M(qlq
i = v+M) Y049 [i) -0

where 0 is the vector of true parameters of the madel; @ is the vector of
estimates; Y'(-) is the regressor evaluated for ¢(1), ¢(t), g(t]. The
closed-loop dynamics is then given as:

(G — ija) + Kald — da) + Kplg — qa) = M{q) "V (9. G4
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Adaptive Feedback Linearization (3)

The equation has variables we can change (M and 0):
(= iia) + Kald — du) + Kplg — aa) = M(g) 'Y (9,.7) [0 - 0]

Let’s rewrite into state space form with M (q) *Y(q.4,d) = &

d 0 1 ‘ (0 . g qalt)
e = [ K, —Ky ]5.4- [ 2 ]«I» [u-u}, e = Lj—().x(ﬂ
< S R ,

-

A 0

Solve the Lyapunov equation
ATP+PA=-Q<0.P>(
and consider the Lyapunov function candidate

Vi=e"Pe+ [0— ()]rl" [(} —9] T'>0

0o -

Robast sed Adeptive Mution Contrul

Adaptive Feedback Linearization (4)

%v = ;{ P}+%{%@_ﬂrrp_@}
= M- + B [0 . 0] ] Pe+¢™P [m + B® [f’/ 3 (.a]: +
-z[%f) ']‘ 1‘[&- u] * %[()~»f)]Tl‘ [%0 u}

= ¢"[A"P+ PA]e [0 u]‘ {q»"'l;" Pe + 17'0} 0
& 5 it

-

L r Ql_’ b & T

=}
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Adaptive Feedback Linearization (5)

With the proposed update law for # the closed-loop system is

Lo i &Btb[ﬁ el d—a— 147 BT Py

The inequality

%‘ : ;{l pf*:[n_n] r[r}_f)H = —e” Qe

implies that {according to Barbalat lemma)
elt) = 0as (- +x and [f’/((l ] is bounded

Recall that we have to measure § for computing the regressor; the matrix
M qg) at each time moment should be invertible.
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Trajectory control of mobile robots

Contents

@ Introduction
e Why is it interesting? Motivation
e State of arts in path following
@ Modeling of the mobile robots
@ Posture kinematic model
e Configuration kinematic model
e Configuration dynamic model
e Posture dynamic model
o Trajectory control
e 2D static frame
e 3D static frame
e 2D moving frame
e 3D moving frame
@ Experiments
° l)('St'tript.i(')n of the testbench
@ Results of experiuments

Iotraduction

Examples of problems

Autonomous vehicles control (mobile
robots, UAV etc.)
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Examples of problems

Collision avoidance:

Va
Patharound
an obstacle . .
\ 4 ™
_ \ Desired mobile
R 4 robot trajectory
- i
Mobile e

Robot . Obstacle

Y

‘v\\'vy Y .'

Y
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Iotraduct

Examples of problems

Control of underwater biomimetic robots

(Robotic Fish)

Problem: robot can not stop after reaching a goal.
Possible solution: continue motion along closed curve around the the
goal

Possible solutions:

e Virtual Target Tracking:
o Backstepping based
Aguiar, A P.; Hespanbe, 1P ; Koketovie, P.V., "Path-follorwmy for nonmimimum
phase sagstems removes performance livatations, "Automatic Control, I1EEE

Transactions on |, vol 50, no. 2, pp.254.239, Feb, 2005

o LOS(Line-of-Sight) methods

M. Brewek and T.J. Fossen Principles of Quidance-Based Path Pollowsng tn 2D end
D Proceedings of the IEEE Confevence on Decimion and Control, Sewille,
.\,'}uxnl\el)l"'n,pp. ne7-65¢
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it arts i path fallowing

e Sliding mode
Ashrahuon, H,, Musks, K. R, McNinch L. (., and Soltan, R., “Shding Model racking
Conirol of Suvface Vessels,” IKEE Tronsactions on Industmal Electronices 8§85 on Shiding

Made Contro!l v Industmal Apphcaotvons 2008

e Passification
M. Kl-Mawwary, M Maggiore, Case Studies on Fassoty-Dased Stabilization of Clased Seis

internationel Joarnal of Condral, 201218

e Feedback linearization:
o Methods of transversal linearization
Niclsen, O 1 Falford. O.; Maggiore, M., "Path following waing transveray feedback
lnearzotion. Application to a magler positioning sysiem, "American Control

Conferanen, 2009

¢ Vector Field Path Following
Nelson, D001 Barbey, .0 McLoin, T.W.; Beard, R.W. "Vector field path following

for amall unmenned o vehiales, "Amencon Cantrel Conference, 2006

o Coordination contral by Iliva V. Miroshnik

Introduction state ol ar n path following

Main ideas of methods based on the stabilization of sets

e Implicit representation of curve

e Dependence on the current position in the space

o Invariance of desired path{an attractor in the output space)
e Potentially higher accuracy of motion

§ 1%
1Ge s AAMANS AL TERERR) A
PrYANINNNAALNG VRSN AA R
P ORI R R R R R R IR B 1005y s vev )
Y A
......
a0
-
e w
S0
--------
L= i .
s 2 ' .
.... . y
o e . 8 1% %
0 " "o b L) 1 80 q 0 o 1%

Suypdt, .0 Saripalls, §.; Sousa. J. 8., "An ecvaluation of UAY path followtng algorithms, "Clontrol
Conference (ECC), 2013
Nelson, D.R.: Barber, 2.0, Molawin, T.W.; Beard, R.W., "Vector fleld path following for seall

unmannod agir vehucles, "Amarican Control I'nnf-'vvq.;t, 2006
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Iotraductiorn State

Formal statement of control problem

e Geometric sub-task:
dist (p — f(pa)) — 0,

where f(p,) - a desired path of motion, p; - spatial coordinates of
space, p - current position of a plant.

o Kinematic sub-task - maintenance of desired velocity of motion
along the path:

im AV = lim (V - V*) = 0,

f—nG

where V' - current velocity of motion, V* - desired velocity.

Four state space models

The posture kinematic model

The configuration kinematic model

The configuration dynamic model

The posture dynamic model
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Robot description

The robot posture

W H
A

= |y, (1)
v/

Orientation of the base frame with ¥
respect to the moving frame

" cosv sirind () 0 ;- Xb)
l?': ") .l pr— l\.II-Yl'I) ',.{"\..,‘Z) “ ‘ (2)
0 0 1

1 e 10

Constrains on different wheels. Fixed or steering wheel.

Puc.: Fixed wheel or steering wheel.

Constraint on the wheel plane

[--s-in(u ) cos(a+ 3) (vu.s‘:’i'] [f(t‘l_j»é +ro =0 (3)

Constraint orthogonal to the wheel plane

l(_'Ué'((l t3) sinfa+ 2) Isiu,-JJ R(U){.: : (4)
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‘astor wheel.

Puc.: Castor wheel.

Constraint on the wheel plane

[vrs-in(u L 3) coslae+ 5

) I:‘us;’i] H(:}. 4+ r = 0; (3)

Constraint orthogonal to the wheel plane

jms{n +d) sinfa+3) d+

isin3| R(v)

E+4d3 =0 (6)

P

Puc.: Swedish wheel.

The motion constraint

|—sin{a + 3+ %) cos(a

B4 )

lcos( B3 4 ~ l

(ﬂ]\ | reosyyg = (.

(7)
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T

Restrictions on robot mobility

The configuration of the robot is fully described by the following
coordinate vectors:
e posture coordinates £(1) = l.r(_!) y(t) z)(!jJ for the position in
the plane; '
e orientation coordinates 3(t) = [;'}f(f) :'3?(!)] " for the orientation
angles of the steering and castor wheels, respectively;
e rotation coordinates g(f) = f,:_,-[f] @s(t) welt) ;,:\n'(t)]l for the
rotation angles of the wheels about their horizontal axle of rotation.

J1(Bs, Be)R(O)E + Jagp = 0, (8)
Cy(Bs. B.)R(D)E + CaB. = 0. (9)
J
(B0 . ;
where Jy (8., 3 : ,‘” (-';“) L C(Bs,Be) = |ClalBa) |, Ca= | ©
. ]}‘ e (‘l,-(.'jr} ("),«

ladeln

Restrictions on robot mobility

Consider now the first (N¢ + N;) non-slipping constrains from (9) and
written explicitly as

C1;R(1)E =0, (10)
C1:( 35 )R(D)E = 0. (11)
These constraints imply that the vector R(¥)£ € R(CT(3:)). where

—r -
Ra= [(-,4,.1_,_]] o

Obviously, it is rank(CT(3s)) < 3. If rank(C7(fs)) = 3, then R(a:’)f: = ()
and any motion in the plane is impossible!
Define the degree of mobility 6§, of a mobile robot as

(5‘,,‘ — f]ftll({t‘\\{(.‘{({f“"j);: =3 1’(}“;.'('(.";{;7‘;)‘&:))' L13)
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)

Restrictions on robot mobility

Now examine the case rank(C' ;) = 2. In such case the only possible
motion is a rotation of the robot about a fixed ICR. Obviously, this
limitation is not acceptable in practice and thus we assume that
rank(Chr) < 1. Moreover, we assume that a mobile robot is

nondegenerate if

rank(Cyy) < lrank(C](8;)) = rank(Ciy) + rank(Cy4(5s)) < 2.

This assumption is equivalent to the following conditions:
e if the robot has more than one fixed wheel (N, > 1), then they are

all on a single common axle;

e the centers of the steering wheels do not belong to this common

axle of the fixed wheels:

e the number rank(Chs(3s)) < 2 is the number of steering wheels
that can be oriented independently in order to steer the robot.

Define the degree of steerability 4, of a mobile robot as

0y = rank(C(3)). (14)

¢ robo

Restrictions on robot mobility

It follows that only 5 nonsingular structures are of practical interest,
which can be inferred by the following conditions.

e The depgree of mobility 4,, saticfies the inequality

1 <4, <3, (15)

@ The degree of steerability 4. satisfies the inequality

(

-
-

3, £ 2. (16)

e The following inequality is satisfied:

Tabmuua: Degrees of mobility and steerability for possible wheeled mobile

robots,

hln

3

2

Dy

()

0
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eling LT

Type 3,0 robot with swedish wheels

The constrains have from (8) where

J1 = J1sw 0 -1 L

r 00 SWEDISH
Jz: 0O r 0Of. WHEELS
00 r Y
>

Tabmmua: Characteristic constants of
type 3.0 robot with swedish wheels.

X"l
Wheels (x gl Y
| s /3 | 00| L
25w 19 010]| L
Jsw or/3 |1 0|0 | L

e Type (3,0) robot. In this case it is

O = dim(R(CY(5s))) =3 b6, =0.

Type (2,0) robot. In this case it is

Om = dim(R(C7(5s))) = dim(R(C)z)) = 2 d: =1.

Type (2,1) robot, In this case it 18

O = dim(R(C](5:))) = dim(R(C14(5))) =3 s, =1.

Type (1,1) robot. In this case it is
O = dim(R(CT(5s))) =1 5, = 1.

Type (1,2) robot. In this case it 18

V)

Om = lh'm(N((_.'l.(;‘f,,»]] ) = dim(R(Cx(5s))) =1 O =
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'l'.\l)(' 3.0 robot with castor wheels

The constrains have from (8) and (9) where

—sinB.a  cosPa LeosS. r 0 0
Jy = Je(8e) = | sinBe  —cosfa LeosBa| Ja= |0 r 0
cos83,.a sinfi.a  LeosBa 0O 0 r
083, sinfa  d+ Lsinf4 d 0 0
C1 = Ci1clf:) = cosle —siney d4 Lsinfa| ,Coo= |0 d 0
sinB.a —cosB.s d+ LsinfSa 0 0 d

Iabomna: Characteristic constants of

type 3.0 robot with castor wheels. CAoR ;
L Yo
Wheels Q 811 /J ——p——
le () - | & 1
2c T . L P
3¢ 3n/2 |- | L Y

The constrains have from (8) and (9) where

0 1 L r 0 0
.]|/
h=|, 8= © -1 L |.k=|0r o0
TACNE W) cosP.a s LeosS.a 00 r
1 (0 () 0
' i 0 1
(‘l = [(_‘ (li)} = -1 () 0 (‘_) — [(-‘ ] = |0
S sinfl.a —cosB.a d+ Lsinf. o d
FIXED
Fatuma: Characteristic constants of w.s
type 2,0 robot. ;
o Y
Wheels | o |31 S »”
—ir [0 [o[E ="
2of | ® |0]L VHEEL
3(' 31[/':2 =~ ,/ x“
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Type 2, 1 robot

The constrains have from (8) and (9) where

Ja(Bar) ~8inds1 €085 0 r 0 0
= . l”‘ld“’.l; | = | —cos3.e —sinfao V2Lecosfa| . .Jo= |0 r 0
J16el Be2y Ges) . Y .
sina cosfes V2Lcosug 0 0 r
s, sinid, 0 . ‘ 0o o
' Cia(3a) ey ; - . [0
O = CrABon. 3.) = ~@nga sl d4V2Lsindg| ,C2 = C = |d 0
c\D2e2, ¢ . L2
; E ‘ 083, . -sin8.5 d+ V2Lsin8.s . - 0 d

Tatanua: Characteristic constants of

type 2,1 robot.
. ~
Wheels o | B *7.!_-ﬁ CASTOR A é’]EERlNG
s 4] - 0 WHEELS Py ) WHEEL
2 w2 | - V2 L
= =

Type 1,1 robot

The constrains have from (8) and (9) where

() | L r 0 0
B Jis B B B
Jp = 1(Ba)| = ( 1 L =10 r 0
CABNT8 coS3en St Leosieag 0O 0 r
C | 0 0
C1= I:(" |l; 1] = » ) 0 Oz = 0.
AEEVE Sinfdey —cosFey Lsindea
FIXED
| o ¥HEELS
Latomna: Characteristic constants of
type 1,1 robot. | g
 Jory ) £
TP = --—-¢ >
Wheels Q 211 STEER&%
1f 0 0| L WHEEL
- T 0| L
:55. 3”,'/2 X L
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Type 1, 2 robot

The constrains have from (8) and {(9) where

iu(Bet Bis) —sinPyg cosfa LeosSg r 0 0
Iy = { J (“j ) 5 ] = | 8indy2 —co883p LeosFap|  Jo= [0 r (
e oS sinf.y  Leosigy 0 0 »r
_— i 4 cosBa sinda Lsin3, o g 0
('v - :(—l.ﬂ("‘ﬁl-li"Zl — 2 _j » i I ' _; (, s l) = ‘
&= Ci.(8.a) = | —COS252 —8SUJgz2 481N 3.0 L2 = Ch = )
BN sinf.s  —cosd.; d+ Lsin3. Ll d
STEERING
adyonna: Characteristic constants o ~
I Characterist tants of PR
type 1.2 robot. 'I%
. Yn
v == >
Wheels 0 a1l @A/ P
_]"’ 0 - | £ CASTOR
28 i - |\ WHEEL ;
e Jn/2 | - | L &

Posture kinematic model

Whatever the tvpe of mobile robot, the velocity £(1) is restricted to
belong to a distribution A, defined as

£(t) € A, = span{col( RT (¥)%(3,))}vt,
where columns of matrix X(/3,) form a basis of R(C7(35)). i-e.
R(CT(8:)) = span{cal(T(5,)).

This i8 equivalent to the following statement: for all £. there exists a
time-varving vector #(t) such that

£ =RT (DB . (18)

The dimension of the vector () is the degree of mobility (13} of the
robot,
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Posture kinematic model

If robot has no steering wheels {§; = 0), the matrix ¥ is constant and
the expression (18) reduces to

£ = R (9)En. (19)

In the opposite case (4, = 1), the matrix ¥ explicitly depends on the
orientation coordinates J, and the expression (18) can be augmented as
follows:

£ = RT(ME(B . (20)

B, = (. (21)

The kinematic state space model is in fact only a subsystem of general
dyvnamic model that will be discussed further.

Generic models of wheeled robots

e Type (3,0) robot. The matrix ¥ can always be chosen as a
(3 x 3) identity matrix. so the equation (19) reduces to

T cost) —sinyg 0 I

1
gyl = |simd  cost ) 172 (22)
i () (0 Ll |73
0 0
@ Type (2,0) robot. The matrix ¥ is selected as ¥ = |1 0] , so
0 1
the equation (19) reduces to
I —sind 0 :
vl = | cost? 0 [’Il] ‘ (23)
J 0o 1] %
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wmatic model

Generic models of wheeled robots

e Type (2,1) robot. The matrix £(5;) is selected as
—sin3, 0
2X2(0s)= | cosgq O

0 1

s0 the equations (20) and (21) reduces to

a —gnl =+ ."-”.32,\ )
) [ [y ['u] , (24)
4 o
) 0 1| L
Ba = (. (25)

wmatic model

Generic models of wheeled robots

e Type (1,1) robot. The matrix X(5;) is selected as

()
%8 = |Lsinf

cos3.3

so the equations (20) and (21) reduces to

T — Lsinisi H,r_'f.,;;
| = | Leosdsindyg | ny, (206)
i) 0833

Ba = (. (27)
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Generic models of wheeled robots

o Type (1,2) robot. The matrix X(/J;) is selected as
—2Lsini3qsine
YABs) = | Lsin(Bq + 8a) |,

sin( B — A1)

so the equations (20) and (21) reduces to

@ L{sinBgsin(d + ) + sinfgasin(d + 34))
| = | L(sind;cos(i! + Bp) + sindgcos(t + 554)) | m, [(28)
W sin(F2 — 34)
Ba =G (29)
B = Co. (30)

1 e 10 r robo! Pasture kKinematic model

Mobility, steerability and manoeuvrability

Rewrite the posture kinematic model in the compact form
2 = B(z)u, (31)
where either (4,)

z=Ef D2 I{T(U‘)}_I. w=r1

£ . RT(NM(3.) 0] I
z= |2, B(z)= ‘i("] . U= ,

' ' 0 I
Consider degree of manoeuvrability

‘5.\1 (Sm + (5_‘ .

The ideal situation is that of omnidirectional mobile robhots where
O =0M = 3.
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[rreducibility

A well-known consequence of Frobenius theorem is that the system is
reducible only if dim{A) < dim(z), where A is the involutive closure of
the following distribution A. expressed in local coordinates as

A(z) = span{col(B(z))}.

For the posture kinematic model (31) of a wheeled mobile robot, the
input matrix B(z) has full rank, i.e.

rank(B(z)) = 8, + 8. V=z,

and the involutive distribution A(z| has constant maximal dimension.
1.6,

dimlf:)(:)) =340, Vz.

As a consequence, the posture kinematic model (31) of a wheeled
mobile robot is irreducible. This is a coordinate-free property.

Madeln

Controllability

The controllability rank of the linear approximation of the posture
kinematic model (31) around an equilibrium configuration
7= I_EI ;'f_fJ 1S Oy + Og.

This property follows from the fact that the linear approximation
around (z = 0,u = 0) can be written as

It follows that the controllability matrix reduces to B{z) whose rank is
8y + 04 for all Z as was shown before.

This implies that the posture kinematic model (31) of a wheeled mobile
robot is controllable (completely controllable for type (3.0) robots).
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Stabilizability

For omuidirectional robots feedback control
u(z) = B Y2)A(z — 2*),

with A an arbitrary Hurwitz matrix is clearly a linearizing smooth
feedback control law that drives robot exponentially to *. Indeed, the
closed loop is described by the freely assignable linear dynamics

(—iu": —2Y=A(z-2z").

dt’
Hence, omnidirectional mobile robots are full state feedback
linearizable.
For restricted mobility robots the posture kinematic model (31) is not
stabilizable by a continuous static time-invariant state feedback u(z),
but is stabilizable by a continuous time-varving static state feedback
u(z,1).

Configuration kinematic model

From (&) and (9) it follows directly that

Be = —C5,. Cre(Be) R(V)E, (32)
¢ = —Jy LI (Bs, Bo) R(D)E. (33)

By combining with the posture kinematic model (20), equations (32)
and (33) become

Be = D(B)SB(8)n, (34)
& = E(Bs, Be)X(3: )1, (35)

where D(3,) = —(."é’ch'h.( 8e) and E(5;, 8:) = —J; 7 1(Bs. 8¢).
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Madeln the wolaile

Configuration kinematic model

Define the configuration kinematic model as

qg= Slqg)u, (36)
where .
€ k! (MXE(3:) 0
&l = 0 I 1
1= 15.1°9D=1| piis) ol 1 H
v E(8x, 8e)S(B.) 0

Modelnr { the mobile robo

Configuration kinematic model

Reducibility of (36) is directly related to the dimension of the involutive
closure of the distribution A,(g) = span{col(S(q))}. It follows
immediately that

Om + Ny = dim(A;) < dim(inv{A;)) <dim{q) =3 + N 4+ N + N,.
Define the degree of nonholonomy M of a mobile robot as
M = dim(inv(Ay)) — (8, + Ns). (37)

The configuration kinematic model (36) of all types of wheeled mobile
robot is nonholonomie, 1.e. M > 0, but is reducible, i.e,

dim(qg) = dim(inv(Aq)).

#° ITMO UNIVERSITY

266 8



2017 © Aleksandr Krasnov, Sergey Chepinskiy Digital control systems:
krasnov.aleksander@gmail.com, chepinskiy@corp.ifmo.ru Trajectory control of mobile robots

Madeln t hie winle robots Configuration kinematic mode!

Configuration kinematic model for type (3, 0) robot

For this robot 4,, = 3 and the configuration coordinates are

. 2 - 97
g=[z v ¥ w1 v2 s
The configuration model is characterised by

-

cost —siny ()
sint cost) 0
3 0 0 1
Slg) = V3/2r 1/2r —L/r
0 1/r L/r
| — \.’ﬁ;’?r -1/2r —L/r]

It is easy to check that dim(A;) = 3 and dim(inv(Aq)) = 5. The
structure of the configuration model implies that

.. 8L
@1+ P2+ 3= ——1.
T

Madeln the mohile robots Configuration kinematic model

Configuration kinematic model for type (2, 0) robot

For this robot 4,, = 2 and the configuration coordinates are

. P
g=[z y 9 B3 ©1 ¥2 3
The configuration model is characterised by

sint! 0
cost) 0
0 |
S{q) = %«t-o.s-,:'},_.;j “:"1(‘! + Lsing.g)
— l'/" r —_ L.:." I
l/r - L r
e ‘,l‘-"i 1 Je3 = -f—f(.'nx o3 |

It can be checked that dim(4A;) = 2 and dim(inv(4A,)) = 6. From the
the configuration model it is

2L

T

=——4.

@1+ P2
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ladelin

,\«l()(l(_'l (14‘1";\-';t3i(»ll

Using the Lagrange formulation, the dynamics of wheeled mobile robots
is described by the following (3 + N. + N + N.) Lagrange’s equations:

A T 9 <k _
d (i) (‘T) = RT(0)JT (Be, BN+ RT(D)CT (Be, By, (38)

di\og) \o€
a far\T ror\T N
'7(17) (77) =Gt (39)
i 7 RSN |
< (5 (ﬂ) = JTA + 7, (40)
dt \ 9 O 2 ¢

o ¢ ‘ T
: T
LY oY sy, (41)
dt \ 93, (o Jo

where T represents the kinetic energy and A, p are the Lagrange
f
\

multipliers associated with the constraints (8) and (9) respectively.

ladeln

Model derivation

By multiplying (38), (39) and (40} by E"(_B,)R( i), S['(:')'_.,)D(_B,.‘] and
ST A E( B, 3s) respectively and summing them up one can obtain

ET(8:)R()[Te + D(Bc)[T)5, + E(Bs, B)[T]p =
= 27 (B)(D" (B + ET (85, Be)T0)s (42)
[T]j* = Tgs |l3)

where

T, = d é)‘T) L rar\T
= dt U‘,f' o '
The kinetic energy of wheeled mobile robots can be expressed as follows:

T = ETRT () (M (B.) R(D)E+2V (Be) BeA-2W 8, )+ BT LB+ T Iip+ AT 1,8,
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Configuration dynamic model

The configuration dvnamic model of wheeled mobile robots in the state
space takes on the following general form:

£ = RY(0)S(3.)n, (44)
Bi=:L, (45)
Be = D(5:)E(8:)m, (46)

Hy(85. 831 + (B )V (B)C + fi(Bas Be 1 C) =

ST(BNDY (Be)re + EX (8, Ba)7o)s (47)
P8BS0 + 16 + f2(Bes Bey 11, C) = Ty (48)
@ = E(fe, B)E(84 1), (49)

where H1(3,.8.) = L7 (8 (M(3.) + DT(8)VT(8.) + V(3.)D(4.) +
DY (3.)1.D(8.) + E¥(5s. ,5,_.;1,,1_{._,,,. 3. NE(3:).

Actuator configuration

All steering wheels must be provided with an actuator for their
orientation, and to ensure a full robot mobility V,, additional actuators
for either the rotation of some wheels or the orientation of some castor
wheels.

= P, (90)

where P is an ((N, + N) x N,,) elementary matrix which selects the
components of 7. and 7, that are effectively used as control inputs.
Using (50) we can recognize that {(47) becomes

11][ 3s, 3 r.’” ( 1 )‘ ( Ie ](. fl (Fsy :'j,-,‘l],() — B{)“ ‘.)'r')l)"'m- |31)

where B(3g, G:) = (3, [D’ (8:) E T(3,. ).}

The actuator cuuﬁguru.tiou is such that the matrix 8(3.-- 3(.)P has full
rank for all (5, 5.) € RV« +Ne
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Configuration dynamin mode]

Actuator conhguration for type (3.0) robot

In case of swedish wheels the matrix B is constant and nonsingular, so
the only admissible configuration is to equip each wheel with an
actuator.

In case of castor wheels the matrix B{/3.) is

B(8:) =" [DT(8:) ET(8:)]

with

0851 —c083.2 sinea

| =

high I)T(. Ge) = — siniag —8inta —083.3

d+ Lsinf, d+ Lsinfo d+ LsinS.4

-

(

—sind SinPn €055
STET(8.)=—=| cosBua —cosBn  sinBea
Lcosf.  LeosBea  LeosBes

Configuration

Actuator configuration for type (2.0) robot

For this robot the matrix B(/4,) is

D l{cos,i’.-:'; ~L 4 —lging.
B(Ba) = | 1,5, 1ana "1 A
—g(d+ Lsingy) —= —F —5€080:
Several configurations with 2 actuators is admissible: 2 rotation
0 0
o ik T b
actuators on wheels 1 and 2 with P = 0o 1|} | actuator for the
0 0
orientation of wheel 3 and 1 actuator for the rotation of wheel 2 (or 3),
['l 0
s : T | o 4 e ;
provided that d > L with P = lo ol 2 actuators (orientation and rotation)
0 0
1 0
; 2 ; 0 0
on castor wheel 3, provided that d < L with P = 0 0
n 1
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Configuration

Actuator configuration for type (2.1) robof

For this robot we first need an orientation actuator for the steering
wheel. The matrix B(/3., J.) is then

B(8s, 8:) = E7(8:) [DT(B:) ET (B 5c)]

with ) _
ST N —sinfdy cos3s 0
.\_. (.'5’.‘. ,| — =
‘ (0 0 |
. l —&inf.o — 0839
D! (Be) = —= 0839 —8ins.s
( - F~ .
d+ 2LsinB.o d+ v2LsinS.a
COS 351 — SN Son ~-C083:3
szT(;f_\.. 3.) = —— |sings c088,.9 —5in8.a
I N - RN
0 d+ 2LsinBn d-+ V2Lsinfes

Actuator configuration for type (2, 1) robot

Hence two admissible actnator configurations are obtained by using a
second actuator for the rotation of the steering wheel (number 1) and a
third actuator for the orientation of either wheel 2 or wheel 3. The two
corresponding matrices F are:

1 0] 4, Ay
0 1 0 0
P=1|0 0|, P=1]0 1
0 0 0 0
(U 0] 0 0]

..
B
T
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Configuration dynamin mode]

Actuator conhguration for type (1.1) robot

For this robot we first need an orientation actuator for the steering
wheel, The matrix B(/3.) reduces to the vector
[4 r R J E )
B = —— |sinF + €083 —sin3a + cos8 1] i
. L
Since d,, = 1 a second actuator should be provided for the rotation of
the third wheel. The matrix P is then

0
P= 10
1

Actuator configuration for type (1.2) robot

For this robot we first need 2 orientation actuators for 2 steering
wheels. The matrix B(/d..3.) is then

B(8:, 8:) = ZT(3s) [DT(3.) ET(Bs: Be)]
with
»T(8, ) = '[—BL-.S‘[..'I;iq-.s'i.rt;J’_,-; Lsin(Bq + Ba) sin(3a — Ba _)] .
— 5.517” 33

D! (8.) = '-l}('u.sd,.;l
—('-,{'1'1 + LsinB.3)
i £ sins1  Sineo 0833
F! (Fa, 3:) = == | cosfa —081.0  sinfxg
Leos3q  LeosBss  LeosSBea

272 T
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Configuration

Actuator conhguration for type (1.2) robot

Since 8, = 1, it would be sufficient to have one column of B(3.. 5.)
being nonzero for all possible configurations. However, there is no such
a column. It is therefore necessary to use 2 additional actuators, for
instance for the rotation of wheels 1 and 2 giving the matrix P as

0 0
1 O
J
P = 0 1
0 0

Posture dynamic model

The configuration dynamic model in compact form

q= S(q)u, (52)

\

H(3)a+ f(3,u) = F(3)mn, (53)

8, < 0
where 4 = [ ] cig= | 5] = [\ .
«_‘i(- ’k
| = 2= e

Hi(8:.8.) XT(3.)V(5.) _ F1(Ba.Bean, ©)
T N ) f(d. 1/ ! = : A v
V' (Boe ) B{535) Iy fa(3s.8:0m,C)

= 7 B L.'g‘.jfl () Tvn
1'[.'.{):[ ('h ‘ [].Tnfl:l_"-
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Posture dynamic model

The configuration dynamic model (52)-(53) is feedback equivalent (by a
smooth static time-invariant state feedback) to the following system:

q= S(qhu, LY
=, (55)

where ¢ represents a set of 8, auxiliary control inputs.

The following smooth static time-invariant state feedback is well
defined everywhere in the state space, i.e.

70 = FT(; SWH(B)u— f(3,u)), (56)

where F'' denotes an arbitrary left inverse of F(5.u).

L

Posture dynamic mode]

We restrict our attention to the following posture dynamic model;
B(z)u, (57)
=, (58)

where z = [¢7 8T ]T and u= [p* (7] 2

The coordinates 5. and @ have apparently disappeared but it is
important to notice that they are in fact hidden in the feedback (56).

The posture dynamic model is generiec and irreducible, and
small-time-locally-controllable; further, for restricted mobility robots, it
1s not stabilizable by a continuous static time-invariant state feedback,
but is stabilizable by a time-varying static state feedback.
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Motion on the plane

Dynamic model of robot

motion:
. | =
Ur = f'r/'-*” il —Fl" "9)
. T
; { G ,
H” . — *f'_lfu} - ;;[-T_I' {ﬁ()]
1
& ==M,.. (61)
J :

Motion on the plane

Relation of linear velocities in the fixed and absolute frames:

[ & ] = TT(a) [ o } . (62)
U ‘{?_h

Cosa  sina

where TT(n') = [

\‘ is the rotational matrix of (-fixed

— SN COSO
frame.

Linear accelerations in absolute frame

( 5 ] = Lty [ by ] . (63)
/] m F
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Motion on the plane

The desired path is an mmplicitly described smooth segment of curve §;
wlx,y) =0, (64)
and relevant local coordinate s (path length) is defined as
s=1(x,¥u) (63)

Selection of functions (91) and (92) is mostly limited by regularity
condition implying that Jacobian matrix

(" e o S l')y 1 ~
T(z,y) = Bz B (66)
U Uy

18 not degenerate for any (2, y) belonging to curve S, i.e. detY(z,y) # 0

For regular geometrical objects there exists normalized description with
orthogonal Jacobian matrix:
, . e o cosa(s) siurv’(s)] i
T(z,y) =T(a"(s)) = S o 1| € SO(2)
' ' . -sina’(s) cosa’(s)|
where T(a"(s)) is the rotational matrix of moving Frenet frame, a®(s)
15 s-dependent target angle determining the current orientation of
Frenet frame.
Frenet matrix satisfies to the differential equation

I*(a") = $&(8)ET" (o), (67)
. 0 1 R :
where FE = 1 0 and £(s) is the path curvative,

From (67) also follows
o* = $£(s). (63)
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Angular orientation

Robot angular orientation with respect to curve S is defined as
o = o (38) + Ao, (69)

where Aa = const is the desired robot orientation with respest to the
path. In matrix notation, (69) takes the form

T(a) =T(Aa)T(a”). \70)

Jectory control 21 static frame

Introducing errors and problem statement

Violation of condition (91) is characterised by orthogonal deviation
e =p(2,7). (71)
Violation of condition (68) is characterised by angular deviation
d=a—a" + Aa. (72)

Therefore, the path following control problem consists in determination

of inputs F,, I, and M in closed loop, which provides:
e stabilization of robot motion with respect to curve S

e stabilization of robot angular orientation with respect to curve S;
e maintenance of the desired longitudinal motion by asymptotic

zeroing of velocity error

AV, =V* — 4. (73)

TIes 277
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Coordinate transtformation

Perform the transformation of the system model (59)-(61) to the
task-based form with outputs s, e and 4. To do so, differentiate (92),
(71) and (72) with respect to time:

H =T (x,y) H =T(a") ["f] : (74)
I3 Y Yy

0 = —£(8)§ + w. (7D)

Find the inverse transformation:

i = i)

Control design

Once more differentiate (74) and (75) with account for (63), (67) and

(70):
v [& l O ,
f’. . E(R].‘?EI S —— (Aax) 1.’ : (76)
i \-(’ m ]':.J
- R, YA 1 ke
O+ E(8)8+ E(8)8 = 7.\/. (77)
Now consider virtual task-based controls:
Uy 1, 1, f 4 .
s| _ LaTiany | £ =g
[”“} ”'7 (Aeax) [R,] (78)
1 . .
UF = —IJ'U E(s)u, (79)
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Control design

Substitute (78) and (79) to (76) and (77):

H FE(s)SET H = [::] ' (80)

8 + :(&]s i .‘:2[.&!5(‘ = U5, (81)

Rewrite equations (80) and (81) with account for (73) for determining
the velocity error dynamics:

AV + £(s)s¢ = —u,,
EEd .I,
€+ E(8)8° = u,

- A 37 \xs
O 4 E(5)8 4 E°(8)85¢ — uy.

Control design

Now select the controllers:

Uy = —€(8)8¢ + ky AV, (82)
e = {«,3)52 — kojé — keae, (83)
'Id = {.(.'5.)-;. 1 cz(.h').;'(-' - ’\.’jl";‘ = Af.)g(}\_ 1‘81)

where Rg, Koy, Ae2. kg1, k52 are positive constants.

Finaly we determine actual control actions £, Fy, and M and obtain

F, [ —E(s)3é + k AV s
— { P - bl
[F_u] mI{8a) [E'-*".)-;" - ke1€ — Rege 189)
M = J(€(s)us + £(s)§ + £2(s)d¢ — k510 — ksad). (86)
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rCtor " M) sttt

Example. Straight line segment

The normalized equation of the
straight line

e(gq) = —sina’z + cosa’y + gy = 0,

(g) = cosa”xr 4 sina’y 4 1y,

where a* is the line inclination.

Lo = const, vy = const.

Orthogonal Jacobian matrix takes the
form

SORa” AR s
'} € S0O(2).

—sina® cosa

T(q) = [

Obviously, the path curvature is zero.

straight line.

Y.m

10 15
8»-
6L
4r
b N,
B
0 5 10

X. m

elr), m

1.0

0.5
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The normalized equation of the arc of Y,
the circle

l p > 2 / 2
;(([] = m{ R-'~[.l‘~.lfu)"[.Uh."ll)r| — 34 )

(¥ = o)

(q) = Rarctan A e

(r -rII)
Orthogonal Jacobian matrix takes the
form

L [ —(y—w) (x—20) : :
T ] —_— — ; c ) (T ‘k() ?. N
a) R\|—(x—xy) —(y—w) (2)

The path curvature is £(s) = %‘, 0 X

Example. Simulation of the motion along the arc of a

circle.

Y, m e(7), m
10 0.2
1l \ 0.1
N\ ot
6F |
N ) —0.1 -[
4 / —0.2 1
—0.3
2}
-04F
| 1 l' —0.5 1 | 1
) 2 4 6 8 10 0 20 40 60 1.s
A.m
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Dynamic model

".l
mg = I, (87)
g = Rb(a), (88)
X PR cosee  sino A
1?(’,[(:; = [ § ] . (89)
= — STT.C) OS50
O =w, (90)

n X

Motion on the plane

The desired path is an implicitly described smooth segment of curve S
o(q) = 0, (91)
and relevant local coordinate s (path length) is defined as
s =q) (92)

Selection of functions (91) and (92) is mostly limited by regularity
condition implying that Jacobian matrix

lg)  plq)

— | o Dy -
T(q)= dolgy  dpla) (93)
o Ay

is not degenerate for any (2, y) belonging to curve S, i.e. detY(z,y) #0
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Control design

Design of the velocity (inner) loop. Consider Lyapunov Function:

1 .
Wi=2(¢- 5)T (g — ©),

(94)
where ¥ - a vector of desired velocities.
Find the derivation of the Lyapunoy function V)
Vi= (G078 =0 (=) 95)

Control design

Define the control signal as:

1 ! - :
—F =¢—ky(q—10), 196)
m

where &y is a positive constant. Then the derivation of the Lyapunov
function Vj is

Vi = —ko(§—7) (¢ —7) <0, (97)
which means asvmptotic stability of the point ¢ — © = 0.
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Now we can rewrite original system in reduced form:
q="1.
Let's construct the control ¢ in th following form:
U = Up + U

where u, is the term, which provides stabilization with respect to the
desired path and wug provides desired velocity along the path.

Reduced systemn

Perform the transformation of the system model (87)-(90) to the
task-based form with outputs s, €; and e, using Jacobian matrix (93):

[ :1 ] =Tlq)g = T(q)li’?(n Ju. (98)

We can choose the control signal u, in the form

ug = Rp Y '(r‘)[ ;] ] (99)

Now design stabilization control u.. Consider Lyapunov Function:

, ke 2, A
Vo = '—)-x,:-"llq,l, (100)
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Reduced system

Find the derivation of the Lyapunov function V3.

Vo = kep(q)Veelq) = (& ,:{q)Vg-(q:l)Tu,. -

+(l\‘,.;(:;)\7’,:tf4/})TT_‘(;J !‘U ] = (keio(q)Vio(g)) " ue.

As vou can see, the second hall of the expression is identically zero due
to orthogonality. Now select u, as

L0
te = —keip(g)—(q), (101)
g

where £, is positive constant.
Then the derivation of the Lyvapunov function V5 is

V5 u, <0

It proves the asymptotic stability of the initial system at the point
elq) = .
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Example. Simulation of the motion along the arc of a

circle.

Spatial motion

Dynamic model:

=1, (102)
A i], (103)
m
Ria) = S(w)R(a), (104)

Ju+wx Jw=M,, (1035)

0 Wwa —un i
Sllw‘) — —u./'g [’ .A.'] ,
Wo ~i] 0
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Rotational matrix

‘The rotation matrix K{a) can be represented through Euler angles as

R{e) = Ry(v)Ra(0) Ry (), (106)
where ]
1 () ()
Ri(o)= |0 cos@ —sing

[0 sing  cos¢

cosd (0 sinéd
Ra(0) = 0 1 0
sinfl 0 cosé

=

[cos siny ()
Ra(v) = |sin¢  cos¢ 0
() () 1

Desired path

The desired path S describes as an intersection of two implicit surfaces:
wilz,y,z2) =0N pa(z,y.2) = 0. (107)
Tangential velocity along the curve S is defined as

. _ Vo1 X Vi
5 = —
V1 x Vil

v, (108)

where x is the vector product and |-|| is the vector norm.
Jacobian matrix:

Y(z,y,z) = IT:LT (109)
ng_:
|| Vipzl|
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Jectory control 3D static frame

Introducing errors and problem statement

Violation of condition (107) is characterised by orthogonal deviations
e1 = g1(z, 9, 2). (110)

¢o = @a(x, Yy, z). (111)

Therefore, the path following control problem consists in determination
of mmputs F. = [F} F, F;] and M. in closed loop, which provides:
e stabilization of robot motion with respect to curve S

e maintenance of the desired longitudinal motion by asymptotic
zeroing of velocity error

AV, =V* - §; (112)

e stabilization of robot angular orientation with respect to curve S.

I'ranslation motion control

Perform the transformation of the system model (102)-{105] to the
task-based form with outputs s, ¢; and ez, To do so, differentiate (108),
(110) and (111) with respect to time:

e1| = T(z,y.2)v. (113)

(&

Once more differentiate (113) with account for (103):

I o E.

€| = T(r,y, 20+ T(x.y,2)—. (114)
~ I

€2
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ranslation motion control

Consider the virtual (task-based) controls:

. U
y . 1‘1 S ‘ _
T(x,y,2)v+ V(e y 2)— = |t (115)
m o
Substitute (115) to (114) and obtain
S “g
€1l = | U1 | - (116)
2 the2

Translation motion control

Now select the controllers:

u, = K, A4 (117)
ey = —Kie1€1 — Koy, (118)
ey = — 10269 — K9m269, (119)

where Ky, Kiet, Koep, Ke2, Ko.9 are positive constants.

.

Finaly we determine actual control action F,. and obtain

Th
F.=mY{(z,y,2) " (|uey | = Tz, y.2)v). (120)
Up
233338 ITMO UNIVERSITY 289



2017 © Aleksandr Krasnov, Sergey Chepinskiy Digital control systems:
krasnov.aleksander@gmail.com, chepinskiy@corp.ifmo.ru Trajectory control of mobile robots

Rotation motion control

: , . L L LY
Introduce vector of angular errors ¢ = [-’3,5 il or;'] € R and the
angular deviation matrix

R(8) = Ria)RT(a*)RT (A). (121)

where R(a*) € SO(3) is the matrix of angular orientation of the
bodyv-fixed frame along the curve S, R(A} € SO(3) is the matrix of the
desired angular orientation. Dehnv the angular error function as

= (Rm- ~ R(5)TYY, (122)

where V it the transformation SO(3) — R?.

Rotation motion control

Define the angular speed error e,,. Dilferentiate (121) with account for
(104) and obtain the equation

{ .
i,;m(s;l — S($)R(8) = e, R(8), (123)
{

-I—Rrﬁ)—‘i'm,}ﬁ(o)— R(a)RY (a*)S(w*)RY(A). (124)
(

Use the property of skew svmmetric matrix RS(w)R’ = S(Rw) and
obtain final expression

d ; = , 5 . .
—IFR(:)} = (S(w) S(R(())R’((}‘)...J‘)Zlfl’(d). (125)
(

and

¢w = w — R(a)RT (a”)w". (126)
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Digital control systems:
Trajectory control of mobile robots

Rotation motion control

Differentiating (126) with account for (104)

1 Ao

&= —,I. M —wx Jw) + ay, (127)

where ag = —S(w)R(a)RT (a*)w* + R(a)R (a*)*. Resulting attitude
controller has form

.\f. =w X Jw — .]u,; w 1\',!,'1',. = 1\'*.1‘*.. (1'28)

where Kg, K, are positive constants.

Numerical example

Consider the plant as a rigid body described by model (102)-(105) with
m=1,J=1.

Initial position of the plant is x4 = [—lf) 5 10| and initial

: g = T
orientation 18 ag = [.5 2 l] .

Parameters of the controller are Ky, = 1, Koo = 10, K10 = 1,
1\.'_3,'__» =10, l\'H = 20), I\'*, = Hl).

Desired speed along the path & = 1.

* ITMO UNIVERSITY
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Numerical example

-0

Motion along desired path:

iz, y.2) = 0.22% + y2 —RP=0n oy, 2) =2+ l).ll:’)y"3 — 0=

el vty
10 8
. ] 4 r % m"'ﬂm’
I g
- N ]
20 '
3
'-OI
S5
— om
o 2 40 60 Ho
Position error ey = @y (2., 2) Position error ea = @olz, 1. 2)

5
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Trajectory control of mobile robots

nlt)
s o
.

08

3 — inm
& L) 100 120
o~

Al

2 ) r. R 1

{3

Speed error AV = §* — & Angular error e,

2D moving frame

Dynamic model of the plant:

[ :{ ] = R (a) [ " ] (129)

V. T, F. | .
_4[ s } - R (a) [ A | (130)

S T{ex) 0 Yo
Rla) = [ 0 Wl
X
m 0 0 0
A= 0 m 0
0 0 J
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nIectory control

External moving object

Dynamic model of the external moving ohject:
g =Ve, (131)
T(a®) = w?ET{a°), (132)
Desired trajectory in relative coordinates
p(z) =0, (133)

Local coordinate
s = ¥(z), (134)

Relative coordinates

Position, velocity and aceceleration of the plant in moving frame:

x=T()(y - y°), (135)

a; = a— a. (136)

& =w’Ex+T(a°) (§— v°), (137)

Gy = w—w", (138)

i = ()% + 2 ET(a®) (§ — y°) +

1

+ —=T(a®)T" (a)F:, (139)
irl

1 |
e = =M. (140)
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»IRctory contrnl

Task-oriented coordinates

Consider orthogonal deviation
e(z) = (z). (141)

and local coordinate s

s =y(r) (142)

Choosing of functions (141) and (142) based on regularity condition
which implies that Jacoby matrix

(143)

T(z) = [ i/ J

i‘l;- ‘:'i).l‘

is nondegenerate for all . belongs to curve S, i.e. detY(x) # (.

ontrol 21 moving frame

Trajectory control synthesis

Imply the transformation of model (129)-(130) to the task-oriented
coordinates:

[ : =Tl (TT!'rn,.)vv: +w'FEr — T(_n"']"'”) : (144)
6 = —5€(s) + w — (145)
Choose local regulators as

uy, = KAV — 5&(s)é — €, (146)
Ue = 1\'?-1(‘ T 1\"‘_;5 T 'é‘!('\q}( t ?.\.u"(’.é. (1-17)

. O
us = Kg0+ Ko+ T\“ + SE(8). (148)

s

Final control laws

Fr = mT(«, 71 (a}) ([ :l"" ] — (;..'0'.\27'((.\').17) . (149)
A

"

M = Jus. (150)
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ontrol 21 moving frame

Collision avoidance strategies

Some collision avoidance strategies
e Bypass
e Detour

Equidistant border around the obstacle

e (@) =22+ - R2=0, (151)

Puc.: The results of modeling the
motion relative to a moving external Puc.: The results of modeling the

object. detour of a moving obstacle.
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Moving frame description

Model of the plant motion:

e PRy .
#(t) = g — —=ii(t), 152)
i(t) = g — ——nlt) (152) Z\ 7\ :
R(t) = R(t)S(w(t)), (153) Y o1(re,ry)
s s
M(t) = Ja(t)+w(t) xJw(t). (154) e Rt
Description of the moving frame: wal(2) =2—2*
#;= Rp(o®)u;,  (155) @ X
"
a" = oy, (13())

Rr(a*) = RrS(w;). (157)

.\'lt)\’ill}:‘ frame (l(-?.\f(_'l'i])( 1011

Relative position:

Po= H-I(n'](;r—.l.',). (158)
i = Rp(a*)i — S{w;)r. (159)
# = Rp(a’)# — 2S(wi)r — S*(wy)r. (160)
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Design of the velocity (inner) loop, Consider Lyapunoy Function:

Vi==(fp—8) (Fy —8) + kaln(2 = (R"A) (R Rpig)),  (161)

where © - a vector of desired velocities, n,y - a vector of desired
orientation and k4 - a positive constant,

-

Find the derivation of the Lyapunov function Vi:

Vi=0-a) (Ry — iu}a — 28 (i) — S%(w;)r — 1)
i

4 (__ _ S(R" Ryny)

—;' —
|l),{|

R HT{‘),.,) : (162)

kAR a)TSTIRT Rpiy)
(2—(R"#%) (R Rypng))

| . . .
where v ' = and |a| is the euclidean norm of vector

.

Control design

Define the substitution of variables if following form:

. g z Lfy e N s

§ = R'}'H 2S5(ws )r — S°(wi)r — 4,0 = —ngq,
where fq = |8] and fig = l—z— Using the vector identity

a=S(b)S(a)b+ (bTa)b and by selecting control signals f and w = w; in

the form

f=fa-((R7) 7ig) — ko(# — i) Ry, (163)
S(R" Ry, : :
W = Wy ‘“ r “”’RTRN?,/I + a0 — K57, (164)
LA

where &, &k, are positive constants and o is

( — n)‘.s'(RImR;R) . (165)

—_ ((fs2—(R"n)T (R Rrny)) ‘
mky
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Then the derivation of the Lyvapunov function 1 is

"'l s = ’C,» ( { '-, s g U ) ]I T" k‘t -\‘ ~ \i__ -« ( l()ﬁ)

which means asymptotic stability of the point » — @ = 0, n — 7,.
Now we can rewrite original system in reduced form:

=7
Let's construct the control @ in th following form:
th = ty + Ug,

where u, is the term, which provides stabilization with respect to the

desired path and wug provides desired velocity along the path.

Reduced SVysteln

Perform the transformation of the system model (158)-(160] to the

task-based form with outputs s, €; and e9, using Jacobian matrix {109):

‘1

6"] - T(I]I
éa

We can choose the control signal u, in the form

Ve
us =T r)| 0 (167)
{)

Now design stabilization control u,.. Consider Lvapunov Function:

@i(r) + =i (r), (168)
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Reduced system

Find the derivation of the Lvapunov function V.
Va = (k1g1(r)Vir (r) + kage(r)Viga(r)) "¢ =
(k11 (r) Vi1 (r) + kaga(r)Viea(r) T ug +
V*
+(k11(r)Vier(r) + kapa(r)Vea(r) TT-19) | 0 | =
{
(krp1(r)Vier(r) + kaa(r)Viga(r)) " us.

As you can see, the second half of the expression is identically zero due
to orthogonality., Now select u, as

ue = —(kyp1(r)Vier (r) + kapa(r)Ves(r}), (169)

where £ and ks are positive constants.

Resulting control

e 2. Resulting control:

M, = wxJw+ Jog+ k. J(w—waq),

S(R"Ryrig) _+.. .
——— R Ryiig + o — kyy,

Wg = Wi+ —
||
1+ (2= (R"n) " (RT Ryniy)) -
ol = fa ( (‘ H A : f)J('i' ~ {1}'.5'([»’..71{]11}-1?
kg
T ka(R'7)'S' (R /i"rim)
" (2—(R"a) (R"Rrng))’
o = Rﬂ%g — 28(wy )i — 8> {wy)r — it
- )
fa = 0], fa= m

f = fa- ((Rpi) i) — ky(r — it) " Rpna.
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3D moving frame

Example
B, 20
0
-20
40 - S~
—
20 \
)
0
-20

@1(r) = ;j’ - 7,': —400=0Nw(r)=r.+r,—10=10

The desired speed along the given path §% = 3(.

Example

3D moving frame

-g'o'c) 50 AT A 2
100 20 50
100
100 "
1
502 2
c.
2], sy 1 :
2 - - - Spe < A0
Moving frame spatial motion Plant spatial motion
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Example

Projection of the plant motion on

AY plane Projection of the plant motion on

Y Z plane

Example

Lame «t

e = @i1(r)
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Example

Vet
[ -n
ox
® 0
» 0x
ors
..
. ow
»
0o 1
o Ty e . B 0 1 F ) 4 Soret
The velocity along the path Angular error
V*(t) = 30 e =1—(R"1)T(R" Ryng)

Flxrsrirmert A Desrription of the testbhenct

Ommnidirectional mobile robot “Robotino™ by Festo
Didactics

Geometric dimensions:
e Diameter: 370 mm

e Height: 210 mm
e Weight: 11 kg
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Flxnsrirnert A

Omni wheels “Roboting”

Expérimenta

Local Navigation “Northstar”

- L \\
: \ = \"rl% k
;{ | %\"“:.
-

304 2533233 ITMO UNIVERSITY



Digital control systems:

2017 © Aleksandr Krasnov, Sergey Chepinskiy
Trajectory control of mobile robots

krasnov.aleksander@gmail.com, chepinskiy@corp.ifmo.ru

Fxpe

Mathematical model

‘,s 5 \ .“.'(:-"r
Y I d— = o,
[ 2"‘. '- (? : ‘ ]
., ;

o~
~r
Y

0, — 5in —‘- COSs —( ' # Ve,
Hz S (_] = l 14‘ ‘.(,'v’
: m e '
. simns cosi L O

plr,y) = —sinax + cosay — (.
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C DT

Motion along the circle

-

Y. mm

£ LK

e y) =% + 4% — 2500 = 0

sle.y) = =300sin0.005x +y = ()
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COETI
'
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Particle Filters and Its Applications in SLAM

¢ Introduction (no formulas!)
o Main (Theoretical) Material on Particle Filters (be ready for exercises!)

e Special Cases

What is SLAM?

Simultaneous Localizatien And Mapping (SLAM) is one of the greatest challenges in
probabilistic robatics

o Extended Kalman Filter SLAM
e Particle filter SLAM
o GraphSLAM
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Chicken and Egg Problem

An unbiased map is necessary for localizing the robot

Pure localization with a known map

SLAM: no a priori knowledge of the robot's workspace

An accurate pose estimate is necessary for building a map of the environment
Mapping with known rebot poses

SLAM: the robot poses have (o be estimated along the way

Landmarks

Map,/motion tracking s based on landmarks
Landmarks are natural scene features
These features must be distinctive and recognizable from different viewpoints

o Range sensing (laser/sonar): line segments, 3D planes, corners

e Vison point features, lines, textured surfaces

‘e’
o
.-?
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SLAM Probabilistic Formulation

Available data
o Robot path {wp.ry, ... .0 ry}

@ Sequence of robot relative motions {va, wy, ..., us b (control inputs /
proprioceptive sensor readings|

¢ The true map of the envircament {iny, m, L,y )
e Set of all measurements/observations {zo. =1 ..., 3}
The SLAM problem
o Full SLAM: estimate the posterior probability plaxo.a, vepwl 204, vo.e)

¢ Online SLAM: estimate the posterior probability pie: . mio.. (20 4. v )

Particle Filters

310 £33323 ITMO UNIVERSITY
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Basic Concept

Goal is to estimate (hidden) state recursively from noisy measurements and state
update rule
Principles

o recursive computation of prabability distributions
o continuous distributions are approximated by discrete random measures
® measures are composed of particles — samples of the unknown states

® particles are weighted with " probability masses™ computed by using Bayes theory

Basic Concept

Step 1 — Prediction (system stats equation, loosing information)
Step 2 — Update [measurement model, obtaining information )

lllustration for robot localization

----r—'--r—-‘-----------—'---------
iR ARARRNARARRARN? R

© S. Thrun
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Basic Concept
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Basic Concept

© S. Thrun
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Basic Concept
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Basic Concept

@© S. Thrun

332" ITMO UNIVERSITY 313

Lo
ote
SR
..'..

.



2017 © Sergey Kolyubin Digital control systems:
s.kolyubin@corp.ifmo.ru Particle Filters and Its Applications in SLAM

Basic Concept
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@© S. Thrun

Basic Concept
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©S Thrun
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Motivation

“The fact that every model—no mater how detailed—ifails to capture the full
complexity of even the most simple robotic environments has lead o specific tricks
and techniques essential for the success of particle filtars in robotic domains,”

Sebastian Thrun, " Particle Filters in Robotics”, 2002

Applications

¢ SLAM in robotics

e computer vision, image tracking

e anhancement of speech and audio signals
e digital communication

o radar, sonar, EMG/EEG signals monitoring

e zensor fusion

‘e’
o
.'?
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Applications

Localization in 2D using PF

e e
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.
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- ) !
j:' 1
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© D. Fox, University Washington Robotics State Estimation Lab

Applications

PF with adaptively adjusting particle set size

X

© D. Fox, University Washington Robotics State Estimation Lab

316 33333 ITMO UNIVERSITY



2017 © Sergey Kolyubin Digital control systems:
s.kolyubin@corp.ifmo.ru Particle Filters and Its Applications in SLAM

Applications

Real-time implemeantation of PF (mixtures of sample sets)

y & ‘ - — * S ———— : .- - -
l

(K<@[BIBIBI] =)+

© D. Fax, University Washington Robotics State Estimation Lab

Features

Cons Pros
® approximate, probabilistic @ can cope with nonlinear, non-Gaussian
problems
® high computational complexity @ easy o program

e potential for parallel implementation

..
B
e
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Main (Theoretical) Material on Particle Filters

Probability

Conditional probability

Bayes' rule
{‘:. )_J!,Il,ljll {2)
()

Interpretation: r is (hidden) state, while . is measured output (observation)

318 253323330 ITMO UNIVERSITY
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Model

Hidden Markov model

Rainy « * " Sunny

Walk | Clean )

Shop

Model

Hidden Markov model

" - — —
f—-/.v'(f I) } --i/ll.‘l ,‘-( xrif ll\~- >
NG LS, R 0 B
By T = A el
) ~\ vd \ i f
ohigiie RV L R N Sl M
wglary -y ~ Plelzi-y) (3)
yelas ~ Plyle (4)
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Model

Hidden Markov model

¢ (! 1) p—i !) '—'{/HI ll\
¢ w——— X - | ri! + pr— —
A g . '/ e, b

State model

ry = fleg_1.wye) (3)
v = hlae, 1) {(4)

wy and vy are mutually independent random variables (noise) with known
distributions, f(:) and k() are known state transition and measurement functions

M

Bayesian Filtering Problem Formulation

S — TL.ry | AT 3 iq)
v = hize, v (6)
, Plyclze i plas: (yoie -1
plaigna) = , (7)
plys|woe 1)
where

™ Pl e—1) /_-"‘ Py~ )P Y- Vlarg ) (ﬂ)
Pyl e—1) = /’ v hp(s | o — M. (9)

ry and are systom state and output at time . op ¢ |20, 21, re) and

{40, us . W ) are state trajectory and sequence of abservations

Kalman filter is optimal under linear /Gaussian assumptions
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Approximation Methods

Suboptimal Algorithms
® EKF (1st order, Jacobian)
o UKF (sigma-points approx. )

@ approximate grid-based metheds (dense gnd, approx. at centres of "cells")

sample-based

Approximation Methods

How to find approximation of # number by sample-based technique
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2=

Grid-Based Methods

For hinite number of states . X N such that o) = Play = i, Vie2—1) then
’ b110—1 \ t—1
posterir FUF can be weitten o
Na
> y )
PATs 1Ny 2 I_l!":.‘ll. w1 |10
|
Ny
eI ! \ -.‘. ‘f'--'c ': l”:
=1
N
Pl i) b3 iy x, ) (12
L= |
M.
shere A S, 7 s | ' \
Cl a.i:"' 1 e .s': “ ‘."-"-’ ":_,, 113
-]
oy Tkl | :
) Ry . (14
2os=1% Plye lag )
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Gonanic ¥F Dedgn

Generic Particle Filter Design

Basic Formulation

Measure

x = {w{™,a™}a (15)
w'"™ is m-th particle, w'™' is weight of m-th particle, \‘ i =1
Given measure \i—1 = {we 1 e} _ | approximating posterior distribution

plrne—1 |Woe-1)
Received observation y,
Obtain y; approximating p{ag . o s )

Ny 2 lplxe e 1)
Pl yoe) = ! ! v A1 |30t -1) (lﬁ]
pligelii—1)

..
B
e
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Sequential Impertance Sampling

General Case
Using importance function (distribution)
e g ) = ®mGer|xpae— 1 Yo hvl2oe— 1| i.e—1) such that

vy

J.;-Iv?' |~ rlx(- ,'g. 1—-1) (17)
and
gy ) .
[ 1)) PO, 1)
.w‘.‘{ 1 X —, :,“. : (]8)
wliey | |yoie—1)
form=12....M

. " P m \
@ Generate particle v, ~ w{re]ay . p0)

@ Augment trajectory ., with »,""' to have ="’

© Update weight fo g lm)y o () {m),
() plusiz, Iple, x

= g s (m), {(m) Wibe

MAEe G 1y W022)

.'—j" (m]

l—l‘ (]q)

M

! ric OF Dission
yonanic ¥F Dedip

Sequential Impoertance Sampling (Cont'd)

The closer importance function to approximated probability distribution =% the better
the approximation
Prior Importance Function

x .r\.mi |a :_’rzv‘: ) . ) = plary ‘;,-.;"“' ) (20)
Update weight
we' ™ o plysla,™ Yare T (21)

Optimal Importance Function

™ | g Moe) = Pl gy g e (22)
Update weight
we' o plwelry "y ey (23)
Derive (23) from (19) and (22 ‘
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Resampling

After several steps maost particles will have negligible weights — hliter degenerates,
i.e. its performance detericrates

Effective sample size

M |
Mp = R (24)

. y sl v'.l o Lin) 2
14} "'l“".~ ) et =1""§ J

Resampling solution

Resampling s a scheme that eliminates particles with small weights and replicates
particles with large weights in probabilistic manner

Resampling (Cont'd)

Systematic resampling
- Pseudo code
=10
- ® for mi | M
Ciie Crn— ~.-;' )
- @ end for
i 4
@ wy = 7[0, 1/M]
for ) =1... M '
1 u; + 43
' while u; > o,
& T - mo=m + 1
end while
Ji o= .1','”'
= __ il = 1/M
i’ = m #Fparent particle
[ end for

(© |EEE (Djuric et, al, 2003)
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Resampling (Cont'd)

Resampling wheel

Psesudo code
m = U1 M]
5 =)
fori=1.. .\
3= 384 U[0... 2m%
while '™ < 3
8§=5F-wm
me =+ 1
end while

.l““ - J.;lr‘

© S. Thrun

Resampling (Cont'd)

Resampling wheel

Stochastic universal resampling
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Resampling (Cont'd)

Given
w1 =05
wtl =12
W' =15
W =10
o) = 0.8

¢ Do we need resampling if My = 0.27

» Calculate peobabilities of not picking particles with the highest and lowest
weights for O(M) resampling algorithm

lyenenc OF (uu:-.

Summary

Particle evolution diagram

4
WHRI? i i g
e R ¢
1311 T & : \ﬂ ' 3 {.n.”}:'
’ L
: M\
) \
. | \ T3
AN AN
m 'r"'n\[/ N N =
S SR ;g P
(‘I-J : “" 19 e N l’;" Poe [rrvmle,
// "v\ o -y
/'\ R e A M~ e
: [ L [ 2 \F‘?‘— [ 4 L 3 : \'r-u-mmu
(©) |IEEE (Djuric et. al, 2003)
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Summary

Algorithm [{;;""..r:"”};‘;f 1] =N {w;llJ”'}" l,n,u}
form=1...M
Draw particles =)™ ~ s |y 1, p04)
Update weights according to {(19)
end for o
Calculate total weight W = }_:” g form=1...M
Normalize weights w,""’ = ?‘-'é\
end for
Calculate effective size Mg according to (24)
if Mg < My
Resample
end if

Summary

Drawbacks of generic PF due to resampling
8 sample impoverishment | ie lass of diversity
e limited opportunity for parallelizing

@ smoothed estimates based on particles’ trajectories degenerate

28 s
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Special Cases

SIR Particle Filter

Sample Importance Resampling Filter

. » s L) {m) { L)
e prior importance function m(a, &y, y.wae) = pleele, )

e resampling at every step

¢ Easy to calculate importance weights |

@ Rapid sample impovenshment

e Sensitive to outliers

2333333 ITMO UNIVERSITY 329
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ASIR Particle Filter

Auxiliary Sample Importance Resampling Filter

e utilizes parent particle info for importance function mix., miyn.¢) for pair

FAr

(m)
{eg " ymf Bl

@ weight update
1 1y y el LR ’ Im )
m PunE I, i@y o) plyelze )

a Oy B i o b AR S 25
&ty N ) By y = > (2_))
w{a, 0w | poi)

e

Lo | - LY ) m< ) | v
where = Elae|xs 4] or s x pliy|eg )

o Conditioned on the current measurement, closa to true state

e Bad performance for large process noise I

Regularized Particle Filter

¢ identical to SIR
o resamples from continuous appraximation
\f

| \ e ) f (rn) :
plae (goa) & $ w-,” YN 2, 3 (26)

=1

where K (x) = ,‘# K{3) Kernel density K{-) and bandwidth hi(-) are chosen to
minimize MISE, n, iz dimension of state vector

e Avoids sample impoverishmant, i.a. better performance for small process naise l

® Samples are not guaranteed to asymptotically approx. pdf

¢ Inappropriate for high-dimensional state space

330 £33323 ITMO UNIVERSITY



ITMO UNIVERSITY
Department of Control systems and Informatics

per. Grivtsova, 14,
Saint Petersburg, Russia, 190000

+7(812) 595-41-28
csi@corp.ifmo.ru
csiifmo.ru/en/



	2017
	100039c
	Cover
	preface
	Learning Book 2017


