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Elementary concepts of matrices

The effectiveness of using matrices in practical calculations is readily
realized by considering the solution of a set of linear simultaneous

equations, such as
ke gt 5x; —4x, + x3 =

—4x; +6x; —4x3 + x4 =1
X, —4xy +6x3 —4x, =0
X, —4x3 + 5x, =0
Using matrix notations, this set of equations is written as

5 —4 1 07[a] [0
4 6 -4 1||x| |1 B

i —4 6 —4||xs|=|o] = Ax=B
0 1 -4 51X 0

5 —4 1 0 ) 0
<4 6 —4 1 X 1
=13 4 & a4 *°|= A=
0 1 -4 5 X4 0
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Special matrices

Definition: A matrix is an array of ordered numbers. A general matrix
consists of mn numbers arranged in m rows and n columns, giving

the following array: a1 Qi - Qi
a a cee a .
Aa=|2H E  dimA=mxn
Am1 Am2 *° Amn

* m = n-square matrix;

* a;j = a;; —symmetric matrix;

* A = diag{a;;} — diagonal matrix, a;;=0 for i # j;

» [ =diag{1} - identity (or unit) matrix;

* 0 -null matrix;

AT - transpose matrix;

« A~!-inverse matrix;

« G~H - Hermitian matrix. 3

Special matrices

Definition: the identity (or unif) matrix I is a square matrix of order n
with only zero elements except for its diagonal entries, which are
unity. For example, the identity matrix of order 3 is
1 0 0
I = [O 1 O].
0 0 1
In analogy with the identity matrix, we also use identity (or unif)

vectors of order n, defined as e;, where the subscript i indicates that
the vector is the ith column of an identity matrix.

Definition: null matrix 0is a matrix with only zero elements.

Definition: an upper/lower triangular matrix is a matrix, where
below/above the main diagonal are zeros elements

a;; Q2 Qg3 a;;1 O 0
0 ayp ap az Gz 0 |

0 0 asz azy Qazp ass 4
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Special matrices

Definition: the diagonal matrix A is a square matrix of order n with
nonzero elements only on the diagonal of the matrix.

@iq 0 s 0
Bom] & Bzm v O
0 0 - au

For example, the identity matrix is also a diagonal matrix.

» only onerow (m = 1) or one column (n = 1) —a vector.
The following are matrices:

. 5 -4 1 0
-4 0 -4 6 -4 1
=71 [ 76 5‘?] 1 -4 6 -4
T ' 0 1 _-4 5
* square o L) :
row vector matrix columnvector  symmetric matrix
5

Special matrices

Definition: The transpose of the m x n matrix A, written as A7, is
obtained by interchanging the rows and columns in A. If A = AT, it
follows that the number of rows and columns in A are equal and that
a;j = a;;. Because m = n, we say that A is a square matrix of order
n, and because a;; = aj;, we say that A is a symmetric matrix.
Note that symmetry implies that A is square but not vice versa.

A=[2 0 67 ,r_ g 552
52 3 —al’ :
67 —4

Definition: the transpose of the product of two matrices A and B is
equal to the product of the transposed matrices in reverse order
(AB)T= BTAT.
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Matrix multiplication

Definition: Two matrices A and B can be multiplied to obtain
C = AB if and only if the number of columns in A is equal to the
number of rows in B. Assume that A is of order p x m and B is of
order mxq . Then for each element in C we have
Cij = X1 Qir brj,

where C is of order p x q.

C = A x B

(p=xq) (pxm) x(mxq)

Definition: A matrix is multiplied by a scalar by multiplying each
matrix element by the scalar; i.e., C = sA means that ¢;; = sa;;.

Example. If we consider D =sl—A, where s is a scalar,
Iisa?2 x 2 identity matrixand A isa 2 x 2 matrix, then

R N R B |

Matrix multiplication

« The commutative law states that matrix multiplication is not

commutative:
AB # BA
Although AB#BA in general, it may happen that AB=BA for special A
and B.

» The associative law states that
(AB)C = A(BC) = ABC

In practice, a string of matrix multiplications can be carried out in an
arbitrary sequence, and by a clever choice of the sequence, many
operations can frequently be saved.
» The distributive law states that

E=(A+B)C=AC +BC.
Note that considering the number of operations, the evaluation of E
by adding A and B first is much more economical, which is important
to remember in the design of an analysis program.
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Matrix multiplication

Example 1 (the commutative law ). If we consider the matrices
V5= B4 .,

Example 2 (the associative law ) Calculate A*, where A = ﬁ ;]

1) A2 = AA - A3 = A%A - A* = A3A.
2)A* = A%2A? and save one matrix multiplication.

Example 3 (the distributive law ) Evaluate the product v Av, where
3 2 1 1
=12 4 2‘; P = [ 2
12 6 ~1
1) x = Av — vTx (the formal procedure).

2) However, it is more effective towrite A = U + D + UTwhere U isa
lower triangular matrix and D is a diagonal matrix

0 00 3 0 0
=2 0 0;D=|0 4 0| »vidAv=2v"Uv +v"Dv
1 2 0 0O 0 6 9

Hadamard product (or Schur product)

Definition: For two matrices A and B of the same dimensions
mxn, the Hadamard product (or Schur product) AoB is a (mxn)
matrix with elements given by

(A°B);; = ajjb;.
Then, Hadamard product (or Schur product) AoB performs element-
by-element multiplication.
The Hadamard product is commutative, associative and distributive

over addition:
1) AoB = BoA  2) (AoB)oC = Ao(BoC) 3) (A + B)oC = AoC + BoC.

Example. Calculate the Hadamard product for two (3x3) matrices A
and B.
11 Q12 Qg3 [bu b2 b13‘ laubn a12bs2 a13b13]
AoB = la21 az2 a23] ofbz1 baz b3 Az1b21  Qzzbz;  Azzbyz|.
A31 Q32 Q33 |b3y bsy bas azi1bz;  aszzbs;  azzbss

10
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The trace and determinant of a matrix

Definition: The trace of the matrix A is identified as tr(A) and is
equal to ™, a;;, , where nis of the order of A.

4 3 1 2

A= tr(A) =4+6+8+12=230

3 6 2 1
1 2 8 6
2 1 6 12

Definition: The determinant of a square matrix A is denoted as det A
and is defined by the recurrence relation

detA = Z(—1)1+1’a1jdem1j
i=1

where Ay is the (n —1) x (n — 1) matrix obtained by eliminating
the 1st row and jth column from the matrix A.
A matrix whose determinant is zero is called a singular matrix.

14

The determinant of matrices (the general formulas)

Example 1. Calculate the determinant of A, where

a1 Q121 .
A=gr 2] dima=2x2

detA = (_1 )zall det All + (—1 )3a12 detAlz =QAq11022 — Q12021

Example 2. Calculate the determinant of A, where

i1 Q12 Q13

Az1 Qz2 a23], dim4 = 3 x 3,
az1 a3z AQaszs

A =

detA = (_1 )Zall det A11 -+ (_1 )3a12 detAlz =+ (—1 )4a13 detA13 =
= a411(a22a33 — Az3a32) — A12(A21A33 — A3031) + 13(az1a3, — Az2031)

12
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The determinant of a matrix

The expansion can be performed by expanding along a row or column
using cofactors. The cofactor of an element q;; is the determinant
formed by omitting the ith row and jth column.

Example. Calculate the determi?ant é)f A, v:\;/here

A=|4 5 -6
7 -8 9
Expanding along the thi;fd coslumn,we ob1'tain2 -
detd = (-3) | = -8, Sl+9l; &=
=-3(-32-35)+6(-8-14)+9(5-8)=42

Thus, the cofactor of -3 in the preceding example is the determinant
formed by eliminating the first row and third column. The sign is
determined from (—1)**/, where i andj are the row and column,

respectively, of a;;.

13

Adjoint matrix

Definition: the adjoint matrix of a square matrix A, denoted by
adjA or A", is the transpose of its cofactors matrix :
adj(A);; = (=) My" = (=) M
cofactors

matrix
where M;; is the (i,j) minor of A, and it is the determinant of the

(n—1) x (n— 1) matrix that results from deleting row i and column
jof A.

Example. Calculate adjA, where A = [g ﬂ

/I//'11 =det[ 1 .—_-1;,411 = (_1)1+1M11T =1
: «_[1 0 .1 -4
adjd =4 _[—4 2] _[O 2]

14
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The inverse matrix

Definition: The inverse of a matrix A is denoted by A~!. Assume that
the inverse exists; then the elements of A~* are such that A™4 = |
and AA™' =1. A matrix that possesses an inverse is said to be
nonsingular. A matrix without an inverse is a singular matrix.

1 1 All A21 Aml

AL A* = 12 422 m2
detA detA L

Aln AZn Amn

Definition: the inversion of the product of two matrices A and B is
equal to the product of the inversed matrices in reverse order
(AB) = B4

15
The inverse matrix
Example. Calculate A=, where A = [g ‘11 !
Solution.
detA=2-1-0-4=2;
A =144 =0;
Ay = —4, A, =2, .o .
* o~ 1 -
4 ‘[-4 2] ‘[o 2]
Then 1
i 05 —
% _detA 2 O 2] [ ]
Verification:
1., _[05 —21[2 41_[1 O]_
ata=0 6 1=l 3]=¢
16

10
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Hermitian matrix

Definition: the Hermitian matrix (or self-adjoint matrix), denoted by
A" is a complex square matrix that is equal to its own conjugate
transpose. Then, the element in the i-th row and j-th column is equal
to the complex conjugate of the element in the j-th row and i-th
column for all indices i and j.
Example. Consider a complex square matrix A, where
2 1+j 2—j
A={1—j 1 j | ¢*=-1)
2+j —j 1
Complex conjugate of matrix A is
2 1—j 2+j

A=|[1+j 1 —j
2—j 1
Then, AT = A - A is Hermitian matrix. Obviously, the ij-element is
conjugate to the ji-element, and we have A" = A = AT. 17

Orthogonal matrix

Definition: A matrix P is an orthogonal matrix if PTP = PPT=].
Hence, for an orthogonal matrix, we have P~ = PT.

This definition shows that if an orthogonal matrix is used in the
change of basis, we have A = PTAP = P~1AP. For practical use,
there exist some orthogonal matrices that can be constructed and
employed easily.

An orthogonal matrix very frequently used is the rotation matrix:

ith Jth column
r—l -
cosf ... —sin@ ith '
. : [cos@ —smB]
P= . . P = .
2 : . sin@  cos@
sinf ... cos 6 It
row
elements not shown
are zeros .
L 1 18
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Orthogonal matrix: rotation matrix

T

cos @ , €

Figure 1.
Referring to figure 1, we observe that for the base vectors e; = [(1)]

and e, = [(1)] the transformation [V1 V2| = P[é1  e2] represents

a rotation by an angle 6. In the general case, this rotation is carried
out in the n-dimensional space. ‘9

Orthogonal matrix: rotation matrix

Example. Rotate the vector v through an angle of 45°, where v = H ]

The rotation matrix is in this case with cos 45° = sin 45° = v/2/2.
Hence, the rotation matrix is P:
Bl [\/é/z —\/2/2]
V22 vere |
The rotated vector is given by Pv,
V2/2 —\/§/2] [1] [ 0 ]
V= = A
V272 272 [UTlv2

It should be noted that the length of the vector Pv is equal to the
length of the vector v.

20

12
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Trajectory control of mobile robots

"o Ax = hvcosa, (Ax* = hv*cosa®,
o* _u* {Ay = hvsina, {Ay* = hv*sina”,
¥ w Aa = hw, Aa* = hw*,
o AY A(x* — x) = h(v*cosa® — vcosa),
¥ c" A(y* —y) = h(v*sina® — hvsina),
Ala® — a) = h(w* — w).

- - W x*—x
' ¥ 0 *
Figure 2. e’ |= ( (@) ) Y =y
44 0 il

at*—a

h - sample rate cosa —sina

T(ax :| z
(@) sina cosa

21

Eigenvalue problem
Any nonzero vector v is eigenvector of a square matrix A, if
Av = v (1)
where A is eigenvalue of A.
Each solution consists of an eigen pair, and we write the n solutions
as (A1, v1), (A2,12), ..., (An, vp), Where }; < 1, < - < A,
Avi = Aivi
The proof that there must be n eigenvalues and corresponding
eigenvectors can conveniently be obtained by writing (1) in the form
A-2v=0
But these equation only have a solution provided that
det(A—2AI)=0
Using (2), the eigenvalues of A are thus the roots of the polynomial
D(A) = det(A — Al)
This polynomial is called the characteristic polynomial of A.
Since the order of the polynomial is equal to the order of A, we have
n eigenvalues, and n corresponding eigenvectors. 22
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Eigenvalue problem
Example. Calculate the eigenvalues and eigenvectors of a matrix

o
A=y o
The characteristic polynomial of A i13 p(A) = det(A — Al):
_ —A _ 32 _
pA) =det| T, ' |=22+51+4=0

The order of the polynomial is 2, and hence there are two eigenvalues:
Ai=—1,1,=—4.
To find the eigenvector corresponding to the eigenvalue 1; = —1, we

solve:
Vv
[_04 —15] [v,] =1 [\\2]

Vz = _Vl

that is,
—4v; —5v, = —v,.

23

Eigenvalue problem

Example (continuation). The two equations are not linearly independent
and only one equation is available in two unknowns.

Arbitrary choosing v; = 1, we getv, = —1. Hence, v, = [X;] - [_11]

For the eigenvalue 4, = —4, we solve:
[_04 _15] [:/l;] =—4 \\2]

v, = —4v;
—4v; —Bv, = —4v,.
Arbitrary choosing v; = 1, we get v, = —4.

that is,

Vi 1
Hence, v, = [y;] = [ 7] ‘Note:
* trA = Z?=1 Ai = ?=1 Aii ‘
24

14
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Eigenvalues (poles) and stability of linear
systems

®

Continuous time systems Discrete time systems

- ol

.’// §

Left half plane

Unstable area Im Unstable area

\\\\\N
\7
\

-

%

%

\
N

Stable area
Stable area

Unit circle 25

o\

Phase plane. Phase trajectories

The (x4, x,) plane is called the phase plane. The behavior of the curve
relative to the coordinate axes demonstrates the interrelationship
between the components x;(t) and x, (t) of the solution x(t).
Sample solution curves are called trajectories (phase trajectories).
Each distinct trajectory is a solution to an initial-value problem.

=m0 faz 7 o

02

S A W . Y
1] ppm— N
ois|- T\
o oAy )
oo X Nl

P . S e B8
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02 : i 03 : : : ; ; i
0 015 01 005 0 005 01 015 02
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Phase portrait

A phase portrait is a geometric representation of the trajectories of
a dynamical system in the phase plane.

The behavior of the phase trajectories (type of equilibrium) is
determined by the eigenvalues of the matrix of a system.

Eigenvalues Type of a phase portrait

Real eigenvalues of the |+« NODE

same sign

Real eigenvalues of « SADDLE

different signs

Eigenvalues are  SPIRAL SOURCE/SINK
complex

Eigenvalues are » CENTER

imaginary

27

The stability of the origin as determined
by the eigenvalues of a (2x2)-matrix A

CobcTBeHHbIe Yucna Tun ycroMumMBOCTH

O<A <4, unstable, repelling node
M<0<A, unstable, saddle
A4 <1, <0 stable, attracting node
Mz=azxbianda >0 unstable, spiral source
Mz=axbianda =0 stable, center
Mp=axbianda <0 stable, spiral sink
28

16
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Phase trajectories
Example. Consider the system of differential equations given by x = Ax,
where A = [_2

1) Compute the eigenvalues and eigenvectors of A and state the general
solution to the system.

2) Determine all equilibrium solutions of the system.

3) Plot the phase trajectories.

Solution.

1) Eigenvalues: ;= —1, 1, = —4. Eigenvectors: v; = ['12], vy = [—11]
The general solution: x(t) = c,e~t [‘12]+c2e"‘” [_11]

2) The equilibrium solution: x = 0 - Ax = 0. Since A is an invertible

matrix, the only solution to Ax =0 is x = 0.So the system has the
origin as its only equilibrium solution x = 0.

3) The origin is a stable equilibrium; 0 is an attracting node.

29

Phase trajectories

p=drd=[2* 2]

X,

attracting node repelling node

30

17
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Phase portraite

center saddle attracting node
¥ VA y

)/

/
A
repelling node spiral sink spiral source
4 y Y

31

Vector norms

Vectors and matrices are functions of many elements, but we shall
also need to measure their «size». Specifically, if single numbers
are used in iterative processes, the convergence of a series of
numbers, say x4, x5, ... X, t0 a number x is simply measured by

Jim b =/ = 0

So, convergence is obtained if the residual
yi =|x, — x| = 0 approaches zero as k — oo. Furthermore, if we
can find constants p > 1 and
¢ > 0 such that | |
. X1 — X
lim —— =
k—oo ka — X|p
we say that convergence is «of order p». If p = 1, convergence is
linear and the rate of convergence is ¢, in which case ¢ must be
smaller than 1.

In iterative solution processes using vectors and matrices we also
need a measure of convergence. 3

18



2019 © Natalia Dudarenko The modern theory of control systems

dudarenko@mail.ifmo.ru, dudarenko@yandex.ru Mathematical basics of the systems theory

Vector norms

Definition: A norm of a vector v of order n written as ||v|| is a single
number. The norm is a function of the elements of v and the
following conditions are satisfied:

7. |lvll = 0and ||v|| = Oifand only if v = 0.
2. |lcv]|= |c|||lv]| for any scalar c.
3. |lv +w| < ||v||+ [|w]| for vectors v and w.
A norm is a single number which depends on the magnitude of all
elements in the vector or matrix.

The following three vector norms are commonly used, and called the
infinity, one and two (Euclidean) vector norms:

1) Ivlles = maxilvl - 2) ||v||1—Z|vl| 3) ||v||z—<z|vl e
i=1

The relationship among the various vector norms:

Ivlleo < llvlly < nllvlle; IVl < lIvllz < Vallvlle
33

Vector norms

Example. Calculate the 1,2, and oo norms of the vector x, and verify
their relationship. ;
2
We have
1) Ivllw = max;|v;| = 3
2) vlly = XZisqlvil = N+ -3+ 12| =1+3+2 =6
3) vllz = (Tiealvil®) 2= 1112 + =312 + [2]2 = V14
The relationship among the various vector norms:
IVllo < Vlly < nllvlle; Wlle < IVl < Vrllvlle
Hence,

3<6<(3)®) =9; 3 <14 <(v/3)(3);
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Vector norms

Geometric interpretation of vector norms
llx|l, = rforp =1,2,c0.

Ar x2 =I'Ar
X, =r
-r 0 r X -r 0 rx
=X, =7
wl r
x?+x3 =1 X, =1

Matrix norms

Definition: A norm of a matrix A of order n x n written as ||A]| is a
single number. The norm is a function of the elements of A and the
following relations hold:

7. ||A|l = 0and ||A|| = Oifand only if A = 0.
2. ||cAll= |c|||A]| for any scalar c.

3 ||A + B|| < ||A||+ ||B]| for matrices A and B.
4. ||AB]|| < ||A||l|B]| for matrices A and B.

The following are frequently used matrix norms:
1) The infinity or row norm: ||A||, = max; 27=1|aij|;

n
2) The column norm: ||A||; = max; Zlaijl ;
=1

3) The spectral norm: ||A]l, = V/A,;  A,=maximum eigenvalue of A”4
(for a symmetric matrix A we have | |Alle = llAll; ).

4) The Euclidian norm: ||A||g= \/Z?zlzj?;1|aij|2 36
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Matrix norms
Example. Calculate the 1, 2, and100 norms of the matrix A.

A=|0 -1 4
-2 5 =3
We have
1) l|Allo = max{(|1] + |2] + [3]); (10| + [=1] + |4]); (I-2] + 5] + |=3])} = 10
2) [|Ally = max{(|1] + 10] + |=2]); (12| + |=1] + |5]); (13| + |4| + [=3])} = 10

3) lAll, = v,

To evaluate ||A]|, we first need to calculate AT A :

5 -8 9
ATA=|-8 30 -13|
9 -—-13 34

The eigenvalues of AT A are 1,=1.66, 1,= 18.85, 1;= 48.49.
Hence we have ||A||, = ymax(4;,1,,13) = V/48.49 = 6.96

Matrix norms

One valuable application of norms arises in the calculation of
eigenvalues of a matrix. If we consider the problem Av = Av, and take
norms on both sides, we obtain

lAv]l = [[Av]|
and hence using properties of the norms, we have
IAllllvll = 11[lIvll]| or 2] < [IA]

Therefore, every eigenvalue of A is in absolute magnitude smaller
than or equal toany norm of A.

Defining the spectral radius p(A) as
p(A) = max;|4;|
We have that
p(4) < |lAll

In practice, the co norm of A is calculated most conveniently and thus
used effectively to estimate an upper bound on the largest absolute
value reached by the eigenvalues.

38
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Singular value decomposition (SVD)

Matrix decomposition involves the determination of two or more
matrices that, when multiplied in a certain order produce the
original matrix.

The singular value decomposition (SVD) of a rectangular matrix A
(m x n) is accomplished by obtaining the matrices U, S, and V,
such that

Amxn = Unsxm * Smxn * VTnxn
where Uand V are orthogonal matrices, and S is a diagonal matrix.
The diagonal elements of S are called the singular values of A and
are usually ordered so that o; = g4, fori=1,2,..n — 1.

The columns of U and of V are the corresponding singular vectors.
Orthogonal matrices are such thatU - UT =1,V - VT = 1.

MATLAB code for a matrix X :[U,S,V] = SVD(X)

39

Geometric interpretation of svd(A)

n=Ny wmp |n|=|Ny o,

o0

|l < 7] < o2

No J

Figure 3.

40
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Singular values

Singular values g; of any matrix A can be calculated as following
det(ul — AAT)=det(ul — ATA)=0; 0; = |l‘i1/2|

Example. Calculate the singul_ar1 valu%s of tge matrix A.

A=10 -1 4
-2 5 =3
We first need to calculate AT A :
5 -8 9
ATA=|-8 30 -13|.
9 -13 34

The eigenvalues p; of AT A are the following
Uy = 48.49, u, = 18.85, u3 = 1.66.
Hence we have singular values of the matrix A

o, = V4849, 0,= V18.85, 05 = V1.66

max(o;) = oy = [|All; 41

Condition number

The condition number of a square non-singular matrix is defined as
the product of the matrix norm times the norm of its inverse
cond(A) = ||All||A~||

It is also defined as the ratio of the largest to the smallest singular
values of the matrix (@)
max(o;
A) = ———=
cond(A) inie)

The condition number of a non-singular matrix is a measure of how
close the matrix is to being singular. The larger the value of the
condition number, the closer it is to singularity.

This information will be useful in the analysis of the solution of a
linear system.

42
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Functions of matrices

Scalar functions of matrices:
f(A) = detA = [Ty ;3
f(A) = trA = ¥iz, A; = Xiz1 Ay

Vector functions of matrices:

f(A) = {col(4;,i = 1,n)} - vector of eigenvalues;

f(A) = {col(a;,i = 1,n)} - vector of coefficients of the
characteristic polynomial D(4);

Matrix functions of matrices:
any scalar row f () = ag + a;a' + aa?+..+apaP+.. -
matrix function f(A) of a matrix A
f(A) = agl + a1A + a,A%+..+a, AP +....

43

Functions of matrices

Cayley-Hamilton theorem.
Any square matrix A with dimension n and with a characteristic
polynomial

D(A) = det(A — AD=A" + a,,_; A" 1+..+a,
satisfies its own characteristic equation, that

D(A) = A™ + a,_1 A" Y+..+a0] = 0.
The proof of the theorem is based on the representation of any
matrix A with the eigenvalues 4; in the following form _/
A=MAM™? e

where M is the eigenvectors matrix of A, A = diag{A;,i = 1,n} is
the diagonal matrix.
D(A) = M(A™ + ap_1A" 4. 4ag] )M~ 1 =0
D(A) = M(diag{l(ln + Ay A ap), 1 = 1,71))M‘1 =0

-0 44
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Functions of matrices

Statement 1. Function of a matrix satisfies its ratio of similarity
MA = AM - Mf(A) = f(A)M
where A is a similarity matrix (for example, the canonical form of A).

Statement 2. Any square matrix A with the spectrum of eigenvalues
A;,i = 1,n and the eigenvectors v;, i = 1,n satisfies its function of
the matrix f(A) with the spectrum of eigenvalues Ay;

Agi = f(A;):det(Ap1 —_f(A)) =0,i=1n
and the eigenvectors vy; = v;,i = 1,n

f(A)v; = f(4;)v;.

Statement 3. Any power of a matrix A, denoted as A', is
commutative
A'f(A) = f(4) A
45

Functions of matrices

Example. Calculate function of matrix £ (4) = A%, where
a=[3 At su-fle-[Lha-l) 9

. , g2 _aa_F1 4111 47_
the formal procedure: f(A) = A = AA = [ 5 _3] [ 5 _3] =
B [ 9 -16
-8 17
* using the property of similarity transformation
A=MAM™1 - A% = MA’M 1,

o= e[ el 8]

/3 1/3 =18
173 -2/3[Tl-8 17/

46

A% = MA’M™! = ﬁ _11] [(1) 205] [
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Functions of matrices

Example. Calculate function of matrix f(4) = A%, where
9 -16 2 1
=% J7lm=12=-5un=[]vn=[_]
+ the formal procedure:
det(4si — f(A)) =det| "¢ T Asi® =261 +25=0

Afl = 1’Af2 = 25
* using the statement 2:
Ari=f(A) =A% Ap = (1)%= 1,45, = (-5)%= 25.
For the eigenvectors:

faw: =[5 TPIG]=1[] = raoe
faw, =% I =15 =28 ] = raowe

47

Examples of matrix functions of matrix

7. e% =1 +0(+%a2 +%a3 + o =2§20$a"
1 1 o1
f) = e =exp(A) = [ + A+ 5 A2+ A + - =ZEAL

a—-1 2 fa—1 3 2 fa—-1 5
2. Ina=2(5)=(57) +i(5) +
A =2(A—D(A+ D)= (A= DA+ D)+2 (A= 1)5(A+ 1)+

1 1
T L, LT
cosAd = 1 2!A +4!A 6!A
4.sine=1—+a3+La5—-Lq7..
30 51 71
1 1 1
I N DT e
Sind =1 3!A +5!A 7!A
48
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Basics of the control theory

Basics of Automatic
Control Theory

Madina Sinetova

Structural scheme

¢ u ¥

generator i.?_. controller »  plant

Plant (Control Object) - physical device (DC motor, electrical
circuit, combustion engine, etc.),

e(t) = g(t) — y(t) - error signal,
u(t) - control signal,

¥

g(t) - reference signal,

* y(t) - output signal {for example, motor shaft velocity or rotation
angle}.
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Input-State-Output model

Model is:
x = Ax + Bu,
y = Cx,
* x € R™ - state vector; A — nXn «state matrix»;
s ueR® —system input; B —nXk «input matrix»;
* y€ R' - system output; € — IXn «output matrix».
Let’s introduce algebraic variable s and introduce characteristic

equation:
det(tA-sD=s"+a, 15" +-+a,5+a,=0,

I —identity matrix,

5;, L = 1, n are roots of the system,

a;, J = 0,n — 1 are polynomial coefficients.

Input-Output model

System behavior is described by one differential equation of n-
order:

dny an- ‘1y dy 3
7 +a,  — qen-1 T oeep g, — ar +a,y =
d™u dm-1y du
=bmd?.'_m+ bm—l drm- 1+ +b1d_+ b{,u

. },j= O,m.

Used two coefficients sets instead of matrices 4, B, C.

28
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Physical feasibility "

fz}

m < n - physical feasibiiity condition.

L 21

Derivative is a:

ey = i FEHE A = FG)

Ax-0 Ax

In physical systems x = ¢.

We can’t know f(t + At) value, because the moment (¢t + At} in
the future.

Transfer function

. . . d . .
Let’s introduce algebraic variable s = i differentiation operator.

Rewrite differential equation of n-order:
sy +a, 1s"ly+ et asy+agy =
= b, s™u + b, _5™ tu + - + b su + byu.
Variables y and u put beyond the bracket:
y(s*+a, 5" 1+ +as+ay) =
characteristic equation
=u(bps™ + by_15™ 1 + -4+ by5 + by).
Divide equation above to # and to characteristic equation:
Y bps™+ by 5™+ -4 bys + by W)
- = = 5).
U st+a, sPl4 et as+a
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Transfer function

By S +byy 1 S 14k by S4B,
sttay, N1+ ta, s+a,

* Roots of the Transfer function denominator are called poles and
described system’s free motion.

W(s) = — Transfer function.

* Roots of the Transfer function numerator are called zeros and
described system’s forced motion.

Example

Given: R
d?y(t)  _ dy(t) _du(t)
dr2 + 2 e +)’(t) = ? <+ u(t).
Find:
W(s) = %-?
Solution:

* satisfies the physical feasibility condition: m=1 < n = 2,

s+1
W(s} = s2+25+1’
*5+1=0>5=-1-zero;

+s24+2s+1=0> 512 = =1 —two poles (second order pole}.

30
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Conversion ISO to 10

W(s)=C(A-sD"'B
* MIMO case:

Transfer matrix I Xk dimension, consists of several transfer
functions W; ;(s) linking i-th output and j-th input.

* SISO case:
Transfer function W (s).

@—h(t)

Transients

) h
* t; —transient time: Vt > t,: |h(z) — 1| < A,A> 0;
* h(t) —transient function;

* A= 0.05 (5% deviation from steady value #};

* ho = lim h(2);

* In case g{t) = const = g: ho, = W(S)|5=0 " g;

- 6 — hmax‘hno

. I - 100% - overcontrol (typically § = 0 --- 30%]);

10
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Example

* Given:
1 -N.p_-1].r= -
a=[; JlB=3ic=13 -2
+ Differential equations system:

. i1=x1—x2+u
{x—Ax+Bu =>{ %, = 2%, +2u .
y=Cx y

= 3x, — 2X%;,
u ':? . -I2>_.é_. 1
« a2y %2 o (.
»S y
[

cl 11

* Modelling:

®

Example

* Transfer function:

W(s) = C(A-sI)"1B;

_M1 =11_71s ®_[1-s 1 71_ s«
4 S’—[z 0] [o s ‘[-2 1—5]_A'
«—1 __ 1 = Aa\T,
A - detA* (ad]A) ?

adjA* — adjoint (or allied or interconnected) matrix;

a;; = (=1)** - M;; — aigebraic compiements,
I — row number, j —column number, Mi)‘ — minors of A*.
detA* = (1-5)(-5) - (2Q(-1)=-s5+s?+2=52-5+2.

12
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The modern theory of control systems

Example

1 [—s -2 17 1 -5 1

o A*—1 _ — .
A 1 1-s 5s2=5+2 =2 1 =35V

T §2—5+2

. =1 _ - i . =S 1 = B -
€A _[3 —2] §2—542 |=2 1 =—358§ T 52542

[-35+4 3-2+2s];

-1 = 17 _
W(s) =5 [-3s+4 1+ 25] [2] =
1 s+6
=5 (=3s+4+2+45)=—.
13
Example
* Transfer from 10 to ISO:
Y(s) _ s+6 _d

W(s) =

U(s)  s2-s+2’ s T
s?y — sy + 2y = su + 6u.
* Divide the equation to s™:
sly—sy+2y =su+6u|:s?
1 +21 -1 +61
y ;}’ Szy_su Szu'
* Leave only ¥ on the left:
1 +1 +61u 21
=—u+- —uU=-2—=y.
Y=5 57 T 05z sz

14
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Structural transformations

1. Consecutively k-connected elements:

X,(s) X,(s) X,(s) X,(s) X (s)
— Wl — = Wiy —
X3(s)
W, = '
«(s) X, (s)

* From the scheme : )
XZ = W'.leﬁ X3 S

> W = —

Xy = WX, = wywyx, = el =375

* So:

= WL (s)W, (s).

k
W)= [w .
i=1

15

Structural transformations

2. Parallel k-connected elements:

XAs)

W (s)
Xts), %"{s’
Ws)

Xy(s)

X

* With the same logic:

k
W,(s)= ) W ()
i=1

16

34




2019 © Madina Sinetova The modern theory of control systems
mmsinetova@itmo.ru, sinetovamadina@gmail.com Basics of the control theory

Structural transformations

3. Elements with a feedback:

x5 S

’

w’ (s) X 3(3)

L W s)

X (s)

4

{
Xo=X1 =Xy X3 = Wi(X, — X)),
X3 = W1X2, = < X3 = W1X1 - W1W2X3,

X, = WoX;, \(1 + W, W,)X; = W,X,.
X3 W,
|74 == —,
)=y T Tyww,

17

Stability

* Stability is the system ability to return to initial position after
stopping action to system external disturbances.

Stable system Unstable system

Segway
18
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Stability types

1. Lyapunov stability.

* Guarantees bounded of all trajectories, but not guarantees
convergence to some steady value.

where x,, X, are state coordinates, £, & —some small numbers; as norm of x; and
X, can be used quadratic norm, for example; x(0) —initial position of trajectory.

* The equilibrium x = 0 is tyapunov stable if for any small number
£ > 0, exists small number 6(&) > 0, that for all trajectories
starting from the initial conditions ||x(0}|] < &{&) for any time
vt = 0 following inequality is satisfied: ||x(t)]| < e.

19

Root stability criterion

Given:

X =Ax+ Bu
y=Cx

Characteristic polynomial of the given system:
dettA-s)=s"+a, ;5" 1+--+a,s5+a,=0,

where s;, i = 1,n—roots of the polynomial.

If all roots have neguative real parts Re(s;) < 0,i = 1,n, then the

system is stable. Im
. PO SRR o AT
Im - imaginary axis (stability border), ® - o e
Re —real axis. g
. 20

36
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negative real parts:

Stability borders

If one or more than one root is more than zero system is unstable.

1.1. Stability border of neutral type.

Dynamic system is on the border of neutral type if one or two roots
of characteristic polynomial are equal to zero and rest roots have

S12 = 0,Re(s;) < 0,i =3,n.

21

where Jj —imaginary unit.

Stability borders

1.2. Stability border of oscillatory type.

The dynamic system is on the border of oscillatory type if the
characteristic polynomial has pair of purely imaginary roots and rest
roots have negative real parts:

$12 = tjw,w > 0Re(s;) < 0,i =3,n,

22
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Stability types

2. Asymptotic stability

The equilibrium x = 0 is asymptoticaily stable if the position is

Lyapunov stable and for any motion trajectories x(t) from the

arbitrary initial conditions x{0) the condition tlim (e} = 0.
—00

23

Stability types

3. Exponential stability

The equilibrium x = 0 is exponentiai stable if for any motion
trajectories x(t) from the arbitrary initial conditions x(0) exists
numbers § < G and p = 1 that for any time ¥t > 0 the inequality is
satisfied: ||x(®)]| < pePft - [|x(O)]].

»)

{0)

ol

Constant f is the convergence degree and characterizes

convergence velocity to equilibrium.
24
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Modal control

Given plant:
{Jk(t) = Ax(t) + Bu(t)

y(t) = Cx(¢)
Modal (reference) model is an autonomous dynamic system:

z(t) =Tz(t)
[ﬂ(t) = Hz(t)
where z(t) € R™ —state vector, I' — nXn state matrix;
n(t) € R —output vector; H — IXn output matrix.

Matrices (I', H) — completely observable.

Matrix I characterized by eigenvalues A;,i = 1,n.

25

Modal control

Choose proportional control :
u(t) = =Kx(t),

where K — matrix of linear stationary feedbacks.

Substituting control signal u(t):
x=Fx

= Cx'
where F = A — BK — matrix of the closed system.

* To matrix K provides quality indicators for the given dynamic
system like in a reference model, it’s necessary the condition of
similarity is satisfied:

x(t) = Mz(t) = z(t) = M~ x(t),t 20,

where M — coordinate transformation or similarity matrix.

26
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The modern theory of control systems

Modal control

Output of the reference model is a control signal for the given
model. Using this relation obtain the control law:
u(t) = =Hz(t) = —HMx(¢).
* Let’s introduce notation:
K=HM™! < H=KM.

* Substituting obtained expressions to Sylvester type matrix

equation obtain:
MI' — AM = —-BKM.

* With the notation F = 4 — BK matrix equation leads to a
similarity condition:
MI' = FM,

therefore matrix F has eigenvalues .

27

Example
Given plant:
7 3 14 0
A=[6 5 -8],B=l0],€=[1 0 0]
4 -1 =7 1

Required to ensure the transition time in a closed system t, = 1.7
seconds.

A=1[7 3 14; 6 5 -8; 4 -1 -7]; % MATLAB code
B=1[0; 0; 11];
C=1[10 0];

28
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Example
1. Checking system’s stability:
s; = —=11.3921,
det(4 — sI) = 53 =552 - 1315 + 635 = <{s, = 11.5776 > 0,
s; = 4.8145 > 0,

= system is unstable.

roots(poly(A})); % MATLAB code or

eig(A};
29
Example
2. Checking system for complete controllability (matrix Nc =
[B AB A%?B --- A™ 1B]should has the full rank):
0 14 -24
rank N. =rank |0 -8 100|=3 = n = systemis completely
1 -7 113
controllable.

rank{ctrb(A, B)); % MATLAB code

30
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Example

3. Form reference model:

* Find a desired characteristic polynomial in accordance with a
normalized transient time t/ for a n-order system.

* It can be calculated from transients of Butterworth (overcontrol
not more than 15%):

Db(s) = l—[(s - wej(;*%;_l”)),
i=1

or Newton (overcontrol 0%}):
Dn(s) =(s+ w)"

polynomials.

31

Example

3. Form reference model:

1.5

05}t-£-o4

¢

0 2 4 6 8 10 12

Butterworth polynomial transient. Newton polynomial transient.

32
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Example

3. Form reference model:

polynomial}.
t, 1

with the desired polynomial:

* In case n = 3: t} = 6.2 seconds:
D,(s) = 5% + 3ws? + 3w?s + w?

is the desired characteristic polynomial (third-order Newton

w="2=52=365D,(s) = 5% +1094s% + 39.95 + 48.51.

* Matrix I of the reference model in a canonical controlfable form

0
1 |,H=[1 0 o]
~10.94

0 1
I'= 0 0
-48.51 -399

33

Example

-
Il

matrix M:
—0.1497

M=] 02111
0.0365

[1 0 0]; & MATLAB code
G=1[0140; 00 1; -48.51 -39.9 -10.94];

4, Finding matrix transformation M:

* The solution of the Sylvester matrix equation with respect to the

-0.0084
0.0215
-0.0054
M = sylv(-A,G,-B*H); % MATLAB code

—-0.0020
0.0028 |.
0.0014

33
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Example

5. Calculation of matrix K:
K =HM™! =[36.2969 18.2453 15.94].

K = H * inv(M); % MATLAB code

6. Checking calculations:
7 3 14

F=A-BK= 6 5 -8 |,
-32.2959 -—19.2453 -—22.94
det(F — sI) = 5% + 10.9452 + 39.95 + 48.51 = D,(5).

Characteristic polynomial are the same with the reference, hence
controller coefficients found correctly.

F=A-—-—B % K; $ MATLAB code
poly(F)

35

Example

7. Calculation of the direct linking coefficient:
K, =—-(CA- BK)™1B)™! = -0.5161.

Kg = -inv(C * inv(A — B * K} * B); % MATLAB
code

8. Form control signal:
u(t) = K,g(t) — Kx(¢t).

36
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Example

9. Modelling:

37

Discretizing

* In continuous time, the Plant is described as follows:
x(t) = Ax(t) + Bu(t)
y(£) = Cx(t)

* Digital electronic microcontrollers work in a discrete time, so:
[x(k + 1) =Ad - x(k) + Bd - u(k)
y(k) = Cd - x(k) '

T = At - discrete interval, k —steps. "

N AVERVEIY, Lo
A A+ TRhg2 L.Mepy
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Discretizing

Discrete matrix Ad can be found as a matrix exponent:
Ad = e“T,

Discrete matrix Bd we can find using formula:
Bd = A71(eAT — DB|g -1,

and
cd=2C.

T = 0.1; % MATLAB code

Ad = expm(A * T);

Bd = inv(A) * (Ad - eye(n)) * B;
cd = C;

39

Discretizing

» To avoid division by zero in A~1, matrix exponent can be

decomposed to series with k;cmembers:

ATE
eAT ~ E — = Ad,
¢ il
IEO Ai—lTi
Bd = ( E - )-B.
i
i=1

46

The modern theory of control systems




2019 © Madina Sinetova

mmsinetova@itmo.ru, sinetovamadina@gmail.com

The modern theory of control systems
Basics of the control theory

Example

Given:

Find:

Code:

B =[0; 1];
C =11 0];
T = 0.01;
Ad = 0;

Bd = 0;

k = 10;

a=[9 ZLle=[]}c=n o r=00L,u=1
Ad, Bd, Cd.

A=1[01; -2 -3]; % MATLAB code

41

:1
(

AL * T"i / factorial(i));

Bd = Bd + (A"{(i — 1) * T*1i /
factorial{i))} * B;

0.0099

end;
end;
cd = C;
109999
Ad‘[-o.o197 0.9703

]’Bd = [0.0%99]' Cd=[1 0]

42
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Example

Integrator — memory element which saves previous value, so:

x1 = 0; % MATLAB code
x2 = 0; % initial conditions
u = 1;

for m = 0:1:100000

xldot Ad(1,1) * x1 + Ad(1,2) * %2 + Bd(l) * u;
x2dot Ad(2,1) * x2 + Ad(2,2) * x2 + Bd(2) * u;
y(m) = Cd{1) * x1 + Cd{2) * x2;

kim) =nm / T;

x1 xldot;

x2 x2dot;

end;
plot(k,vy);

43

Example

N
o

20t
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Identification theory

Identification Theory

Alexey Vedyakov

Application

e Measuring systems

e Disturbance compensation systems:
e hard drives
e ship

e active suspension vehicle

49
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First global convergent estimators

e Hsu L., Ortega R., Damm G. A globally convergent frequency
estimator // IEEE Transactions on Automatic Control. 1999.

o G. Obregon-I’ulido, B. Castillo-Toledo, A. A. Loukianov,
"Globally convergent estimator for n-frequencies,” IEEE Trans.
Autom. Control, vol. 47, no. 5, pp. 857-863, May 2002.

e A. Bobtsov, A. Lyamin, D. Romasheva, " Algorithim of
parameter’s identification of polyharmonic function,” in Proc.
15th IFAC World Congress on Automatic Control, Barcelona,
Spain, Jul. 2002.

o X. Xia, "Global frequency estimation using adaptive identifiers,”
IEEE Trans. Autom. Control, vol. 47, no. 7, pp. 1188-1193, Jul.
2002,

e R. Marino, P. Tomei, ”Global estimation of unknown
frequencies,” [EEE Trans, Autom. Control, vol. 47, no. 8, pp.
1324-1328, Aug. 2002.

Frequency estimation

Consider the measurable signal
y(t) = Asin(wt + &), (1)

where A is the amplitude, w is the frequency, ¢ is the phase.

The goal is to obtain the frequency estimate &(¢) such that

flim lw —&(t}] = 0.
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Sinusoidal signal generator
Consider derivatives of the signal (1)
g(t) = wA cos(wt + ¢),

i(t) = —w? Asin(wt + ¢). (2)

Using (1) and (2) we can obtain lincar regression model

y(t) = y(t), (3)

where 8 = —w?.

1 1 y(t))

w
w

Gradient method

Consider the cost criterion
J(0) = 30 — 31117 = SOy(2) — D)2 = Lo (1),
which we minimize with respect to é(t) using the gradient method
0t) — —yvJ (D),
where v > (. In our case,
V@) = 2 = eyt = —utt) (i) — b))
Finally,

8(5) = () (i) — 8ty (1))
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Biased sinusoidal signal

Consider the measurable signal

y(t) = Ag + Asin(wt + @),

(4)

where Ay is the constant bias. Consider derivatives of the signal (4)

4(t) = wAcos(wt + ¢}, (5)
i(t) = —w?Asin(wt + ¢).
Y(t) = —w’ A cos(wt + ). (6)
Using (5) and (6) we can obtain linear regression model
Y (1) = 0y(2).
The adaptive law
6(6) = vi) (W) — di®)) (7)
Modified version
Let us consider additional variable
X(#) = 8(t) — 79(2)i(t), then (8)
6(1) = x (1) + ()i (h)- (9)
Differentiating equation (9) we obtain
0(t) = X(8) + 7 (1) + BT (@). (10)
On the other hand, from (7) we have
8(t) = vie) ((2) - B(1)3(t)) = (05 (1) — B (D). (11)

Combining (10) and (11) gives

0(t) = x(&) + vu()i(t),
x(t) = =0 () — v (¢).
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Without measuring derivatives

Let us consider linear filter

£(t)
—>

The signals £, £(2), £(t) arc measurable. Morcover,
£(t) = By + B sin(wt + ) + €(t), (12)
where ¢(t) is cxponentially decaying term. In this casc,

9(t) = x(&) | E@ER),
x(t) — = 0)EX () — vEX ().

Multi-Sinusoidal signal

Consider the measurable signal

.
y(t) — Ao+ > Assin(wit + ¢;). (13)

=1

Signal generator for & = 2

h 4
Y
4

1 1 1 1| y©®
e e ey s

— it

W

where ) = —(w? + w3), &
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Multi-Sinusoidal signal

The signal (13) can be generated by the following differential equation

p(r? —01)(p* — 6a) ... (p* — O)y(t) =0, (14)

where p = d/di is the differentiation operator, 8; = —w?

parameters, ¢ = 1, k. Equation (14) can be represented as

, are constant

PP Iy(t) = 01p* y(t) + ... + Gy (t), (15)
where 8; can be calculated by the following system

9_1 =0 +6,+---+ 6.
by = —0h6s — 0185 — - — BBy,

B = (—1)*+16,8,- - By

General linear filter

Introduce the linear filter

A
v(s)’

§(s) = Fisyy(s), F(s)= (16)

where Ag > U, v(s) = 8% | vgp_18%5 7L | o | s | 7 iIs & Hurwitz
polynomial.
2k
Ad

Multiplying (15) by

with (16) we obtain

v(s)

P tLe(8) = 61827 1E(8) + ... + OpsE(s).

54
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Regression model

After the inverse Laplace transformation for the filter (16) and the
input signal y(¢) we get the relation

() = QT (£)0 + e(),

where Q(t} is a regressor of functions £7)(t)

QT () = ¢

D) )],
© is a vector of unknown parameters depending on frequencies
(:)T = I:él gk_]_ B_k] .

Adaptive Frequency Estimation

The update law

(17)
where estimates 6; calculated using &; that are elements of a vector é:

O = T(t) + KQH)EPR (1),

(18)
T(#) = —KQBQT (68(t) — KM (1), (19)
where K = diag{k; > 0,7 = 1, k}, guarantees that the estimation error
@; = w; — w; exponentially converges to zero:

@i (t)] < pre™",

pL,B1 >0, Viz0

(20)
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Harmonics observer

For the variable £(t) we have

E(t) = Lo + £a(t) + &alt) +- - + £i(E). (21)

After differentiation (21) 2k times, we obtain two systems of k linear
equalions:

gM() = 51(‘t) +& () +-- + & (), ‘
) =6,6(t) | 0260 |- 1 I&(t),

5(%— [:[(t) — gic—lél @+ + 92_1‘5';0(13),

and
E2() =0.6(8) | 826(8) |- ) 8pbel(t),
£ (t) = 0341 (1) + 0262(t) +- - - + 026k (2), (22)

E2R) (1) = ohey (&) + O5Ea (1) +- - - + OEEL (D).

Harmonics observer

From (21) and {22) we get the realizable estimation scheme for

variables &g and £;(t)

i €:1(t) T ',?1 ék- “Llr (1)
&a(t) 0 - 6 W (8)
&ty | |8F - ] | %Ry |

and

ke
G=E1) D401
7—1
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Parameters estimation

The estimates of the amplitudes and phases

Aty =288 46y = (~pet) + dei(t)) mod 2

Fgs(t)
where
2 2
, N (t
%mw=.§ﬁw+(38),
q;&' (t) = (sign (éi(t))arccos (%) _U:]z'(t)t) mod 27,

Les(2) and ¢;(t) can be obtained from filter frequency response

Lei(t) = |F(jw)lyms, s Peilt) = a1g F(Jw)| e, -

Dynamic Regressor Extension and Mixing

Consider the regression model

W(t) = 6" o(t), (23)

wlere ¢(1) € R is the regressand, 8 € R™ is the coustanl veclor of

unknown parameters, ¢(t) € R" is the regressor.

Consider two linear operators

e The stable LTI filter. For example, we can choose exponentially
stable LTI filters

Al
Hi(p) = ——, 24
() = )
where p = d_di’ NER,,I=1,mn
e The delay operator
H()(8) = ()t —dy), (25)

where d; > 0 is a delay.




2019 © Alexey Vedyakov The modern theory of control systems

vedyakov@itmo.ru, vedyakov@gmail.com Identification theory

Let us choose delay operator and define the filtered signals

or,1(t) = ¢t — dy), (26)
wy(t) = ¢(t — dp). (27)
Combine (26)-(27) and signals é(t), 1(t) as follows
KA L ()
sr=| P w0 e
7 (0 ()]

where ®(t) € R™*®, U(t) € RP*1,

Defining

{(t) = des {@(2}}, (29)
£(t) = adj{®(t)} ¥(¢), (30)

where det{®(¢)} is the determinant and adj{®(¢)} is the adjugate of
matrix ®(t). we obtain a set of n equations of the form

&(t) =¢@®), 1=T1,n. (31)

In the obtained first order regression models {31) we can identify
parameters #; separately.
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The standard gradient method can be used for identification of the
obtained models with scalar regressor and parameter

0u(1) = 7aC(0) (&8) - COBD) (32)
where 4 € E,.

From (31) and (32) we can write

B(1) = —1a 2B (2). (33)

Solving this differential equation we obtain

bt6) = 00)exp (= t G rir). (34)

If ¢(¢) is bounded and not square-integrable function, i.e.
¢t [ =, (35)
0
then (32) provides convergence of the estimation error to zero, i.e.
-] -o »
For exponential convergence, the following inequality should hold
t
/ 2 (r)dr > Dt, (37)
0

where D e R,
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Nonlinear control systems

Nonlinear Control
Systems

Zimenko Konstantin

Nonlinear versus linear systems

Linear systems

* Huge body of work in analysis and control
of linear systems

e Most models currently available are linear
(but most real systems are nonlinear...)

4
o
N e,
%,

Nonlinear systems can (sometime) be approximated by linear systems.
Nonlinear systems can (sometime) be “transformed” into linear systems.2

Nonlinear systems

¢ Dynamics of linear systems are not rich
many

enough to describe commonly

observed phenomena
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State-space model

State equation

= f(t,z.u)

Output equation

y = h(t,z,u)

r1 u1 fi(t,x. u)
".:'2“ |VIIQ“ [fg(f..r. u)“
r=1| .1, u= ) . flt.x.u) = )
\\J'.HJ \\u;nJ \J'n (I...r. u )J

where = € R™ is the state variable, u € R™ is the input signal, and y € R? the output

signal. The symbol & = ((11_: denotes the derivative of = with respect to time t.

Nonlinear systems: Example

Pendulum equation (equation of motion in the tangential direction)
mlf = —mgsin 6 — klé.

!
\ 8
mg
State equations (x; = 0,x, = 0)
T = T3,
Tp = —%sinxl - ,—,kﬁ:z:g

Equilibrium points (nm;0), n =0, 1 , £2, ...

61



2019 © Konstantin Zimenko The modern theory of control systems

konstantin.zimenko@itmo.ru, kostyazimenko@gmail.com Nonlinear control systems

Nonlinear systems: Example

State equations (frictional resistance is neglected)
&) = T2,

dg = —%sinxl

Equilibrium points (nm;0), n =0, 1 , £2, ...

State equations (with friction and applied torque)

& = Ty,
iy = —3sinz, - 2+ =7
where T is the torque.

Equilibrium points (arcsin(7/mgl);0)

Nonlinear systems: Example

Robust oscillation r
T = g, .
By = -z +e(l-1})zs \
Van der Pol oscillator A\ 4
LI =V

OV =—1—1Ix(V)

\ |+
o/l
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2.5 T T

Nonlinear systems: Example

Van der Pol oscillator: phase portrait

1.5}

0.5F

/

i

/
////////////f‘

I B A B
)l
/

i S

* Finite escape time

* Multiple isolated equilibria

* Limit cycles

the same frequency)
* Chaos

* Multiple modes of behavior

Nonlinear phenomena

(the state of unstable linear system goes to infinity as t — o)

* Nonasimptotic stability (e.g. finite-time stability)
(linear systems — infinite time of convergence)

(linear systems — only one isolated equilibrium point)
(linear systems — system oscilates iff there is a pair of eigenvalues

on the imaginary axis, which is a nonrobust condition)

* Subharmonic, harmonic, or almost-periodic oscillations
(stable linear system under periodic input produces an output of

(More complicated steady-state behavior)
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Relay
Y M Ty
-a a _-a-c E
W = 5 ca x
i L.
Relay with ~ Three-position
hysteresis relay

Common nonlinearities

s ® 0a X
-M
Dead zone  Relay with dead
zone

Backslash Quantization

take one of the three forms

with k& being either 0 or 1.

Qualitative behavior of linear systems

Linear second order system

i = Az, » € R?, A ¢ R?*2
Apply a similarity transformation M to A:

M~YAM = J. M € R2%2

where .J is the real Jordan form of A, which depending on the eigenvalues of A may
A1 0
0  Aof’

Present a change of coordinates

:= M1z
i =M1z

2

I\' X —)’
Al 3 «

10
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N1/

Qualitative behavior of linear systems

Z

/1IN

“3

(@

. LI
o

7/
&= N7

Stable node (4; ; < 0) Center (41, = *jf) Saddle point (1, < 0 < A,)

"

Stable focus (A1, = a *j,a < 0) Stable focus (4;, =a *jpB,a > 0)

A

7
(&~

11

£ = 6[_h($l) ~ Zg)
1
Lo = E[_xl — Rzg -+ ul

Multiple equilibrium points

Tunnel-diode circuil

A\

“0.4 - L L [} 1
~0.4 =02 ] 02 04 06 0B 1 1.2 1.4 1.6

Phase portrait

12
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Multiple equilibrium points

Pendulum

frictionless pivot

amplitude |6
. \massless rod

bob's™ ~ . _
trajectory

o " assive bob
equilibrium
position

Phase portrait of the pendulum equation

13

Qualitative behavior near equilibrium

Consider autonomous system
i:l = f](th?),
&2 = fa(z1,22)
where f,(x;, x,), f>(x;, x, ) are continuously differeniable.
Let p = (p;,p,) 1s the equilibrium point. Expanding the right-
hand side into its Taylor series about the point p, obtain
&1 = fi(p1,p2) + ann(z1 — p1) + arz(z2 — p2) + HOT,
T2 = fa(p1,p2) + a21(z1 — p1) + az(z2 — p2) + HOT,
where HOT denotes high order terms and

N 0fi(z1,z2) — Ofi(z1,22)
n=—— o= =

I)=pP1.E2=p2 ) =p1,x2=p2
s 0fa(zy,z2) o dfa(z1, z2)
2= o o= 5 —

I =m,r2=p2 T1=p1,Z2=p2

Since p = (p,,p,) 1s an equilibrium point

Ji(p1,p2) = fa(p1,p2) =0
14
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Define

and rewrite the state equation as

Qualitative behavior near equilibrium

n=x—p, H Y= —pP2

1 = &1 = any + azy2 + HOT
Yo = &2 = agy) + ageye + HOT

HOT is negligible in a small neighborhood of equilibrium point:

Y =21 = any + a2y
Y2 = T = a21y1 + a22y2

Rewriting in a vector form, obtain

0 1
4 = [—10 —1]’

01
4z = [10 -1]‘

is a saddle point

y=Ay
where
of1 Oh
A= |G o2| _ d0zy Oz _ of
ap a afs 0f2 or|,,
0xy Ox2]|,_,
15
Example 1
Pendulum equation
&y = T3,
T9 = —10sinz) — @9.
Equilibrium points (0;0) u (m;0)
Jacobian
of _ 1
dr  |—10cosz; -1

Jacobian evaluated at the equilibrium point

Al,z = _0.5 j'_]3/12

11'2 = —37, 2.7

Equilibrium point (0;0) is a stable focus, equilibrium point (r;0)

16
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Example 2

Consider the system

&) = —xp — puzy(2? + 23)
&y = z) — pza(z] + 73)
Jacobian at (0;0) has eigenvalues %j.

Transition to polar coordinates:
Ty =T1c0s8 U T =718Inf
The system in polar coordinates
F=—pr®n =1

For > 0 the equilibrium point (0;0) is a stable focus, for £ <0
is a unstable focus.

17

Lyapunov function

Consider the system
i= f(x),
where f: D — R" is locally Lipschitz
Let p = 0 is equilibrium point
and D < R" is an open set, which
contains p. Let V. D - R is a

continuously differentiable
function such, that

V(0)=0and V(x)> 0 for D\{0}

If V(x)<OforxeD,then p=0
is stable.

If V(x)<0forxe D\{0}, then p =0 is asymptotically stable.
18
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Lyapunov function

Consider the system
i= f(x).£(0)=0.
Expanding the right-hand side into its Taylor series

x=f(0)+ QL x+g(x)= Ax+g(x),
: OXlx=0
wnere i
=] .
Ox x=0

Choose the candidate Lyapunov function in the form
V(x)=x'Px, P>0
Then
V(x)= i Px+xT Pi= leAT # gT(.r)]Px + .\'TP[A\' & q(r)] =x! (ATP + PA)Y + 2xTPg (x)=
= —,\‘TQ.\' + 2xTPg (x),
where Q>0 such, that
ATp+pPA= -0 Lyapunov equation
19

Lyapunov function
Lt < v
where y > 0.
Since

xTQx 2 Mmin (Q}xTx = Amin (Q]x|2,
(Q) 1s the smallest eigenvalue of the matrix Q, then
V(5) < anin (@) + 20| Pl = onin (@)~ 24P [,

Lyapunov function derivative is negative if

}'min (Q)
2#]

where A

min

Amin(Q)-2Y|P|> 0= y<

20
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Consider the system
& = ax®
Linearization:
a
A= 3_1‘ = 3az?|,_, =0
T |z=0

Choose the Lyapunov function
V(x)= x°.
Then
V(x)=2ax".
The equilibrium point is:
1) stable, ifa=0;
2) asymptotically stable, if a < 0;

3) unstable, if a > 0.
21

Stabilization: steady-state control

Consider the system
= f(z,u)
with desired equilibrium point @ = g
Steady-State Problem: Find steady-state control ug s.t.

0= f(wsss uss)

Ty = T — Lgs, Us = U — Ugs
. def
s = f(xss + x5, uss +us) = fs(xs, us)
fﬁ(ov 0) =0

us = vy(xs) = u=us+y(x— xs5) 22
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State feedback stabilization

Nonlinear system

= f(ax,u) [£(0,0) = 0]
u = ~y(x) [7(0) = 0]

Problem: stabilize the system at the origin

where f and y are locally Lipschitz functions

23

Stabilization: linearization approach

r = Axz + Bu
0 0
A= —f(zcu) ;. B = —f(zc,u)
ox x=0,u=0 du x=0,u=0
Closed-loop system:
= f(x,—Kx)
o o
r = [—f(a:, —Kzx) + —f(a: —Kx) (—K)] x
ox ou =0
= (A —- BK)x

(A - BK) is Hurwitz = the origin is an exponentially

stable equilibrium point ”
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Example: pendulum equation

§ = —asin® — bo + T
Stabilize the pendulum at @ = §

0 = —asind + Ty

0 1
A - =
[ —acos(xy +90) —b ]r 0 [ —acosd

x] =60 — 9, m2=é9 u="T — T
T = a2
2o = —alsin(xy + 6) — sind] — baxs + cu

0
A — BK =
—(acosd + cky) —(b+ cko)

acosd b

ki > — , ko> ——

c c

asin o a sin 0
c

|

— k1(0 — 0) — ko0

26
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Feedback linearization

Consider the nonlinear system
= f(x)+ G(x)u

f(O) — 0’ x € R“’, = Rm,

Suppose there is a change of variables z = T'(x), defined
forall z € D C R™, that transforms the system into the
controller form

zZ= Az + Bvy(z)[u — a(x)]

where (A, B) is controllable and ~(x) is nonsingular for all
xr €D

u=oa(zx)+~y (z)v = 2= Az+ Bv
27

Feedback linearization
v=—Kz
Design K such that (A — BK) is Hurwitz

\ 4

u=a(x) -~ (2)KT(z)
Closed-loop system in the xz-coordinates:
i = f(z) + G(z) [a(z) — v (z) KT (x)]

Nonlinear - Linear
System System
Control Input

Transformation .
Linear

Controller 28
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Feedback linearization

Closed-loop system:
u=a(z) — 4 () KT (z)
z=(A—BK)z+ Bj(z)

d=~lad—a+~y KT -5 1KT]
where &, 7, T are nominal models of «, yandT.
(V(z) =2"Pz, P(A—BK)+(A— BK)'P=—1I\
If [|0(2)|| < Ek||z]| for all z, where

1
0<k <
2[|PB|

then the origin is globally exponentially stable
29

Example: pendulum equation
0 = —asin® — bl + T

. a
xt1=0—-90, x0=06, u=T—-—T, =T — —sind

c
:ijl = I2
&9 = —alsin(x; + ) —sind] — bz + cu
1
u = —{a[sin(xy + 6) — sind| — k1x1 — kox2}
c
A — BK = 0 L is Hurwitz
—k1 —(k2+0b)

30
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Example: pendulum equation

1
T = u+ ¢ sind = — [asin(xq 4+ 0) — kjxy — koxa]
c c

Let @ and ¢ be nominal models of @ and ¢

1
T = —[asin(x1 + ) — k11 — kaxa]
é

= (A — BK)x + Bd(x)

ac — ac c—=¢
0(x) = (—A> sin(x1 + 01) — <—é> (k121 + koxa)

C

31

Example: pendulum equation

C — C

ac — ac\ C
5(:13) — (T) Slll(ﬂ?l —+ 51) — (T) (k1$1 + k:g:lJQ)

[0(x)| < kllz|| +

ac — ac ac — ac

= | sin 01|

c— ¢
. ‘ K24 K2, e =

(&
p— | P11 P12 . PB= P12
P12 P22 P22
1

2y Piy + D3y

sind1 =0 = =0

k <

32
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Backstepping

n = f(m)+agmn)é§
£ = u, NER" &, UER

Stabilize the origin using state feedback

View ¢ as “virtual” control input to
n=Ffm) +a9n)§
Suppose there is £ = ¢(n) that stabilizes the origin of
n=rfmn) +agm)en)
A%

5%ﬂm+QMWMHS—WWW VneD
n
33
Backstepping
z=§— o(n)
n = [f(n)+gm)on)] +ag(n)z
. o
z = u—gﬂﬂm+gmﬁ
n
w="2217(n) + g(m)e] + v
n
n = [f(n)+agm)e@n)] +ag(n)z
34
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Backstepping

vV
= —[f(m) +g9(n)o(n)] + —79(71)z + zv

oV
< =Wm) + -9(n)z+ zv
on

Ve(n,€) = V(n) + 32

aV
an an

oV
—9qg(n) —kz, k>0
an

v = —
Ve < —W(n) — kz*

35

=21

Z9

Zh—1

21

Backstepping

fo(x) + go(x) 21
fi(x,z1) + g1(x, 21) 22
f'Z(wv 21, Z2) -+ 92('139 Z1 22)Z3

fre—1(xyz1yeeey2p—1) FGr—1(y 2150 ooy Z—1) 2k
fre(xyz1,eooyzk) Fgr(@y 21,000y 21U

gi(x,z1,...,2;)) #0 forl1 << k

77
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Example
:i'l:a:%—a:‘%—l—;cg, o = u
. 2 3
Tl = x] — T + 9
_ _ 2 . 3
r2 = ¢(€B],) = —Tr] — T = T1=—T1— T
V(z) =14a? = V=-al-zl, Va1 €R

zg = x2 — P(x1) =J¢2+£E1+£13$

. 3
ry = —x1 —x]+ 22

29 = u+ (14+2x1)(—x1 — ZB% + z2)

Example
Ve(z) = 323 + 323
‘./'C = :131(—2121—12:;‘{‘22)
+ z2fu + (1 + 221)(—21 — 2f + 22)]
‘./c — _m?_wii

+ zo[z1 + (1 + 2z1) (=21 — 2§ + 22) + ]

uw=—x1 — (14 2x1)(—x —LU? + z9) — 22
Ve = —af — 2] — 25
Ve = —af — 2] — (z2 + 21 + 27)?

78
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i g S(e)<0
Sliding-mode control —u=—u,

S(eo,...er_]):o \

PLANT ,/
u order:n_t ) ,

k. \\

)
o
=,
<
o
=2
<
o
m
1%
2,
3
o
-+
o
)

39

Sliding-mode control

1 =x2 @2 = h(x)+g(x)u, g(x)>go>0
Sliding Manifold (Surface):
s=ajx1 +xo =0

s(t)) =0 = 1= —a1xy

a >0 = flim x1(t) =0

40
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Sliding-mode control

$=a1®1 + 2 = a1x2 + h(x) + g(x)u

Suppose
/
o7z + M) < o(x)
g(x)
V =12

2
V = 88 = slaiza+h(x)]+g(z)su < g(z)|s|e(x)+g(z)su
B(x) > o(x) + Bo, Bo >0
s>0, uw=-—p3(x)
V < g()[s|e(z) — g(z)B(x)|s|
V < g(z)|s|e(z) — g(x)(e(x) + Bo)|s| = —9(33)/304|f|

Sliding-mode control
s <0, u=p3(=)
V < g(z)|s|e(x) + g(x)su = g(z)|s|e(x) — g(x)B(x)|s]
V < g(z)|s|e(z) — g(z)(e(z) + Bo)|s| = —g(x)Bos]|

sgn(s) = { _1’ z z 8 s=0
u = —fB(x) sgn(s) | %, \y
V < —g(z)Bols| < —goBols| { '\ ; |
V < —goBoV2V \ \ |
42
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Sliding-mode control: chattering

Sliding manifold u = —A(x) sat <;>
v, if [yl <1
sgn(y), if [y| > 1
sgn(y) 4 sat (¥) 4
1 1
] G ]
—1 1

43
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Digital twins

Cyber-physical systems
Digital twins

Alexey Margun
alexeimargun@gmail.com

Digital twins

Digital Twin is a software analogue of a physical
device that simulates internal processes, technical
characteristics and behavior of a real object under
the influence of the environment.

Digtal Twn
,‘K.(. S

* Online copy of a real technical system (digital
shadow)

* Offline modeling of technical systems

82
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The modern theory of control systems

Digital twins

Problems:

* Unknown parameters

* Parameters changing

* Absence of sensors

* External noises and disturbances

Possible solutions:
* |dentification of unknown parameters
* Observers instead of sensors

Input-output model

X =
x,=U yM y

Tx,(t) +x,(t) = kx,(t) .

x,(t) =k(1—e YT)x, J3(®) = u(®)
Laplace transformation (p = %): % = Pag % = %.
Plant model:

a(p)y(t) = b(p)u(t),

a(f’) = aof?" *+ alp"_1 + -+ a,_1p + a, is a characteristic
polynomia

b(p) = bop™ + byp™ 1 + -+ + byy_1D + by,

83
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Input-output model
y(t) =W(plu(), W(p) = (p) is a transfer function

x=U xlaw u=M ¥

yt) =

k 1
To+ 7 y@t) = Fu(f)

k
TSR u(t)—>

i
v*

— (&)

State space model

All linear differential equations ca be written as
J‘fl = 1% + 12X = are o} A1nXn + blu,
x‘z = r1Xq + ar2X> + o4 TonXn -+ bzu,

Xp = Ap1X1 + QpaXs + 0+ Qppxy + Drit,
y(t) = 121 (£) + cox2(8) + - + cpxp (2).

In matrix representation:

x = Ax + Bu,
y=Cx
X1 a1 - Qun b1
x=|-|,A=] - ,B=1.. ,C=[C1 Cn]
Xn An1 Gnn bn

84
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The modern theory of control systems

State space model. Example

Dynamic equations:

F—= N
s=v x N
mpv=F —ks—hv "R
State space model: S0 sy
x = Ax + Bu,
y=Cx

S
Let us choose state vectoras x = |v|

0 1

0
4= _pm —nym| B =|ipml-c=11 0
t

X(t) = Xpree + Xforcea = €419 + f eAt-DBu(t)dr
0

State space model. Change of
coordinates

Consider new state vector:
x* = Px
P is a transformation matrix, det P # 0.
Inverse transformation:
x =P 1x*

Model in new coordinates:

Sk . ARk *

=B . pap-1 gt = pB,c* = cP1

y ' =Cx

Characteristic polynomial and poles of the system don’t changes.
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State space model

Modeling scheme

Transformation to input-output form:
W(p) =C(pl - A)B,

1 ¢ O
I=0 .. 0
0 0 1
Characteristic polynomial:
det(p/ —A) =0

State space model

Transformation to state space model:
_ byp™l4dby,_ ptby
wip) = P Pt ldekby 1 ptby
Canaonical controlled form:

i'z = X3
Xp = —QpXy — Qn_y Xy = — X, +U
0 10 .. 0 0 by,
0 01 .. 0 0 I
A = |O IT I| = Bt =... .(:‘T =| ..
a 000 .. 1 0 b,
—0n — Qn-1-.-— & 1 b,

Transformation matrix: 2 = U*U~1 , U, U* are controllability matrices of
canonical and original model
U = [B| AB|...|A""1B]

86
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State space model

Transformation to state space model:
— _Pap" Tty ptby
wip)= PrAa PRl by by ¥ |
Canaonical observed form:

Xy = —pXy + bpu
Xy =X — Qyq Xp + byt
Xy = Xp_q — Q1 Xy + bu
Y=Xp
0 0.. 0 —a, b,
07| 1 0.0 —a,, - 0
A= .. I a| = - BV = ,C’T = ...
H| 0 0 .0 —a; b, )
¢ 0 .. 1 —aq by 1

Transformation matrix: 2 = (Q*)~1Q, Q, Q" are observability matrices of

canonical and original model
QT = [C] CA|...|CA™1]

Identification. Scalar example

Identification is a set of methods for constructing mathematical
models of a dynamic systems from observational data.

Consider plant:
y(t) = 8*u(t)
u(t) is a scalar input,
y(t) is a scalar output,
8" is an unknown parameter.
The obvious solution :
t
0= y(t)
u(t)
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Identification. Scalar example

Consider plant:
y(t) = 6 u(t)
u(t) is a scalar input,
y(t) is a scalar output,
6* is an unknown parameter.
The obvious solution :

/
3
=
o~
Nt
A

\
\\. I I //
\

\ %
=
Vi

Doesn’t work if u = 0.
Hardly calculated if u — 0.
High influence of noises.

Online estimation

Let @ is an estimate of 8*.

Parallel model:
y(t) = 6u(t)
Error:
e=y—9y=y—06u
Consider functional:

2 ' 2
](9)=%=%

Goal: minimize J(0)
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The modern theory of control systems

Online estimation

Let denote: 2 S
af(x) = _
Vf(x) = 070 is a gradient of f(x). i
axn

Lemma. If ] € C* and is convex on R™ than 8* is a global minimum
if
Vj@e*) =0

Therefore, we need to solve equation VJ(8*) = 0 with respect to
the 8*

Gradient search. Discrete

The search for the minimum is in the direction of reducing the
function d;, = —V]J(6y)

Identification algorithm:
Or+1 = Ok + Aiedy = 0 — 4V (6r),
k=1071,2.
Ay is a step size
0y is an estimate of & on k-th step.
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Gradient search. Discrete

Example:
y = (6 —5)°
dy
30 = 2(6 —5)

Initial value 8 = 0.

Gradient search. Continuous

Rewrite algorithm as:
Gry1— 8
S K = _pye)

Ay
If step is infinite small: lim a8k _ g
Ak—>0 Ak
Algorithm takes the form: .
g = —yVJ(8)

y > 0 is a coefficient that regulates convergence speed

For scalar case
6 =—yV](@)=y(y—0uwu=yeud(0) =8,
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Gradient search. Continuous

Consider estimation error:
6=0*-186

Error transient:

= t .

8(t) = e VoW @drg @)
Ifu=0oru=et, §(t)will not converges to zero.

2__1 4 :

Y=y 0 (t) asymptotically converges to zero.
o(t) exponentially converges to zero if persistent excitation

condition holds:
t+To

j u?(1)dt = ayTy, YVt = 0

t
where ag, Ty > 0

Gradient search. Example

Consider the systemy = 6u,0 =5

Identification algorithm: 8 = —yVJ(8) = y(y — Bu)u = yeu
9(0) = 90, Y = 2

Ll x || 4 l_,/ o), |

Il}(l)) % 05 1 1.5 2 25 t




2019 © Alexey Margun

aamargun@itmo.ru, alexeimargun@gmail.com Digital twins

Gradient search. Normalization

For system y(t) = 8*u(t) with unbounded y and u problem
o (y—euw)?

mjnJ = mjn=——
can become hard for computing.
Solution is a normalization

y() = 8 u(t),

F(t) = 2 A(t) = = m? = 2
) =280 = —m? =1+u
Gradient search:
g = yeu,y > 0.
In origin coordinates:
- e
~m?

Gradient search. Two unknown

Consider system
x = —ax + bu, x(0) = x,,
x=0T¢,8=[a b]T, =[x u]
where a > 0 and b are unknown constants to be identified.
Parallel model:
¥=-a%+ Bﬁ,f({}) =%
Error:
e=x—2%
Functional:
2

j®==
6 = yVJ(8),& = —ysex, b = yyeu

92
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Gradient search. Two unknown

If x is unmeasured.

Rewrite system:

x=—apx+ (ap—a)x+bu mn x = L

[(a;, — a)x + bu]

ptam
., > 0is chosen by developer.
x=0"¢,
0" = [b a]T¢[1u1 ]T
= ’ e ’ = 7] X
i Pt Dt an
Error:
e=x—2%
Serial-parallel model:
£=—an®+ (ay—a)x+bunmz = — [(am — @)x + bu|
ptam
eZ
0 =[a b]"

0 =yVj(0),d = —y,ex,b = y,eu

Gradient search. Two unknown

System:x = —ax + bu. }
—____‘———________ - u M~ X X
! reo—o—{ =
Parallel model: £ = —a® + bu. <a}
= e ', =
Identification algorithm: Lo ) £ )
d=—yex, - || <7
b =y,eu T —— ——t
@ = e
p HpS




2019 © Alexey Margun The modern theory of control systems

aamargun@itmo.ru, alexeimargun@gmail.com Digital twins

Gradient search. Two unknown

u =sin5t = : u=1(t)
Yap =i ,,f{l‘{ Yi2=5
: !
/ b
Y12=5 . : Bensiii wym

Gradient search. Linear dynamic
system

Linear dynamic system:
x=A x+B u
A ER™ B eERMxeR"

Error:
e=x—2%
Functional:
_eTe
I==

Parallel model:
¥=A £+B uxeRr®
A=yexT B =y,eu”
or serial-parallel model
x=Apx+ (A —A,n)x+B u A, € RB*"
¥=ApR+(A —-Ap)2+B u
A=y.exT B =y,eu”
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System parametrization
Consider plant:

y(n) + an_iy(n_l} + -+ Aoy = bn_lu(n-l) + bn_zu(n'z) + - F bou

Rewrite all parameters as vector
= [b -1 bn—Z! LLLP] bo, Qn—1s A2y =y aO]T

Rewrite input/output signals and their derivatives:
Y = [u(ﬂ.—l)’ u(‘n-Z)’ e U, _y(n—l). _)’(n_z); ramy _y]T

= [a;—l (p)u: _a;—l (p)y]TJ a; (p) = [pi: pi-lv =y 1]

Qo

Therefore, we can rewrite system equation:
y) = g*Ty

System parametrization

If derivatives y(™ = G*TY are unmeasured

Apply stable filter — for both parts of equation, A(p) is a Hurwitz polynomial:

()

z=0T¢,
n 1(p) “5—1(13)
y = [A(p) “T A

A) =p" + A 1p™ 1+ + 2

All signals of filtered model are measured.
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System parametrization

Consider A(p) as A(p) = p™* + ATa,,_1(p), A = [A"71, ..., 4]
In this case:

_— p" _— Alp) - lT“n—1(P)y =yl an—1@)y
A(p) A(p) - A(p)
n-1
y=z+AT o) y
z=0"T¢=0{"d; + 657y 0,7 = [by_q, ..., 0], 05" = [an_1, ..., a0),
= “n—l(p)u b= _“n—l(p)y
A T? Ap)

y T ;7 1 +,1.9£T¢2 - AT,
y=20; ¢, 6; =[6:",05T,—27]

State observers

Observer is an algorithm that allows to estimate the unmeasurable
variables of the state vector.
Consider linear dynamic model:
x = Ax + Bu,
yi= Ll
Parameters of system are known. Vector X is unmeasured.
If xg is known, than algorithm
X = A% + Bu,2(0) = x,
provide X(t) = x(t)vt = 0.
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State observers

If x¢ is unknown and matrix A is stable we can use observer:
X = A% + Bu,2(0) = %,
Consider observation error:
X=x—2%
Its dynamics satisfy equation:
X = A%, %(0) = x(0) — £(0)
Solution of error dynamic equation:
%(t) = e4t%(0)
Because of A is stable X exponentially converges to zero

Luenberger observer

If x¢ is unknown and matrix A is unstable or we need increase
speed of convergence:

X=AR+Bu+ Ky —9),2(0) = %,,

P=0T%

where K is chosen by developer.
Dynamics of estimation error:

¥=(A—-KC"%, %(0) = x(0) — £(0)
So;ution of error dynamics equation:

%(t) = ea-KCNtz(0)

By tuning K we ensure the stability of the error model and adjust
its transient (overshoot, transient time, etc.)
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Luenberger observer. Example

System:
. _[—4 1 1 _ 14
x=|_, 0];n:+ [B]u,x(O) = [0’5
y=[1 0]x.
Luenberger observer
A —4' 1 1 kl _
2= 0]£+[3]u+[k2](y )
y=[1 0]z

Luenberger observer. Example

penate o = A~ KeT = T3 o]~ [l o= [T o]
— 2 TR

Let we need speed of convergence faster than e ~5¢,

In this case real part of 4 eigenvalues should be less than —5.
Let ’11 = —6,).2 = —8.

Therefore:
det(pl —Ay) =p?*+ (4+k)dp+4+k,=(p+6)(p+8)
We can find:
ki =10k, = 44
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Luenberger observer. Example

System
(H———o-{—&1—8
u B C y

A ]
Q 2

K

0
+B> ﬂé e Ham .?l ]
[ o
A Observer

Adaptive Luenberger observer

State vector is unmeasured.

System parameters are unknown.

Solution: simultaneously use the observer and the parameter
estimation algorithm.

Luenberger
observer [—*

- System | Y

Parameter \
estimation

(aps bp)
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Adaptive Luenberger observer

In state space form we need to estimate n? + 2n parameters.
In input output form we need to estimaten +m + 1 < 2n
parameters.

Obtain transfer function:

bp_1p™ ! + ..+ byp+by

pn + an_lpn—l + e 4 ag
Rewrite system in canonical observable form:

CT(pl —A)™1B =

In-q
Xg=|—ap i - |xqt+byu,y=[10..0]x,

0
ap = [@n-1, @n—2, .., ao]", b, = [bn—1, bn—2, .., bo]”

Adaptive Luenberger observer

Observer:
2= A%+ bu+K(y—9),2(0) = 2,
§=[10..0]%,
: In—l
A=|-a, : « | K=a"—a,
: 0
a” is chosen such that
o
A* = —a* ¢ cae
0

is stable, i.e. roots of det(pl — A™) = 0 have negative real part.
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Digital twins

It is necessary for development of digital twin:

*Build mathematical model of system

*Estimate unknown parameters with identification algorithm
*Build observer for state vector estimation

*Run obtained model in real time with the same input signal as a
real system
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Modeling of systems and complexes

Modeling and control of robotic systems
Kinematics of industrial robots

Kinematics of Industrial Robots

Dr. Oleg Borisov

Basic Concepts and Definitions: Joints and General-
ized Coordinates

Kinematic Chain
The kinematic chain is used to describe the geometry of the robot

manipulator. Ot represents a graphic representation of the se-

quence of manipulator links connected by joints.
There are two elementary types of 1-DOF joints

e revolte (joint coordinate is angular)

e prismatic (joint coordinat is linear)

Both joint coordinates are so-called generalized coordinates

#;, if the link 7 is revolute,
¢ = (1)

d;, if the link 7 is prisnatic.

Configuration

A set of all the generalized coordinates of the manipulator, which

uniquely determines it in the space, is called configuration.
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Basic Concepts and Definitions: FK and IK

There are two fundamental tasks of the kinematics analysis

e forward kinematics

e inverse kinematics

Forward kinematics

The forward kinematics (FK) is to calculate the coordinates of the
tool frame (its position and orientation) given the configuration of
the robot.

Inverse kinematics
The inverse kinematics (IK) is to calculate the configuration of
the robot given the coordinates of the tool frame (its position and

orientation).

Forward Kinematics: Algorithm

G>—— > —(—=<

Kinematic chain of 6-DOF robot

1. Assigning frames to the links.
2. Determining Denavit-Hartenberg parameters
3. Forming homogeneous transformation matrices

4. Parametrization of rotation matrix
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Forward Kinematics: Assigning Frames
Choice of z;-axes
Choose the axis z; so that it coincides with the axis of rotation
or translational motion of the subsequent joint 7 4+ 1 depending on
its type. This means that the relative location of adjacent links
(coordinate systems) will be determined precisely by the variable
around (or along) this axis.

Choice of z;-axes
Choose the axis x;, i = {1,2...,n — 1} so that the following two

conditions are satisfied.

e The axis x; is perpendicular to the axis z;_.
e The axis x; intersects the axis z;_1.

Choice of y;-axes

Choose the axis y; so that the frame given by the unit vectors
Z;, Ui, z; is right-handed, i.e. in the direction given by the vector
product:

o

Yi =

y
X
8

(2)

Forward Kinematics: Assigning Frames

24

Choicc of z;-axcs

3
e -
1 2,23
Z1 29
20
Tp

Choice of x;-axes
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Forward Kinematics: Assigning Frames

Choice of y;-axes

Yz Xy L4y Ty J:Cn
To, 23 @ Y4 Z? G} f/ Z?

%5195 Yo

Choice of n-axes

Forward Kinematics: DH parameters

The Denavit-Hartenberg convention altows 1o reduce the number of
coordinates that uniquely determine the body (its frame) in the
space, from six to four, known as the Denavite-Harteberg parameiers
listed below.

e a; is the distance along the axis x; from z;_1 to z;
e «; is the angle around the axis x; from z;_; to z;
e d; is the distance along the axis z;_1 from 2;_ to x;

e 0, is the angle around the axis z;_y from z;_, to z;

105



2019 © Oleg Borisov Modeling of systems and complexes

borisov@itmo.ru, oleg.borisow@gmail.com Modeling and control of robotic systems

Forward Kinematics: DH parameters

Determining the parameters a;

Determining the parameters «;

Forward Kinematics: DH parameters

[ d4 e dg

sy

Determining the parameters d;

T4,Ts J\-’ﬂﬁ

e

Determining the parameters é;
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Forward Kinematics: DH parameters

Link, ¢ | ¢; | «; | d; 8;
1 0 5 | di &
2 as 0 0 92
3 0 ¥ 0 [0:+%
4 0| -5 | ds B4
S 0 N 0 o
6 0| U0 |ds s

DH parameters of the 6-DOF robot

Forward Kinematics: HT Matrix

Consider to sets of coordinates k” and k™ of the same point in the space

expressed with respect to two frames ooxoyozo and 0,2nYnzn, respectively:
0 _ mOpn .
k” =T,k", (3)

where T} is the transformation carrying information about relative position
and orientation of one frame with respect to another one.

Homogeneous Transformation Matrixe

The matrix T,? defining the relation between frames ooxoyozo and 0nTnYn zn

is called a homogeneous transformation (HT) matriz and has the form

Ng Sz Az Pz

0 — Ny Sy Ay Pyl _ n?v Sg ag p?, R(T)I pg (4)
" n: Sz az Pz 0 0 0 1 0 1]’
0 0 1

where the vectors nl, s% and a? express directions of x,, y, and z,

with respect to ooZoyozo, R? € SO(3) is the rotation matrix of the
frame o0,T,ynz, with respect to oozoyozo, p(,)1 € R? is the vector of

linear displacement of the origin of 0,2, Yyn 2, With respect to opzoyozo.
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Forward Kinematics: Properties of HT Matrix

1. The rotation by zero angle is determined by the identity natrix

Rp_y = -1 (5)

O O =
o= e =
B - T )

2. Rotation in thc ncegative dirccsion is determined by
R_3=R3z'=Rj. (6)
3. There arc three basic rotation matrices around z, ¥ and 2 axcs

given as

1 0 0 cosB 0 sinf casB —sinf 0O
Hyp= |0 cosf —sinf|, Hys= 0 1 0 |, H; 3= |sinff cosff O
0 sinfg cos 3 —sinfA 0 cosf 0 0 1

where & is some angle.

Forward Kinematics: Properties of HT Matrix

4. Serial rotations around several current axes are determined by
multiplying on the right. For example, the transformation
parametrized by FEuler angles ¢, # and % is given as

Rzyz = Rz,(ﬁRy

CaCaly — 843y
= SHCPCy -+ Ca 8y

—389Cy:

S 0 o { b f] g —Nd 0

0 1 0 Sy C¢ 0] =
—s5¢ 0 g 0 0 1

—CHpCASy — S¢Cyy  ChSa

—84008y + CsCy S6S0 | (7)
378 Co

where ¢z =cos 3, sg =sin g, = {0,0,¢}.
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Forward Kinematics: Properties of HT Matrix

Using the DH convention form the homogeneous transformation matrices
for each link as follows

B.o, O|[I pa|[I po| [Rew, ©
Ti = TooTyo.TvaTre. = i g i el —
i z,8; 4z didx.a;dro [ 0 1 {0 1 0 1 0 1
cg; —99,Ca: 39, Sax; aic.gi-
84, Ch. Cey: —Cy, Sy, @iSp
— 12 T 3 12 k3 t 8
0 Sai CQ'A di ! ( )
Q 0 0 1 i

where 7 1s the link number, B; o, and H; ., are the basic rotation matrices,

pd4; and p,, are vectors with nonzero components p. = d; and p. = a;

(cos0; —sin0; 0 1 g 0
R.e¢, = |sind;  cos8; 0|, Rea;= |0 cosas —siney|,
i 0 0 1 _0 sinee;  €cos oy
K [a;
pa; = |0, Pa; = [0]. (9)
4, | 0

Forward Kinematics: Parametrization of Rotation
Matrices

There different ways to parametrize rotation matrices

e Buler angles
¢ Roll-Pitch-Yaw angles

e Axis-Angle Representation

All of them are intended to reduce amount of parameters from 9 to 3.
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Forward Kinematics: Euler Angles

The matrix of ZY Z-transformation is given as

(711 (g) m2(q) 7malg)
R(q) = |raa(a) ra2(q) ras()| =
_7'31(4) rapla)  7ss(q)

CopCely — 88y  —ColpSy — 8¢pCy  CHSe
= |[84CuCy T CpSyp —S5aCeSy + CaCy  Sese| . (10)
—8¢Cy S¢Sy Co

Consider three cased depending on the entry r33(q)

S

First Case

If r33(¢) # £1 then sinf(q¢) # 0. Use the Pythagorean trigonometric

identity
sin? 8(q) + cos® 9(q) = 1, (11)
sin(#(g)) = £/1 —cos?8(g) = £\/1 —raz(g) . (12)

from which it follows that #(q} can bc calculated as
¢#(g) = atan2 (i \/1 — T§3(Q),7’33(Q}) : (13)

Note that the remaining expressions to calculate ¢(g) and (g)
depend on the choice of the sign in front of the root in (13)

#(q) = atan2(xrzs(q),xr13(9)}, (14)
¥lg) = atan2(Ersa(g), Fra(a). (15)
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Second Case

as a result

R)q) =

computed

If r35(¢) = 1 then cos#(q) = 1, sind(q) = 0, from which #(g) = 0 and

SpCyp | CoBy
i 0
Copty  —Sptyp
Sp+y  Coty
00
T11(g) T12(9)
ro1(g) 722(q)
0 0

This case leads to uncertainty, since only the sum ¢(gq) + ¥(g) can be

#(g) + ¥(g) = atan2 (r21(q), r11(q)) -

_(f¢(t,¢, — .Sq',b‘¢. —(qu,b‘,,p — .Sq')(fw

S(f, Sapy | Cr,') Cofy
0

- O
Il

(16)

(17)

Third Case

as a result

R)(g) =

can be computed

If r33(¢) = —1 then cos8(g) = —1, sin#(g) = 0, from which 8(g) = =,

—C¢C¢, - 84,31‘,{_.

-7‘11((!) r12(q)
721(q) 722(q)

0 0

‘I'his casc leads to unccrtainty, since only the diffcrence ¢(g)

Plg) — ¥(g) = atan2 (—ri2(q), —r11(g)).

—S8pCyp + CySy
I 0
—Co—y  —Sgp—vy
S¢—v Cop—i
0 0

C¢3w - 8¢,Cu', 0

S¢S¢ + C¢.C¢, O -
0 -1

0

0 =

-1
0
0. (18)
—1

¥(g)
(19)
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Inverse Kinematics

Initial data for IK are

e three linear coordinates (components of the vector p2)
e three angular coordinates (e.g. Euler angles ¢, ¢ and %)

e DH parameters

The geometric (analytical) method of solving IK is to find explicit
expressions using the apparatus of trigonometric functions, taking
into account the kinematic scheme of the manipulator.

Consider kinematic decoupling approach applied to standard 6-DOF
robot with spherical wrist. It is comprised of two subtasks

e position 1K (to compute ¢;, g2 and g3)

¢ orientation IK (to compute ¢4, ¢5 and ¢4}

Inverse Kinematics: Position 1K

Spherical wrist
A spherical wrist is a kinematic scheme of the last three rotational

joints such that their axes of rotation intersect at the same point.
The subtask is

e to determine relations between the given point of the end-effector

and the point of three axes intersection

e to derive expressions for q;, g2 and g3 given the point of three

axes intersection
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Inverse Kinematics: Position IK

G>—( 0

Kinematic decoupling

Using the sum of the vectors

0
pe =pi +dsR] |0], (20)
1
express coordinates of the point as
0 z
py=pg—deR [0 = [4]] - (21)
1 zg

Inverse Kinematics: Position IK

Vector ¢

The first generalized coordinate can be computed as

6, = atan2(y2, 29) (22)

or
01 — atan2(13, z%) + 7. (23)

113



2019 © Oleg Borisov Modeling of systems and complexes

borisov@itmo.ru, oleg.borisow@gmail.com Modeling and control of robotic systems

Inverse Kinematics: Position IK

Use the following notations

o = YT+ e @
b = (sz—dl), (25)
¢ = D R (26)

Vectors ¢ and &

Inverse Kinematics: Position IK
Using the Pythagorean theorem write

)/) a® = b + ¢, (27)

é Using the law of cosines write
a® = a5+ ds — 2azdscos(n — 63) =
A = a3+ d; + 2a2d4 cos . {28)
-
* My Combining the both expressions write
/ W+ e? = a3 + d5 + 2aads cos s, (29)
A .
i Y
Vi from which express cosfs
an 3
72,43 62 -+ C2 - a% - dﬁ PP
- s = 30
: " cos 03 and, {30)
@ As a result the generalized coordinate €3 can
%o
E) > be computed as
Vectors ¢ and & Az = atan2 (i V1= cos? s, cos 93) . (31)

114



2019 © Oleg Borisov Modeling of systems and complexes

borisov@itmo.ru, oleg.borisow@gmail.com Modeling and control of robotic systems

Inverse Kinematics: Position IK

Consider difference between to angles

e angle a formed by a and ¢

e angle 4 formed by a and ay
Express the generalized coordinate 65 as

92 = — ;3. (32)

Taking into account trigonometric expressions

tana = \ (33)

d4sin 93 .
tanf = s + dy cos 93 ’ (34)

rewrite (32) as

62 = atan2(b, c) — atan2(dy sin 83, ag + dy cos b3). (35)

Inverse Kinematics: Orientation IK

Express the rotation matrix RS as
RS = R3RY, (36)
where R is given, R} can be calculated solving FK. Express R as

— T -
R = (R3)™ RS = (RY)" RY. (37)

Consider ZY Z-transformation given by the FEuler angles as

T iz T3
Re= Roys = RogRyoRog = |1 roo 723 - (38)

731 732 733

‘I'he remaining three generalized coordinatces can be computed as

04 = ¢ = atan2 (:t?”zﬁ, :l:'s”|3_) s (39)
s = §=atan2 (:t\/l — 134, 7‘33) , (40)
06 = ’!,l’ = atan2 (::l:’f'ggz :F’I"31) . (41)
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Inverse Kinematics: Summary

1. Solve forward kinematics

b

Calculate the coordinates of the intersection between the rotation
axcs given the coordinated of the tool

Solve position IK and get 41, & and 93
Calciulale Rg from forward kinemalics

Calculate matrix RZ

A o

Solve orientation IK and get 64, 05 and 8¢ as the Euler angles

forming the matrix Ry

Dynamics of industrial robots

Dynamics of Industrial Robots

Dr. Oleg Borisov
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Dynamical Model of Revolute Joint: Two
Components

The electrical component of the model describes a circuit with the
inductance, resistance and motor as

Li(t) + Ri(t) = u(t) — Kow(t) = u(t) — K.0(t), (1)

where L, R, i(t), u(t) are the inductance, resistance, current and
voltage of the armature, respectively, K, is the back emf constant,
w(t), 8(t) are the angular velocity and position of the rotor,
respectively.

The mechanical component of the model describes a gear train with
the gear ratio 7 connected with the motor as

JO(t) + K (1) = K,i(t) — (1), (2)

where J is the sumn of the actuator and gear moments of inertia, Ky is
the friction constant, KX, is the torque constant, p,(t) = %,u;(t), Hi(t)
is the load torque, j is the gear ratio.

Dynamical Model of Revolute Joint: Trans-
fer Functions

Apply the Laplace transform and rewrite the model (1) and (2) as

(Ls+ R)I(s) = Ul(s)— K:s0(s), (3)
(J,‘s‘ -+ Kf)ﬁ@(S) = K#I(.H) — fwll:,s':). (4)

Taking into account (3) and (4) let us write the transfer function from
the input U(s) to the output ©(s) with M;(s) =0

() _ K,

- = - . 5
U(s) s((Ls+ R)(Js+ Ky} + K K,) (5)
The transfer function from A;(s) to ©(s) with U(s) =0 is
B(s) Ls+ R ,
= (6)

Mi(s) ~  s((Ls+ R)(Js+ K;)+K.K,)
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Dynamical Model of Revolute Joint: Sim-
plification
Now divide numerator and denominator of the transfer functions (5)
and (6) by R
. K“
B(s) — R (7)
U(s) s((%s+1) (Js+ Ky) + Kjfu)
o g
My(s) s((%s+l) (Js+Kf)+—K€;’“)
Since the time constant of the electrical component is reasonably
much smaller than the time constant of the mechanical one
L__J )
R Kf’
rewrite transfer functions (7) and (8)
K,
O(s) ~ A 6(3). =3 - . (10)
Uls) s (Js + Ky + h—,f“) Mi(s) g (Js + Ky + K—gﬁ)

Dynamical Model of Revolute Joint: The
Resultant Model

Define new notations for these transfer functions

O(s) N 1
Mu(s) ~ s+ K) an
O(s) 1 (12)

M(s) — s(Js+K)

where M, (s) = Z2U(s), K = K; + 2fe.
Combining transfer functions (11) and (12) we gel

1

Ols) = s(Js+ K)

(Mu(s) = Mi(s)) = P(s) (Mu(s) — Mi(s)) . (13)
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Scheme

M, [s]

Dynamical Model of Revolute Joint: Initial

Ul(s)

I(s) —Mu(s) ™,

Le+R

> Ja | K

K, -

Initial scheme of the revolute joint model

plified Scheme

Dynamical Model of Revolute Joint: Sim-

96s)

M(s)
+
M, (s) .
T+ .s(.]s+ F()

Simplified scheme of the revolute joint model
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Dynamical Model of the Robot: Euler-
Lagrange Equation

Dynamics of mechanical systems can be described by the

Fluler-Lagrange equalion as

d {38L oL

where L is the Lagrangian, ¢;, ¢; are the generalized coordinates and
velocities, u; are the generalized torques applied to the joints.

The Laugragian L can be computed as
L=K-P, (15)

where K and L are the full kinetic and potential energies of the
system, respectively.

Dynamical Model of the Robot: Kinetic En-
ergy

The kinetic energy of the link is comprised of the linear and angular

components
1 1
K, = Emilw 24 Qw?f?wi, (16)
where m; is the mass of the link, v; is the linear velocity of the center
of mass, w; is thc angular velocity of the framce assigned with the link,
1D is the inertia tensor with respect to the base frame.

Express the linear and angular velocities using the Jacobian matrix

Vi = Jﬂi(@)‘js (17)
wi = Ju, (g)4. (18)
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Dynamical Model of the Robot: Kinetic En-
ergy

Express the inertia tensor as
I° = R,IRT, (19)

where K; is the rotation matrix between the base and link frames, { is the
211 f12 13
inertia tensor with respect to the link frame given as I = |7, iyy 23
i31 132 133
where the elements are defined as

7?11:///(3/2 + 2)plx, y, 2)dedydz,  i10=in :—/]j xyp(e, y, 2)drdydz,

7'.12:///(1:2 + 2 plz, y, 2)dedydz, i13:-i31:—/// zzp(z, y, z)dedydz,

i13:/‘/‘/(1{)_ +y?),0(1’, Y, z)d:ﬂdydz, i23:i32:_/// yzp(x.‘yaz)d’xdydz?

where p(z, y, 2) is the funcition of mass density.

Rewrite the kinetic energy as

Ki = g I Jud + 340 RART Jung (20)

Dynamical Model of the Robot: Full Energy

The full kinetic energy of the robot can he computed as

n

o1, 1 .
K =oq" ) (mid) o+ JILRIRT o) d = 50 A@g (2D)

i=1
The potential energy of the each link is computed as
P,; = mz'ngi, (22)

whre m; is the mass of the link, g is the vector defining the direction
of the gravitation with respect to the base trame, p; is the
radius-vector to the center of mass of the link expressed with respect
to the base frame.

The full potential energy of the robot can be computed as

P =Y migTp:. (23)
=1
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Dynamical Model of the Robot: Model of
Multilink System

Substitute the kinetic and potential energies to the Lengrangian
1 » 123
L= §Q’TA(Q)¢ - Z; mig” pi. (24)
Substitute the Langrangian to the Euler-Langrange equation
Alg)d + Clg, 4)d + Glg) = u. (25)

where A(g) € R™*™ is the symmetrical matrix of inertia,
C(g,¢) € R**! is the matrix of Coriolis forces, G(g) € R**! is the
vector of gravitational forces.

Dynamical Model of the Robot: Actuator
Dynamics Revised

Writce the dvnamical modcl of the actuator dvnamics as follows

Jib:(t) + Fi#i(t) = K; -

where F; = Ky, K; = K, v; = R, “;Et) =1i(f), i ={1,2,...n} is the
number of the link.

Take into account gear box

8;
P = = 27
== (27)
Rewrite the actuator dynamics as
P 2 o W(E) :
75 Jii (t) + 57 Figs (t) = 1:K; . M (t), (28)

2

where u; = py for the link <.
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Dynamical Model of the Robot: Actuator
Dynamics Augmentation

Add the actuator dynamical model to the model of the mechanical system
and get

T(q)i+ Clg,d)d + Fg+ G(q) = u, (29)

where the matrix I'{g) is of the form

K|
T(g) =Alg) +7 = Alg) + . ) . . (3
0 0 0 4§

where the friction vector and vector of control inputs are given respectively

as
a2 jrE 28 (1)
.2 . OFR
i o J2 KR (1)
, o , (31)
2t inKn ‘50 (t)

Example of Two-Link Planar Manipulator:
Jacobian matrices

122
29 C

%

&

Kinematic chain of two-link robot

Write relations between linear end-effector velocities and generalized ones
using the notion of the Jacobian matrix as follows

v = Jy14, ve= Jy24, (32)
where
—a1sing; 0 —a18ing; — ezsin(gr + ¢2) —cusin(g + g2)
Jvg — | ercosgr 0, Jua — | a1cosqr + cacos(qr + g2) c2 cos{g1 + g2)
0 0 0 Q
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Example of Two-Link Planar Manipulator:
Kinetic Energy

‘I'he kinctic cnergy is comprised of translational and rotational
comnponents. Let us address themn separately. The translational

component caused by the linear velocity can be computed as

™ 'b'f 1 Tl‘i.g‘l]él 79

Ko = — 2= = 0.5¢" m1Jg 1 Je 14 +0.5¢ mady 5 Ju 0q

1st link 9nd link

(33)
The rotational component caused by the angular velocity can be

computed as
. 1 0f., ) 1 1],
Kee=05¢"1 [0 0] g+0.5¢7 7T, |:1 ].] g (34)
1st link 9nd link

Example of Two-Link Planar Manipulator:
Inertia Matrix

The inertia malrix A(y) becomes of the form

. L+, 1I
Alg) = mlJ«E:l Ju1 + szZ:ng,z + [ ! 2]

12 iz

A1 A1z
A21 Aoz

micl 4+ mola? + €2 + 2a103 + 20102 cosga)+ I + I ma(c? + aieg cos g2+ Iz
mz(cg +aiczco8q2) + Iz moch + Iz
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Example of Two-Link Planar Manipulator:
Matrix of Coriolis Forces

Each element of the matrix of Coriolis forces C(g) can be calculated
using the equation

aA&, O 8)\1'3') ,
0.5 - ; 35
Z (8% d¢;  Oge d (35)

=1
The matrix of Coriolis forces C(g) becomes of the form

—Mod1Cy sin 2.2 —Mal1C3 sin 2 .2 + ¢ .
Cg) = [ oz it )} (36)
maa1cy Singady 0

Example of Two-Link Planar Manipulator:
Vector of Gravitational Forces

Each element of the vertor of gravitalional forees G(g) can be
calculated using the equation

oP
; = 37
%= 3 (37)
The vector of gravitational forces G(¢) becomes of the form
mycy + maoay jgcos gy + macag cos(gr + qz) .
Gg) = [( Vgcosa ( (39)
1169 cOS(g1 + g2)
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Example of Two-Link Planar Manipulator:
Resultant Model

The resultant model of the two-link robot is

Arrdr + Azds + endr + c1z2gz + (macr + mzar)gcos ¢ + mycygcos{gr + gz2) =
A21G. — Azz2§z + c21§1 + macz cos{q) + g2} = p2

Summary

¢ Dynamical models of industrial robots allow to describe and take
into account (designing a control law) physical processes specific
to them

e The simplified model of the revolute joint can be represented by
the transfer function of the relative degree 2

e The dynamical model of the industrial robot can be derived using
the Euler-Lagrange approach
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Motion planning for industrial robots

Motion Planning for Industrial Robots

Dr. Oleg Borisov

Basic Concepts and Definitions: Configuration Space

Configuration

A configuration q is a set of all intermediate generalized coordinates
(joint variables).

Configuration space

Configirations space Q is a set of all possible configurations ¢

Q = {q}. (1)
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Basic Concepts and Definitions: Workspace

Workspace
Workspace VW is a set of points, which belong to the robot itself
and the reachable environment including all the obstacles

R(Q)CW, OCW, (2)

where R(q) is space occupied by the robot and O is space occupied
by the obstacles.

In case of a planar manipulator which movements are constrained by

the plane

W C R?, (3)
its workspace has two-dimensional.

In case of a spatial manipulator, which is able to move along three

orthogonal axes

W C R3, (4)

its workspace is three-dimensional.

Basic Concepts and Definitions: Collision-Free Space

Collision-Free Space
Space corresponding to collision of the robot with some obstacle

is defined as follows
0, = {g€ QR(g) N O # 0}, (5)
from which collision-free space can be expressed as

Q():Q\Qx- (6)
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Basic Concepts and Definitions: Path and Trajectory

Path Planning
Path planning is a process of searching a cosecutive set of config-
urations within collision-free space connecting the initial configu-

ration with the given final one.

Trajectory Planning
Trajectory planning is a process of time parametrization of the
path, i.e. computation of reference functions of time for general-

ized coordinates, velocities and accelerations.

Path Planning: Exact Cell Decomposition Approach

Exact Cell Decomposition

The idea of exact cell decomposition is to divide whole free con-
figuration space on triangle or trapezoid cells and to construct a
graph. Its nodes are represented by centers of the cells and its
links are common sides between adjacent cells.

In case of exact cell decomposition there are two types of cells

e white cells correspond to the collision-free space
e black cells correspond to the collision space
Then given initial and final configurations, search of consecutive

transition from one white cell to another one is carrying out to
connect these two configurations and avoid all the black cells.
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Path Planning: Exact Cell Decomposition Approach

e 9 o e " Qon a0
.

Steps of Exact Cell Decomposition Approach

Path Planning: Approximate Cell Decomposition
Approach
Approximate Cell Decomposition
Difference of the approximate cell decomposition with respect to
its “exact” version is that instead of the whole configuration space
its subset is divided on cells. So, the remaining space could include
also slight parts of collision-free space, which is caused by complex
shape of the collision space.

In case of approximate cell decomposition there are two types of cells

e white cells correspond to the collision-free space
e black cells correspond to the collision space

e gray cells correspond to the both spaces

While searching a path could pass both white and gray cells. If it
touches grays cells, additional cell decomposition should be carried
out until the path connecting initial and final configurations goes

through white cells only.
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Path Planning: Approximate Cell Decomposition
Approach

Approximate Cell Decomposition

Path Planning: Potential Field Approach

Potential Field Approach

he robot is considered as a material point moving in a configuration
space under influence of a potential field function P(q). It has
attraction component P,(q) assigned with the final configuration

and repulsive component P,(q) assigned with the collision space

P(q) = Pu(q) + Pr(q). (7)
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Path Planning: Potential Field Approach

Set, the global minimum of the function P(q) as the attraction
component P,(g)

1
P.(g) = §kallq—qd||2, (8)

where ¢. qq are the current and desired configurations, respectively, &k,
is the scaling factor.

The repulsive component P, (g) ensures singularity of the function
P(g¢) when the material point is approaching the collision space

2
17, {1 _ L . _
Pg)={ 2* (6{q> 50) if  é(q) < du, (©)
0 if &(g) > do,

where k,. is the scaling factor, 4(¢g) is the shortest distance from the
current configuration to the collision space, ¢ is the minimmun value.

Path Planning: Potential Field Approach

The gradient descent algorithm can be used to plan a path

gi+1 = ¢; — 1V P(g5), (10)
, . , T
where VP(q) = [% 3—£ .o C;—P] , ¥4 is a iterative step, which can
be either fixed, fractioned, or calculated in the direction of the fastest
descent as
7 = argmin; P(g; — YV P(g;)). (11)

The main disadvantage of the potential field approach is possibility to
stuack at the local minimum instead of the global one. So called
random motion approach is used to avoid this issue.
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Path Planning: Potential Field Approach

Steps of Potential Field Approach

Path Planning: Probabilistic Roadmap Approach

Probabilistic Roadmap Approach
Probabilistic roadmap approach is useful for fast path generation.
It is based on the usage of random samples from the configuration

space.

1. Several nodes (samples) are chosen randomly from the
configuration space. Each node is assigned with a particular
configuration.

2. Adjacent nodes are being connected between each other within
the specified norm in the configuration space.

3. The fisrt two steps are repeated to cover sufficiently large area
between the initial and final configurations.

4. A cosequtive set of samples are chosen to connect the initial and
final configurations.
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Path Planning: Probabilistic Roadmap Approach

-

Soé

Steps of Probabilistic Roadmap Approach

Trajectory Planning: Spline Functions Approach

Spline Functions Approach
The idea of this approach is to interpolate generalized coordinates, ve-
locities and accelerations between the reference points using the poly-

nomials of the form

gi(t) = anit' +ai—1:t"™ 4o+ ag,it® + ax,it + a0, (12)
Gi(t) = 1(1‘1_,-1“’_I + (1 — 1)(1‘1_1_,‘7‘.'_2 + -+ 2a0:t+ari, (13)

Git) = W(l—-1Dart"™ 2+ (1 -1)(1 —2ar—1:t"2 + - - - + 2a2,4,(14)

where the degree [ and coefficients a;;, j = {1,2,...,l} are calculated
depending on the constraints and continuity requirements on the tra-

jectory.

Divide the whole trakectory on several elementary subtrajectories.
Compute relative time functions 7; for each subtrjactory.

Apply constraints and continuity requirements on the trajectory.

Lol

Determine the highst polynomial degree for each subtrajectory.

5. Solve matrix equation to compute coefficients of all the polynomials.
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requirements.

¥(t)
()

gi(to)
gi(t1)

Trajectory Planning: Single Subtrajectory Case

Only initial and final configurations are given. No intermediate

Consider the following constraints for each link of the robot

= o, Gilto) =, G(to) =, (15)
= ¥, qt)=v1, Git)=o. (16)

Choose the polynomial to interpolate intermediate values of the
generalized coordinates

B(t) = ast® + aat? + ast® + ast® + a1t + ap. (17)

Calculate the first and second derivatives of this polynomial to
interpolate values of generalized velocities and accelerations

v(t) = Bast* + 4aqt® + 3ast® + 2ast + aq, (18)
alt) = 20ast> + 12a48° + 6ast + 2az. (19)

4

o
20
g
o

™M

&)

.

Qo
71
vy

(84]

—

e

o

Yo

Trajectory Planning: Single Subtrajectory Case

Write the system of equations taking into account the imposed constraits
and continuity requirements as follows

asty + aatd + asty + a2th + arto + ao,
Sasth + dasty + 3asty + 2azto + al,
200.5tg + 12(1..»11‘,(2) + Gasto + 2aq,

Rewrite this system in matrix form as

20
ast] + asti + ast] + azti + a1ty + ao, (20)
Sast] + daat] + 3astt + 2ast1 + an,
20asty + 12a4t] + 6asty + 2az.
12 b 2 2 to 1] [as|
5t 483 385 2o 1 0| |as
_ 2065 1248 6ty 2 0 0 as| (o1)

tf o8 1 ot 1] |a
561 4¢7 347 26, 1 0f |a

206 12¢7 66 2 0 0] |ao
Ny - " o N - .I
T <

from which the vector of unknown ceefficients can be easily expressed as
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Trajectory Planning: Multiple Subtrajectory Case

Consider a trajectory comprised of three subtrajectories as follows
¢ Leaving (a)
e Transition (b)

e Approach (¢)

Trajectory comprised of three segments

Trajectory Planning: Multiple Subtrajectory Case
Consider the following constraints for each link of the robot
gi(to) = Yo, qti)=v1, @t} =192, qlis)=7s, (23)
g:(tn) = wo, Gilte) =00, @ilta) =wvs, §i{ts) = as. (24)

Use the relative time functions for each subtrajectory

t—tg t— 1 t—1y .
= , = —) — \ 2
t1 — 1o o ta — 11 T t3 —t2’ (O]

where to, £1, t2, t3 are the given time moments of passing all the reference

Ta

configurations.
Impose continuity requirements to get a smooth trajectory
va(l) = 0(0), aafl) =a(0), w(l)=v.(0}, au(l}=o0e(0). (26}

Taking into account the relative time functions rewrite constraints on the
trajectory

’19(1,(0) b '!9(]; '!9(,(0) d 191 ] 19((0) = 192:' (27)
Jall) = Y1, Dp(l) =92, V(1) =5, (28)

and continuity requirementsas follows
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Trajectory Planning: Multiple Subtrajectory Case

Choose the polynomial to interpolate intermediate values of the generalized
coordinates within each subtrajectory

Yola) = fMTf + 6373 + azrf + a17a + @0, (30}
Bo(me) = bsTi +bamil +buTe + bo, (31)
PelTe) = cuti +caTe +TE + 1T + o, (32)

Calculate the first derivative of these polynomials to interpolate values of
generalized velocities

'19”,(70,) = Uu(‘ru) = 4&473 + 30-31.3 + 20'27.11 + a1 P (33}
Bo(mp) = vp(mp) = 3ba7i + 2bamy + by, (34}
Bolre) =velme) = dcars + 3csms + 202Te + €1, (33}

Calculate the second derivative of these polynomials to interpolate values of
generalized accelerations

é(t(ﬂz} = Cla(Tu} = 12(141?}2 + b6asT. + 2(12, (36)
d(n) = aw(n) = 6bsm + 2hs, (37)
gc(Tc} = ac{‘rc} = 12041’5 -+ 6(331} + 2(:2, (38}

Trajectory Planning: Multiple Subtrajectory Case

Write the system of equations taking into account the imposed
constraits and continuity requirements as follows

p

Yo = ag,
Vp = 41,
dp = 2&2,
P = as+az+azx+ a + ao,
1 = bo,
0 = dag+ 3ag+ 2ay + aq — by,
) 0 = 12a4 + 6ag + 2a> — 252: (39)
2 = bz +ba+b + by,
v = cps
0 = 3ba+2ba+b—c,
0 = 6by+ 2by — 2¢0,
Y3 = cg+e3+c2+e1+ o,
vy = deg 4+ 3¢+ 2¢0 + ¢4,
[ a3 = 12¢4 4+ 63 + 2¢9.
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Trajectory Planning: Multiple Subtrajectory Case
Rewrite this system in matrix form as

0] 0000100 00000 0 0] [aa

Vg 0001000 00000 0 0] |as

g 0020000 00000 0 0] |az

O 1111100 00000 0 0| |a

h 0000000 01000 0 0] |ao

0 4321000 -10000 0O O] Ibs

0Ol _11262000-2 00000 0 0] |be (40)

dol T ]000001 1 1 1000 00| |k

¥y 0000000 00000 O 1| |b

0 000003 2 10000 =10]| |

0 000006 2 0 000-=220 0| |e3

I3 0000000 00111 1 1| fe

V3 0000000 0043 2 1 0| |«

¥ (000000 0 00126 2 0 0] Loy

Nem—— - N

4 T S
from which the vector of unknown coefficients can be easily expressed
as

¢=T"'g (41)

Arc Approximation Algorithm of Spatial Movements

Research Objective

This study focuses on spatial motion planning algorithms, which
allows to characterize sophisticated reference paths in 3D space
and simplify the way how they can be given. The key point used
in this study is approximation of a sequence of points by a sequence

of arcs within a specified d-region.

In industry such algorithm can be applied for such tasks as surface
finishing, engraving and welding. The last operation represents the

main interest of this research.
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Problem

Objective
The purpose is automated code
generating to move the end-
effector along some counters
specified by the input bitmap im-
age or 3D model.
After extracting coordinates of initial
points sequence they already can be
programmed using trivial
point-to-point motion, but it might
lead to some issues.

e significant input data (robot
controller overload)

Mitsubishi RV-3SDB
e decrease of the motion velocity

(reconfiguration at each
reference point)

Arc Approximation Algorithm

Basic Idea
This approach is based on the feasibility of the standard software to

move the end-effector along an arc, specified with only three points.
This basic motion provided by the internal software is more natural then
complex combinations of multiple linear point-to-point movements. As
a result, the robot reconfigures only three times at the reference points
forming this arc. Such solution allows to reduce the code size and

increase the velocity.
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Planar Planning

Consider three reference points

M= [ﬂ:l] " Py = ['Tz] 3 3 = [:ES] . (42}
i Y2 Y3

All intermediate points between p1, p2 and p3 should belong to a
corresponding arc within some &, ~region.

Congider two lines p,—pe and pa—ps3. In order to find coordinates of the arc

x(f .
center ¢ = consider three cases.
Ye

Case 1

If zo = x3 and 21 # x2 then

Yo + Y- Ye — (Y1 + V- T + ¢
Bty g (1 ./z)+ 1 2.

2 2 2

Ye

where k is the slope of the line (z1;y1)—(z2;y2) given by k) = %fle’-";
Case 2
If 21 = 22 and 29 # x3 then

oyt Yo — (y2 +y3) 4 T2t s

Te = —k2

Ye

g 2 2

where ks is the slope of the line (z2;y2)—(z3;y3) given by ko = 'I’:—:II’—?—;
Case 3
If all z-coordinates are distinct, then

. _ kiko(yr —y3) + ka(xy + x2) — k1 (22 + x3) (43)

e 2(k2 — k1) .

T = .l']’+.ro ) .
Ye = - ‘ 2 + 7 -.+.y2 s (‘14)
k1 2

where k1 and k2 are given above.
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T4

] to the arc formed by p1, p2
Ya

Calculate distance from a forth point ps = l

and p3 as follows

dared/ Toe— 0+ (o) 7] (43)

where r = /{z, — %)% + (yL — ¥.)? is the radius of the arc.

As a result we get a sequence of arcs each specified by three consecutive
points. Such point list can be used together with the operator MVR P1 P2
P3, which allows to move along an arc specified by three reference points.

Spatial Planning

Consider three points that do not lie on the same line. Coordinates of
vectors specified in the Cartesian space are defined ag

xf x9 x4
0 ) 0 _ 0 0 0 14
pi=|¥|. p2=|y3|, pP3i= |u3]|- (46}
29 22 22

Consider two coordinate systems denoted as zoyozoon and x4 21 01. Derive

a normal to the plane o,y 01 through a cross product

Ty
n=|ny| = (pg —P?) X (Pg - P?) . (47}

(233

Then calculate a unit vector

2z
n
“= &y = - (48)
Vi +ng +ni
Zz
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Compute the rotational transformation as RS = R Ry 5, where the angles o and
A can be calculated as follows

Zy Za
)
-2 ~2 2 2
\/‘“3} + “y \/Zx + Z,y

Substitute o and 4 into the rotation matrices around z— and y-axes

a = atan22

, 3 =atan22 ( 22 + z{;’, zz) )

cosa —sing 0 cos3 0 sinf
RY=|sina cosa O 0 1 0o |. (49)
0 0 1] [—sin3 0 cosS

Calculate coordinates of the reference points with respect to the local coordinate
system using the rotation matrix

pl = Ryp!, pi=Ryph, p3= Ropl, (50)
where Ré = [R[E]T.

Denote coordinates as follows

h x5 i
1 _ L 1 _ L 1 _ L (51)
2= 1% Po= |Ua|, P3= |U3
23 25 z5
g
In order to find coordinates of the arc center ¢! = |y! | consider three cases.
z
Case 1
If :135 = .'17; and :zr} #* :17._12 then
1 Y3+l 1 ye — (yi +v3) , =1 +3
Yo = —, . =—k ;
2 2 2
|
where ki is the slope of the line (;1:%:;1/]1) (:1.:5; yé) given by k1 = %_—Zﬁ—
Case 2
If ;v% — .1:..5 and ;zr% # ;1:_.1s then
L — T +y5 S T ) y}_.—(y.;+y§) +;U.‘12+q.:13
Ye = —2 » Le = 2 2 2 )
11
where ko is the slope of the line (;1',,5: y%)—(:r:l;: yé) given by ko = 'lif_—':i-
xi—xy
Case 3
If all z-coordinates are distinct, then
A kik2(yl — yd) + ka2(z] + 2d) — k1(ad + 23) (52)
= Q(Atg == /\1) ’ -
1 1
1 xy+x-
g T Tt vitw (53)
= k1 2 ’

where k1 and k2 are given above.
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The third z-coordinate can be derived trivially as

Ze =2 =2 =2 (54}

Express coordinates of the center with respect to the base coordinate system

N
& = [4¢| =Rl (55)
)
“e
The equation of a plane is given as
Ng® + Ny + N2 +no = Q, (56}
where ng = — (1,23 + nyy3 + n223).
ko
Distances from a forth point ps = |y} | respectively to the plane dpiane and
0
24

to the arc formed by p1, p2 and p3 can be computed as

a 0 o}

Nady + Nyyl +1x2l + N -

dptane = I 4 Zy'ﬁl 5 42 0|1 (5‘}
V n:c + n‘-y + nz

Qure = \/(:v‘c'—x2)2+(y@—y2)2+(z2—z2)?—r ; (58}

where r = \/(a§ — 29)? + (39 — ¥2)? + (2? — 22)? is the radius of the arc.

Then all points should be processed and checked on belonging them to a
particular plane and arc within the specified d,10ne- and §u,-Tegions,
respectively. As a result of this procedure, a sequence of three-points-sets
each specifying a particular arc should be obtained.
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Experimental Approval

Experimental Approval

Experimental Results: Planar Planning

A hypotrochoid drawn by the robot on a flat surface
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Experimental Results: Planar Planning

A portrait of Alexander Pushkin drawn by the robot on a flat surface

Experimental Results: Spatial Planning

A hypotrochoid drawn by the robot on the a curved (cylindrical) surface
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Experimental Results: Spatial Planning

1000

E
E 5004

04
-200

y, mm 200 200

A portrait of Alexander Pushkin drawn by the robot on a curved
(cylindrical) surface

Summary

¢ Reference motion can be programmed manually using a teach pendant
or automatically using some path planning algorithm

e Once a path is generated, its intermediate positions, velocities and
accelerations should be interpolated

e Advanced algorithms for spatial movement planning can be designed
for industrial applications

e The next step is control design to make the robot to track the
reference trajectory
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Control design for industrial robots

Control Design for Industrial Robots

Dr. Oleg Borisov

PD Controller

Consider the control plant specified by the transfer finction. We
introduce a proportional-differential (PD) controller with a transfer

funetion

R(8) = kp + kgs. (n

We calculate the transfer function of a closed-loop system

W) — _ROPG)
L+ R(s)P(s) 1+ Lathas

Js2+Ks
Js? + (K +kg)s+ k&,
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PD Controller scheme

Figure 1: Simulation scheme of & closed-loop system with PD controller

Further, with known parameters of the object J & K, based on the
roots of the charactcristic polynomial of the transfer function

Js* + (K + kq)s + k, , it is possible to calculate such coefficients of
the PD controller &, & k4 to ensure the required quality indicators of

the closed system.

PID Controller

Consider the controt planl given by Lhe transfer funclion. We
introduce a proportional-integral-differential (PID) controller with a
transfer function

1
R(s) =k, + kz; + kgs. (3)

Witl structural fransformalions we express 1he aulpul variable

_R$P(3)
1+ R(s)P(s)

P(s)

O(s) 1+ R(s)P(s)

0" (s) + M(s). 4)

We calculate the transfer function of a closed-loop system

1 kas® +hpstk;
W(s) = R(s)P(s) e B
T 14+ R(s)P(s) 1y Fasirkeetk

Ja3 | Ks2
Js? + (K + ka)s? + kps+ ki
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PID Controller scheme

4

Figure 2: Simulation scheme of a closed-loop system with a P1D controller

Further, with known parameters of the object J & K, based on ilie
roots of the characteristic polynomial of the transfer function

J5% + (K + kq)s* + kps + k;, it is possible to caleulate such coefficients
of the PID regulator k,, k; & kg in order to ensure the required
quality indicators of the closed system.

Robust control

Tel us wrile down the consequiive compensalor in the form of a,

transfer function

R(s) = kyyor~! 32; , (6)

where p — relative degree of the plant, k & o > k£ — tuning

parameters of the controller, &3}  an arbitrary Hurwitz polynomial
of degree p — 1, ¥(s) — Hurwitz polynomial of the form

H) = 7 4 0ypmas P 4t 0 et 0P g ()

149



2019 © Oleg Borisov Modeling of systems and complexes

borisov@itmo.ru, oleg.borisow@gmail.com Modeling and control of robotic systems

Robust control in closed-loop system

Consider the control object specified by the transfer function. Its
relative degree is p = 2, so, chosen a(s) = s+ 1 & 9 = 1, rewrite the
regulator (6) like

_ kos+ ko

RJ
(s) s+o

(&)

Transfer function of a closed-loop system is

o) kos+ko
Wis) = —wsill) TR _
L+ REPE) 1+ oriietrs

kos+ ko

- (s + o) (Js? + Ks) + kos + ko’ ©)

Robust control scheme

Figure 3: Simulation scheme of a closed-loop system with a consecutive

compensator

The characteristic polynomial of the transfer function (9) contains
unknown paramelers of the plat, but due Lo the rohustness of 1he
regulator (8), for sufficiently large coefficients k & o exponential
stability is attained.
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Robust control extended

Adding the integral componcnt we rewrite the regulator (6)

1 3(s)

= | P_
R(s) = kyo (s)’

(10)

where £(s} — Hurwitz polynomial of degree p.

Having chosen 3(s) = s*> + s+ 1 & ~¢ = 1 rewrite the regulator (10)
like

kos? + kos + ko
s2 | o8 '

R(s) = (11)

Transfer function of a closed-loop system

kosithostke
R(s)P(s) (Ftos)(Js?1Ks)

I+ R(s)P(s) 1+ phasstasthe

kos? + kas + ko

- (s2 ) os)}(Js% | Ks) | kos? | kos | ke (12)

Wis)

Robust control extended scheme

(s

Figure 4: Simulation scheme for a closed-loop system with a consecutive
compensator with integral loop

The increased order of astaticism of a system with a transfer function
(12) makes it possible to compensate the effect of gravitational forces.
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Anti-Windup Control
Saturated input

Uy, if u(t) 2 Uy,
w(ty =satu(t) = ¢ u(f), if wp < w(t) < uy, (13)
w, i u(t) <y,

where u; & uy — upper and lower limits of the input signal.

Let us write down the control law of the PID controller (3) like
. gt .
() = ky®) + kL + hapie), (14

where p = & — differentiation operator, §(t) = g* — g(t) — error.

Following the amivindap correction method we add Lo (14) an

additional contour

u(t) = kpq(t) + kzw

+ kdpé(t)! (15)

where k, > 0 — gain, i(f) = #(t) — u(t) — difference signal between

saturated and source control.

Anti-Windup Control scheme

Y

Figure 5: Simulation scheme of a closed-loop system with a P1D controller

and anti-windup correction

The control law (15) helps to avoid the effect of integral saturation in
conditions of limited input.
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Anti-Windup Robust Control

Tel us wrile down ithe control law of a consequiive compensalor with

an integrated circuit (10} like

ut) = #22), (16)

£t) = o(TE) + dnog(t). (17)

gty = RrTEw), (18)

where §(¢) — error signal estimation §(¢), matrices and vectors T, d, h

in form

[0 1 0 ] [0] [1]
0 0 1 0 0 0
=Y 71 Y2 o Yp-1l 1) 0]

Anti-Windup Robust Control
Transform the control law (16}, with integrator

ﬁtp

u(t) = K22 (n—k(mm+- )aﬁ=kﬂmﬂJ+k i), (20

where B(p) = —’B'Ip;')_a".

Following the anti-windup correction method we add to the (20) an
additional contour

) = KB @) + £ (50) + haa®)). (21)

where k, > 0 — gain, u(f} = @(t) — u(t) — difference signal between
saturated and source control.

Having chosen 8(p) = p?> + p+ 1 & 40 = 1, rewrite the regulator (21)
like 1
u(t) = kpq(t) + kq(t) + ff}—)(ﬁ(t) + kyG(t)). (22)
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Anti-Windup Robust Control

Figure 6: Simulation scheme of a closed-loop system with a consecutive

compensator and anti-windup correction

The regulator (22) allows to solve the stabilization problem with the
increased order of astaticism in comparison with the regulator (6) and
with compensation of the integral saturation effect by means of
anti-windup.

Tracking control

Let’s express the output signal ©(s):

aron B(s)P(s) + F(s)P(s)
O) = = REHPE)

@’F(S) + %1‘41(3). (23)

We choose the transfer function of direct coupling in the form:

F(s) = % (24)

then the expression (23) takes the form:

P(s)

6(s) = () + + 1T R P
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Tracking control scheme

—————» F(s)

0*(s) Os)
o

> H(s)

Figure 7: Simulation scheme for closed-loop tracking system

Direct link allows the system to monitor any given trajectory,
provided that the system is completely stable. The steady-state error
in this casc will be duc only to the influcnce of an cxternal
perturbation Mj(s).

Multivariable control

Consider the dynamic model of a robotic system
g)i+ Cla,d)d + Glg) = (26)
Stabilization of desired ¢* will be performed with PD controller.

First, for simplicity, we neglect the effect of gravity, assuming that
G(g) = 0. In view of this model (26} looks like

[(q}d + C(g,9)¢ = u. (27)
We choose the vector of control actions u like
u = K,(q* — q(t)) — Kag(t) = Kpd(t) + Ka(t), (28)

where G(t) = ¢* — q(#) — ervor between the specified configuration
and the current one, K, & K, looks like

kpi O ... 0 kit 0 ... 0
0 kyo ... O ) 0 kap ... O

K, = , . Ke=| . : 0 (29)
0 0 0 kpm 0 0 0 kin
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Multivariable control

Substituting the control law (28) to the plant (27} we obtain a model
of a closed system

T(g)d + Clg, d)d = Kpd(t) + Kai(t). (30)

To analyze the stability of a closed-loop system (30) we consider the
candidatc Lyapunov function in quadratic form

| I Loy - :
V(t) = qu K,q+ §q’Tq- (31)

Taking the time derivative of (31) we get
V() = —¢"Kag <0, (32)

this together with the Lassalle theorem shows the asymptotic stability
of a closed system (30).

Multivariable control

When ¥V = 0 from (32) we can conclude that the generalized velocities
and accelerations are zero ¢(¢) = 0 & ¢(t) = 0. Taking this into
account we rewrite the equation of a closed system for ¢ — oo

0 = Kpq(t), (33)
from which it follows that §(t) = ¢* — g(f) = 0 with ¢ — o0.

The influence of gravity G(g) # 0 leads to the appearance of a steady
error. The PD controller in this case does not provide asymptotic
stability. The equation (33) looks like

G(g) = Kp4(?)- (34)
To eliminate the established error we supplement the law of control
u — Kpq(t) + Kaq(t) + Gla), (35)

which makes it possible to provide asymptotic stability with the
influence of gravity.
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Dynamic of robotic systems

Dynamics of Robotic Systems
Euler-Lagrange Method and Special Cases

Sergey Kolyubin

Qutline

* Motivation
* Encrgy-bascd Approach - Euler-Lagrange Mcthod

* Energy calculation
* Motion equation

» Special Cases
* Drive dynamics
* Flexible joints modceling

* Motion Equation in Opcrational Space
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Why Do We Need to Know Dynamics?

simulation

defining dynamic constraints

* mechanical design optimization

trajectory planners and controllers synthesis

Tasks

» Forward Dynamics: given desitred trajectory (coordinates, velocities, acceleration)
find generalized forces/ torques

* Inverse Dynamics: given generalized forces/torques, find generated motion
(trajectory)
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Tasks

¢ Forward Dynamics: given desired trajectory (coordinates, velocities, acceleration)
find generalized forces/torques

* Inverse Dynamics: given generalized forces/torques, find generated motion
(trajectory)

Practical tasks

¢ f/t calculation - find external (control design)
and internal (find reaction forces in kinematic
pairs)

¢ performance indicators - find possible cycle
time given dynamic constraints

¢ (serial) manipulators balancing - unload drives
in statics

¢ (parallel) manipulators dynamic balancing -
minimize distortions during the motion by

stoe of KUKA KR-270 T™ robot

placing counter-weights

Tasks

» Forward Dynamics: given desited trajectory (coordinates, velocities, acceleration)
find generalized forces/torques

* Inverse Dynamics: given generalized forces/torques, find generated motion
(trajectory)
Theozetical sub-tasks

s trajectories calculation

* motion stability analysis

calculating time response

identifying critical motion modes
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Methods Comparison

* E-L - kinetic and potential energy
¢ multibody dynamics as a whole
» exclude reaction forces between links
* symbolic form
¢ better for analysis
* N-E - forces/torques balance
» separate equation for each hody
» explicit relations for reaction forces
* numeric recursion form
¢ better for synthesis and real-time applications

By excluding reaction forces and substituting these relations we can derive E-L
equations from N-F equations

B-L General Framework

1. select generalized coordinates g, 42, ... 4

2. derive relations for kinetic X and potential P energy as functions of generalized
coordinates and its derivatives

3. calculate system Lagrangian £

4. derive motion equation

d aL al
=1, k=1,2,... 1
dtoge oy ¥ " @

K

7y is a generalized force/torque
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Full Kinetic Energy

Konig theorem
Full energy consist of an energy assoc. with

body CoM motion and relative body motion
around it CoM

L1 1
K = im|v|2 + EwTIw

where m is a body mass, v and w are linear and
rotational velocities vectors, Z is an inertia

tensor

Figure 1: ©DeLuca

All values in the same CF

Formula for rotational velocity
w + S(w) = R(H)RT (1),

where R is a rotation matrix from body frame to inertial frame

Kinetic Energy of n-links Robot
Sum of kinetic energy of linear and rotational motions

. 2 E
K=1imlp|* + 0 Iw

CoM velocities

* v, = f. and w are functions of generalized coordinates g and velocities 4
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Kinetic Energy of n-links Robot

Sum of kinetic energy of linear and rotational motions

. 2 E
K= 1mlv|*+ %wTIw

CoM velocities
* v, = . and w are functions of generalized coordinates g and velocities 4

Relations can be computed via Jacobian assoc. with links CoMs

Ui = ]i‘, (‘I)‘?z w; = lu', (q)q

Kinetic Energy of n-links Robot

Sum of kinetic energy of linear and rotational motions

. 2 E
K=3imlvo|* + 0" Iw

CoM velocities
* v, = f. and w are functions of generalized coordinates g and velocities 4

Relations can be computed via Jacobian assoc. with links CoMs

U(‘,i = 11‘,‘(‘])‘?/ (U,‘ T Iu', (‘])‘]

Robot kinetic energy

N=%t7’ Ym0, (4) o, (9) + Jeo; (9) " Ri (@) IR (9) " Ty (9) | 4
11
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Recurrent Velocities Formulas

* rotation (angular) velocities

L NT. . T
w; = (RZ—' (qs,') wig +(1=w)gizi:] = (R:'—1(‘fi)) wi™ {2)
where R}_] {g;) is & rolalion malrix [or neighbor CFs O;_1x;_1y;_1z;_1 and
Ojxiy:zi
o= 0, for rotational joint,
) L, for prismatic joint,

z; 1 =[001 ]T is a vector of z axis coord. if D-H convention used, aJ:.'_l isa
rotational velocity of i-th link with respect to CF O;_1xi_14i-12i-1
¢ linear velocities
Ugi = Vi + Wi X ¥oy, (3

where r

v = (Rf-_l(‘?i)) [1-‘1'—1 + Oz Hwl T x ”i‘:},,-_ 4)
denotes linear velocity of a CF origin O;, 7; is a CoM vector for i-th link with
respect to O;, r;_} ; are coordinates of radius-vectors from O;_1 to O; with respect
to CF Qi1 xi-1¥i-12i-1-

Potential Energy of n-links Robot

Potential energy of i-th link
. T
Pi=mig rei
where 7. ; is a CoM coordinates vector
2 i
! ()

1 =% Hy(g1) ' Ha(q2) - - - Hi(q)

Tei
1

Robot potential energy

n n
) ) .,.
20— z = E mig rei
i=1 i=1

For a serial kinematic chain
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Motion Equation

¢ Kinetic energy

K = ~q Zm Jo, ()" Jo, (9) + Jo, (9)"Ri(q) IRi (9)" J; (9) | ¢
= zq "M(q)d = 3 Znu, 9)dkdj
k,j
* for conservative generalized forces §, = ) Tk

e system Lagrangian £ = K — P

r)l] k

doL oL

dt o Oqk
dak-P) K-P)

dt alh- aqk =%
d ok AK-7P)
_—— e ———— Tk
dt dgy ok

Equation structure

Motion Equation (contd.)

daK K -P)

EaTn‘TZTk’ ki=1sasmh
1st term
5),8 Jd
0 = 3 |2 [ 4"M(q q} Z'"A/‘h
and
doKk d|[& . v d 13
ET“ = [gm,\.jq,} = glllkfllf en ,_):; af [’”ki(‘])J qj

I 1i ql

non 31“A om i i %%
- Zm,\,q, + = ZZ( aq) ¢ k >t]itli
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Motion Equation (contd.)

2nd term
I(K -P)
()qk

T N .
le [—qM(q)q - P] = Eq {aqu(q)} q v P
1 n on am” a
—P
IZ‘{,Z: G 9idj — el

Motion Equation (contd.)

2nd term
(K —-7P) ) 1.9 .0,
SN EY L = - 6 | —M .
O i [ iMa)i - } 24 {9% (q)} 17 %
i': i omjj )
= = 4i4;i — =—
, 1= aqk 1 7" 8qk
Resulting relations
noon al”[\, a’”ki o
Z ’”A;‘?; T Zl Z aq a‘]/ qiqj
] i=
1"'aml,” 90 .,
~5 Z; Ba, it T]kp =T

165



2019 © Sergey Kolyubin Modeling of systems and complexes

s.kolyubin@itmo.ru Dynamic of robotic systems

Motion Equation (contd.)

2nd term
(K —-P) d

1.
o B a‘h [ Ma)d - P] a Eq{

)

MM(G)] q—

i

2L omg;

- 2 Z Z oG 9id; —

2p
/ li= aqk

Resulting relations

n n

):mk, q)q,+2): cik(@gidj + 8@ =%, k=1,...,n
j= j=Yi=

where ¢;jr = cjix is a Christoffel symbol and

om ont:  Ontj; d
cije(q) = ( & - ”>’ 8(0) = 5P

aqi 99; Iqy

is a potential energy gradient

Motion Equation (contd.)

2nd term
oL -P) 9 [1, . | _1.[0 9.
9k o [qu(q)q P] R {aqu(q)] 9k
1 n o on am”‘ ) a '
T

Resulting relations
kal q)q, - Z 2‘%(‘7 )4iqj + elg)=m, k=1,...,n
= j=li=

in a vectorial form

M(q)i+C(q,4)§+G(q) =T
with Coriolis and centrifugal forces C(q), cxj = ¥ ¢ijk(9)4i-
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Accounting for Gear and Motor Dynamics

Assumptions

» drive is fixed to the link preceding the link it is moving

* motor and joint axis are coinciding

General considerations

» drive mass should be added to link mass

* drive rotor inertia should be taking into account when computing total kinetic
energy

* gear ration should be taken into account when computing velocities and forces

Motor Placement

motor 1

joint 2

" -
(world frame), link 1

motor 2 joint N Oni = N 6
(base) Jontl =
Q= nrl Tmi
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Pendulum with Gear

viscous friction
n=1

transmission
1 (with reduction gear)

I; = link moment of inertia w.r.t. its CoM

m — link mass

d — distance from axis of rotation to link CoM
6 - link rotation velocity (after gear)

6, = nf — motor rotation velocity (before gear)
n — gear ratio

I,y — drive moment of inertia w.r.t its axis of rotation

Kinetic Energy

Pendulum kinetic energy
Lo, 2) g2
K = > (I,de )9 -

Drive kinetic energy

i Lo
}i,,,, = Elmeﬁ,/

Total kinetic energy

KA G, %192,

where | = I; + md? + n%l,, is a total moment of
inertia w.r.t. axis of rotation
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Potential Energy and Lagrangian

Total potential energy
P = Py — mgod cos 6.

—dcosf
System Lagrangian

L= %192 + mgod cos 6 — Py.

pr = lsin 0

Motion Equation

From the link side

I6 + mgodsing = 7,

From the motor side
(- m . By k_n . ! (-
n—29m + ;80‘151“ o m (n_2 +kfm | O + 5 ©08 ?Fx.
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Friction Forces

General considerations
* is a dissipative force
* localized in joints
* static modcl capturcs major influcnce for relatively fast motion

T — 1Ty — kb — nk gy + PaFx — 07 — (kg + nzk_fm)b:' +Icos BF,,

where T, is drive torque before gear, kg, and k¢, are viscons friction coefficients

* dynamic models are more accurate, but usually hard to identify

Flexible-Joints Robots

Flexible joints
Motor (input) and link (output) are connected by a flexible
, b (deformable) element

P e ] haft
Sy ong sha

@’)‘ * harmonic drive gearbox
* belts

Useful flexibility

1. physically (VSA, SEA)

2. on a software level

Wave generator Flexspline Circular spline

* safe pHRI

Figure 3: Harmonic drive * explosive motions
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Modeling of systems and complexes

1.
2.
3.
4.

Modeling Flexible Joints

Assumptions

flexibility is localized in joint
small deformations for linear spring model
symmetric drive shafts with CoM on the axis of rotation

drive is located before the link it is actuating

Modeling Flexible Joints

introduce 2n generalized coordinates ¢ € R” for links and 6 € R" for drives
(0; = 8, /r:, 7; is a gear ratio)

add drive kinetic energy

1 1 5
Kmi = 2zmér2ni = 2Im'129f

n

. 1, ;

Km = Z’Cmi = EGTMme
=1

M, is a diagonal drive inertia matrix

add potential energy of a deformed spring

1 \
pﬂ' = EK;(Q; — 9,')|2

"
pe = chi =

i=1

(g—6)TK(g -8

R =

K is a matrix of joint stiffness coefficients
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Modeling Flexible Joints

Motion equation

M(9)j—c(g.9) +Glg) +K(g - 8) -0,
M8+K@—3)=T1

Operational Space Formulation

* Configuration space ¢ Operational space

M(q)i+c(q.9) +8(q) =T Ai,+pn+p=F
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Operational Space Formulation

¢ Configuration space * Opcrational space

M(g}j+e(q.f)+gl@ =1 Af,+p+p=F
* projecting joint forces/torques to end-effector forces
T= I;r E

* kinematic relations
fe = Jof = %o = Jefe + jeqe
% = M7 (JTE = (e(2,4) + 3(0))) + Jede =

£+ .M Yelg,9)+8(9)) — fege = 1M IE

* operational-space model

-1 .
A=(MTT) T u= ARMTe(q g = Alge = ALMTg(9)
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Digital control systems
Digital and microcontroller devices

Digital and
Microcontroller Devices

Vlasov Sergei

Robots, what is it?
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Robots, what is it?

Hardware

-

Structure of robot

Control Drive systems Sensors Interfaces Supply
= Power switch < Omnidrive =< Bumper = WLAN - Batteries
= Control unit - Motors - Distance sensors = 1/O-Interfaces - Power supply unit
< Embedded PC - Incremental encoder | & Gyroscope - Motor/encoder - Charging electronics
= Microcontroller - Gear units - Camera - USB - Pedestal
-> Reset button < Wheels - Opto-electronic - PCI Express

sensors

- Inductive sensors - Ethemet

< VGA
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Structure of robot

r

Sensors

Distance I Incremental

Gyroscope Camera
Sensors | encoders

Control |
unit

Motors »1 Motors
drivers

Batteries >

Power supply

* Primary Batteries

* Secondary Batteries
o Lithium (Li-ion, Li-pol)
o Nickel Cadmium (Ni-Cd)
o Nickel-Metal Hydride (Ni-MH)
o Lead-Acid

Schematic symbols
Single cell Multi-cell

a4 AlE
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Power supply

Terminology

Capacity - Batteries have different ratings for the amount of power a
given battery can store. When a battery is fully charged, the capacity is
the amount of power it contains. Batteries of the same type will often
be rated by the amount of current they can output over time. For
example, there are 1000mAh (milli-Amp Hour) and 2000mAh batteries.

Nominal Cell Voltage - The average voltage a cell outputs when charged.
The nominal voltage of a battery depends on the chemical reaction
behind it. A lead-acid car battery will output 12V. A lithium coin cell
battery will output 3V.

The key word here is "nominal", the actual measured voltage on a
battery will decrease as it discharges. A fully charged LiPo battery will
prozd;l\c/e about 4.23V, while when discharged its voltage may be closer
to 2.7V.

Shape - Batteries come in many sizes and shapes. The term ‘AA’
references a specific shape and style of a cell. There are a large variety.

Power supply

| Common batteries, their chemistry, and their nominal voltage |

Battery Shape Chemistry Nominal Voltage Rechargeable?
AA,AAA, G, andD lkalineorZinc- o No

carbon
oV Alkaline or Zinc- 9V No

carbon
Coin Cell Lithium 3V No
Silver Flat Pack Lthlum Polymer 3.7V Yes

(LiPo)

(  ©Ni-Cd AA 700mAh 1.2V.©

e laiey (G NiMH or NiCd 1.2V Yes j
(Rechargeable)
Car Battery Six-cell lead acid 12.6V Yes
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Motion — motors

DC Motors e

AC Motors e —

Brushed DC Motor

Brushless DC Motor (BLDC)

Stepper (STP)

Induction Motor (IM)

Synchronous Motor (PM)

Brushed DC electric motor

Fixed brushes supply electric energy to the

rotating commutator. As the commutator

rotates, it continually flips the direction of the

current into the coils, reversing the coil

polarities so that the coils maintain rightward
rotation. The commutator rotates because it is
attached to the rotor on which the coils are

mounted.

Schematic symbols

@ G

Rotor
Coil Commutator
»}
b
"
)
Stator
Brush
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Brushless DC electric motor

Since the rotor is a permanent magnet, it

needs no current, eliminating the need for
brushes and commutator. Current to the fixed Rotor Stator
coils is controlled from the outside.

Schematic for delta and wye winding styles.
(This image does not illustrate the motor's
inductive and generator-like properties)

Stator

Stepper motor

A stepper motor, also known as step motor or
stepping motor, is a brushless DC electric
motor that divides a full rotation into a
number of equal steps. The motor's position
can then be commanded to move and hold at
one of these steps without any position sensor
for feedback (an open-loop controller), as long
as the motor is carefully sized to the
application in respect to torque and speed.

Schematic symbols
Stepper motor

O

BlI |BZ
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Controlling Brushed DC Motors

Rotation in different directions

Controlling Brushed DC Motors
Control speed by PWM (Pulse-Wide Modulation)

0,
&5 0% Duty Cycle

ov
25% Duty Cycle

5V j— h= & = =

Average

o j . Output
50% Duty Cycle Voltage
5v |

ov e
75% Duty Cycle

5V

ov L L - L -

100% Duty Cycle

5V

ov
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Controlling Brushless
DC Motors

s Sw3 SWS

T

+
i

—AgE <R A <HE

b

v

Thres-phase
BLDC motor

u

Controlling Brushless
DC Motors

Sensored vs. sensorless

electrical connections.

* Two technologies offer a solution for positional
feedback. The first and most common uses three
Hall-effect sensors embedded in the stator and
arranged at equal intervals, typically 60° or 120°. A
second, ‘sensorless’ control technology comes into
its own for BLDC motors that require minimal
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with sensors

Controlling Brushless DC Motors
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DC Motors

Signal conditioning

ANO
AN1

+  Back EMF
- \ _/

e

Controlling Brushless Sensorless

Application Schematic

Tee
\G Do BLDC Motor
ea
i . N
Voc == T Ve — e ec
I Ve I_.
Ta- Ts Te. :
Da- De Dc
777 W <
-] Detection and
Control Circuitry

Sensors

* Distance
* Position
* Velocity
* Temperature
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Distance sensors

Ultrasonic
sensor
Microcontroller
* Ultrasonic ey
s o ¥ ‘;F_:_——"'i.:gv
.. .‘-n}"'?,.’;'-.-_;.: ' Detected
Il v object
1 |
Time to fly
measurement Measured distance
Ultrasonic

sensor
Microcontroller

'\[:ﬁ'fw.@

Received wave

_— Detected
B4 | object

1 1

Time to fly
measurement

Measured distance

Distance sensors

* Infrared
U
A
LED PSD
» d
e Laser 3¢ . - .
g “ q 3
\

£y

Detector
S
Ilens Lens/ /
/
f
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Position/Velocity sensors

* MEMS (Micro Electro Mechanical Systems)
o Accelerometer
o Gyroscope
o Magnetometer

* Encoder
* Potentiometer

MEMS sensors

MEMS Accelerometer

* Accelerometer

* Gyroscope
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Encoders

* Mechanical
* Optical

® |[ncremental
= Absolute

Yool o v

YoufD) esnchannci v

Potentiometer

wiper

resistive strip

GND Output +Vee

Resistance

>
Knob position
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Microcontrollers

A micro-controller can be comparable to a little
stand alone computer; it is an extremely
powerful device, which is able of executing a
series of pre-programmed tasks and interacting
with extra hardware devices. Being packed in a
tiny integrated circuit (IC) whose size and weight
is regularly negligible, it is becoming the perfect
controller for as robots or any machines required
some type of intelligent automation. A single
microcontroller can be enough to manage a small
mobile robot, an automatic washer machine or a
security system. Several microcontrollers contains
a memory to store the program to be executed,
and a lot of input/output lines that can be a used
to act jointly with other devices, like reading the
state of a sensor or controlling a motor.

Microcontroller’s architecture

Von Neumann vs. Harvard architecture

Data bus —

Data
dre —. Memory

Control bus __ e=—b T

Harvard architecture

Code Data
Memory Memory
Databus |} ll tt
CPU Address bus t

Control bus t

@ Von Neumann architecture
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Microcontrol

8051

ers

AVR

ARM

8-bit for standard core

8/16/32-bit

8/32-bit

32-bit mostly also available in
64-bit

Communication Protocols

UART, USART,SPI,12C

PIC, UART, USART, LIN, CAN,
Ethernet, SPI, 125

UART, USART, SPI, 12C, (special
purpose AVR support CAN, USB,
Ethernet)

UART, USART, LIN, 12C, SPI,
CAN, USB, Ethernet, I12S, DSP,
SAl (serial audio interface), IrDA

Speed 12 Clock/instruction cycle 4 Clock/instruction cycle 1 clock/ instruction cycle 1 clock/ instruction cycle
Memory ROM, SRAM, FLASH SRAM, FLASH Flash, SRAM, EEPROM Flash, SDRAM, EEPROM
CLsc Some feature of RISC RISC RISC
Memory Architecture Von Neumann architecture Harvard architecture Modified Modified Harvard architecture
Power Consumption Average Low Low Low
Families 8051 variants PIC16,PIC17, PIC18, PIC24, Tiny, Atmega, Xmega, special | \ep1 4 < 6,7 and series
PIC32 purpose AVR
Vast Very Good Very Good Vast
NXP, Atmel, Silicon Labs, Dallas, |, .. . Apple, Nvidia, Qualcomm,
Cyprus, Infineon, etc. Microchip Average Atmel Samsung Electronics, and Tl etc.
Very Low Average Average Low
High speed operation
Other Feature Known for its Standard Cheap Cheap, effective Vast

Popular Microcontrollers

AT89C51, P89v51, etc.

PIC18fXX8, PIC16f88X,
PIC32MXX

Atmega8, 16, 32, Arduino
Community

LPC2148, ARM Cortex-MO to
ARM Cortex-M7, etc.

AVR Architecture

3-wire In/Out

4-wire In/Out

~  Serial \
AT Peripheral
‘ Interface _
(— Program
Counter
Instruction 32 General
Register — A
Control ‘ Registers
Lines
AIES =
Instruction PO
Decoder v
cou| [K=A shi
» i 4 P
Watchdog /0 Timer/ phOenlx.net
Temer Ports atapts Counters
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ARM — STM32 Architecture

STM32 Value line 64K-128KBytes block diagram

Core and operating conditions

ARM® Cortex™-M3 1 25
DMIPS/MHz up to 24 MHz

20 V1o 36 Vrange

-40to +105 °C

Rich connectivity
8 communications peripherals

Advanced analog
12-bit1 2 ps conversion time ADC
Dual channel 12-bit DAC

Enhanced control
16-bit motor control timer
6x 16-bit PWM timers

LQFP48,LQFP/BGA64,LQFP10C

I o
24 Wz ’
|

1 x Systick Timeri
.

1x 16bit PWM |
Synchronzed AC Timer

Upto 16 Ext. ITs

)
)
3751  WOs :
)

1xSPI
—
1 x USART/LIN l
Sm aramDa
1 Control

64kB - 128kB

Power Supply
Flash Memory R :

POR/PDR/PVD
8kB SRAM ]
I

20B Backup Data

Clock Control | RTC/AWU

— | ]

x 16-bit Timer l -
2xWatchdog

(independent & window) j

1xCEC I

2-channel 12-bit DAC ]

1x12-bit ADC

up 1016 channels

Temperature Sensor I

@ B B N N N NN N

| Cortex-M4

R B R B B B B B B

| R R B AR B BB BB B

1131331313131

HHEBE
AVAVAY4

TR
(\_(\AA

zY;

!

i
O

A
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STM32F4xxx Structure

STM Adaptive Real Time Memory

Core ART Accelerator

Flash
memory

S — |

128-bit wide
embedded Flash memory
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7-layer 32-bit multi-AMB bus matrix

STM Bus matrix

Cortex-M4 1] Bus masters

with CPU

168 Mtz
g a £ =z - = & 100 Mbiv's | 480 Mbiv's
= a 2 ‘i‘ = ‘i‘ = 12.5 Mbyte/s |60 Mbyte/s
3 v 3 2
S 2 Z

L
Bus slawes

572 Mbyte's [

672 Mbyte/s |

e
h

Power supply sc

BAT,

®..s _Power
(t “®switch
uT

neme

Backup circuitry
(OSC32K,RTC,
Wakeup logic
Backup registers,
backup RAM)

Logic g

regulator

- Voltage

__|Level shifte]
[e)

Kernel logic
(CPU, digital
& RAM)

VBAT =
1.65t0 3.6V
GPIOs [
VCAP_1
2x22pF  VCAP 2|
VDD VDD
172/..14/15
15 x 100 nF B
+1%x4.7pF : 1/2/..14/15
BYPASS_REG
PDR_ON
VoD
VDDA
VREF |
VREF+
100n 100 nF! VREF-
+1pF +1puF
VSSA

Reset
controller

Flash memory| :

AN
RCs
PLL...
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External clocking and reset circuit

Resonator with
integrated capacitors

,J-, OSC_N

~_ fHSE
m
Bias =
controlled
gain
STM32F
4
VHSEH
v,
VHSEL i ' | | : : Extemal )
0 (N W T T "V sE) ¢ reset circult
HSE tie slia-usg) e SltwHse) > WHSE) 77T NRsTR | RPU Internal Reset
- Thse » ) l - [} D»— Fiter f——>
. ' F 0 1F
oo STM32F

STM32F
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Actuators and mobile robots control
Mathematical model of DC motor

Control and modeling of mobile robots
Mathematical model of DC motor

Alexander A. Kapitonov

Constructon of DC motor

1 2 )

Figure 1. DC motor assembled. . _
Figure 2. DC motor disassembled:

1 — cap, 2 — rotor, 3 — stator.
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Constructon of DC motor

Figure 3. NXT motor disassembled: 1 — DC motor 2 — it’s shaft, 3 —
reducer, 4 — NXT motor external shaft; (chip with encoder isn’t shown).

Mathematical model

{ Mo — Mgy = Jd;,. M
U=RI+E;+LI,
M, = knl, (2)
E; =kew, (3)
{ kI — Megs = Jw, @
Figure 4. Physical scheme of DC U=RI+kew+ LI,

motor.

where M., — motor torque; M.,; — torque of external forces; J —
total moment of inertia of the rotor and reducer’s gears; w — rotor
speed; U — motor supply voltage; R, L — resistance and an
inductance of rotor’s wires; I — the current flowing through the
latter; E; — EMF which appeared in rotor’s wires due to its rotation
in magnetic field of stator’s magnets; k,,, k. — torque and back EMF
motor constants.
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Mathematical model

If L ~0H, then

r—ip- ke 5
=“rY"R®R¥ )
therefore
1 . ke )
km E(J - Ew - 11”Ie:ct = Jw, (6)
hence
JR 1 U R M i
Tk T TR T Rk, e @)
. ]. Tm
me+w=k_eU_7ﬁ”fe:cty (8)
JR
where T, = P is a motor mechanical constant.

Mathematical model

Also we can gel differential equalion which conlains 7, nol w:

1. differentiating {5):
=ty L 9
TR ke ©)

2, putting {9} to the first equation from (4):

1. R.
k‘mf — Moy = J(Z[j - EI (10)

3. transforming (10):

JRi I o U 1\4 11

koke T T Tk T Ry et (11)
) T .. 1

Tmf-i‘f— §U+ EMeat- (12)
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Mathematical model

For a sitnation when

U = const,
(13)
Mepi =0N-m,
and
#{0) =0,
w(0)=0s,"

where 6 — angle of rotor’s rotation (0 = w), next cxpressions for w(t)
and 8(t) can be obtained from (8):

. L
w(t) =wns| 1 — exp(T—) , (15)
t
A(t) = wpiet — WntsTm + WnisTm exp(T—), (16)

where w,,;, = U/k. — no-load speed of the rotor.

Mathematical model

w A o8

arctan wy;

>

0 7, t 0 7N

Figure 5. Graphs of w(t) and 6(t) from (15) and (16) in case wnis > 0.
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Description of experiment

>

o4 B
9i+1 ————————— A VA
H(I(ti—{—l) _________ \
91' “““ < :
GG(t,-) ————— '+ :
1

A

0 t; tip t

Figure 6. Approximation curve.

Least squares method:

find values for w,,;s and T,,, such
that the sum S:

N
S=3(6u(t;) - 0,)° (17)
j=1

would have a minimal possible
value.

There

N — number of pairs (t;, 6;)
which were recorded during the

experiment,

0.(t;) — value of (16) when t = t;.

Modeling scheme of DC motor in Scilab

Control and modeling of mobile robots
Modeling scheme of DC motor in Scilah

Alexander A. Kapitonov
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Scilab

Scilab is free and open source software for numerical computation
providing a powerful computing environment for engineering and

scientific applications!

Sci[ey!

Figure 1. Scilab logo.

At this course we will use Scilab’s:

e Xcos — hybrid dynamic systems modeler and simulator:

e some mathematical algorithms.

1Logo and some text on this slide were taken from www.scilab.org.

System modeling

Figure 2 demonstrates example of modeling scheme for device which
is desribed by this system of equations:

& = Ax + Bu,
y = Cz + Du, (1)
u=K(zq— )+ Lz,.

S , [To workspace

outp [2048]

Figure 2. Example of modeling scheme.
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System modeling

Const value generator Proportional gain

e o e

A— X — const B_K- A

Integrator
| By

B:/Adt-i—Bg

Figure 3. Some standard blocks.

System modeling

{aov—s aor—w+
> D > D

B »—> o o

D=A+B DeA_R
A —
(B X D)
o>

D=A+B+C D=A+B+C

Figure 4. Summator block.
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System modeling

To workspace
A struct [1024]

Figure 5. Some service blocks.

This subscheme saves values of A and appropriate moments of time

into two matrices: A_struct.values and A_struct.time.

Svst deli

L{T - B(t) + B(1)} = £{K - A®)},

(3)
TN K P s
A Tasx1) - T-s-B(s) =~ Bls)= K- As), (4
Figure 6. Transfer function Bis) _ K (5)
block. A(s) Ts+1’ ‘

where L{ } — Laplace transform.

Cor> o - »_..H_@

/] ~ N

- it >
- e

Figure 7. An equivalent sheme.
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Modeling scheme of DC motor

Model of DC motor is described by two diffential equations:

1T
T +w=—U——

M,
Ive J cxts

(6)

T.i+1 T"‘U 1M
md + =R +a oDt

therefore its modeling scheme is equal to one which is demonstrated
by figure 8.

Modeling scheme of DC motor

w [
s To workspace
theta [1024]

Tm/.J
Tm+s+1

Tm/R * s
Tm+*s+1

1/Km
Tm*s+1

Figure 8. Modeling scheme of DC motor.
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Control of DC motor using PID controller

Control and modeling of mobile robots
Control of DC motor using PID regulator

Alexander A. Kapitonov

Some basics of control theory

In a control thcory all systems arc considered as a single object or a
“"box” which has sore number of input and output signals.

inputs

outputs

—»

4’

—

System’s "box"

—

4’

-

Figure 1. One of a possible representation of every system in a control

theory.

input signals — some impacts which change system state

output signals — some physical quantities which describe system

gtate
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Some basics of control theory

|
-~
Tnss+1
|

|
! I

! I

|

' :

! I

! I

! I

| " "
I e |
| = @
1 Tm/R s " J
1 Y I y
! I

! I

! I

! P

! I

! I

! I

|

|

Tm*s+1 i’ 9
‘ z I Km 3 "I"’| To workspace
Mel [1024]
- 1/Km \ ‘\7,
; Tmxs+1
input — DC motor | output

Figure 2. Structure of the model of a DC motor.

Some basics of control theory

Some important. delinitions:

Control is a process of changing in a desired way valucs of some

output signals using somne input signals.

Controller is a special device and/or algorithm which creates
required input signals.

Methods of control:

e forward

e using feedback
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Some basics of control theory

Forward control — a method of control when a controller doesn’t use
information about values of system’s output signals.

developer’s
wishes

inputs

» Controller

outputs

System’s "box"

Figure 3. Scheme of forward control.

—

>

—»

Some basics of control theory

Control with feedback — a method of control when a controller use
information about values of system’s output signals.

developer’s

inputs

outputs

wishes

™ Controller

System’s "box"

P

|

-

It

Figure 4. Scheme of control with feedback.
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PID controller

PID controller is an algorithm of fecdback control which calculate

value for input signal in accordance to the formulas:

e(t) = za(t) — x(t), 1)
u=Kp-e—l—Kz--fedt+Kdé, (2)
where x — controllable output signal; z; — desired value of signal:

e — error of control; w — used system’s input signal; K, K;, Ky —
constant coefficients of PID controller.

PID controller

T4 e . U x
I H; System

— L e K

Figure 5. Scheme of PID controller sctructure.
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PID controller

P controlller or a proportional piece of PID which is calculated as
u=K,- e, (3)

does the main part of a controller’s job;

I controlller or a piece of PID with integral which is calculated as
u=K; -/edt, (4)

prevents crrors (makes ¢ is being cqual to 0);

D controlller or a piece of PID with derivative which is calculated

as w=IKy-¢, (5)

dampens oscillations.

PID controller

1

LN

0.4 -

(t) ] — zt)
— (1) —

0.2 4

0 T T T T T T T T T 1 T T T T T T T T T 1
0 02 04 0.6 0.8 1 12 14 1.6 18 2 0 02 04 0.6 0.8 1 1.2 14 1.6 1.8 2
t t

1.2 4

0.8 4

5 06 4

0.4

xq(t)
— (1)

0.2 4

0

T T T T T T T T 1
0 02 04 06 08 1 12 14 16 18 2
13

Figure 6. System with P, PI and PID controller respectively.
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PID controller

Methods of tuning controller’s coeflicients:

o calculations using mathematical model of a controllable object;
¢ setting with according to one of a special algorithm;

e fully manual setting,

Ziegler—Nichols method

Algorithm of Luning values for coeflicients of PTD coniroller:

1. make K; amd Ky is being equal 1o 0;

2. increase value of K, until z(¢) starts making undamped
oscillations; remember this value of K, as K, and a period of the

oscillations as 1;,;
3. calculate coefficients of PID controller using these formulas:

2K, K,T,
K= L= (6)

K,=06K, K=
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Ziegler—Nichols method

This method’s strengths:

e it is quite simple.

This method’s weaknesses:

e it doesn’t work for all systems;

¢ it docsn’t give the best value of cocfficients.

Numerical methods

Figure 7. Geometry meaning of integrals.
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Numerical methods

O

fol----

f
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i { |
i [ |
i { |
i [ |
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i { !
i { !

L »
to t ta t3 t

Figure 8. One of numerical methods for calculating value of integral.

t n

/f dt ~ Z filti —ti—1), m<n, mneZ (8)
. i=m-+1

Numerical methods

Figure 9. Numerical methods for derivative calculating.

t At) — f(t —
fien) = i SOETITIO) g ) & L0

= tg ZBAE
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A controller for to-point motion for a mobile robot with differential drive type

Control and modeling of mobile robots
A controller for to-point motion for a mobile robot with
differential drive type

Alexander A. Kapitonov

Robots’ drive types

Drive type Controllable velocities
Car-like type Vs w(vy)
Differential Vgy W
Omnidirectional Vg, Vy, W

Figure 1. Examples of "robots” with different drive types: a—car-like,
b—differential, c—omnidirectional
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General view of the robot

Figure 2. General view of a considered robot.

Structure of the control system

1 task 1 control state I output
| I . | |
Lg wi | ] Te | [
. 1 Control object Ye | | .
_Ys 1 ontroller 1“2 ') (Lego car) Yo - :
|

e

Figure 3. Structure of the control system.

T4, Yy — coordinates of goal point;
wy, wy — angular velocities of robot’s wheels;

Tos Yon W coordinates and rotation angle of the robot.
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Mathematical model of the robot

Figure 5. Useful drawing.

y A goal Kinematic model:
Ze = |U] cos
Yo = |U] siny (1)
‘l;,‘ =W
where
w1 + wWe
71 = R- 22 (2)
ks 3
w—E~(w|—w2). (3)
Figure 4. Useful drawing. where R wheel radius.
Mathematical model of the robot
yA goal
Some important variables:
g= {;zty —Ze Yg— y(.}. (4)
Yg — Ye
0 = arctan L . (5)
Ly —Le
a=0-—1, (6)
|“_“"n| = |F| (7)
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Mathematical model of the robot

! N N
|| — \/(xg — ) + (yy — Y} (8)

d| 7| 1
dt 2\/(“’9 - 3"(;}2 + (yg - 3}0)2

((1’9 - ff’c)z + (yg — yC)z), =

1 1
:_I(_-;'{i'c Yo} {zg — e yg_yc}:_m'l" = —|t]cosa (9)
d=0-1 (10)

Mathematical model of the robot

I 4
: Yg — Y 1 Yg— U
8= (arctanxg wc) = 3° (xg ;) =
4w — Ye g %
1+(y9 y)

Fg — g
B (xg — zc)°  —el®g — o) + Telyg —ye)
" Gy gy — ) (rg — 7o) -
A Eeh {2 —%e Yy} TP
- 151? I
B |5 | cos(90° — o) _ |7 sin o an
7] 121
|#] 8in e _
TR 12
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Mathematical model of the robot

Robot’s mathematical model:

dal
?=—|v|cosa 7l
R or &= f(x), where z = p (13)
da  |7]sina o
at |p]

Let’s use for it this control law:

|| = tymae - tanh |p] - cosa

tanh |§] (14)
———-sina - cosa
171

where v, and K, are constant positive coefficients.

w = Ko+ Unag -

Mathematical model of the robot

Some theoretical information:

¢ Stability is an ability of a controlled system to run to particular
state and stay in it.

e D'or checking system for stability Lyapunov functions are used.

e If time derivative of Lyapunov functions for considered system is
always negative, the system is stable.
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Mathematical model of the robot

Possible Lyapunov funclion (or our system:
.1 1

Viz)= |5 2 16

(@)= 11" 1 ja (18)

Its derivative:

av _ d|p]|
dt - dt

_ da o |7] sin &
71+ o= —lollplcosatal —x——w| (16

or after using equations (14) for control law:

av

= ~Vmas - |A] - tanh 7 - cos’a— K, 0? < 0. (17)

Due to V is always negative the system is stable.

Mathematical model of the robot

Note that:

¢ angular speeds of robot’s wheels can be found using these

formulas:
(2ol + B Q- Bw). (18)
w = — - (2|v wl, Wy = —  (2|U| — Dw}.
'= R ) 2= R

¢ in the steady state angular speeds of robot’s motors are
proportional to voltages which are applied to them; so we will
make the latters are being proportional to values obtained from
equations (18}.
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Sources for pictures

e glide 2:

e https://en.wikipedia.org/wiki/Car
e https://www.parallax.com/product/boe-bot-robot

e http://www.makeblock.com/mecanum-wheel-robot-kit
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