

ITMO UNIVERSITY

Learning Book

International summer school of Control Systems and Robotics

Saint Petersburg 2019

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

УНИВЕРСИТЕТ ИТМО

О.И. Борисов, А.А. Ведяков, С.М. Власов, Д.Н. Герасимов, К.А. Зименко, А.А. Капитонов, С.А. Колюбин, А.Ю. Краснов, А.А. Маргун, А.А. Пыркин, М.М. Синетова, А.А. Жиленков

INTERNATIONAL SUMMER SCHOOL OF CONTROL SYSTEMS AND ROBOTICS. LEARNING BOOK. PART 1 / МЕЖДУНАРОДНАЯ ЛЕТНЯЯ ШКОЛА ПО СИСТЕМАМ УПРАВЛЕНИЯ РОБОТОТЕХНИКЕ. УЧЕБНОЕ ПОСОБИЕ. ЧАСТЬ 1

УЧЕБНОЕ ПОСОБИЕ

РЕКОМЕНДОВАНО К ИСПОЛЬЗОВАНИЮ В УНИВЕРСИТЕТЕ ИТМО по направлению подготовки 27.04.03, 27.04.04 в качестве учебного пособия для реализации основных профессиональных образовательных программ высшего образования магистратуры

Санкт-Петербург 2019 Борисов О.И., Ведяков А.А., Власов С.М., Герасимов Д.Н., Зименко К.А., Капитонов А.А., Колюбин С.А., Краснов А.Ю., Маргун А.А., Пыркин А.А., Синетова М.М., Жиленков А.А., International summer school of Control Systems and Robotics. Learning book. Part 1 / Международная летняя школа по системам управления робототехнике. Учебное пособие. Часть 1—СПб: Университет ИТМО, 2019. — 405 с.

Рецензент:

Николаев Николай Анатольевич, кандидат технических наук, доцент (квалификационная категория "ординарный доцент") факультета систем управления и робототехники, Университета ИТМО.

The textbook contains theoretical material for studying Control Systems and Robotics. The order of topics follows the structure of the lectures given at ITMO University, Faculty of Control Systems and Robotics. The modern control approaches and digital control systems in robotics are considered. The textbook is intended to foreign students majoring in specializations 27.04.03 System Analysis and Control and 27.04.04 Control in Technical Systems.

Учебное пособие содержит теоретический материал для изучения систем управления и робототехники. Темы в пособии отражают структуру лекций, читаемых в Университете ИТМО на факультете Систем управления и робототехники. В учебном пособии рассматриваются современные подходы к управлению, а также цифровые системы управления в робототехнике. Учебное пособие предназначено для иностранных студентов, обучающихся по направлениям подготовки 27.04.03 Системный анализ и управление и 27.04.04 Управление в технических системах.

университет итмо

Университет ИТМО – ведущий вуз России в области информационных и фотонных технологий, один из немногих российских вузов, получивших в 2009 году статус национального исследовательского университета. С 2013 года Университет ИТМО – участник программы повышения конкурентоспособности российских университетов среди ведущих мировых научно-образовательных центров, известной как проект «5 в 100». Цель Университета ИТМО – становление исследовательского университета мирового уровня, предпринимательского по типу, ориентированного на интернационализацию всех направлений деятельности.

Table of Contents

3
3
3
15
27
38
56
120
140
161
181
181
205
226
226
226
240
251
271
281
298
298
339
363
363
382
382
386
391
399

2019 © International summer school of Control Systems and Robotics

The modern theory of control systems

Automatic control theory Stability types and Lyapunov equations

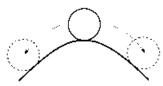
Automatic Control Theory. Stability types and Lyapunov Equations

Madina Sinetova

Stability

 Stability is the system ability to return to initial position after stopping action to system external disturbances.

Stable system

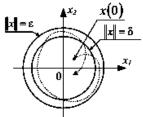


Unstable system

Segway

Stability types

- 1. Lyapunov stability.
- Guarantees bounded of all trajectories, but not guarantees convergence to some steady value.



where x_1, x_2 are state coordinates, ε, δ – some small numbers; as norm of x_1 and x_2 can be used quadratic norm, for example; x(0) – initial position of trajectory.

• The equilibrium x=0 is Lyapunov stable if for any small number $\varepsilon>0$, exists small number $\delta(\varepsilon)>0$, that for all trajectories starting from the initial conditions $\|x(0)\| \leq \delta(\varepsilon)$ for any time $\forall t\geq 0$ following inequality is satisfied: $\|x(t)\|\leq \varepsilon$.

3

Root stability criterion

Given continuous system:

$$\dot{x} = Fx, x \in \mathbb{R}^n, F - n \times n.$$

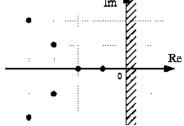
Characteristic polynomial of the given system:

$$\det(F - sI) = s^n + a_{n-1}s^{n-1} + \dots + a_1s + a_0 = 0,$$

where s_i , $i = \overline{1, n}$ – roots of the polynomial, I – identity matrix.

If all roots have *negative real parts* $\text{Re}(s_i) < 0, i = \overline{1,n}$, then the system is stable.

Im – imaginary axis (*stability border*), Re – real axis.



Root stability criterion

In discrete case instead of function derivative is used value on the next discrete step:

$$\dot{f}(t) \sim f(m+1)$$
,

where m – number of discrete interval, t=mT – continuous time, T – value of discrete interval.

Consider the discrete system:

$$x(m+1) = F_d x(m), x \in \mathbb{R}^n, F_d - n \times n.$$

Characteristic polynomial of the given system:

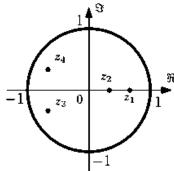
$$\det[F_d - zI] = z^n + \alpha_{n-1}z^{n-1} + \dots + \alpha_1z + \alpha_0 = 0,$$

where z - is a delay, I - is an identity matrix, and z_i , $i=\overline{1,n}$ - roots of the polynomial.

5

Root stability criterion

If all absolute values of roots less than one $|z_i| < 1, i = \overline{1,n}$, then the system is *stable*.



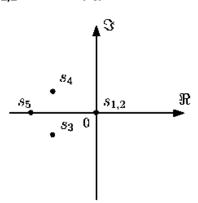
- The unit circle is a stability border.
- If one or more than one absolute values of roots more than $|z_i| > 1$, the system is *unstable*.

Stability borders

1.1. Stability border of neutral type.

Dynamic **continuous** system is on the border of neutral type if one or two roots of characteristic polynomial are equal to zero and rest roots have negative real parts:

$$s_{1,2} = 0, \operatorname{Re}(s_i) < 0, i = \overline{3, n}.$$



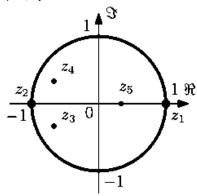
7

Stability borders

1.1. Stability border of neutral type.

Dynamic **discrete** system is on the border of neutral type if one or two roots of characteristic polynomial are equal to one and rest roots are in the unit circle:

$$|z_{1,2}|=1, z_i<1, i=\overline{3,n}.$$



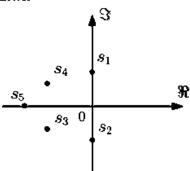
Stability borders

1.2. Stability border of oscillatory type.

The dynamic **continuous** system is on the border of oscillatory type if the characteristic polynomial has pair of purely imaginary roots and rest roots have negative real parts:

$$s_{1,2}=\pm j\omega, \omega>0, \operatorname{Re}(s_i)<0, i=\overline{3,n},$$

where j – imaginary unit.



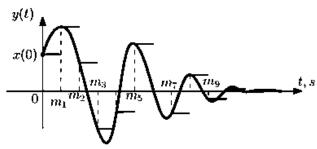
9

Stability types

2. Asymptotic stability

The equilibrium x=0 is asymptotically stable if the equilibrium is Lyapunov stable and for any motion trajectories x(t) from the arbitrary initial conditions x(0) the condition $\lim_{t\to\infty} \|x(t)\|=0$ is satisfied.

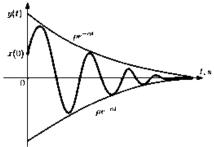
In discrete case trajectories are x(m) and condition is $\lim_{m \to \infty} ||x(m)|| = 0$.



Stability types

3. Exponential stability

The equilibrium x=0 is *exponential stable* if for any motion trajectories x(t) from the arbitrary initial conditions x(0) exists positive number $\alpha>0$ that for any time $\forall t\geq 0$ inequality: $\|x(t)\|\leq \rho e^{-\alpha t}\|x(0)\|;\;\rho\geq 1$ is satisfied.



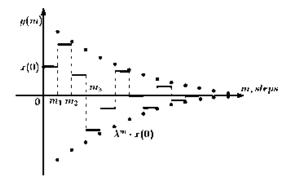
Constant α is the convergence degree and characterizes convergence velocity to equilibrium.

11

Stability types

3. Exponential stability

In discrete case: $||x(m)|| \le \rho \lambda^m ||x(0)||$; $\rho \ge 1, \lambda < 1$.



Number λ characterizes *convergence velocity*. The smaller λ the faster convergence.

Stability types

4. Qualitative exponential stability

The equilibrium x=0 is qualitative exponential stable if for any motion trajectories x(t) from the arbitrary initial conditions exists numbers $\alpha>0, r>0, \rho\geq 1$ that for any time $\forall t\geq 0$ the following inequality:

$$||x(t) - e^{-\alpha t}x(0)|| \le \rho (e^{-(\alpha+r)t} - e^{-\alpha t})||x(0)||$$

is satisfied.

In discrete case:

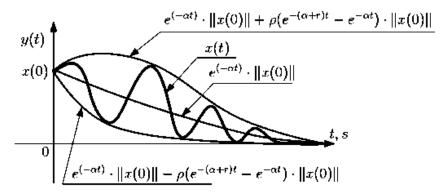
$$||x(m) - \alpha^m x(0)|| \le \rho ((\alpha + r)^m - \alpha^m) ||x(0)||,$$

where $0 \le \alpha < 1 - r$.

13

Stability types

4. Qualitative exponential stability



Parameter α characterizes velocity convergence to equilibrium. Parameter r characterizes trajectory average deviation.

Lyapunov functions

Lyapunov functions V(x) have properties:

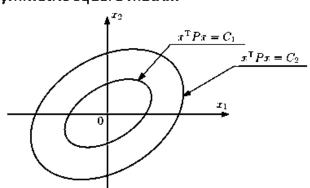
- 1. Lyapunov function V(x) must be positive definite: for any $\forall x \in \mathbb{R}^n$ Lyapunov function V(x) is positive definite and V(x) = 0 in case x is null-vector.
- 2. Lyapunov functions must increases (decreases) uniformly with uniform increasing (decreasing) of x-vector norm.
- 3. The surfaces of constant level V(x) = C, where C is a constant, must cover the origin of coordinates or equilibrium.

15

Lyapunov functions

Quadratic forms: $V(x) = x^T P x$,

 $P-n\times n$ positive definite symmetric square matrix.



$$C_2 > C_1$$

P = I - identity matrix,

$$x^T P x = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = C,$$

$$x_1^2 + x_2^2 = C = ||x||^2 = \left(\sqrt{x_1^2 + x_2^2}\right)^2$$

Lyapunov Theorem

The equilibrium x = 0 is asymptotically stable if exists Lyapunov function V(x) such that for any motion trajectories x(t) starting from the arbitrary initial conditions for any time $\forall t \geq 0$ the

derivative of the function is negative:
$$\frac{dV(x(t))}{dt} < 0$$
.
$$\frac{dV(x(t))}{dt} = \frac{\partial V(x)}{\partial x} \frac{\partial x}{\partial t} = \frac{\partial V(x)}{\partial x} \dot{x}.$$

x - n-dimension state vector:

$$\frac{\partial V(x)}{\partial x} = \begin{bmatrix} \frac{\partial V(x)}{\partial x_1} & \dots & \frac{\partial V(x)}{\partial x_n} \end{bmatrix} = grad^T V(x).$$

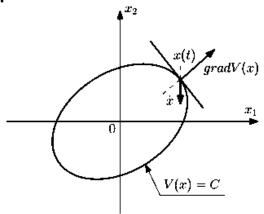
So:

$$\frac{dV(x(t))}{dt} = grad^{\mathrm{T}}x \cdot \dot{x}.$$

17

Lyapunov Theorem

Geometric interpretation:



V(x) = C – surface of constant level.

Example

Given:

$$\dot{x}=-x^3.$$

Lyapunov function:

$$V(x)=x^2.$$

Investigation:

$$\frac{dV(x(t))}{dt} = 2x \cdot \dot{x} = 2x \cdot (-x^3) = -2x^4 < 0.$$

Lyapunov function derivative is negative anytime, so, the given system is asymptotically stable.

19

Lyapunov inequalities

· For asymptotic stability:

$$\dot{V}\big(x(t)\big)<0.$$

For exponential stability:

$$\dot{V}(x(t)) \le -2\alpha V(x(t)), \alpha > 0.$$

For qualitative exponential stability:

$$V(\dot{x}(t) + (r+\alpha)x(t)) \le r^2V(x(t)).$$

Rayleigh ratio

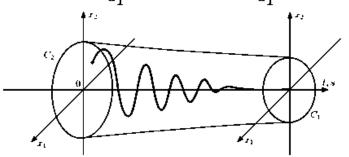
Let's consider inequality:

$$|C_1^2||x||^2 \le x^T P x \le |C_2^2||x||^2$$

where $\dot{x} = Fx, x \in \mathbb{R}^n, F - n \times n, V(x) = x^T Px, P - n \times n$ positive definite symmetric square matrix.

Omitting intermediate calculations obtain ratio:

$$||x(t)|| \le \frac{C_2}{C_1} e^{-\alpha t} ||x(0)||, \rho = \frac{C_2}{C_1} \ge 1.$$



21

Lyapunov equations

From Lyapunov inequalities follows Lyapunov equations:

For asymptotic stability:

$$F^TP + PF = -Q.$$

For exponential stability:

$$F^TP + PF + 2\alpha F = -Q.$$

For qualitative exponential stability:

$$(F + (r + \alpha)I)^T P(F + (r + \alpha)I) - r^2 P = -Q.$$

 ${\it F}$ —state matrix of closed system, ${\it P}$, ${\it Q}$ — positive definite symmetric square matrices of the same dimension.

For investigation stability it's required to choose matrix Q, solve Lyapunov equation with respect to matrix P and check it for positive definition.

Example

Given:

$$\dot{x} = Fx, \begin{bmatrix} \dot{x_1} \\ \dot{x_2} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}.$$

Is system stable?

Choose:

$$Q = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, P = \begin{bmatrix} p_1 & p_3 \\ p_3 & p_2 \end{bmatrix}.$$

And calculate:

$$F^T P = \begin{bmatrix} -p_3 & -p_2 \\ p_2 - 2p_3 & p_3 - 2p_2 \end{bmatrix}, PF = \begin{bmatrix} -p_3 & p_1 - 2p_3 \\ -p_2 & p_3 - 2p_2 \end{bmatrix},$$

23

Example

$$\begin{cases} -p_3 - p_3 = -1 \\ -p_2 + p_1 - 2p_3 = 0 \\ p_2 - 2p_3 - p_2 = 0 \\ p_3 - 2p_2 + p_3 - 2p_2 = -1 \end{cases} \Rightarrow P = \begin{bmatrix} 1,5 & 0,5 \\ 0,5 & 0,5 \end{bmatrix}.$$

$$\det(P - \lambda I) = \lambda^2 - 2\lambda + 0,5 = 0 \Rightarrow \lambda_1 = 0,29, \lambda_2 = 1,7.$$

All eigenvalues λ_i of matrix P are more than zero, so, system is asymptotically stable.

Qualitative exponential stability

Automatic Control Theory. Qualitative exponential stability for discrete and continuous linear systems

Madina Sinetova

Qualitative exponential stability

Consider linear discrete system:

$$x(m+1) = F(x(m)).$$

Equilibrium x=0 is *exponential stable*, if exists numbers $\rho>0$, $\alpha>0$, $d_x(\alpha)>0$ that for all initial values of $\|x(0)\|\leq d_x(\alpha)$ for any number of discreetness interval m>0 the following inequality is satisfied:

$$||x(m)|| \le \rho \cdot e^{-\alpha m} \cdot ||x(0)||.$$

Introduce notation: $\lambda=e^{-\alpha}$, where $0<\lambda<1$, so: $\|x(m)\|\leq \rho\cdot\lambda^m\cdot\|x(0)\|.$

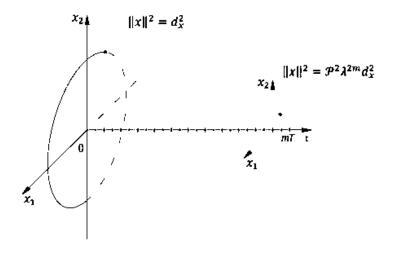
All trajectories x(m) of exponential stable system are in «estimated tube» bounded by surfaces:

$$||x(m)||^2 = (\rho \cdot \lambda^m \cdot ||x(0)||)^2.$$

Qualitative exponential stability

Surfaces consist of circles with radiuses:

$$\rho \cdot \lambda^m \cdot ||x(0)||$$
.



Local term

Equilibrium x=0 is qualitative exponential stable, if system is exponential stable with parameters α ($\lambda=e^{-\alpha}$), $d_x(\alpha)$ and additionally exists positive number $0<\lambda_0<1+\lambda$ that for any number of discreetness interval m>0 the following inequality is satisfied:

$$||x(m) - x(0)|| \le \lambda_0 \rho \sum_{i=0}^{m-1} \lambda^i ||x(0)|| = \lambda_0 \rho \frac{1 - \lambda^m}{1 - \lambda} ||x(0)||.$$

This condition constrains state vector current values deviation from initial conditions x(0).

System have very qualitative parameters under condition: $\lambda_0 < 1$. In this case inequality is strongest.

4

Qualitative exponential stability

In case of non-zero initial conditions x(0) trajectories are bounded by surfaces:

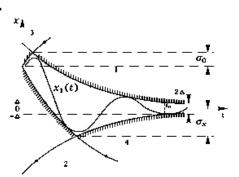
$$||x(m) - x(0)||^2 = \left[\lambda_0 \rho \frac{1 - \lambda^m}{1 - \lambda} d_x\right]^2.$$

with circles' radiuses:

$$\lambda_0 \rho \frac{1 - \lambda^m}{1 - \lambda} d_x.$$

«Estimated tube» cross-section:

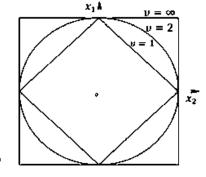
$$\sigma_{0x}^* = \frac{(\rho-1)\lambda_0}{\lambda+\lambda_0-1}$$
 - first ejection;
 $\sigma_x^* = \frac{\lambda-\rho\lambda_0-1}{1-\lambda+\lambda_0}$ - overcontrol.



Vector norms

Arbitrary vector norm:

$$||x|| = \left[\sum_{i=1}^{n} |x_i|^v\right]^{\frac{1}{v}},$$



v is an integer and v=1,2,..., and x_i-i -th component of state vector x.

If v = 2 the norm is *Euclidean*, if v = 1 the norm is *absolute*.

In case of two state components constant level surfaces are: $||x||^v = 1 \ (x \in R^2).$

Remark. For deterministic processes (not for stochastic) from the convergence by some norm follows convergence by any norm.

Lyapunov function

Consider convex positively homogeneous Lyapunov function V(x) from a class of K^{v} such:

$$C_1^v ||x||^v \le V(x) \le C_2^v ||x||^v$$
.

Using quadratic forms:

$$V(x) = x^T P x,$$

where P – symmetric positive definite square matrix from a class of K^2 , values C_1^2 and C_2^2 are minimum and maximum eigenvalues of matrix P respectively.

7

Sufficient conditions

For system $x(m+1)=F\big(x(m)\big)$ sufficiently existing number $0<\lambda<1$ that for any number of discreetness interval m>0 the inequality is satisfied:

$$V(x(m+1)) \le \lambda^{\nu}V(x(m)),$$

and existing number $1-\lambda<\lambda_0<1+\lambda$, that for the system the inequality is satisfied:

$$V\big(x(m+1)-x(m)\big) \leq \lambda_0^{\nu} V\big(x(m)\big).$$

From these conditions follows two consequences.

Consequences

Consequence 1. For qualitative exponential stability are sufficiently existing numbers $0 < \lambda < 1$ and $1 - \lambda < \lambda_0 < 1 + \lambda$ that for any number of discreetness interval m > 0 the following inequality is satisfied:

$$V(x(m+1)-(r+\alpha)x(m)) \le r^{\nu}V(x(m)).$$

Consequence 2. For qualitative exponential stability are sufficiently existing numbers 0 < r < 1 and $0 < \alpha < 1 - 2r$ that for any number of discreetness interval m > 0 the following inequality is satisfied:

$$V\left(x(m+1) - \frac{\lambda - \lambda_0 + 1}{2}x(m)\right) \le \left(\frac{\lambda + \lambda_0 - 1}{2}\right)^v V\left(x(m)\right).$$

$$\lambda = 2r + \alpha, \lambda_0 = 1 - \alpha.$$

Geometric interpretation

Exponential stability.

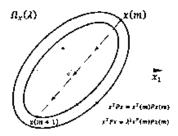
In case of quadratic form:

$$V(x(m+1)) \le \lambda^2 V(x(m)).$$

The each next value of state vector x(m+1) must belongs to area:

$$\Omega_x(\lambda) = \{ x: x^T P x \le \lambda^2 x^T(m) P x(m) \}$$

if the previous value of state vector was on a surface $x^T P x = x^T(m) P x(m)$.



10

Geometric interpretation

Consequence 1.

- 1. System must be exponential stable.
- 2. For Lyapunov functions from a class of K^2 the inequality which should be satisfied takes form:

$$(x(m+1)-x(m))^T P(x(m+1)-x(m)) \le \lambda_0^2 x^T(m) P x(m).$$

And the each next value of state vector x(m+1) with fixed x(m) must belongs to area:

$$\Omega_x(\lambda_0) = \left\{ x: \left(x - x(m) \right)^T P \left(x - x(m) \right) \le \lambda_0^2 x^T(m) P x(m) \right\}.$$

3. The each fixed arbitrary value x(m) the next value of state vector x(m+1) belongs to area:

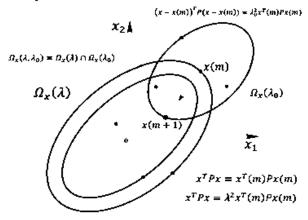
$$\Omega_x(\lambda,\lambda_0) = \Omega_x(\lambda) \cap \Omega_x(\lambda_0).$$

11

Geometric interpretation

Consequence 1.

As a result, qualitative exponential stability distinguish from all values of state vector $\Omega_x(\lambda)$ some part $\Omega_x(\lambda,\lambda_0)$ and it localizes system motion trajectories behavior.



Geometric interpretation

Consequence 2.

- 1. System must be exponential stable.
- 2. For Lyapunov functions from a class of K^2 the inequality which should be satisfied takes form:

$$\left(x(m+1)-(r+\alpha)x(m)\right)^T P\left(x(m+1)-(r+\alpha)x(m)\right) \le r^2 x^T(m) P x(m),$$

And the each next value of state vector x(m+1) with fixed x(m) must belongs to area:

$$\Omega_{x}(r,\alpha) = \left\{ x: \left(x - (r+\alpha)x(m) \right)^{T} P\left(x - (r+\alpha)x(m) \right) < r^{2}x^{T}(m)Px(m) \right\}.$$

3. The each fixed arbitrary value x(m) the next value of state vector x(m+1) belongs to area:

$$\Omega_{\mathbf{x}}(r,\alpha) \subset \Omega_{\mathbf{x}}(\lambda,\lambda_0).$$

13

Geometric interpretation

Consequence 2.

In case $\lambda=2r+\alpha$, $\lambda_0=1-\alpha$ the area belongs to intersection areas $\Omega_x(\lambda_0)$ and $\Omega_x(\lambda)$: $\Omega_x(r,\alpha)\subset\Omega_x(\lambda,\lambda_0)$.



Summary

Consider system:

$$x(m+1) = F \cdot (x(m)),$$

 $F - n \times n$ matrix of closed system.

Lyapunov inequality:

$$(F - (r + \alpha)I)^T P(F - (r + \alpha)I) \le r^2 P,$$

where $\lambda = 2r + \alpha$, $\lambda_0 = 1 - \alpha$.

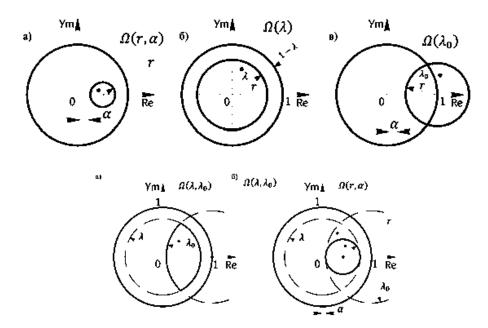
Lyapunov equation:

$$(F - (r + \alpha)I)^T P(F - (r + \alpha)I) - r^2 P = -Q$$

where P>0 – positive definite symmetric square matrix, $Q\geq 0$ – positive semi-definite symmetric square matrix.

15

Roots distribution



Continuous case

Consider continuous linear system:

$$\dot{x} = F(x)$$

x – state vector.

Local conditions:

1. There is a number $\alpha > 0$ such for any time t > 0 following inequality is satisfied:

$$\dot{V}(x(t)) \le -2\alpha V(x(t)),$$

2. There is a number $\lambda_0 \ge \alpha$ such for any time t > 0 following inequality is satisfied:

$$V(\dot{x}(t)) \leq \lambda_0^2 V(x(t)),$$

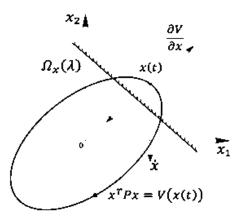
where V(x(t)) – Lyapunov function from a class K^2 of quadratic forms.

17

Geometric interpretations

1st condition:

$$\frac{\partial V(x)}{\partial x}\dot{x} \le -2\alpha V(x).$$



Geometric interpretations

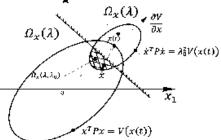
2nd condition:

All possible values of state vector must belong to area $\Omega_x(\lambda_0)$ bounded by surface:

$$\dot{x}^T P \dot{x} = \lambda_0^2 V(x(t)).$$

As a result, combine both conditions:

Values of state vector must belong to area $\Omega_x(\alpha, \lambda_0) = \Omega_x(\alpha) \cap \Omega_x(\lambda_0)$.



19

Geometric interpretations

As one condition.

System is qualitative exponential stable if exists numbers $\alpha > 0$ and r > 0 such for any time t > 0 following inequality is satisfied:

$$V(x(t) + (r+\alpha)x(t)) \le r^2 V(x(t)),$$

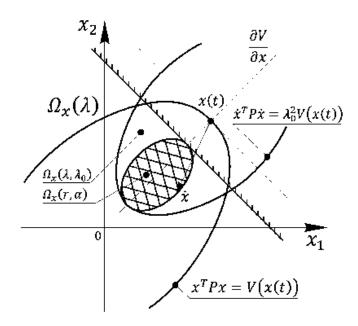
where $\lambda = \alpha$, $\lambda_0 = 2r + \alpha$.

For any time t>0 and for any state vector x(t), velocity vector $\dot{x}(t)$ must belongs to area $\Omega_x(r,\alpha)$ bounded by surface:

$$(\dot{x} + (r+\alpha)x(t))^T P(\dot{x} + (r+\alpha)x(t)) = r^2 V(x(t)),$$

where area $\Omega_x(r,\alpha) \subset \Omega_x(\alpha,\lambda_0)$.

Geometric interpretations



21

Continuous case

Linear system:

$$\dot{x}=F(x),$$

x – state vector.

Sufficient condition:

Existing such numbers (r, α) : $\lambda = \alpha$, $\lambda_0 = 2r + \alpha$

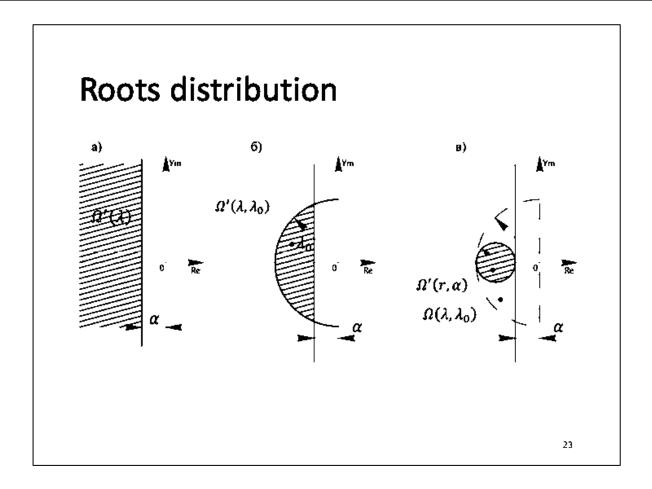
that Lyapunov equation:

$$(F + (r + \alpha)I)^T P(F + (r + \alpha)I) - r^2 P = -Q,$$

and Lyapunov inequality:

$$(F + (r + \alpha)I)^T P(F + (r + \alpha)I) \le r^2 P$$

are satisfied.



Identification theory

Identification Theory

Alexey Vedyakov

Application

- Measuring systems
- Disturbance compensation systems:
 - hard drives
 - ship
 - active suspension vehicle

First global convergent estimators

- Hsu L., Ortega R., Damm G. A globally convergent frequency estimator // IEEE Transactions on Automatic Control. 1999.
- G. Obregon-Pulido, B. Castillo-Toledo, A. A. Loukianov, "Globally convergent estimator for n-frequencies," IEEE Trans. Autom. Control, vol. 47, no. 5, pp. 857-863, May 2002.
- A. Bobtsov, A. Lyamin, D. Romasheva, "Algorithm of parameter's identification of polyharmonic function," in Proc. 15th IFAC World Congress on Automatic Control, Barcelona, Spain, Jul. 2002.
- X. Xia, "Global frequency estimation using adaptive identifiers," IEEE Trans. Autom. Control, vol. 47, no. 7, pp. 1188-1193, Jul. 2002.
- R. Marino, P. Tomei, "Global estimation of unknown frequencies," IEEE Trans. Autom. Control, vol. 47, no. 8, pp. 1324-1328, Aug. 2002.

Frequency estimation

Consider the measurable signal

$$y(t) = A\sin(\omega t + \phi),\tag{1}$$

where A is the amplitude, ω is the frequency, ϕ is the phase.

The goal is to obtain the frequency estimate $\hat{\omega}(t)$ such that

$$\lim_{t\to\infty}|\omega-\hat{\omega}(t)|=0.$$

Sinusoidal signal generator

Consider derivatives of the signal (1)

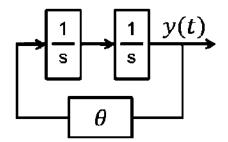
$$\dot{y}(t) = \omega A \cos(\omega t + \phi),$$

$$\ddot{y}(t) = -\omega^2 A \sin(\omega t + \phi).$$
 (2)

Using (1) and (2) we can obtain linear regression model

$$\ddot{y}(t) = \theta y(t),\tag{3}$$

where $\theta = -\omega^2$.



Gradient method

Consider the cost criterion

$$J(\theta) = \frac{1}{2}(\ddot{y}(t) - \hat{\ddot{y}}(t))^2 = \frac{1}{2}(\theta y(t) - \hat{\theta}(t)y(t))^2 = \frac{1}{2}e^2(t),$$

which we minimize with respect to $\hat{\theta}(t)$ using the gradient method

$$\dot{\hat{\theta}}(t) = -\gamma \nabla J(\hat{\theta}),$$

where $\gamma > 0$. In our case,

$$\nabla J(\hat{\theta}) = \frac{dJ}{d\theta} = -ey(t) = -y(t) \left(\ddot{y}(t) - \hat{\theta}(t) y(t) \right).$$

Finally,

$$\dot{\hat{\theta}}(t) = \gamma y(t) \left(\ddot{y}(t) - \hat{\theta}(t) y(t) \right).$$

Biased sinusoidal signal

Consider the measurable signal

$$y(t) = A_0 + A\sin(\omega t + \phi),\tag{4}$$

where A_0 is the constant bias. Consider derivatives of the signal (4)

$$\dot{y}(t) = \omega A \cos(\omega t + \phi),\tag{5}$$

$$\ddot{y}(t) = -\omega^2 A \sin(\omega t + \phi).$$

$$\ddot{y}(t) = -\omega^3 A \cos(\omega t + \phi). \tag{6}$$

Using (5) and (6) we can obtain linear regression model

$$\ddot{y}(t) = \theta \dot{y}(t).$$

The adaptive law

$$\dot{\hat{\theta}}(t) = \gamma \dot{y}(t) \left(\ddot{y}(t) - \hat{\theta}(t) \dot{y}(t) \right). \tag{7}$$

Modified version

Let us consider additional variable

$$\chi(t) = \hat{\theta}(t) - \gamma \dot{y}(t) \ddot{y}(t), \text{ then}$$
 (8)

$$\hat{\theta}(t) = \chi(t) + \gamma \dot{y}(t) \ddot{y}(t). \tag{9}$$

Differentiating equation (9) we obtain

$$\dot{\hat{\theta}}(t) = \dot{\chi}(t) + \gamma \ddot{y}^2(t) + \gamma \dot{y}(t) \ddot{y}(t). \tag{10}$$

On the other hand, from (7) we have

$$\dot{\hat{\theta}}(t) = \gamma \dot{y}(t) \left(\ddot{y}(t) - \hat{\theta}(t)\dot{y}(t) \right) = \gamma \dot{y}(t) \ddot{y}(t) - \gamma \hat{\theta}(t)\dot{y}^{2}(t). \tag{11}$$

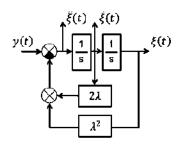
Combining (10) and (11) gives

$$\hat{\theta}(t) = \chi(t) + \gamma \dot{y}(t) \ddot{y}(t),$$

$$\dot{\chi}(t) = -\gamma \hat{\theta}(t) \dot{y}^2(t) - \gamma \ddot{y}^2(t).$$

Without measuring derivatives

Let us consider linear filter



The signals ξ , $\dot{\xi}(t)$, $\ddot{\xi}(t)$ are measurable. Moreover,

$$\xi(t) = B_0 + B_1 \sin(\omega t + \psi) + \epsilon(t), \tag{12}$$

where c(t) is exponentially decaying term. In this case,

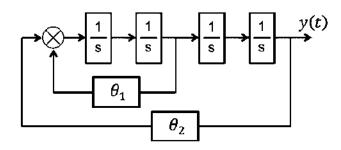
$$\begin{split} \hat{\theta}(t) &= \chi(t) + \gamma \dot{\xi}(t) \ddot{\xi}(t), \\ \dot{\chi}(t) &= -\gamma \hat{\theta}(t) \dot{\xi}^2(t) - \gamma \ddot{\xi}^2(t). \end{split}$$

Multi-Sinusoidal signal

Consider the measurable signal

$$y(t) = A_0 + \sum_{i=1}^{k} A_i \sin(\omega_i t + \phi_i).$$
 (13)

Signal generator for k=2



where $\theta_1 = -(\omega_1^2 + \omega_2^2)$, $\theta_2 = -\omega_1^2 \omega_2^2$.

Multi-Sinusoidal signal

The signal (13) can be generated by the following differential equation

$$p(p^2 - \theta_1)(p^2 - \theta_2) \dots (p^2 - \theta_k)y(t) = 0, \tag{14}$$

where p = d/dt is the differentiation operator, $\theta_i = -\omega_i^2$, are constant parameters, $i = \overline{1, k}$. Equation (14) can be represented as

$$p^{2k+1}y(t) = \bar{\theta}_1 p^{2k-1} y(t) + \ldots + \bar{\theta}_k p y(t), \tag{15}$$

where $\bar{\theta}_i$ can be calculated by the following system

$$\begin{cases} \bar{\theta}_1 = \theta_1 + \theta_2 + \dots + \theta_k, \\ \bar{\theta}_2 = -\theta_1 \theta_2 - \theta_1 \theta_3 - \dots - \theta_{k-1} \theta_k, \\ \vdots \\ \bar{\theta}_k = (-1)^{k+1} \theta_1 \theta_2 \cdots \theta_k. \end{cases}$$

General linear filter

Introduce the linear filter

$$\xi(s) = F(s)y(s), \quad F(s) = \frac{\lambda_0^{2k}}{\gamma(s)},$$
 (16)

where $\lambda_0 > 0$, $\gamma(s) = s^{2k} + \gamma_{2k-1}s^{2k-1} + \cdots + \gamma_1s + \gamma_0$ is a Hurwitz polynomial.

Multiplying (15) by $\frac{\lambda_0^{2k}}{\gamma(s)}$ with (16) we obtain

$$s^{2k+1}\xi(s) = \bar{\theta}_1 s^{2k-1}\xi(s) + \ldots + \bar{\theta}_k s\xi(s).$$

Regression model

After the inverse Laplace transformation for the filter (16) and the input signal y(t) we get the relation

$$\xi^{(2k+1)}(t) = \Omega^{T}(t)\bar{\Theta} + \varepsilon(t),$$

where $\Omega(t)$ is a regressor of functions $\xi^{(j)}(t)$

$$\Omega^T(t) = egin{array}{cccc} \xi^{(2k-1)}(t) & \dots & \xi^{(3)}(t) & \xi^{(1)}(t) \ \end{array},$$

 $\bar{\Theta}$ is a vector of unknown parameters depending on frequencies

$$\bar{\Theta}^T = \begin{bmatrix} \bar{\theta}_1 & \dots & \bar{\theta}_{k-1} & \bar{\theta}_k \end{bmatrix}.$$

Adaptive Frequency Estimation

The update law

$$\hat{\omega}_i = \sqrt{\left|\hat{\theta}_i\right|}\,,\tag{17}$$

where estimates θ_i calculated using $\hat{\theta}_i$ that are elements of a vector $\hat{\Theta}$:

$$\hat{\bar{\Theta}} = \Upsilon(t) + K\Omega(t)\xi^{(2k)}(t), \tag{18}$$

$$\dot{\Upsilon}(t) = -K\Omega(t)\Omega^{T}(t)\hat{\bar{\Theta}}(t) - K\dot{\Omega}(t)\xi^{(2k)}(t). \tag{19}$$

where $K = \text{diag}\{k_i > 0, i = \overline{1, k}\}$, guarantees that the estimation error $\tilde{\omega}_i = \omega_i - \hat{\omega}_i$ exponentially converges to zero:

$$|\tilde{\omega}_i(t)| \le \rho_1 e^{-\beta_1 t}, \quad \rho_1, \beta_1 > 0, \quad \forall t \ge 0.$$
(20)

Harmonics observer

For the variable $\xi(t)$ we have

$$\xi(t) = \xi_0 + \xi_1(t) + \xi_2(t) + \dots + \xi_k(t). \tag{21}$$

After differentiation (21) 2k times, we obtain two systems of k linear equations:

$$\begin{cases} \xi^{(1)}(t) = \dot{\xi}_{1}(t) + \dot{\xi}_{2}(t) + \dots + \dot{\xi}_{k}(t), \\ \xi^{(3)}(t) = \theta_{1}\dot{\xi}_{1}(t) + \theta_{2}\dot{\xi}_{2}(t) + \dots + \theta_{k}\dot{\xi}_{k}(t), \\ \vdots \\ \xi^{(2k-1)}(t) = \theta_{1}^{k-1}\dot{\xi}_{1}(t) + \dots + \theta_{k}^{k-1}\dot{\xi}_{k}(t), \end{cases}$$

and

$$\begin{cases}
\xi^{(2)}(t) = \theta_1 \xi_1(t) + \theta_2 \xi_2(t) + \dots + \theta_k \xi_k(t), \\
\xi^{(4)}(t) = \theta_1^2 \xi_1(t) + \theta_2^2 \xi_2(t) + \dots + \theta_k^2 \xi_k(t), \\
\vdots \\
\xi^{(2k)}(t) = \theta_1^k \xi_1(t) + \theta_2^k \xi_2(t) + \dots + \theta_k^k \xi_k(t).
\end{cases} (22)$$

Harmonics observer

From (21) and (22) we get the realizable estimation scheme for variables ξ_0 and $\xi_i(t)$

$$\begin{bmatrix} \hat{\xi}_1(t) \\ \hat{\xi}_2(t) \\ \vdots \\ \hat{\xi}_k(t) \end{bmatrix} = \begin{bmatrix} \hat{\theta}_1 & \cdots & \hat{\theta}_k \\ \hat{\theta}_1^2 & \cdots & \hat{\theta}_k^2 \\ \vdots & \ddots & \vdots \\ \hat{\theta}_1^k & \cdots & \hat{\theta}_k^k \end{bmatrix}^{-1} \begin{bmatrix} \xi^{(2)}(t) \\ \xi^{(4)}(t) \\ \vdots \\ \xi^{(2k)}(t) \end{bmatrix},$$

and

$$\hat{\xi}_0 = \xi(t) \quad \sum_{i=1}^k \hat{\xi}_i(t).$$

Parameters estimation

The estimates of the amplitudes and phases

$$\hat{A}_i(t) = \frac{\hat{\gamma}_{\xi i}(t)}{\hat{L}_{\xi i}(t)}, \quad \hat{\phi}_i(t) = \left(-\hat{\varphi}_{\xi i}(t) + \hat{\phi}_{\xi i}(t)\right) \bmod 2\pi,$$

where

$$\begin{split} \hat{\gamma}_{\xi i}(t) &= \sqrt{\hat{\xi}_i^2(t) + \left(\frac{\hat{\xi}_i(t)}{\hat{\omega}_i(t)}\right)^2}, \\ \hat{\phi}_{\xi i}(t) &= \left(\operatorname{sign}\left(\hat{\xi}_i(t)\right) \operatorname{arccos}\left(\frac{\hat{\xi}_i(t)}{\hat{\gamma}_{\xi i}(t)\hat{\omega}_i(t)}\right) - \hat{\omega}_i(t)t\right) \operatorname{mod} 2\pi, \end{split}$$

 $\hat{L}_{\xi i}(t)$ and $\hat{\varphi}_{\xi i}(t)$ can be obtained from filter frequency response

$$\hat{L}_{\xi i}(t) = |F(j\omega)|_{\omega = \hat{\omega}_i}, \quad \hat{\varphi}_{\xi i}(t) = \arg |F(j\omega)|_{\omega = \hat{\omega}_i}.$$

Dynamic Regressor Extension and Mixing

Consider the regression model

$$\psi(t) = \theta^{T} \varphi(t), \tag{23}$$

where $\psi(t) \in \mathbb{R}$ is the regressand, $\theta \in \mathbb{R}^n$ is the constant vector of unknown parameters, $\varphi(t) \in \mathbb{R}^n$ is the regressor.

Consider two linear operators

• The stable LTI filter. For example, we can choose exponentially stable LTI filters

$$H_l(p) = \frac{\lambda_l}{p + \lambda_l},\tag{24}$$

where $p = \frac{d}{dt}$, $\lambda_l \in \mathbb{R}_+$, $l = \overline{1, n}$.

The delay operator

$$[H_l(\cdot)](t) = (\cdot)(t - d_l), \tag{25}$$

where $d_l > 0$ is a delay.

Let us choose delay operator and define the filtered signals

$$\phi_{f,l}(t) = \phi(t - d_l), \tag{26}$$

$$\psi_{f,l}(t) = \psi(t - d_l). \tag{27}$$

Combine (26)–(27) and signals $\phi(t)$, $\psi(t)$ as follows

$$\Phi_{e}(t) = \begin{bmatrix} \phi^{\top}(t) \\ \phi_{f,1}^{\top}(t) \\ \vdots \\ \phi_{f,n-1}^{\top}(t) \end{bmatrix}, \quad \Psi_{e}(t) = \begin{bmatrix} \psi(t) \\ \psi_{f,1}(t) \\ \vdots \\ \psi_{f,n-1}(t) \end{bmatrix},$$
(28)

where $\Phi(t) \in \mathbb{R}^{n \times n}$, $\Psi(t) \in \mathbb{R}^{n \times 1}$.

Defining

$$\zeta(t) = \det\{\Phi(t)\},\tag{29}$$

$$\xi(t) = \operatorname{adj}\{\Phi(t)\}\Psi(t),\tag{30}$$

where $\det\{\Phi(t)\}$ is the determinant and $\mathrm{adj}\{\Phi(t)\}$ is the adjugate of matrix $\Phi(t)$, we obtain a set of n equations of the form

$$\xi_l(t) = \zeta(t)\theta_l, \quad l = \overline{1, n}.$$
 (31)

In the obtained first order regression models (31) we can identify parameters θ_t separately.

The standard gradient method can be used for identification of the obtained models with scalar regressor and parameter

$$\dot{\hat{\theta}}_l(t) = \gamma_d \zeta(t) \left(\xi_l(t) - \zeta(t) \hat{\theta}_l(t) \right), \tag{32}$$

where $\gamma_d \in \mathbb{R}_+$.

From (31) and (32) we can write

$$\dot{\tilde{\theta}}_l(t) = -\gamma_d \zeta^2(t) \tilde{\theta}_l(t). \tag{33}$$

Solving this differential equation we obtain

$$\tilde{\theta}_{l}(t) = \tilde{\theta}_{l}(0) \exp\left(-\gamma_{d} \int_{0}^{t} \zeta^{2}(\tau) d\tau\right). \tag{34}$$

If $\zeta(t)$ is bounded and not square-integrable function, i.e.

$$\zeta(t) \notin \mathcal{L}^2 \leftrightarrow \int_0^\infty \zeta^2(\tau) d\tau = \infty,$$
 (35)

then (32) provides convergence of the estimation error to zero, *i.e.*

$$\lim_{t \to \infty} \left\| \theta_l - \hat{\theta}_l(t) \right\| = 0. \tag{36}$$

For exponential convergence, the following inequality should hold

$$\int_0^t \zeta^2(\tau)d\tau \ge Dt,\tag{37}$$

where $D \in \mathbb{R}_+$.

Time-Delayed Control Systems

Stabilization problems of the time-delay systems ${\bf Anton~Pyrkin}$

Outline

Introduction

Tsypkin's criterion of stability

Smith predictor

 ${\bf State}\hbox{-}{\bf feedback\ predictor}$

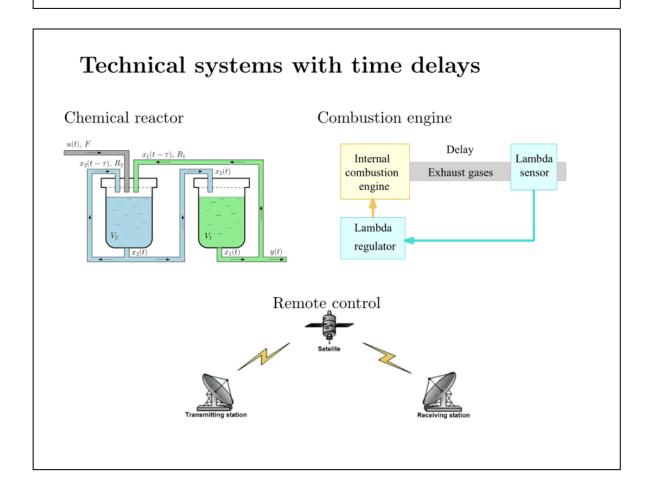
Output-feedback predictor

Time-delay systems

Time-delay systems can be separated to three classes

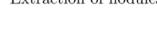
- plants with input delay
- plants with state delay
- plants with output delay
- plants with several delays

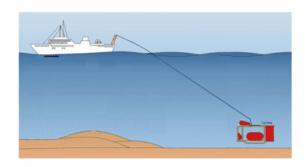
The most complicated and popular in literature are systems with input delay and with input and state delays.



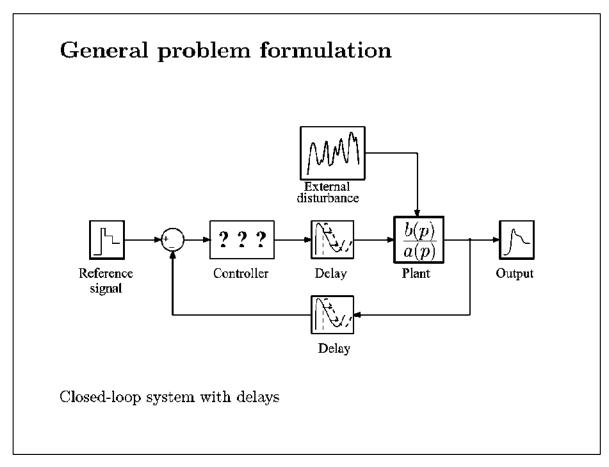
Systems with delays and external disturbances

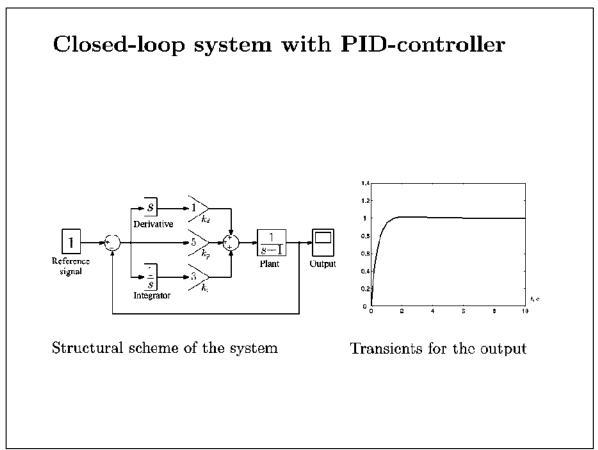
Towing of an underwater vehicle Extraction of nodules



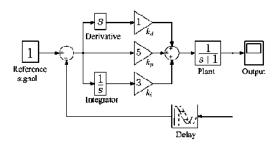




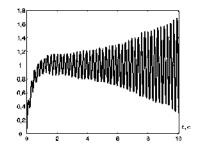




Closed-loop system with delay



Structural scheme of the system



Transients for the output

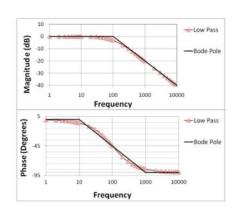
Basic control approaches

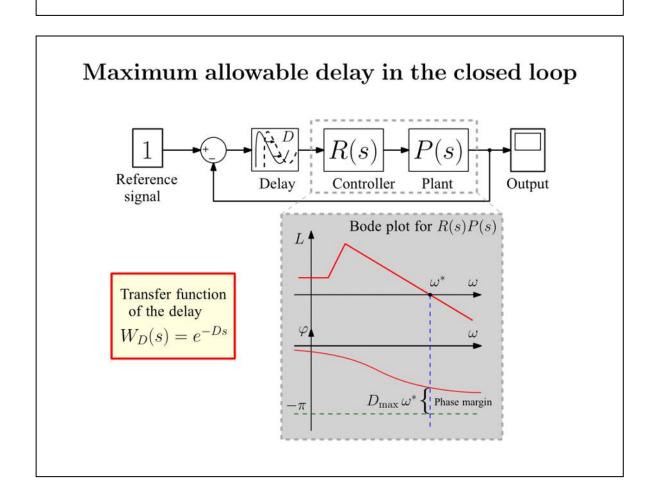
- Tsypkin's criterion of stability
- Smith predictor
- Predictor for unstable systems

The first work devoted to the time-delayed systems

Tsypkin Y.Z. Stability of systems with retarding ferd-back // Avtomat. i Telemekh., 1946, V. 7, N. 2-3, P. 107–129.

This approach using Bode magnitude and phase plots and Nyquist stability criterion allows to define the maximum delay for which the closed-loop system keeps stability.





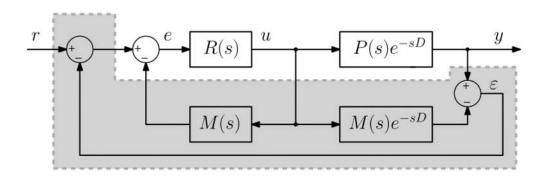
Smith predictor

Smith predictor is a special structure of the controller proposed by Otto Smith in 1957.

- Smith O.J.M., Closer control of loops with dead time // Chem. Eng. Prog., 1959, N. 53, P. 217–219.
- Smith O.J.M., A controller to overcome dead time // ISA, 1959, V. 6, P. 28–33.

The main goal of the Smith predictor is to predict which signal will appear before it will happen.

Smith predictor



Control system supplied with Smith predictor

M(s) is a model of the plant

 e^{-sD} is a transfer function of the delay

R(s) is a structure of the nominal controller

 $P(s)e^{-sD}$ is a transfer function of the plant with the input delay

Smith predictor

Assume that the model of the plan is ideal, i.e. M(s) = P(s). Then the error between real output and output estimate will be zero $(\varepsilon = 0)$. Thus, we have

$$y = Pe^{-sD} \left(\frac{R}{1 + RM} \right) r = \left(\frac{PR}{1 + RP} e^{-sD} \right) r. \tag{1}$$

The term $\binom{PR}{1+RP}$ is a transfer function of the closed-loop system without delay.

It means that the delay does not exist in the feedback loop and does not affect the stability and performance of the closed-loop system. In other words controller does the job independently on the time delay. The delay exist only in a numerator of the transfer function that means the output after regulation is delayed.

Smith predictor

Consider the Smith predictor without assumption $\varepsilon = 0$. In this case the model of the closed-loop system will be

$$y = Pe^{-sD}R(r - \varepsilon - Mu), \ \varepsilon = y - Me^{-sD}u,$$
$$y = Pe^{-sD}u, \tag{2}$$

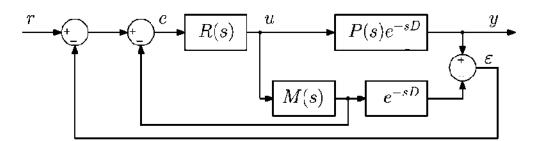
hence

$$y = \left[\frac{PR}{1 + RM + R(P - M)e^{-sD}}\right]e^{-sD}r. \tag{3}$$

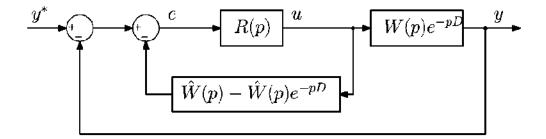
One can see that the error M-P converges to zero if the model is precise, and the exponential term in denominator associated with the delay disappears (in square brackets (3)).

Modified Smith predictor

Using topological transformations one can get several equivalent structures of Smith predictor.

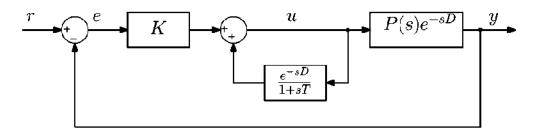


Modified Smith predictor



Modified Smith predictor

Predictable proportional-integral controller (PPI-controller) is a modified Smith predictor which is widely utilized in automatic control. Its structure presented on the figure below



Remarks

Tsypkin's approach and Smith predictor are effective only for linear stable systems with known parameters.

The closed-loop system is very sensitive to accuracy of model. Parametric disturbances can be reason of an instability.

Problem formulation

Consider a linear plant

$$\dot{x}(t) = Ax(t) + Bu(t - D), \tag{4}$$

where $x \in \mathbb{R}^n$ is a state vector, the pair (A, B) is completely controllable, and control u(t) is delayed on D seconds.

The trivial controller for the system (4) may be constructed in the form

$$u(t-D) = Kx(t), (5)$$

where the vector K guaranties that the matrix A + BK is Hurwitz. Hence we have the nominal controller (ideal, although not realizable)

$$u(t) = Kx(t+D). (6)$$

Control law

However using the solution of (4) for x(t)

$$x(t) = e^{At}x(0) + \int_0^t e^{A(t-\tau)}Bu(\tau - D)d\tau$$
 (7)

we get

$$x(t+D) = e^{AD}x(t) + \int_{t-D}^{t} e^{A(t-\tau)}Bu(\tau)d\tau, \quad \forall t \ge 0, \qquad (8)$$

hence we have the state-feedback controller

$$u(t) = K \left[e^{AD} x(t) + \int_{t-D}^{t} e^{A(t-\tau)} B u(\tau) d\tau \right], \quad \forall t \ge 0, \qquad (9)$$

which is realizable.

But this controller has an infinite-dimensional term with distributed delay $\int_{t-D}^t e^{A(t-\tau)}Bu(\tau)d\tau$.

Closed-loop system

Delay has been eliminated in the model of the closed-loop system

$$\dot{x}(t) = (A + BK)x(t), \quad \forall t \ge D. \tag{10}$$

Equation (10) holds only after D seconds. Before D seconds the state of the plant corresponds to the following expression

$$x(t) = e^{At}x(0) + \int_0^t e^{A(t-\tau)}Bu(\tau - D)d\tau, \quad \forall t \in [0, D].$$
 (11)

Original source

Control law (9) was firstly proposed in terms of finite-dimensional systems (Ordinary Differential Equations)

- Kwon W.H., Pearson A.E., Feedback stabilization of linear systems with delayed control // IEEE Transactions on Automatic Control, 1980, V. 25, P. 266–269.
- Manitius A.Z., Olbrot A.W., Finite spectrum assignment for systems with delays // IEEE Transactions on Automatic Control, 1979, V. 24, P. 541–553.

and reduced approach

Arstein Z., Linear systems with delayed controls: A reduction // IEEE Transactions on Automatic Control, 1982, V. 27, P. 869–879.

Such intuitively clear solution looks simple, however the proof of stability of the closed-loop system is not obvious.

Backstepping approach

Further we will consider the "backstpping" approach for time-delay systems, which was proposed by Miroslav Krstic

Kristic M., Delay compensation for nonlinear, adaptive, and PDE systems. Birkhauser, 2009, 466 p.

The delay may be presented as partial differential equation (PDE) of the first order

$$U_t(z,t) = U_z(z,t), (12)$$

$$U(D,t) = u(t), (13)$$

where subscripts z and t mean partial derivatives with respect to corresponding arguments.

PDE model of the delay

Solution of (12), (13) is

$$U(z,t) = u(t+z-D), (14)$$

where the output of the delay

$$U(0,t) = u(t-D) (15)$$

describes the delayed control signal

$$\begin{array}{c|c} u(t) & e^{-sD} & u(t-D) \\ \hline U(D,t) & U(0,t) \\ \hline z & D & 0 \\ \hline \end{array}$$

Linear plant with the input delay

Backstepping transformation

Consider the following transformation [1]

$$W(z,t) = U(z,t) - \int_0^z q(z,\zeta)U(\zeta,t)d\zeta - \gamma(z)^T x(t), \qquad (16)$$

which maps the system (4), (12)-(15) to internally stable system

$$\dot{x}(t) = (A + BK)x(t) + BW(0, t),$$
 (17)

$$W_t(z,t) = W_z(z,t), \tag{18}$$

$$W(D,t) = 0. (19)$$

Control law

Computation of derivatives $W_t(z,t)$ and $W_z(z,t)$, it is not difficult to find $q(z,\zeta)$ and $\gamma(z)$:

$$q(z,\zeta) = Ke^{A(z-\zeta)}B, \quad \gamma(z)^T = Ke^{Az}. \tag{20}$$

Substitution $q(z,\zeta)$ and $\gamma(z)$ into (16) together with z=D yields the control law

$$U(D,t) = \int_0^D Ke^{A(D-\zeta)}BU(\zeta,t)d\zeta + Ke^{AD}x(t), \qquad (21)$$

which equals to (9).

Stability proof

Consider the Lyapunov candidate

$$V(t) = x^{T}(t)Px(t) + \frac{\gamma}{2} \int_{0}^{D} (1+z)W(z,t)^{2}dz,$$
 (22)

where $P = P^T > 0$ is a solution of the Lyapunov equation

$$P(A + BK) + (A - BK)^{T}P = -Q$$
 (23)

for any arbitrary $Q + Q^T > 0$ and

$$\gamma = 4\lambda_{max}(PBB^TP)/\lambda_{min}(Q).$$

Then

$$\dot{V}(t) \le -CV(t),$$

where

$$C = \min \left\{ \frac{\lambda_{min}(Q)}{2\lambda_{max}(P)}, \frac{1}{1+D} \right\}.$$

Therefore, the system (4), (9) is an exponentially stable.

Problem formulation

Consider a linear plant

$$\dot{x}(t) = Ax(t) + Bu(t-D), \quad y(t) = Cx(t),$$
 (24)

where $x \in \mathbb{R}^n$ is a state vector, $y(t) \in \mathbb{R}$ is a measurable output, and control u(t) which is delayed on D seconds.

It is assumed that pair (A, B) is completely controllable, and pair (A, C) is completely observable.

State observer

Consider the state observer

$$\dot{\hat{x}}(t) = A\hat{x}(t) + Bu(t-D) + L(y(t) - \hat{y}(t)), \quad \hat{y}(t) = C\hat{x}(t), \quad (25)$$

where L makes the matrix (A - LC) Hurwitz.

For the error $\tilde{x}(t) = x(t) - \hat{x}(t)$ and $\tilde{y}(t) = y(t) - \hat{y}(t)$ we have

$$\dot{\tilde{x}}(t) = (A - LC)\tilde{x}(t), \quad \tilde{y}(t) = C\tilde{x}(t), \tag{26}$$

hence it is easy to show that $\tilde{x}(t)$ exponentially converges to zero, i.e. each term of this vector is bounded by decaying exponent.

Backstepping transformation

Consider backstepping transformation like (16)

$$\hat{W}(z,t) = U(z,t) - Ke^{Az}\hat{x}(t) - K\int_0^z e^{A(z-\zeta)}BU(\zeta,t)d\zeta$$
$$+ K\int_z^D e^{A(z+D-\zeta)}L\tilde{Y}(\zeta,t)d\zeta, \tag{27}$$

$$\tilde{Y}(z,t) = \tilde{y}(t+z-D), \tag{28}$$

$$\tilde{Y}_t(z,t) = \tilde{Y}_z(z,t), \tag{29}$$

$$\tilde{Y}(D,t) = \tilde{y}(t). \tag{30}$$

Control law

Choosing z = D and equating $\hat{W}(D, t)$ to zero in (27) we get a realizable control law

$$u(t) = Ke^{AD}\hat{x}(t) + K\int_{t-D}^{t} e^{A(t-\tau)}Bu(\tau)d\tau, \tag{31}$$

which uses estimates of the state $\hat{x}(t)$.

Substitute in (24) the transformation (27) with z = 0:

$$\dot{x}(t) = Ax(t) + BK\hat{x}(t) + K \int_0^D e^{A(D-\zeta)} L\tilde{Y}(\zeta, t) d\zeta + B\hat{W}(0, t)$$

$$= (A+BK)x(t) + B\hat{W}(0, t)$$

$$-BK\hat{x}(t) + BK \int_0^D e^{A(D-\zeta)} L\tilde{Y}(\zeta, t) d\zeta$$

$$= (A+BK)x(t) + B\hat{W}(0, t) + B\varepsilon(t). \tag{32}$$

The closed-loop system

The model of the closed-loop system

$$\dot{x}(t) = (A + BK)x(t) + B\hat{W}(0, t) + B\varepsilon(t), \tag{33}$$

$$y(t) = Cx(t), (34)$$

$$\hat{W}_t(z,t) = \hat{W}_z(z,t),\tag{35}$$

$$\hat{W}(D,t) = 0, (36)$$

where

$$\varepsilon(t) = -K\tilde{x}(t) + K \int_0^D e^{A(D-\zeta)} L\tilde{Y}(\zeta, t) d\zeta$$

is an exponentially decaying function due to exponential convergence to zero of $\tilde{x}(t)$ and, correspondingly, $\tilde{y}(t)$.

Stability of the closed-loop system (33)-(36) may be shown with the Lyapunov function (22) in the similar way.

Conclusion

Predictor for unstable systems is one of the basic and fundamental solutions that allows to stabilize plants by state or output feedback.

Presented solution is suitable only for linear systems (and additional calculations are necessary for a class of nonlinear systems). The plant parameters are required with good accuracy.

Using this approach it is possible to solve more complicated problems with external disturbances and parametric uncertainties of the plant model.

Adaptive and robust control

Adaptive and robust control

Dmitry N. Gerasimov gerasimovdn@mail.ru

Saint-Petersburg, 2019

Outline

- 1. Introduction to Adaptive and Robust Control
- 2. Lyapunov Functions Method. Short Tutorial
- 3. Simple Example of Adaptive Controller Design
- 4. Simple Example of Robust Controller Design
- 5. Generalized Algorithm of Adaptive and Robust Controller Design
- 6. Standard Error Models
 - 6.1. Static Error Model. Problem of Identification
 - 6.2. Dynamic Error Model with Measurable State. State Feedback Adaptive Control
 - 6.3. Dynamic Error Model with Measurable Output. Output Feedback Adaptive Control

1. Introduction

Problems and motivation

mathematical models have limited accuracy over the whole range of plants operating

Aircraft

DC motors

DC motor dynamics

$$\begin{split} \dot{I} &= -\frac{R}{L}I - \frac{k_E}{L}\omega + \frac{1}{L}U,\\ \dot{\omega} &= \frac{k_M}{J}I - \frac{1}{J}M_L,\\ \dot{\alpha} &= \omega \end{split}$$

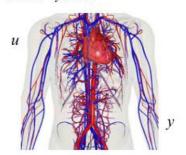
Spark ignition engines

Fuel evaporation process dynamics

$$\dot{m}_{ff} = -\frac{1}{T_f} m_{ff} + \frac{K_f}{T_f} m_{fi}$$

$$m_{fc} = m_{ff} + (1 - K_f) m_{fi}$$

Blood system

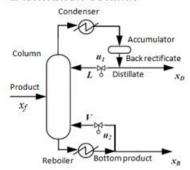


Blood pressure dynamics with delay

$$y(t) = \frac{Ke^{-T_1s} \left(1 + ae^{-T_2s}\right)}{1 + \tau s} \left[u(t)\right]$$

y – deviation of mean arterial pressure from normal u – infusion rate of drug (nitroprusside)

Distillation column



Distillation system dynamics

$$\begin{bmatrix} x_d \\ x_b \end{bmatrix} = G(s) (I + W(s)\Delta) \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} + G_d(s) [x_f]$$

$$m_{fc} = m_{ff} + (1 - K_f) m_{fi}$$

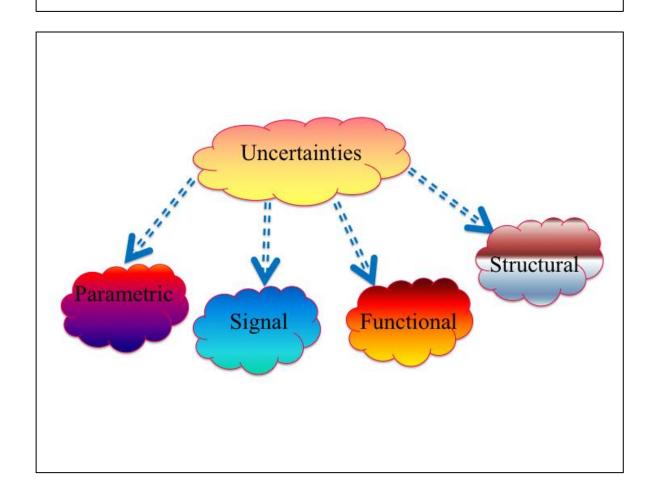
In this context, the approaches of control theory that can come up with the problems of plants uncertainties are of special interest.

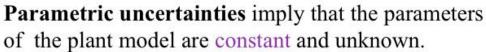
Can the control system choose the correct control to improve the performance of the plant operating in presence of uncertainties?

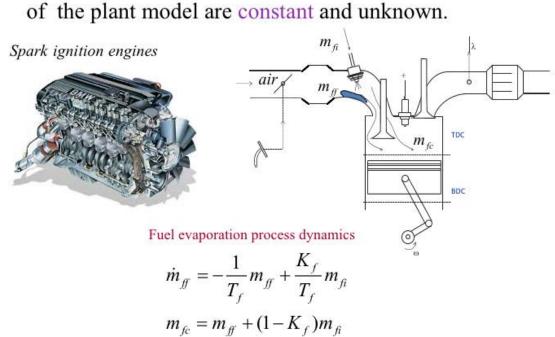
How to design an adaptive control?

Definitions, clarifications:

- Model with uncertainties that is the potential basis for controller design belongs to some class of models and is called nominal.
- 2. Characteristics of the nominal model are called **nominal**.
- 3. Uncertainties unknown or not known precisely characteristics, structure or parameters of the plant.
- 4. Uncertainties of the plant \equiv uncertainties of the model.







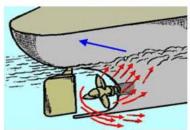
Signal uncertainties imply that the plant model contains unknown functions of time.

DC motor dynamics

$$\begin{split} \dot{I} &= -\frac{R}{L}I - \frac{k_E}{L}\omega + \frac{1}{L}U,\\ \dot{\omega} &= \frac{k_M}{J}I - \frac{1}{J}M_L,\\ \dot{\alpha} &= \omega \end{split}$$

R = R(temperature) = R(time)

Functional uncertainties imply that plant model contains unknown functions of state.



Tail-shaft dynamics equation

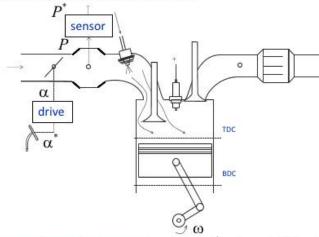
$$J\dot{\omega} = M - M_{\nu}$$

M is the engine effective torque

 M_{ν} is the viscous friction

$$M_V = M_V(\omega) \approx c_0 + c_1 \omega + c_2 \omega^2$$

Structural uncertainties imply that the plant model contains unknown structures.



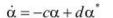
Manifold air pressure dynamics equation:

 $\dot{\boldsymbol{P}} + k_1 \eta_c(\boldsymbol{\omega}) \boldsymbol{P} = k_2 \eta_t(\boldsymbol{P}) \varphi_1(\boldsymbol{P}) \varphi_2(\boldsymbol{\alpha})$

Pressure sensor dynamics:

 $\dot{\boldsymbol{P}}^* = -a\boldsymbol{P}^* + b\boldsymbol{P}$

Throttle drive dynamics:



Definitions:

Adaptive and robust control are the controls providing desired performance of the plant operating in presence of uncertainties

- 1. Adaptive control implies the compensation of uncertainties.
- 2. Robust control does not imply the compensation of uncertainties, but using high gain control.

2. Lyapunov Functions Method. Short tutorial

Universal approach of stability analysis for autonomous plants

$$\dot{x} = f(x), \quad x(0),$$
 (2.1)

at equilibrium x^* , where $x \in R^n$ is the state vector, $f \in R^n$ is the continuous nonlinear mapping.

Lyapunov functions V(x):

- 1. V(x) is monotonic;
- 2. V(x) > 0, if $||x|| \neq 0$, V(0) = 0;
- 3. $V(x) \in C^1$ (continuous and differentiable).

Time derivative of Lyapunov function in amount of (1):

$$\dot{V}(x) = \frac{\partial V(x)}{\partial x} \dot{x} = \frac{\partial V(x)}{\partial x} f(x) = \operatorname{grad} \{V(x)\} f(x) = \left\| \operatorname{grad} \{V(x)\} \right\| \|f(x)\| \cos \alpha$$

$$V(x)$$

$$x(t)$$

$$x($$

Stability criterias:

- If $\dot{V}(x) \le 0$, then the equilibrium $x^* = 0$ is Lyapunov stable;
- If $\dot{V}(x) < 0$, then the equilibrium $x^* = 0$ is asymptotically stable;
- 3. If $\dot{V}(x) \le -\beta V(x)$, $\beta > 0$, then the equilibrium $x^* = 0$ exponentially stable;

$$\dot{V}(x) \le -\beta V(x) \implies V(x) \le \exp(-\beta t)V(0)$$

$$x(t) \xrightarrow{0.6} k \cdot \exp(-\beta t)$$

$$x^* \xrightarrow{0} k \cdot \exp(-\beta t)$$

$$-k \cdot \exp(-\beta t)$$

$$0 \xrightarrow{20} 40 60 80 100 120$$

60

80

100

Examples of Lyapunov functions:

1. Linear system

$$\dot{x} = Ax, \quad x(0) \tag{2.2}$$

where A is the time-invariant matrix.

Lyapunov function candidate

$$V(x) = x^T P x, (2.3)$$

where $P = P^T > 0$ is the time-invariant matrix.

$$\dot{V}(x) = \dot{x}^T P x + x^T P \dot{x} = x^T A^T P x + x^T P A x =$$

$$= x^T (A^T P + P A) x = -x^T Q x < 0$$

Conclusion: If there exists $P = P^T > 0$ such that

$$A^T P + PA = -Q, (2.4)$$

where $Q = Q^T > 0$, system (2) is asymptotically stable.

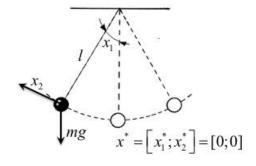
2. Pendulum

$$\dot{x}_1 = x_2,$$

$$\dot{x}_2 = -gl\sin(x_1) - \frac{k}{m}x_2$$
(2.5)

where g is the gravity acceleration,

l is the length of rod, k is the friction coefficient.



Lyapunov function candidate: sum of potential and kinetic energy

$$V(x) = mg(1 - \cos(x_1))l + \frac{mx_2^2}{2}.$$
 (2.6)

Time derivative:

$$\dot{V}(x) = mg\sin(x_1)\dot{x}_1l + mx_2\dot{x}_2 = mg\sin(x_1)x_2l - mx_2gl\sin(x_1) - mx_2^2.$$

or

$$\dot{V}(x) = -mx_2^2 < 0 \tag{2.7}$$

Conclusion: pendulum is asymptotically stable at the equilibrium $x^* = [0;0]$.

3. Simple Example of Adaptive Controller Design

Motivation

Problem statement:

Plant:

$$\dot{x} = \theta x + u,\tag{3.1}$$

where x is the scalar state, u is the control, θ is the known parameter.

Objective is to design a control providing the following limiting equality:

$$\lim x = 0. \tag{3.2}$$

Solution:

$$u = -\theta x - \lambda x,\tag{3.3}$$

where λ is the positive constant parameter.

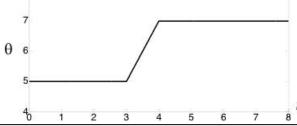
$$u = -\theta x - \lambda x,$$
 $\dot{x} = \theta x + u$ $\Rightarrow \dot{x} = -\lambda x \Rightarrow x(t) = \exp(-\lambda t)x(0).$ (3.4)

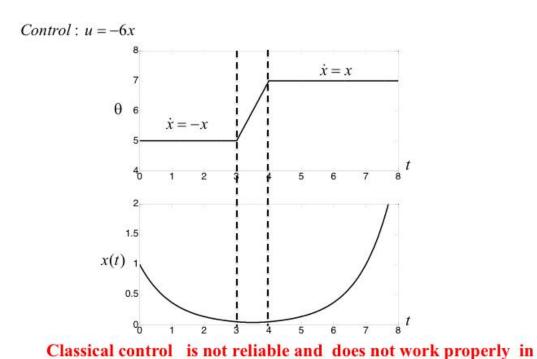
Let us the design parameter is $\lambda = 1$ and plant parameter $\theta = 5$, i.e.

control: u = -6x

system $\dot{x} = -x$ is stable.

Now let us imagine, the plant parameter θ unpredictably changes from 5 to 13:





Problem statement of adaptive control:

presence of uncertainties

 $\dot{x} = \theta x + u,$

where θ is the unknown parameter.

Objective is to design a control providing the following limiting equality:

$$\lim_{t \to \infty} \left(x_M - x \right) = 0, \tag{3.6}$$

where x_M is the output of reference model

$$\dot{x}_M = -\lambda x_M + \lambda g,\tag{3.7}$$

g is the reference signal, λ is the positive parameter responsible for transient time.

Solution:

1. Let the parameter θ be known.

Form the error signal $\varepsilon = x_M - x$ and take its derivative in amount of plant and reference model equations:

$$\dot{\varepsilon} = \dot{x}_M - \dot{x} = (-\lambda x_M + \lambda g) - (\theta x + u)$$

Let $\dot{\varepsilon} \triangleq -\lambda \varepsilon = -\lambda x_M + \lambda x \implies \varepsilon(t) = \exp(-\lambda t)\varepsilon(0)$. Therefore

$$(-\lambda x_M + \lambda g) - (\theta x + u) = -\lambda x_M + \lambda x$$

$$u = -\theta x - \lambda x + \lambda g \tag{3.8}$$

Solution:

2. Let the parameter θ be unknown. Therefore the control

$$u = -\theta x - \lambda x + \lambda g$$

is not implementable. Substitute estimate $\hat{\theta}$ for θ and obtain implementable adjustable control:

$$u = -\hat{\theta}x - \lambda x + \lambda g \tag{3.10}$$

Replace (3.10) in the plant equation $\dot{x} = \theta x + u$:

$$\dot{x} = \theta x - \hat{\theta} x - \lambda x + \lambda g, \tag{3.11}$$

Take the derivative of the error

$$\dot{\varepsilon} = \dot{x}_{M} - \dot{x} = (-\lambda x_{M} + \lambda g) - (\theta x - \hat{\theta} x - \lambda x + \lambda g)$$
Signal Error Model
$$\dot{\varepsilon} = -\lambda \varepsilon - \tilde{\theta} x,$$
(3.12)

where $\tilde{\theta} = \theta - \hat{\theta}$ is the parametric error.

Solution:

3. Let us choose the algorithm generating estimate $\hat{\theta}$:

$$\dot{\hat{\theta}} = \Omega(t) \tag{3.13}$$

where $\Omega(t)$ is implementable (measurable) function.

Taking into account that $\tilde{\theta} = \theta - \hat{\theta}$ and

$$\dot{\tilde{\Theta}} = -\dot{\hat{\Theta}}$$

we get

Parametric Error Model

$$\dot{\tilde{\theta}} = -\Omega(t) \tag{3.14}$$

How to choose the function $\Omega(t)$???

Solution:

4. Models

Signal Error Model
$$\dot{\varepsilon} = -\lambda \varepsilon - \tilde{\theta} x$$
, (3.12)

Parametric Error Model
$$\dot{\tilde{\theta}} = -\Omega(t)$$
 (3.14)

Choose the Lyapunov function candidate

$$V(\varepsilon, \tilde{\Theta}) = \frac{1}{2}\varepsilon^2 + \frac{1}{2\gamma}\tilde{\Theta}^2, \qquad \gamma > 0$$
 (3.15)

and take its time derivative using (18) and (20):

$$\dot{V}(\varepsilon,\tilde{\theta}) = \varepsilon \dot{\varepsilon} + \frac{1}{\gamma} \tilde{\theta} \dot{\tilde{\theta}} = -\lambda \varepsilon^2 - \tilde{\theta} x \varepsilon - \frac{1}{\gamma} \tilde{\theta} \Omega(t)$$

If $\Omega(t) = -\gamma x \epsilon$ then $\dot{V}(\epsilon, \tilde{\theta}) = -\lambda \epsilon^2 < 0$

(3.16)

Summary

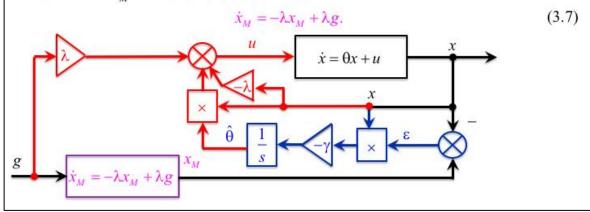
Adjustable controller:

$$u = -\hat{\theta}x - \lambda x + \lambda g \tag{3.10}$$

Adaptation algorithm:

$$\dot{\hat{\theta}} = -\gamma x \varepsilon \tag{3.16}$$

with $\varepsilon = x_M - x$ and reference model



Summary

Properties of the closed-loop system:

- All signals in the system are bounded;
- 2. Control error $\varepsilon = x_M x$ asymptotically tends to zero;
- 3. Parametric error $\tilde{\theta} = \theta \hat{\theta}$ in general case tends to a constant;

$$V(\varepsilon,\tilde{\Theta}) = \frac{1}{2}\varepsilon^2 + \frac{1}{2\gamma}\tilde{\Theta}^2,$$

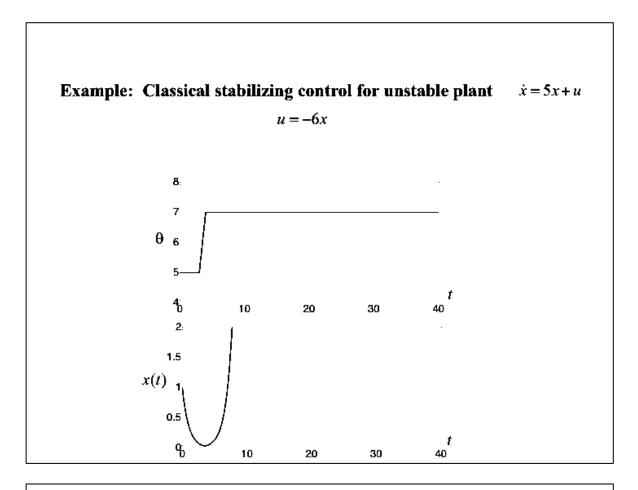
$$\dot{V}(\varepsilon,\tilde{\theta}) = -\lambda \varepsilon^2 < 0$$

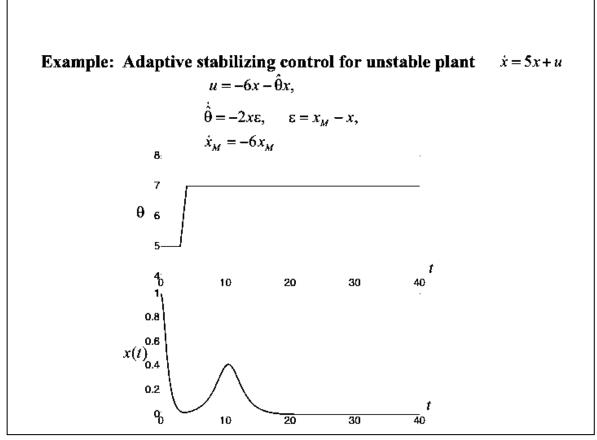
- There is an optimal adaptation gain γ corresponding the fastest parametrical convergence;
 - 5. There can be parametric drift phenomena in presence of noise,

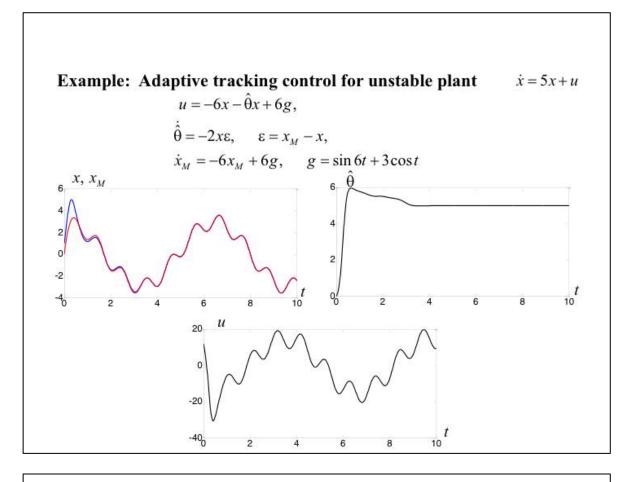
i.e., if

$$\dot{x} = \theta x + u + \delta,$$

where δ is bounded disturbance, $\hat{\theta} \rightarrow \infty$.







4. Simple Example of Robust Controller Design

Problem statement of adaptive control:

Plant:

$$\dot{x} = \theta x + u + \delta, \qquad |\delta| \le \overline{\delta}$$
 (4.1)

where θ is the unknown parameter, $\delta(t)$ is unpredictable bounded noise.

Objective is to design a control providing the following inequality:

$$|x_M(t) - x(t)| \le \Delta \text{ for any } t \ge T,$$
 (4.2)

where x_M is the output of reference model

$$\dot{x}_M = -\lambda x_M + \lambda g,\tag{4.3}$$

g is the reference signal, λ is the positive parameter responsible for transient time.

Adjustable controller:

$$u = -\hat{\theta}x - \lambda x + \lambda g \tag{4.4}$$

Adaptation algorithm: -> Nonlinear static feedback:

$$\hat{\theta} = -\gamma x \varepsilon \tag{4.5}$$

with $\varepsilon = x_M - x$ and reference model

$$\dot{x}_{M} = -\lambda x_{M} + \lambda g.$$

Substitution of (4.5) into (4.4) gives "high-gain" type controller:

$$u = \gamma x^2 \varepsilon - \lambda x + \lambda g.$$

Then substitute this control into disturbed plant $\dot{x} = \theta x + u + \delta$.

$$\dot{x} = \theta x + \gamma x^2 \varepsilon - \lambda x + \lambda g + \delta.$$

Solution #1

Again, take the derivative of the error $\varepsilon = x_M - x$

$$\dot{\varepsilon} = \dot{x}_{M} - \dot{x} = (-\lambda x_{M} + \lambda g) - (\theta x + \gamma x^{2} \varepsilon - \lambda x + \lambda g + \delta)$$

$$\dot{\varepsilon} = -\lambda \varepsilon - \theta x - \gamma x^{2} \varepsilon - \delta$$
(4.6)

Choose the Lyapunov function candidate

$$V(\varepsilon, \tilde{\Theta}) = \frac{1}{2}\varepsilon^2$$

and take its time derivative using (4.6):

$$\dot{V}(\varepsilon) = \varepsilon \dot{\varepsilon} = -\lambda \varepsilon^{2} - \theta x \varepsilon - \gamma x^{2} \varepsilon^{2} - \delta \varepsilon = -\frac{\lambda}{2} \varepsilon^{2} - \frac{\lambda}{2} \varepsilon^{2} - \theta x \varepsilon - \gamma x^{2} \varepsilon^{2} - \delta \varepsilon =$$

$$= -\frac{\lambda}{2} \varepsilon \left(-\frac{\lambda}{2} \varepsilon^{2} - \delta \varepsilon \pm \frac{1}{2\lambda} \delta^{2} - \gamma x^{2} \varepsilon^{2} - \theta x \varepsilon \pm \frac{\theta^{2}}{4\gamma} \right)$$

$$\dot{V}(\varepsilon) = -\frac{\lambda}{2} \varepsilon^{2} \left(-\left(\sqrt{\frac{\lambda}{2}} \varepsilon + \sqrt{\frac{1}{2\lambda}} \delta \right)^{2} + \frac{1}{2\lambda} \delta^{2} \right) \left(\sqrt{\gamma} x \varepsilon + \frac{\theta}{2\sqrt{\gamma}} \right)^{2} + \frac{\theta^{2}}{4\gamma} \right)$$

$$\dot{V}(\varepsilon) \leq -\frac{\lambda}{2} \varepsilon^{2} + \frac{1}{2\lambda} \delta^{2} + \frac{\theta^{2}}{4\gamma}$$

$$\dot{V}(\varepsilon) \leq -\frac{\lambda}{2} \varepsilon^{2} + \frac{1}{2\lambda} \overline{\delta}^{2} + \frac{\theta^{2}}{4\gamma}$$

$$\overline{\Delta} = \frac{1}{2\lambda} \overline{\delta}^{2} + \frac{\theta^{2}}{4\gamma}$$

$$|\delta(t)| \leq \overline{\delta}$$

$$\dot{V}(\varepsilon) \leq -\lambda V(\varepsilon) + \overline{\Delta}$$

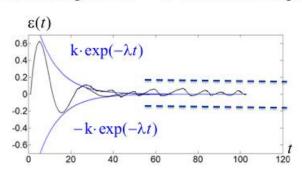
$$V(\varepsilon) = \frac{1}{2} \varepsilon^{2}$$

$$(4.7)$$

Solution #1

$$\dot{V}(\varepsilon) \le -\lambda V(\varepsilon) + \overline{\Delta} \qquad \Rightarrow \qquad V(t) \le \exp(-\lambda t)V(0) \left(1 - \frac{\overline{\Delta}}{\lambda}\right) + \frac{\overline{\Delta}}{\lambda}V(0)$$

Exponential convergence of ε to bounded set is proved.



Summary

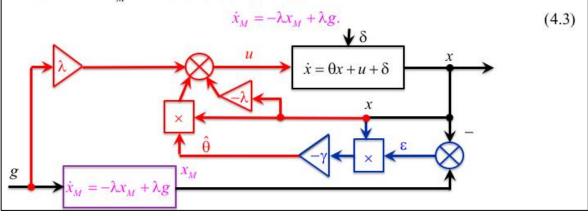
Adjustable controller:

$$u = -\hat{\theta}x - \lambda x + \lambda g \tag{4.4}$$

Nonlinear static feedback:

$$\hat{\theta} = -\gamma x \varepsilon \tag{4.5}$$

with $\varepsilon = x_M - x$ and reference model

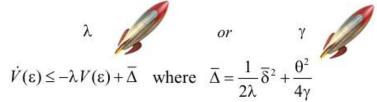


Solution #1

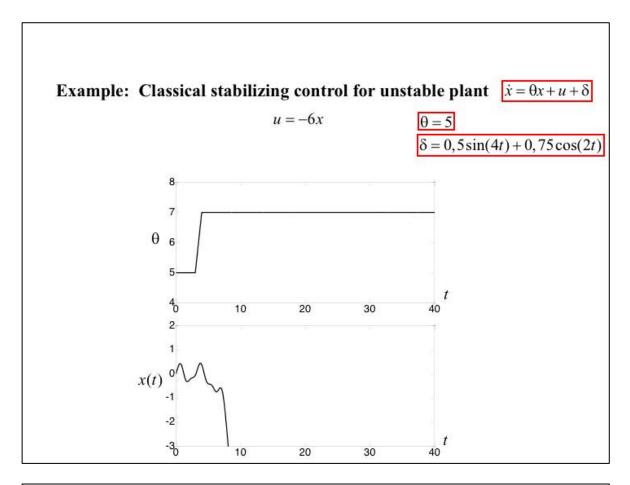
Summary

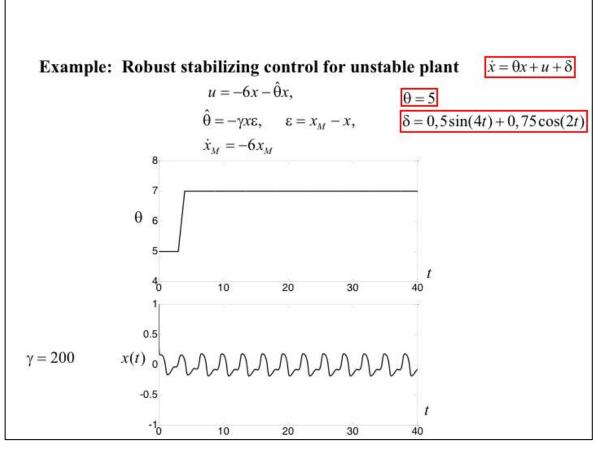
Properties of the closed-loop robust system:

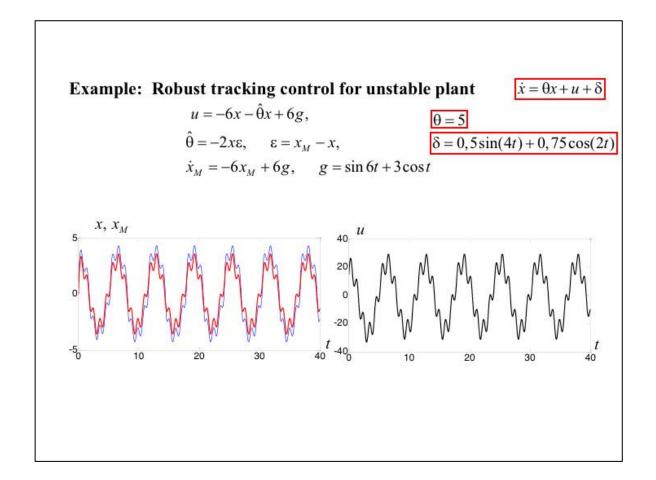
- All signals in the system are bounded;
- 2. Control error $\varepsilon = x_M x$ exponentially tends to the neighborhood of zero;
- 3. The radius of neighborhood can be arbitrary reduced by



4. There is no compensation of uncertainty! Even, if the plant is not disturbed ($\delta = \overline{\delta} = 0$), the error $\varepsilon = x_M - x$ does not go to zero!





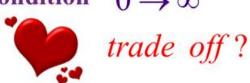


Adaptive control provides the complete compensation of uncertainties, but can be not reliable under disturbance condition $\hat{\theta} \rightarrow \infty$

Robust control guarantee the strongest exponential stability, but does not compensate the uncertainties, therefore $\varepsilon \not\to 0$

Adaptive control provides the complete compensation of uncertainties,

but can be not reliable under disturbance condition $\hat{\theta} \rightarrow \infty$



Robust control guarantee the strongest exponential stability,

but does not compensate the uncertainties, therefore $\varepsilon \not\to 0$

Adjustable controller:

$$u = -\hat{\theta}x - \lambda x + \lambda g \tag{4.8}$$

Adaptation algorithm: -> Robust modification of AA:

$$\dot{\hat{\theta}} = -\gamma x \varepsilon - \sigma \hat{\theta} \tag{4.9}$$

where σ is a positive feedback gain,

 $\varepsilon = x_M - x$, x_M is the output of reference model

$$\dot{x}_M = -\lambda x_M + \lambda g.$$

Then substitute control (31) into disturbed plant $\dot{x} = \theta x + u + \delta$.

$$\dot{x} = \theta x - \hat{\theta} x - \lambda x + \lambda g + \delta.$$

$$\dot{x} = \tilde{\theta}x - \lambda x + \lambda g + \delta.$$
 $(\tilde{\theta} = \theta - \hat{\theta})$

Solution #2

Again, form take the derivative of the error $\varepsilon = x_M - x$

$$\dot{\varepsilon} = \dot{x}_M - \dot{x} = \left(-\lambda x_M + \lambda g\right) - \left(\tilde{\theta}x - \lambda x + \lambda g + \delta\right)$$

Signal Error Model $\dot{\varepsilon} = -\lambda \varepsilon - \tilde{\theta} x - \delta$

$$\dot{\varepsilon} = -\lambda \varepsilon - \tilde{\theta} x - \delta \tag{4.10}$$

$$\dot{\hat{\theta}} = -\gamma x \varepsilon - \sigma \hat{\theta}$$
 \rightarrow $\dot{\tilde{\theta}} = -\dot{\hat{\theta}}$

Parametric Error Model
$$\dot{\tilde{\theta}} = \gamma x \varepsilon + \sigma \hat{\theta}$$
 (4.11)

Choose the Lyapunov function candidate

$$V(\varepsilon, \tilde{\theta}) = \frac{1}{2}\varepsilon^2 + \frac{1}{2\gamma}\tilde{\theta}^2, \qquad \gamma > 0$$
 (4.12)

Take the time derivative of Lyapunov function using (4.10) and (4.11):

Signal Error Model
$$\dot{\tilde{\epsilon}} = -\lambda \epsilon - \tilde{\theta} x - \delta$$
Parametric Error Model
$$\dot{\tilde{\theta}} = \gamma x \epsilon + \sigma \hat{\theta}$$

$$\dot{V}(\epsilon, \tilde{\theta}) = \epsilon \dot{\epsilon} + \frac{1}{\gamma} \tilde{\theta} \dot{\tilde{\theta}} = -\lambda \epsilon^2 - \tilde{\theta} x \epsilon - \frac{1}{\gamma} \tilde{\theta} \Omega(t)$$

$$\dot{V}(\epsilon, \tilde{\theta}) = \epsilon \dot{\epsilon} + \frac{1}{\gamma} \tilde{\theta} \dot{\tilde{\theta}} = \left(-\lambda \epsilon^2 - \tilde{\theta} x \epsilon - \delta \epsilon\right) + \frac{1}{\gamma} \tilde{\theta} \left(\gamma x \epsilon + \sigma \hat{\theta}\right)$$

$$\dot{V}(\epsilon, \tilde{\theta}) = -\lambda \epsilon^2 - \delta \epsilon + \frac{\sigma}{\gamma} \tilde{\theta} \hat{\theta}$$

$$\dot{V}(\epsilon, \tilde{\theta}) = -\lambda \epsilon^2 - \delta \epsilon + \frac{\sigma}{\gamma} \tilde{\theta} \hat{\theta}$$

$$\dot{V}(\epsilon, \tilde{\theta}) = -\lambda \epsilon^2 - \delta \epsilon + \frac{\sigma}{\gamma} \tilde{\theta} \hat{\theta}$$

Solution #2

$$\dot{V}(\varepsilon,\tilde{\theta}) = -\frac{\lambda}{2}\varepsilon^{2} \left(-\frac{\lambda}{2}\varepsilon^{2} - \delta\varepsilon\right) - \frac{\sigma}{2\gamma}\tilde{\theta}^{2} + \frac{\sigma}{2\gamma}\tilde{\theta}^{2} + \frac{\sigma}{\gamma}\tilde{\theta}\theta$$

$$\dot{V}(\varepsilon,\tilde{\theta}) = -\frac{\lambda}{2}\varepsilon^{2} - \frac{\sigma}{2\gamma}\tilde{\theta}^{2} \left(-\frac{\lambda}{2}\varepsilon^{2} - \delta\varepsilon \pm \frac{1}{2\lambda}\delta^{2}\right) \left(\frac{\sigma}{2\gamma}\tilde{\theta}^{2} + \frac{\sigma}{\gamma}\tilde{\theta}\theta \pm \frac{\sigma}{2\gamma}\theta^{2}\right)$$

$$\dot{V}(\varepsilon,\tilde{\theta}) = -\frac{\lambda}{2}\varepsilon^{2} - \frac{\sigma}{2\gamma}\tilde{\theta}^{2} - \left(\sqrt{\frac{\lambda}{2}\varepsilon} + \sqrt{\frac{1}{2\lambda}}\delta\right)^{2} + \frac{1}{2\lambda}\delta^{2} - \frac{\sigma}{2\gamma}(\tilde{\theta} - \theta)^{2} + \frac{\sigma}{2\gamma}\theta^{2}\right)$$

$$\dot{V}(\varepsilon,\tilde{\theta}) \leq -\frac{\lambda}{2}\varepsilon^{2} - \frac{\sigma}{2\gamma}\tilde{\theta}^{2} + \frac{1}{2\lambda}\delta^{2} + \frac{\sigma}{2\gamma}\theta^{2}$$

$$\dot{V}(\varepsilon,\tilde{\theta}) \leq -\frac{\lambda}{2}\varepsilon^{2} - \frac{\sigma}{2\gamma}\tilde{\theta}^{2} + \frac{1}{2\lambda}\delta^{2} + \frac{\sigma}{2\gamma}\theta^{2}$$

$$\dot{V}(\varepsilon,\tilde{\theta}) \leq -\frac{\lambda}{2}\varepsilon^{2} - \frac{\sigma}{2\gamma}\tilde{\theta}^{2} + \frac{1}{2\lambda}\delta^{2} + \frac{\sigma}{2\gamma}\theta^{2}$$

$$\dot{V}(\varepsilon,\tilde{\theta}) \leq -\frac{\lambda}{2}\varepsilon^{2} - \frac{\sigma}{2\gamma}\tilde{\theta}^{2} + \frac{1}{2\lambda}\overline{\delta}^{2} + \frac{\sigma}{2\gamma}\theta^{2}$$

$$\dot{V}(\varepsilon,\tilde{\theta}) \leq -\frac{\lambda}{2}\varepsilon^{2} - \frac{\sigma}{2\gamma}\tilde{\theta}^{2} + \overline{\Delta}$$

$$\bar{\Delta} = \frac{1}{2\lambda}\overline{\delta}^{2} + \frac{\sigma}{2\gamma}\theta^{2}$$

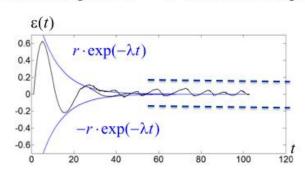
$$\dot{V}(\varepsilon,\tilde{\theta}) \leq -kV(\varepsilon,\tilde{\theta}) + \overline{\Delta}$$

$$k = \min\left\{\lambda, \frac{\sigma}{\gamma}\right\} \quad (4.13)$$

Solution #2

$$\dot{V}(\varepsilon) \le -kV(\varepsilon) + \overline{\Delta} \qquad \Rightarrow \qquad V(t) \le \exp(-kt)V(0) \left(1 - \frac{\overline{\Delta}}{k}\right) + \frac{\overline{\Delta}}{k}V(0)$$

Exponential convergence of E to bounded set is proved



Summary

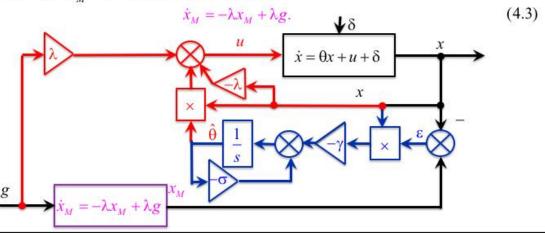
Adjustable controller:

$$u = -\hat{\theta}x - \lambda x + \lambda g \tag{4.8}$$

Robust modification of adaptation algorithm:

$$\dot{\hat{\theta}} = -\gamma x \varepsilon - \sigma \hat{\theta} \tag{4.9}$$

with $\varepsilon = x_M - x$ and reference model

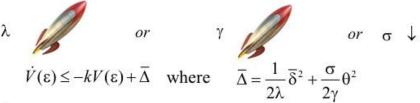


Solution #2

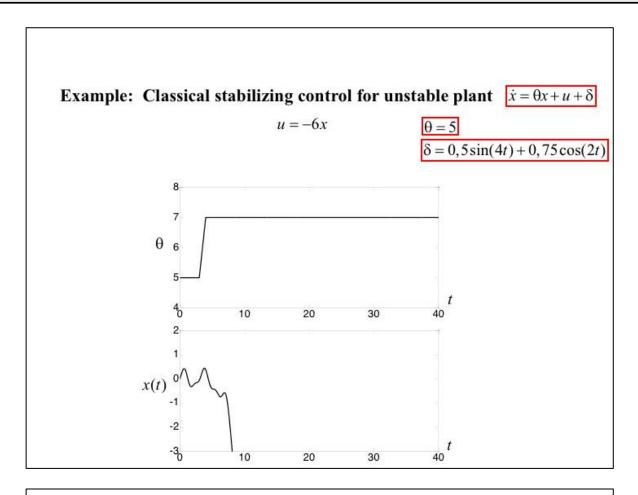
Summary

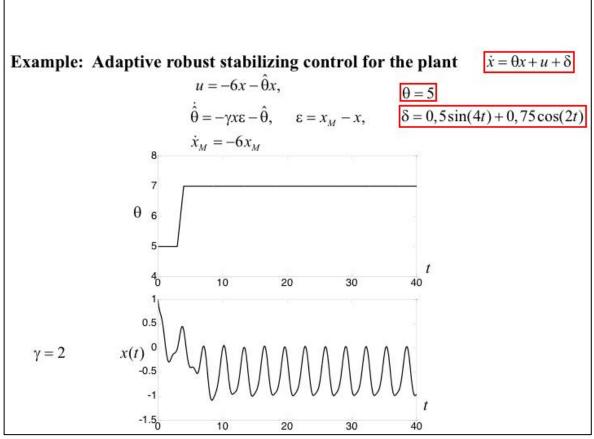
Properties of the closed-loop robust system:

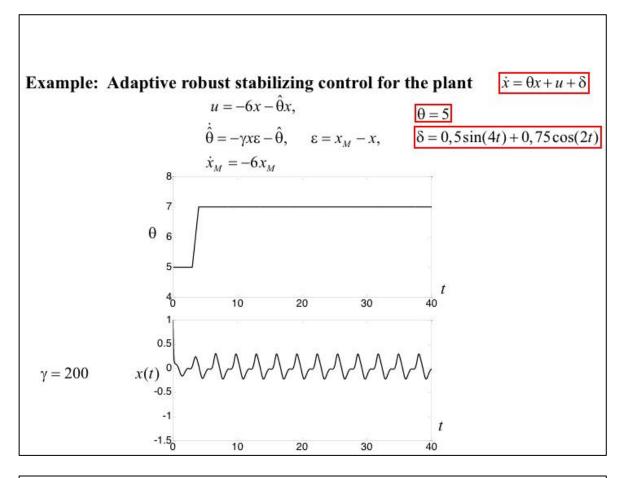
- 1. All signals in the system are bounded;
- 2. Control error $\varepsilon = x_M x$ exponentially tends to the neighborhood of zero;
- 3. The radius of neighborhood can be arbitrary reduced by

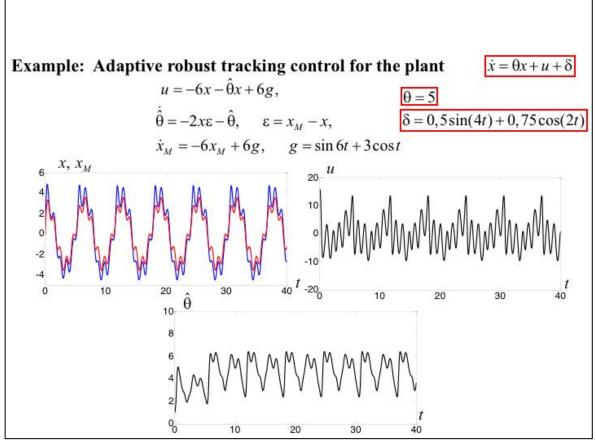


4. Algorithm provides the compensation of uncertainty. If the plant is not disturbed ($\delta = \overline{\delta} = 0$), the error $\varepsilon = x_M - x$ can go to zero, if $\sigma = 0$.









How to design an adaptive control?

5. Generalized Algorithm of Adaptive and Robust Controller Design

1. Problem statement of adaptive control:

Plant:

$$\dot{x} = f(\theta, x, u, \delta), \qquad x(0), \tag{5.1}$$

where θ is the vector of unknown parameters (or functions),

 $f \in R^n$ is continuous nonlinear mapping, $\delta \in R^m : ||\delta|| \le \overline{\delta}$ is the disturbance.

Objective is to design a control u providing the following inequality:

$$\left|x_{M}(t) - x(t)\right| \le \Delta \text{ for any } t \ge T,$$
 (5.2)

where x_M is the output of reference model

$$\dot{x}_M = A_M x_M + b_M g, \tag{5.3}$$

g is the reference signal, λ is the positive parameter.

2. Nonadaptive controller design:

Let the plant parameters (functions) θ be known.

Luggage of classical control theory

Nonadaptive control

$$u = U(\theta, x, e, g), \tag{5.4}$$

where $e = x_M - x$ is the control error, U is the nonlinear static or dynamical scalar function.

5. Generalized Algorithm of Adaptive and Robust Controller Design

3. Adjustable controller design

Parameters (functions) θ are unknown.

Substitute estimates $\hat{\theta}$ for θ in control (5.4) and obtain adjustable controller:

$$u = U(\hat{\theta}, x, e, g)$$

(5.5)

Substitute (38) into the plant $\dot{x} = f(\theta, x, u, \delta)$:

$$\dot{x} = f(\theta, x, U(\hat{\theta}, x, e, g), \delta)$$

Form the error $e = x_M - x$ and take its derivative:

Form the error $e = x_M - x$ and take its derivative:

$$\dot{e} = \dot{x}_M - \dot{x} = (-\lambda x_M + \lambda g) - f(\theta, x, U(\hat{\theta}, x, \varepsilon, g), \delta)$$

Signal Error Model

$$\dot{e} = E(e, \tilde{\theta}, t) \tag{5.6}$$

where E is the nonlinear static vector function,

 $\tilde{\theta} = \theta - \hat{\theta}$ is the parametric error.

5. Generalized Algorithm of Adaptive and Robust Controller Design

4. Adaptation algorithm design

Form the parametric error model

Parametric Error Model
$$\dot{\tilde{\theta}} = \Omega(e,t),$$
 (5.7)

where Ω is the implementable (measurable) function to be determined.

Adaptation algorithm:

$$\dot{\hat{\theta}} = -\Omega(e,t),$$
 $\dot{\tilde{\theta}} = -\dot{\hat{\theta}}$ (5.8)

5. Determination of Ω

Signal Error Model
$$\dot{e} = E(e, \tilde{\theta}, t)$$
 (5.6)

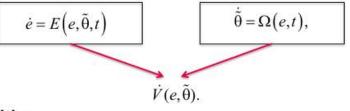
Parametric Error Model
$$\dot{\tilde{\theta}} = \Omega(e,t),$$
 (5.7)

Choose a Lyapunov function candidate

$$V = V(e, \tilde{\theta}, t).$$

Take its derivative in amount of (5.6) and (5.7) $\dot{V}(e, \tilde{\theta})$.

5. Generalized Algorithm of Adaptive and Robust Controller Design



Condition

gives
$$\dot{V}(e,\tilde{\theta}) < 0.$$

Adaptation algorithm: $\Omega(e,t)$

$$\dot{\hat{\theta}} = -\Omega(e, t) \tag{5.8}$$

Summary

Adjustable control

$$u = U(\hat{\theta}, x, \varepsilon, g) \tag{5.5}$$

Adaptation algorithm

$$\dot{\hat{\Theta}} = -\Omega(e, t) \tag{5.8}$$

5. Generalized Algorithm of Adaptive and Robust Controller Design

There is no any universal approach of Lyapunov function choice!

There is no any universal approach of Lyapunov function choice!

However, there are standard errors models with preliminary selected Lyapunov functions and designed Adaptation Algorithms

6. Standard Error Models and Adaptation Algorithms Design

6.1. Static Error Model

$$\varepsilon(t) = \tilde{\theta}^T(t)\omega(t), \tag{6.1}$$

where $\varepsilon(t)$ is the output, $\tilde{\theta}(t) = \theta - \hat{\theta}(t) \in \mathbb{R}^m$ is the vector of parametric errors, $\omega(t) \in \mathbb{R}^m$ is the vector of measurable functions (regressor).

Remark 6.1. The model is widely used in the problems of identification (see example below).

$$V = \frac{1}{2\gamma} \tilde{\theta}^T \tilde{\theta}$$
with a positive gain γ .
$$\dot{\tilde{\theta}} = -\dot{\hat{\theta}}$$
Time derivative:
$$\dot{V} = \frac{1}{\gamma} \tilde{\theta}^T \dot{\tilde{\theta}} = -\frac{1}{\gamma} \tilde{\theta}^T \dot{\hat{\theta}} = ?$$
(6.2)

$$\dot{\mathcal{V}} = \frac{1}{\gamma} \tilde{\theta}^{\mathcal{T}} \dot{\tilde{\theta}} = -\frac{1}{\gamma} \tilde{\theta}^{\mathcal{T}} \dot{\hat{\theta}} = -\frac{1}{\gamma} \tilde{\theta}^{\mathcal{T}} \gamma \omega \epsilon = -\epsilon^2 < 0$$

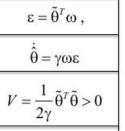
Summary and Discussion

Error Model

Adaptation Algorithm

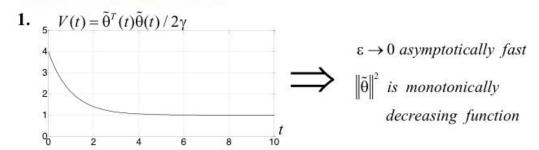
Lyapunov function

Its time derivative



 $\dot{V} = -\varepsilon^2 < 0$

6.1. Static Error Model



2. Example 6.1

For a given error model $\varepsilon = \tilde{\theta}_1 \omega_1 + \tilde{\theta}_2 \omega_2$ there are following scenarios:

a)
$$\omega_1 = 1$$
, $\omega_2 = 2$ and $\tilde{\theta}_1 \rightarrow 2$, $\tilde{\theta}_2 \rightarrow -1$ How many options for

b)
$$\omega_1 = 1$$
, $\omega_2 = 2$ and $\tilde{\theta}_1 \rightarrow 4$, $\tilde{\theta}_2 \rightarrow -2$

convergence?

c)
$$\omega_1 = \sin t$$
, $\omega_2 = 2\sin t$ and $\tilde{\theta}_1 \rightarrow 2$, $\tilde{\theta}_2 \rightarrow -1$

d)
$$\omega_1 = \sin t$$
, $\omega_2 = 2\sin \frac{2}{2}t$ and $\tilde{\theta}_1 \rightarrow ?$, $\tilde{\theta}_2 \rightarrow ?$

Example 6.2

For a given error model $\varepsilon = \tilde{\theta}_1 \omega_1 + \tilde{\theta}_2 \omega_2 + \tilde{\theta}_3 \omega_3$ there are following scenarios:

- a) $\omega_1 = \sin t$, $\omega_2 = 2\sin t$, $\omega_3 = 3\sin t$ and $\tilde{\theta}_{1,2,3} \rightarrow ?$
- b) $\omega_1 = \sin t$, $\omega_2 = 2\sin t$, $\omega_3 = 3\sin 2t$ and $\tilde{\theta}_{1,2,3} \rightarrow ?$
- c) $\omega_1 = \sin t$, $\omega_2 = 2\sin 3t$, $\omega_3 = 3\sin 2t$ and $\tilde{\theta}_{1,2,3} \rightarrow ?$
- d) $\omega_1 = \sin(t)$, $\omega_2 = 2\sin(t+\pi)$, $\omega_3 = 3\sin(t+\pi/2)$ and $\tilde{\theta}_{1,2,3} \rightarrow ?$
- e) $\omega_1 = \sin(2t)$, $\omega_2 = 2\sin(t+\pi)$, $\omega_3 = 3\sin(t+\pi/2)$ and $\tilde{\theta}_{1,2,3} \rightarrow ?$

6.1. Static Error Model

Example 6.2

For a given error model $\varepsilon = \tilde{\theta}_1 \omega_1 + \tilde{\theta}_2 \omega_2 + \tilde{\theta}_3 \omega_3$ there are following scenarios:

- a) $\omega_1 = \sin t$, $\omega_2 = 2\sin t$, $\omega_3 = 3\sin t$ and $\tilde{\theta}_{1,2,3} \to not$ ness. to zero
- b) $\omega_1 = \sin t$, $\omega_2 = 2\sin t$, $\omega_3 = 3\sin 2t$ and $\tilde{\theta}_{1,2,3} \rightarrow not$ ness. to zero
- c) $\omega_1 = \sin t$, $\omega_2 = 2\sin 3t$, $\omega_3 = 3\sin 2t$ and $\tilde{\theta}_{1,2,3} \rightarrow 0$
- d) $\omega_1 = \sin(t)$, $\omega_2 = 2\sin(t+\pi)$, $\omega_3 = 3\sin(t+\pi/2)$ and $\tilde{\theta}_{1,2,3} \to not \ n. \ to \ zero$
- e) $\omega_1 = \sin(2t)$, $\omega_2 = 2\sin(t+\pi)$, $\omega_3 = 3\sin(t+\pi/2)$ and $\tilde{\theta}_{1,2,3} \to 0$

Vector $\omega \in \mathbb{R}^m$ has to contain at least m/2 different harmonics to provide identification properties

Summary

Properties of the closed-loop robust system:

- 1. If ω is bounded, all signals in the system are bounded;
- 2. Error ε approaches zero asymptotically fast;
- 3. Function $\|\tilde{\theta}\|^2$ is monotonically nonincreasing;
- 4. $\|\tilde{\theta}\|^2$ approaches zero asymptotically fast, if ω contains at least m/2 harmonics and consists of linearly independent elements;

This property can be reformulated in terms of Persistent Excitation

Condition:

$$\int_{t}^{t+T} \omega(\tau)\omega^{T}(\tau)d\tau \ge \alpha I \tag{6.3}$$

for some positive α , T.

6.1. Static Error Model

Example 6.3. The problem of identification reduced to Static Error Model Problem statement

Let a plant be described by

$$\ddot{y} + a_1 \dot{y} + a_0 y = b_0 u \tag{6.4}$$

with unknown parameters a_0 , a_1 , b_0 and measurable input u and output y.

The objective is to design such estimates \hat{a}_0 , \hat{a}_1 , \hat{b}_0 that obey equalities

$$\lim_{t \to \infty} (a_0 - \hat{a}_0) = \lim_{t \to \infty} (a_1 - \hat{a}_1) = \lim_{t \to \infty} (b_0 - \hat{b}_0) = 0.$$
 (6.5)

Solution

1. Apply transfer function

$$H(s) = \frac{1}{K(s)} = \frac{1}{s^2 + k_1 s + k_0}$$

with Hurwitz polynomial $K(s) = s^2 + k_1 s + k_0$ to the plant (6.4) assuming initial conditions $y(0), \dot{y}(0)$ equaled to zero:

$$\ddot{y} + a_1 \dot{y} + a_0 y = b_0 u$$

$$\downarrow H(s)[\bullet]$$

$$\frac{s^2}{K(s)} [y] + a_1 \frac{s}{K(s)} [y] + a_0 \frac{1}{K(s)} [y] = b_0 \frac{1}{K(s)} [u]$$

6.1. Static Error Model

Solution

$$\frac{s}{K(s)}[y] + a_1 \frac{s}{K(s)}[y] + a_0 \frac{1}{K(s)}[y] = b_0 \frac{1}{K(s)}[u]$$

$$y + (a_1 - k_1) \frac{s}{K(s)}[y] + (a_0 - k_0) \frac{1}{K(s)}[y] = b_0 \frac{1}{K(s)}[u]$$

$$y = (k_1 - a_1) \frac{s}{K(s)}[y] + (k_0 - a_0) \frac{1}{K(s)}[y] + b_0 \frac{1}{K(s)}[u]$$

$$\theta_1 \qquad \theta_2 \qquad \theta_2 \qquad \theta_3 \qquad \theta_3$$

Parameterized plant
$$y = \theta^T \omega$$
 (6.6)
 $\theta = col(\theta_1, \theta_2, \theta_3), \quad \omega = col(\omega_1, \omega_2, \omega_3)$

Solution

2. Design of error

$$\varepsilon = y - \hat{\theta}^T \omega \tag{6.7}$$

where $\hat{\theta}$ is the estimate of θ .

Error model

 $\tilde{\theta} = \theta - \hat{\theta}$ is parametric error vector.

3. Adaptation algorithm design.

Adaptation algorithm
$$\dot{\hat{\theta}} = \gamma \omega \epsilon$$
 (6.8)

6.1. Static Error Model

Solution Summary

Error

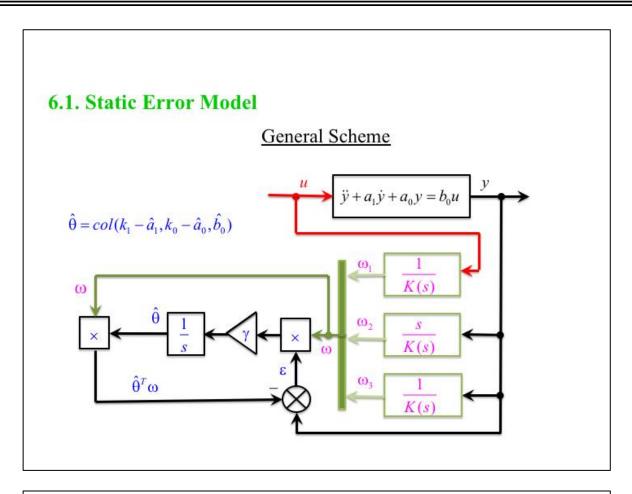
$$\varepsilon = y - \hat{\theta}^{T} \omega = y - (k_{1} - \hat{a}_{1}) \frac{s}{K(s)} [y] - (k_{0} - \hat{a}_{0}) \frac{1}{K(s)} [y] - \hat{b}_{0} \frac{1}{K(s)} [u]$$

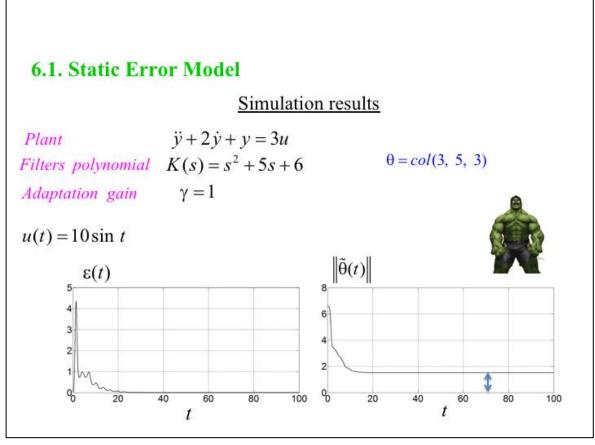
Adaptation Algorithms

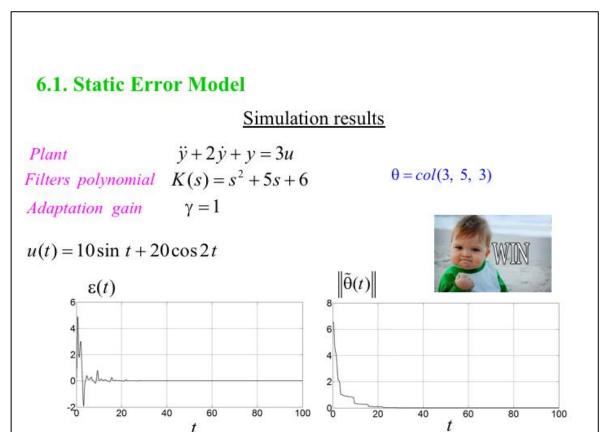
$$\dot{\hat{a}}_{0} = -\gamma \frac{1}{K(s)} [y] \varepsilon$$

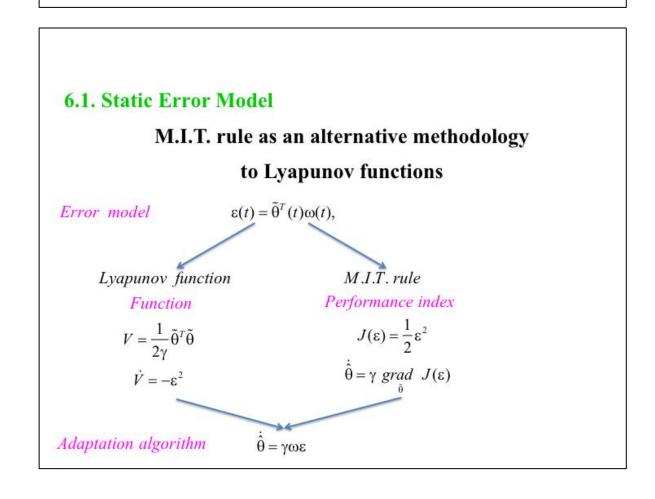
$$\dot{\hat{a}}_{1} = -\gamma \frac{s}{K(s)} [y] \varepsilon$$

$$\dot{\hat{b}}_{0} = \gamma \frac{1}{K(s)} [u] \varepsilon$$









$$\dot{e}(t) = Ae(t) + b\tilde{\theta}^{T}(t)\omega(t),$$

$$\varepsilon(t) = Ce(t)$$
(6.9)

where $e \in {}^{\sim n}$ is the state ε is the output, $\tilde{\theta} \in {}^{\sim m}$ is the vector of parametric errors, $\omega \in {}^{\sim m}$ is the vector of measurable functions (regressor).

Remark 6.2. The model is widely used in the problems of state adaptive control (see example below).

$$V = \frac{1}{2}e^{T}Pe + \frac{1}{2\gamma}\tilde{\theta}^{T}\tilde{\theta}$$
 (6.10)

with a positive gain γ and positively defined symmetric matrix $P = P^T > 0$ defined later.

6.2. Dynamic error model with measurable state

Time derivative:

$$\dot{\hat{\theta}} = Ae + b\tilde{\theta}^{T}\omega$$

$$\dot{\hat{\theta}} = -\dot{\hat{\theta}}$$

$$\dot{\hat{\theta}} = -\dot{\hat{\theta}}$$

$$\dot{\hat{\theta}} = -\dot{\hat{\theta}}$$

$$\dot{\hat{\theta}} = \frac{1}{2}\dot{e}^{T}Pe + \frac{1}{2}e^{T}P\dot{e} + \frac{1}{\gamma}\tilde{\theta}^{T}\dot{\hat{\theta}} = \frac{1}{2}\left(Ae + b\tilde{\theta}^{T}\omega\right)^{T}Pe + \frac{1}{2}e^{T}P\left(Ae + b\tilde{\theta}^{T}\omega\right) - \frac{1}{\gamma}\tilde{\theta}^{T}\dot{\hat{\theta}} = \frac{1}{2}e^{T}A^{T}Pe + \frac{1}{2}e^{T}PAe + b^{T}\tilde{\theta}^{T}\omega Pe - \frac{1}{\gamma}\tilde{\theta}^{T}\dot{\hat{\theta}} = \frac{1}{2}e^{T}\left(A^{T}P + PA\right)e + \tilde{\theta}^{T}\omega b^{T}Pe - \frac{1}{\gamma}\tilde{\theta}^{T}\dot{\hat{\theta}}$$

Since matrix A is Hurwitz, it is related to the matrix P via Lyapunov equation $A^TP + PA = -Q$ with $Q = Q^T > 0$

$$\dot{V} = -\frac{1}{2}e^{T}Qe + \tilde{\theta}^{T}\omega b^{T}Pe - \frac{1}{\gamma}\tilde{\theta}^{T}\dot{\hat{\theta}}$$
Adaptation algorithm?

$$\dot{V} = -\frac{1}{2}e^{T}Qe + \tilde{\theta}^{T}\omega b^{T}Pe - \frac{1}{\gamma}\tilde{\theta}^{T}\dot{\hat{\theta}}$$

If
$$\dot{\hat{\theta}} = \gamma \omega b^T P e$$
,

$$\dot{V} = -\frac{1}{2}e^{T}Qe < 0 \tag{6.11}$$

6.2. Dynamic error model with measurable state

Summary and Discussion

Error Model

 $\dot{e} = Ae + b\tilde{\Theta}^T \omega$

Adaptation Algorithm

 $\dot{\hat{\theta}} = \gamma \omega b^T P e$

Lyapunov function

 $V = \frac{1}{2}e^{T}Pe + \frac{1}{2\gamma}\tilde{\Theta}^{T}\tilde{\Theta}$

Its time derivative

 $\dot{V} = -\frac{1}{2}e^{T}Qe < 0$

-What it means?

Summary

Properties of the closed-loop robust system:

- 1. If ω is bounded, all signals in the system are bounded;
- 2. Error ||e|| approaches zero asymptotically fast;
- 3. Function $\|\tilde{\theta}\|^2$ is monotonically nonincreasing;
- 4. $\|\tilde{\theta}\|^2$ approaches zero asymptotically fast, if ω contains at least m/2 harmonics and consists of linearly independent elements;

This property can be reformulated in terms of Persistent Excitation

Condition:

$$\int_{t}^{t+T} \omega(\tau) \omega^{T}(\tau) d\tau \ge \alpha I$$

for some positive α , T.

6.2. Dynamic error model with measurable state

Example 6.4. The problem of state adaptive control

Problem statement

Let a plant be described by

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -a_0 & -a_1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ b_0 \end{bmatrix} u$$

$$(6.12)$$

with **unknown** parameters a_0 , a_1 , known b_0 and measurable state input u and output \mathcal{Y} .

The objective is to design a control u such that

$$\lim_{t \to \infty} ||x_M - x|| = 0 \tag{6.13}$$

 x_M is the state of reference model

$$\begin{bmatrix} \dot{x}_{M1} \\ \dot{x}_{M2} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -a_{M0} & -a_{M1} \end{bmatrix} \begin{bmatrix} x_{M1} \\ x_{M2} \end{bmatrix} + \begin{bmatrix} 0 \\ b_{M0} \end{bmatrix} g$$

$$\dot{x}_{M} \qquad X_{M} \qquad b_{M}$$

$$(6.14)$$

with parameters a_{M0} , a_{M1} , b_{M0} responsible for transient performance of the closed-loop system and reference signal g.

Main idea of solution is to reduce the problem to the error model.

Then to get the adaptation algorithm. iNSiGH

6.2. Dynamic error model with measurable state

Solution

1. Let the parameters a_0 , a_1 be known.

Form the error signal $e = x_M - x$ and take its derivative in amount of plant and reference model equations:

$$\dot{e} = \dot{x}_M - \dot{x} = A_M x_M + b_M g - Ax - bu$$

Let $\dot{e} \triangleq A_M e$ $(e(t) = \exp(A_M t)e(0) \rightarrow 0$ exponentially fast).

Then

$$A_{M}x_{M} + b_{M}g - Ax - bu \triangleq A_{M}e$$

$$A_{M}x_{M} + b_{M}g - Ax - bu \triangleq A_{M}x_{M} - A_{M}x$$

$$bu = (A_{M} - A)x + b_{M}g$$

6.2. Dynamic error model with measurable state

Solution

2. Let the parameters a_0 , a_1 be unknown. Control

$$u = \frac{1}{b_0} \left[\theta^T x + b_{M0} g \right]$$

is not implementable. Substitute estimate $\hat{\theta}$ for θ and obtain implementable adjustable control:

Adjustable control
$$u = \frac{1}{b_0} \left[\hat{\theta}^T x + b_{M0} g \right]$$
 (6.16)

Replace (6.16) in the plant equation $\dot{x} = Ax + bu$:

$$\dot{x} = A x + b \frac{1}{b_0} \left[\hat{\theta}^T x + b_{M0} g \right]$$

Solution

Evaluate time derivative of error:

$$\dot{e} = \dot{x}_{M} - \dot{x} = A_{M} x_{M} + b_{M} g - A x - b \frac{1}{b_{0}} \left[\hat{\theta}^{T} x + b_{M0} g \right] \pm A_{M} x$$

$$\dot{e} = A_{M} e + b_{M} g + (A_{M} - A) x - b \frac{1}{b_{0}} \left[\hat{\theta}^{T} x + b_{M0} g \right]$$

$$\downarrow \downarrow$$

$$\left[\dot{e}_{1} \\ \dot{e}_{2} \right] = \begin{bmatrix} 0 & 1 \\ -a_{M0} & -a_{M1} \end{bmatrix} \begin{bmatrix} e_{1} \\ e_{2} \end{bmatrix} +$$

$$\left[\begin{bmatrix} 0 & 1 \\ -a_{M0} & -a_{M1} \end{bmatrix} - \begin{bmatrix} 0 & 1 \\ -a_{0} & -a_{1} \end{bmatrix} \right] \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} - \begin{bmatrix} 0 \\ b_{0} \end{bmatrix} \frac{1}{b_{0}} \hat{\theta}^{T} x$$

6.2. Dynamic error model with measurable state

Solution

$$\begin{bmatrix} \dot{e}_1 \\ \dot{e}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -a_{M0} & -a_{M1} \end{bmatrix} \begin{bmatrix} e_1 \\ e_2 \end{bmatrix} + \begin{bmatrix} 0 \\ (a_0 - a_{M0}) + (a_1 - a_{M1}) \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} - \begin{bmatrix} 0 \\ 1 \end{bmatrix} \hat{\theta}^T x$$

$$\dot{e} = A_M \ e + k \theta^T x - k \hat{\theta}^T x$$

$$\dot{e} = A_M \ e + k \tilde{\theta}^T x$$
with parametric error $\tilde{\theta} = \theta - \hat{\theta}$. (6.17)

with parametric error 0 – 0

Solution

Error model

Error model
$$\dot{e} = A_M \ e + k\tilde{\Theta}^T x$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$
Adaptation Algorithm $\dot{\hat{\theta}} = \gamma x k^T P e$ (6.18)

where γ is a positive gain, $P = P^T > 0$ is the solution of Lyapunov equation

$$A_M^T P + P A_M = -Q (6.19)$$

with preliminary selected $Q = Q^T > 0$.

6.2. Dynamic error model with measurable state

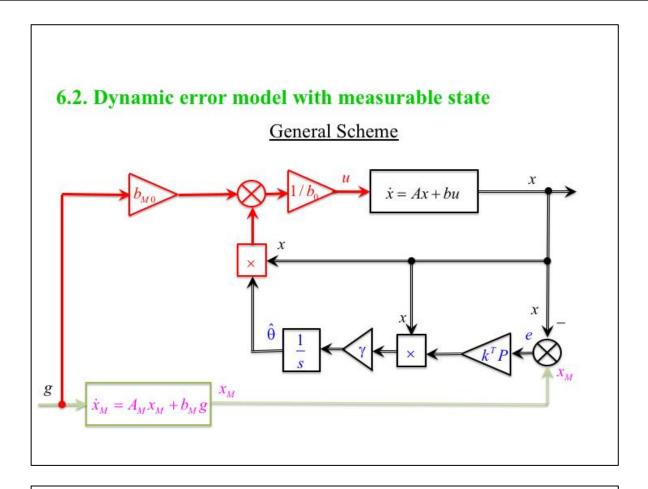
Solution Summary

Adjustable control
$$u = \frac{1}{b_0} \left[\hat{\theta}^T x + b_{M0} g \right]$$
 (6.16)

Adaptation Algorithm
$$\dot{\hat{\theta}} = \gamma x k^T P e \tag{6.18}$$

Error
$$e = x_M - x$$

Lyapunov equation
$$A_M^T P + P A_M = -Q$$
 (6.19)



Simulation results

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -a_0 & -a_1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u \qquad a_0 = 1, \ a_1 = -2$$

Unknown parameters

$$a_0 = 1, \ a_1 = -2$$

Reference model

$$\begin{bmatrix} \dot{x}_{M1} \\ \dot{x}_{M2} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -6 & -5 \end{bmatrix} \begin{bmatrix} x_{M1} \\ x_{M2} \end{bmatrix} + \begin{bmatrix} 0 \\ 6 \end{bmatrix} g$$

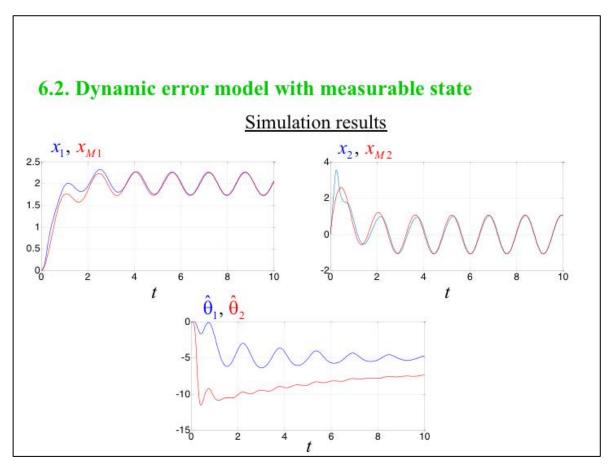
Adaptation gain

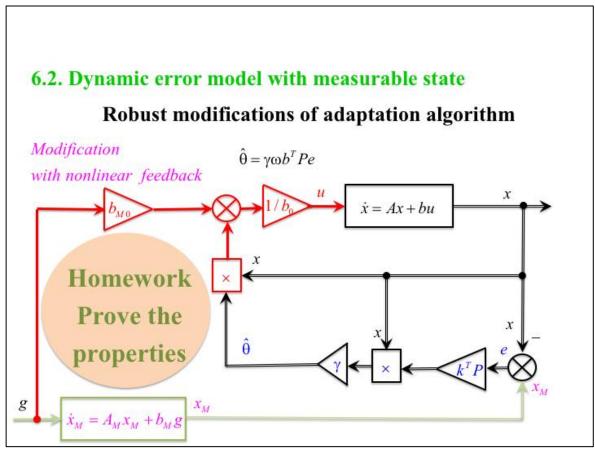
$$\gamma = 100$$

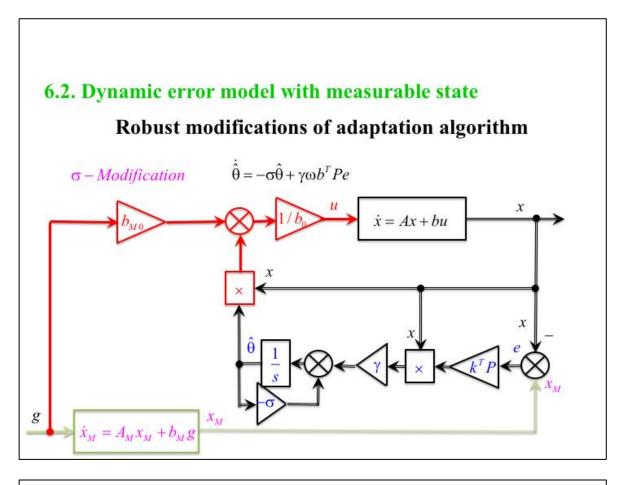
$$P = \begin{bmatrix} 1.1167 & 0.0833 \\ 0.0833 & 0.1167 \end{bmatrix}$$

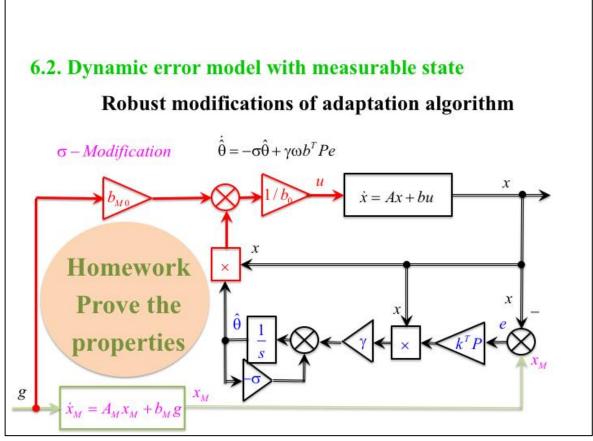
Reference

$$g(t) = \sin 4t + 2$$









$$\dot{e}(t) = Ae(t) + b\tilde{\theta}^{T}(t)\omega(t),$$

$$\varepsilon(t) = Ce(t)$$
(6.20a)

where $e \in {}^{\sim n}$ is the unmeasurable state ε is the output, $\tilde{\theta} \in {}^{\sim m}$ is the vector of parametric errors, $\omega \in {}^{\sim m}$ is the vector of measurable functions (regressor).

Remark 6.3. Since vector is not measurable, the model (6.20a) can be presented in the "Input-Output" form

$$\varepsilon(t) = W(s) \left[\tilde{\theta}^{T}(t)\omega(t) \right]$$
 (6.20b)

with transfer function $W(s) = C(Is - A)^{-1}b$.

6.3. Dynamic error model with measurable output

Remark 6.4. The model is widely used in the problems of output adaptive control (see example below).

The problem is to design an adaptation algorithm/algorithms based on (6.20)

Solution #1

Can we just apply adaptation algorithm $\dot{\hat{\theta}} = \gamma \omega \epsilon$

used for static error model?

IF YES, WHEN???

6.3. Dynamic error model with measurable output

Solution #1

If $b^T P = C$, adaptation algorithm becomes implementable, since

$$\dot{\hat{\boldsymbol{\theta}}} = \boldsymbol{\gamma} \boldsymbol{\omega} \boldsymbol{b}^T \boldsymbol{P} \boldsymbol{e} = \boldsymbol{\gamma} \boldsymbol{\omega} \boldsymbol{\varepsilon} \tag{6.21}$$

Solution #1

Lemma (Yakubovich-Kalman-Popov):

Matrix $P = P^T > 0$ obeys Lyapunov equation

$$A^T P + PA = -O$$

and equation

$$b^T P = C$$

simultaniously, iff transfer function

$$W(s) = C(Is - A)^{-1}b.$$

is Strictly Positive Real (SPR).

6.3. Dynamic error model with measurable output

Solution #1

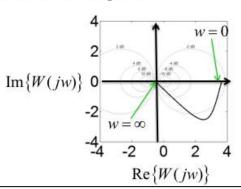
Definition 6.1. Transfer function $W(s) = C(Is - A)^{-1}b$ is **SPR** if

- 1. It is stable, i.e. polynomial of its denominator is Hurwitz (has all the roots in the left half plane of root locus);
- 2. Nyiqust plot is placed in the right half plane of the diagram.

$$\operatorname{Re}\{W(jw)\} > 0, \ \forall w \in [0, \infty).$$

3. The limit equality hold

$$\lim_{w\to\infty} w^2 \operatorname{Re}\{W(jw)\} > 0$$



Example 6.5. SPR transfer function of first order block

$$W(s) = \frac{K}{Ts + 1}$$

with some positive constant parameters K and T.

Verification

1. Frequency transfer function

$$W(jw) = \frac{K}{Tjw+1} = \frac{K(-Tjw+1)}{(Tjw+1)(-Tjw+1)} = \frac{K}{T^2w^2+1} - j\frac{KTw}{T^2w^2+1}$$

- 2. The first condition: $Ts + 1 = 0 \Rightarrow s_1 = -1/T \Rightarrow W(s)$ is Hurwitz
- 3. The second condition:

$$\operatorname{Re}\{W(jw)\} = \frac{K}{T^2 w^2 + 1} > 0, \ \forall w \in [0, \infty).$$

6.3. Dynamic error model with measurable output

4. The third condition:

$$\lim_{w \to \infty} w^2 \operatorname{Re} \{ W(jw) \} = \lim_{w \to \infty} \frac{Kw^2}{T^2 w^2 + 1} = \frac{K}{T^2} > 0.$$

4. The third condition:

$$\lim_{w \to \infty} w^2 \operatorname{Re} \{ W(jw) \} = \lim_{w \to \infty} \frac{Kw^2}{T^2 w^2 + 1} = \frac{K}{T^2} > 0.$$

SPR transfer function is a function with property of the first order block, i.e. relative degree less than 2 (0 or 1)

6.3. Dynamic error model with measurable output

Remark 6.5. One-syllable words about adaptation algorithm and SPR transfer functions



Error model

$$\varepsilon(t) = W(s) \left[\tilde{\theta}^T(t) \omega(t) \right]$$

Adaptation algorithm

$$\dot{\hat{\theta}}(t) = -\dot{\hat{\theta}}(t) = -\gamma \,\omega(t) \varepsilon(t)$$

Solution #1

Summary and Discussion

Error Model $\varepsilon = W(s) \left[\tilde{\theta}^T \omega \right],$ Adaptation Algorithm $\dot{\hat{\theta}} = \gamma \omega \varepsilon,$

where W(s) is an SPR transfer function.

SPR condition is quite restrictive and can narrow practical meaning of the problem

6.3. Dynamic error model with measurable output

Solution #2 Augmented error algorithm

Consider error model

$$\varepsilon = W(s) \left[\tilde{\Theta}^T \omega \right]$$

and introduce augmentation signal

$$\hat{\varepsilon} = \varepsilon - \hat{\theta}^T W(s) [\omega] + W(s) [\hat{\theta}^T \omega].$$
 (6.22)

Substitution of error model into (6.22) gives static error model !!!

$$\hat{\mathbf{\epsilon}} = \tilde{\mathbf{\Theta}}^T W(s) [\boldsymbol{\omega}]. \tag{6.23}$$

Adaptation algorithm (see section 6.1. Static error model)

$$\dot{\hat{\theta}} = \gamma W(s) [\omega] \hat{\varepsilon}. \tag{6.24}$$

Solution #2 Augmented error algorithm

Summary and Discussion

Error Model $\varepsilon = W(s) \left[\tilde{\theta}^T \omega \right],$ Augmented error $\hat{\varepsilon} = \varepsilon - \hat{\theta}^T W(s) \left[\omega \right] + W(s) \left[\hat{\theta}^T \omega \right],$ Adaptation Algorithm $\hat{\theta} = \gamma W(s) \left[\omega \right] \hat{\varepsilon}.$

Proved by the Swapping lemma:

$$W(s) \left[\hat{\theta}^T \omega \right] = \hat{\theta}^T W(s) \left[\omega \right] - W_C(s) \left[W_b(s) \left[\omega^T \right] \dot{\hat{\theta}} \right]$$

with $W_C(s) = C(Is - A)^{-1}$, $W_b(s) = (Is - A)^{-1}b$ are the transfer matrices.

6.3. Dynamic error model with measurable output

Example 6.6. The problem of output adaptive control

Problem statement

Let a plant be described by

$$\ddot{y} + a_1 \dot{y} + a_0 y = b_0 u \tag{6.25}$$

with **unknown** parameters a_0 , a_1 , known b_0 and unmeasurable state \dot{y} , known input u and output y.

The objective is to design a control u such that

$$\lim_{t \to \infty} ||y_M - y|| = 0, \tag{6.26}$$

where y_M is the output of reference model

$$\ddot{y}_M + a_{M1}\dot{y}_M + a_{M0}y_M = b_{M0}g \tag{6.27}$$

with reference signal g.

Solution

1. Obstacle of unmeasurable state.

Apply first order (n-1th) filter

$$\frac{1}{s+k}$$
, $k>0$

to the plant equation:

$$\frac{1}{s+k} [\ddot{y} + a_1 \dot{y} + a_0 y] = b_0 \frac{1}{s+k} [u]$$

$$\frac{s}{s+k} [\dot{y}] + a_1 \frac{s}{s+k} [y] + a_0 \frac{1}{s+k} [y] = b_0 \frac{1}{s+k} [u]$$

$$\dot{y} = (k-a_1) y + (a_1 k - k^2 - a_0) \frac{1}{s+k} [y] + b_0 \frac{1}{s+k} [u]$$

6.3. Dynamic error model with measurable output

Solution

$$\dot{y} = (k - a_1) y + (a_1 k - k^2 - a_0) \frac{1}{s + k} [y] + b_0 \frac{1}{s + k} [u]$$

$$\theta_1^* \quad \omega_1 \qquad \theta_2^* \qquad \omega_2 \qquad \theta_3^* \quad \omega_3$$

$$\dot{y} = \theta^{*T} \omega$$

The derivative \dot{y} is still not accessible, however presentable in the useful form of linear regression

Solution

2. Obstacle of unknown parameters.

Main idea of solution is to reduce the problem to the error model.

Then to get the adaptation algorithm. iNSiGE

6.3. Dynamic error model with measurable output

Solution

2. Obstacle of unknown parameters.

Evaluate the **second** time derivative of error $\varepsilon = y_M - y$ in view of plant $\ddot{y} + a_1 \dot{y} + a_0 y = b_0 u$

and reference model $\ddot{y}_M + a_{M1}\dot{y}_M + a_{M0}y_M = b_{M0}g$:

$$\begin{split} \ddot{\varepsilon} &= \ddot{y}_{M} - \ddot{y} = -a_{M1}\dot{y}_{M} - a_{M0}y_{M} + b_{M0}g + a_{1}\dot{y} + a_{0}y - b_{0}u \\ \ddot{\varepsilon} &= -a_{M1}(\dot{y}_{M} \pm \dot{y}) - a_{M0}(y_{M} \pm \dot{y}) + b_{M0}g + a_{1}\dot{y} + a_{0}y - b_{0}u = \\ -a_{M1}\dot{\varepsilon} - a_{M1}\dot{y} - a_{M0}\varepsilon - a_{M0}y + b_{M0}g + a_{1}\dot{y} + a_{0}y - b_{0}u \end{split}$$

$$\varepsilon = \frac{1}{s^2 + a_{M1}s + a_{M0}} \left[-a_{M1}\dot{y} - a_{M0}y + b_{M0}g + a_1\dot{y} + a_0y - b_0u \right]$$

Solution

$$\varepsilon = \frac{1}{s^{2} + a_{M1}s + a_{M0}} \left[-a_{M1}\dot{y} - a_{M0}y + b_{M0}g + a_{1}\dot{y} + a_{0}y - b_{0}u \right]$$

$$W_{M}(s)$$

$$\varepsilon = W_{M}(s) \left[\left(a_{1} - a_{M1} \right) \dot{y} + \left(a_{0} - a_{M0} \right) y + b_{M0} g - b_{0} u \right]$$

$$\varepsilon = W_M(s) \Big[(a_1 - a_{M1}) \dot{y} + (a_0 - a_{M0}) y + b_{M0} g - b_0 u \Big]$$

$$\dot{y} = \theta^{*T} \omega$$

$$\varepsilon = W_M(s) \Big[\theta^T \omega + b_{M0} g - b_0 u \Big]$$

6.3. Dynamic error model with measurable output

Solution

$$\varepsilon = W_M(s) \left[\theta^T \omega + b_{M0} g - b_0 u \right] =$$

where $\omega = col\left(y, \frac{1}{s+k}[y], \frac{1}{s+k}[u]\right)$

 $\theta = col(k - a_1 + a_0 - a_{M0}, a_1k - k^2 - a_0, b_0)$

Adjustable control $u = \frac{1}{b_0} \left[\hat{\theta}^T \omega + b_{M0} g \right]$ (6.28)

Error model $\varepsilon = W_M(s) \left[\tilde{\theta}^T \omega \right]$

(6.29)

with parametric errors $\tilde{\theta} = \theta - \hat{\theta}$.

Solution

$$\varepsilon = W_M(s) \left[\tilde{\Theta}^T \omega \right]$$

where

Augmented error
$$\hat{\varepsilon} = \varepsilon - \hat{\theta}^T W_M(s) [\omega] + W_M(s) [\hat{\theta}^T \omega], \qquad (6.30)$$

Adaptation Algorithm
$$\dot{\hat{\theta}} = \gamma W_M(s) [\omega] \hat{\epsilon}$$
. (6.31)

6.3. Dynamic error model with measurable output

Solution Summary

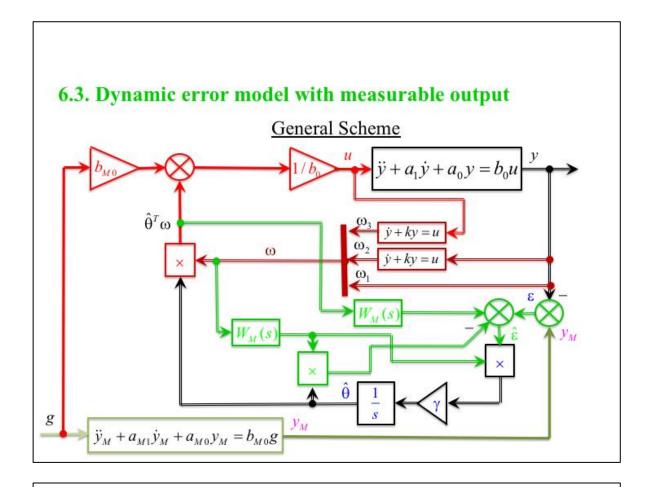
Adjustable control
$$u = \frac{1}{b_0} \left[\hat{\theta}^T \omega + b_{M0} g \right]$$
 (6.28)

Augmented error
$$\hat{\varepsilon} = \varepsilon - \hat{\theta}^T W_M(s) [\omega] + W_M(s) [\hat{\theta}^T \omega], \qquad (6.30)$$

Adaptation Algorithm
$$\dot{\hat{\theta}} = \gamma W_M(s) [\omega] \hat{\epsilon}.$$
 (6.31)

Error
$$\varepsilon = y_M - y$$

Regressor with filters
$$\omega = col\left(y, \frac{1}{s+k}[y], \frac{1}{s+k}[u]\right)$$



Simulation results

Plant

$$\ddot{y} + a_1 \dot{y} + a_0 y = u$$

Unknown parameters

$$a_0 = 1$$
, $a_1 = 2$

Reference model

$$\ddot{y}_M + 5\dot{y}_M + 6y_M = 6g$$

Adaptation gain

$$\gamma = 1000$$

Reference transfer function (with unity denominator)

$$W_M(s) = \frac{1}{s^2 + 5s + 6}$$

Reference

$$g(t) = \sin 4t + 2$$

Simulation results

Regressor

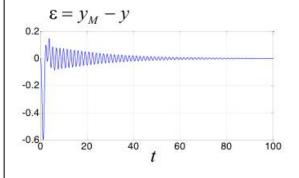
$$\omega = col\left(y, \frac{1}{s+8}[y], \frac{1}{s+8}[u]\right)$$

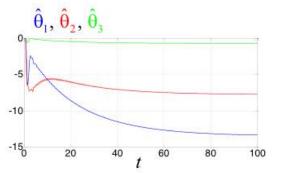
Augmented error
$$\hat{\varepsilon} = \varepsilon - \hat{\theta}^T \frac{1}{s^2 + 5s + 6} \left[\omega \right] + \frac{1}{s^2 + 5s + 6} \left[\hat{\theta}^T \omega \right],$$

Error
$$\varepsilon = y_M - y$$

6.3. Dynamic error model with measurable output

Simulation results





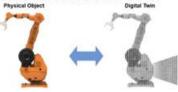
Digital twins

Cyber-physical systems Digital twins

Alexey Margun alexeimargun@gmail.com

Digital twins

Digital Twin is a software analogue of a physical device that simulates internal processes, technical characteristics and behavior of a real object under the influence of the environment.



- Online copy of a real technical system (digital shadow)
- Offline modeling of technical systems

Digital twins

Problems:

- Unknown parameters
- · Parameters changing
- Absence of sensors
- External noises and disturbances

Possible solutions:

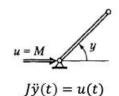
- Identification of unknown parameters
- Observers instead of sensors

Input-output model

$$x_{2} = U \xrightarrow{DC} x_{1} = \omega$$

$$T\dot{x}_{1}(t) + x_{1}(t) = kx_{2}(t)$$

$$x_{1}(t) = k(1 - e^{-t/T})x_{2}$$



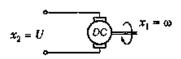
Laplace transformation ($p = \frac{d}{dt}$): $\dot{x}_1 = px_1$, $\int x = \frac{x}{p}$.

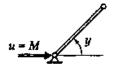
$$a(p)y(t)=b(p)u(t),$$

$$a(p)=a_op^n+a_1p^{n-1}+\cdots+a_{n-1}p+a_n \text{ is a characteristic}$$
 polynomial
$$b(p)=b_op^m+b_1p^{m-1}+\cdots+b_{m-1}p+b_m.$$

Input-output model

$$y(t) = W(p)u(t), W(p) = \frac{b(p)}{a(p)}$$
 is a transfer function





$$y(t) = \frac{k}{Tp+1}u(t)$$

$$\xrightarrow{k} y(t)$$

$$y(t) = \frac{1}{p^2}u(t)$$

$$u(t) \longrightarrow \frac{1}{p^2} \longrightarrow y(t)$$

State space model

All linear differential equations ca be written as

$$\dot{x}_1 = a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n + b_1u,$$

$$\dot{x}_2 = a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n + b_2u,$$

$$\vdots$$

$$\dot{x}_n = a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n + b_nu,$$

$$y(t) = c_1x_1(t) + c_2x_2(t) + \dots + c_nx_n(t).$$

In matrix representation:

$$\dot{x} = Ax + Bu,$$

$$y = Cx$$

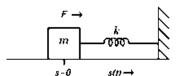
$$x = \begin{vmatrix} x_1 \\ \dots \\ x_n \end{vmatrix}, A = \begin{vmatrix} a_{11} & \dots & a_{1n} \\ \dots & \dots & \dots \\ a_{n1} & \dots & a_{nn} \end{vmatrix}, B = \begin{vmatrix} b_1 \\ \dots \\ b_n \end{vmatrix}, C = \begin{bmatrix} c_1 & \dots & c_n \end{bmatrix}$$

State space model. Example

Dynamic equations:

$$\dot{s} = v$$

$$m\dot{v} = F - ks - hv$$



State space model:

$$\dot{x} = Ax + Bu,$$

$$v = Cx$$

Let us choose state vector as $x = \begin{vmatrix} s \\ v \end{vmatrix}$.

$$A = \begin{vmatrix} 0 & 1 \\ -k/m & -h/m \end{vmatrix}, B = \begin{vmatrix} 0 \\ 1/m \end{vmatrix}, C = \begin{vmatrix} 1 & 0 \\ 0 & -h/m \end{vmatrix}.$$
$$x(t) = x_{free} + x_{forced} = e^{At}x_0 + \int_0^t e^{A(t-\tau)}Bu(\tau)d\tau$$

State space model. Change of coordinates

Consider new state vector:

$$x^* = Px$$

P is a transformation matrix, $\det P \neq 0$.

Inverse transformation:

$$x = P^{-1}x^*$$

Model in new coordinates:

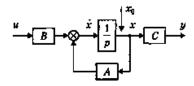
$$\dot{x}^* = A^*x^* + B^*u$$

 $y^* = C^*x^*$, $A^* = PAP^{-1}$, $B^* = PB$, $C^* = CP^{-1}$

Characteristic polynomial and poles of the system don't changes.

State space model

Modeling scheme



Transformation to input-output form:

$$W(p) = C(pI - A)^{-1}B,$$

$$I = \begin{vmatrix} 1 & 0 & 0 \\ 0 & \dots & 0 \\ 0 & 0 & 1 \end{vmatrix}$$

Characteristic polynomial:

$$\det(pI - A) = 0$$

State space model

Transformation to state space model:

$$W(p) = \frac{b_1 p^{n-1} + \dots + b_{n-1} p + b_n}{p^n + a_1 p^{n-1} + \dots + b_{n-1} p + b_n}$$

Canonical controlled form:

$$\begin{aligned}
\dot{x}_1 &= x_2 \\
\dot{x}_2 &= x_3
\end{aligned}$$

$$\begin{aligned} \dot{x}_n &= -a_n x_1 - a_{n-1} x_2 - \dots - a_1 x_n + u \\ y &= b_n x_1 + b_{n-1} x_2 + \dots + b_1 \\ A^* &= \begin{vmatrix} 0 & 1 & I \\ a^T \end{vmatrix} = \begin{vmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 1 \\ -a_n - a_{n-1} & \dots - a_1 \end{vmatrix}, B^* = \begin{vmatrix} 0 \\ 0 \\ \dots \\ 0 \\ 1 \end{vmatrix}, C^{*T} = \begin{vmatrix} b_n \\ b_{n-1} \\ \dots \\ b_2 \\ b_n \end{vmatrix}$$

Transformation matrix: $P=U^{\star}U^{-1}$, $U,\ U^{\star}$ are controllability matrices of canonical and original model

$$U=[B\,|\,AB\,|\,\dots\,|A^{n-1}B\,]$$

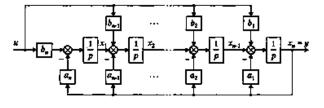
State space model

Transformation to state space model:

$$W(p) = \frac{b_1 p^{n-1} + \dots + b_{n-1} p + b_n}{p^n + a_1 p^{n-1} + \dots + b_{n-1} p + b_n} \quad \underline{\underline{\ }}$$

Canonical observed form:

$$\begin{split} \dot{x}_1 &= -a_n x_n + b_n u \\ \dot{x}_2 &= x_1 - a_{n-1} x_n + b_n u \\ \dot{x}_n &= x_{n-1} - a_1 x_n + b_1 u \\ y &= x_n \end{split}$$



$$A^* = \begin{vmatrix} 0^T | \\ \dots | a \\ I | \end{vmatrix} = \begin{vmatrix} 0 & 0 & \dots & 0 & -a_n \\ 1 & 0 & \dots & 0 & -a_{n-1} \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 0 & -a_2 \\ 0 & 0 & \dots & 1 & -a_1 \end{vmatrix}, B^* = \begin{vmatrix} b_n \\ b_{n-1} \\ \dots \\ b_2 \\ b_1 \end{vmatrix}, C^{*T} = \begin{vmatrix} 0 \\ 0 \\ \dots \\ 0 \\ 1 \end{vmatrix}$$
 ormation matrix: $P = (Q^*)^{-1}Q, Q, Q^*$ are observability matrix

Transformation matrix: $P=(Q^*)^{-1}Q$, Q , \bar{Q}^* are observability matrices of canonical and original model

$$Q^T = [C|CA|\dots|CA^{n-1}]$$

Identification. Scalar example

Identification is a set of methods for constructing mathematical models of a dynamic systems from observational data.

Consider plant:

$$y(t) = \theta^* u(t)$$

u(t) is a scalar input,

y(t) is a scalar output,

 θ^* is an unknown parameter.

The obvious solution:

$$\theta = \frac{y(t)}{u(t)}$$

Identification. Scalar example

Consider plant:

$$y(t) = \theta^* u(t)$$

u(t) is a scalar input,

y(t) is a scalar output,

 θ^* is an unknown parameter.

The obvious solution:

$$\theta = \frac{y(t)}{u(t)}$$

Doesn't work if u = 0. Hardly calculated if $u \to 0$. High influence of noises.

Online estimation

Let θ is an estimate of θ^* .

Parallel model:

$$\hat{y}(t) = \theta u(t)$$

Error:

$$e = y - \hat{y} = y - \theta u$$

Consider functional:

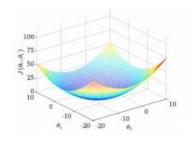
$$J(\theta) = \frac{e^2}{2} = \frac{(y - \theta u)^2}{2}$$

Goal: minimize $J(\theta)$

Online estimation

Let denote:

$$abla f(x) = \begin{bmatrix} \frac{\partial f(x)}{\partial x_1} \\ \dots \\ \frac{\partial f(x)}{\partial x_n} \end{bmatrix}$$
 is a gradient of $f(x)$.



Lemma. If $J \in C^1$ and is convex on R^n than θ^* is a global minimum if

$$\nabla J(\theta^*) = 0$$

Therefore, we need to solve equation $\nabla J(\theta^*)=0$ with respect to the θ^*

Gradient search. Discrete

The search for the minimum is in the direction of reducing the function $d_k = -\nabla J(\theta_k)$

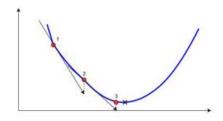
Identification algorithm:

$$\theta_{k+1} = \theta_k + \lambda_k d_k = \theta_k - \lambda_k \nabla J(\theta_k),$$

$$k = 0, 1, 2, ...$$

 λ_k is a step size

 θ_k is an estimate of θ on k-th step.

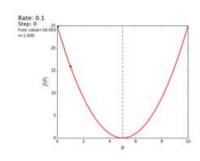


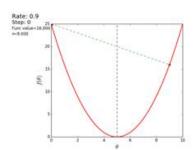
Gradient search. Discrete

Example:

$$y = (\theta - 5)^{2}$$
$$\frac{\partial y}{\partial \theta} = 2(\theta - 5)$$

Initial value $\theta = 0$.





Gradient search. Continuous

Rewrite algorithm as:

$$\frac{\theta_{k+1}-\theta_k}{\lambda_k}=-\nabla J(\theta)$$

If step is infinite small: $\lim_{\lambda_k \to 0} \frac{\frac{\kappa}{\theta_{k+1} - \theta_k}}{\lambda_k} = \dot{\theta}$

Algorithm takes the form:

$$\dot{\theta} = -\gamma \nabla J(\theta)$$

 $\gamma>0$ is a coefficient that regulates convergence speed

For scalar case

$$\dot{\theta} = -\gamma \nabla J(\theta) = \gamma (y - \theta u)u = \gamma e u, \theta(0) = \theta_0$$

Gradient search. Continuous

Consider estimation error:

$$\tilde{\theta} = \theta^* - \theta$$

Error transient:

$$\tilde{\theta}(t) = e^{-\gamma \int_0^t u^2(\tau) d\tau} \tilde{\theta}(0)$$

If u = 0 or $u = e^{-t}$, $\tilde{\theta}(t)$ will **not** converges to zero.

If $u^2 = \frac{1}{1+t'}$, $\tilde{\theta}(t)$ asymptotically converges to zero.

 $\tilde{\theta}(t)$ exponentially converges to zero if persistent excitation condition holds:

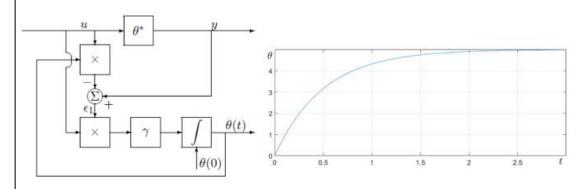
$$\int\limits_{t}^{t+T_{0}}u^{2}(\tau)d\tau\geq\alpha_{0}T_{0},\forall t\geq0$$

where α_0 , $T_0 > 0$

Gradient search. Example

Consider the system $y = \theta u$, $\theta = 5$

Identification algorithm: $\dot{\theta}=-\gamma\nabla J(\theta)=\gamma(y-\theta u)u=\gamma eu$ $\theta(0)=\theta_0, \gamma=2$



Gradient search. Normalization

For system $y(t) = \theta^* u(t)$ with unbounded y and u problem

$$\min_{\theta} J = \min_{\theta} \frac{(y - \theta u)^2}{2}$$

can become hard for computing.

Solution is a normalization

$$\begin{split} \bar{y}(t) &= \theta^* \bar{u}(t), \\ \bar{y}(t) &= \frac{y}{m}, \bar{u}(t) = \frac{u}{m}, m^2 = 1 + u^2 \end{split}$$

Gradient search:

$$\dot{\theta} = \gamma \bar{e} \bar{u}, \gamma > 0.$$

In origin coordinates:

$$\dot{\theta} = \frac{\gamma e u}{m^2}$$

Gradient search. Two unknown

Consider system

$$\dot{x} = -ax + bu, x(0) = x_0,$$

$$\dot{x} = \theta^T \phi, \theta = [a \ b]^T, \phi = [-x \ u]$$

where a>0 and b are unknown constants to be identified.

Parallel model:

$$\dot{\hat{x}}=-\hat{a}\hat{x}+\hat{b}\hat{u},\hat{x}(0)=\hat{x}_0$$

Error:

$$e = x - \hat{x}$$

Functional:

$$\begin{split} J(\theta) &= \frac{e^2}{2} \\ \dot{\theta} &= \gamma \nabla J(\theta), \dot{\hat{a}} &= -\gamma_1 e x, \dot{\hat{b}} &= \gamma_2 e u \end{split}$$

Gradient search. Two unknown

If \dot{x} is unmeasured.

Rewrite system:

$$\dot{x} = -a_m x + (a_m - a)x + bu$$
 или $x = \frac{1}{p + a_m}[(a_m - a)x + bu]$

 $a_m > 0$ is chosen by developer.

$$x = \theta^{*^T} \phi,$$

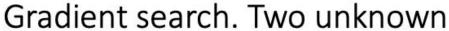
$$\theta^* = [b, a_m - a]^T, \phi = \left[\frac{1}{p + a_m} u, \frac{1}{p + a_m} x\right]^T$$

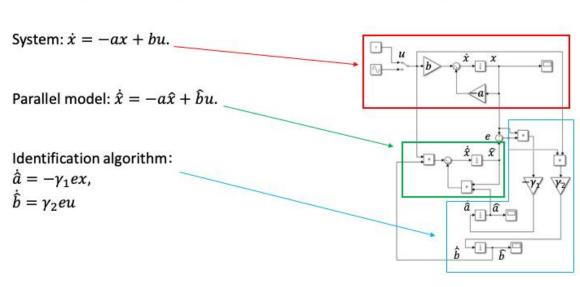
Error:

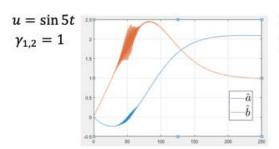
$$e = x - \hat{x}$$

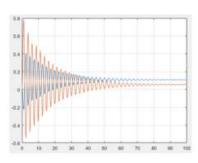
Serial-parallel model:

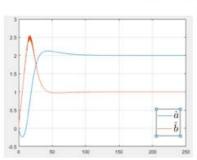
$$\begin{split} \dot{\hat{x}} &= -a_m \hat{x} + (a_m - \hat{a})x + \hat{b}u \text{ или } \hat{x} = \frac{1}{p+a_m} \big[(a_m - \hat{a})x + \hat{b}u \big] \\ J &= \frac{e^2}{2} \\ \theta &= [a \quad b]^T \\ \dot{\theta} &= \gamma \nabla J(\theta), \dot{\hat{a}} = -\gamma_1 ex, \dot{\hat{b}} = \gamma_2 eu \end{split}$$











Белый шум



Gradient search. Linear dynamic system

Linear dynamic system:

$$\dot{x} = A \quad x + B \quad u$$

$$A \quad \in R^{n \times n}, B \quad \in R^n, x \in R^n$$

Error:

$$e = x - \hat{x}$$

Functional:

$$J = \frac{e^T e}{2}$$

Parallel model:

$$\dot{\hat{x}} = \hat{A} \quad \hat{x} + \hat{B} \quad u, \hat{x} \in \mathbb{R}^n$$
$$\dot{\hat{A}} = \gamma_1 e x^T, \dot{\hat{B}} = \gamma_2 e u^T$$

or serial-parallel model

$$\dot{x} = A_m x + (A - A_m) x + B \quad u, A_m \in R^{n \times n}$$

$$\dot{\hat{x}} = A_m \hat{x} + (\hat{A} - A_m) \hat{x} + \hat{B} \quad u$$

$$\dot{\hat{A}} = \gamma_1 e x^T, \dot{\hat{B}} = \gamma_2 e u^T$$

System parametrization

Consider plant:

$$y^{(n)} + a_{n-1}y^{(n-1)} + \dots + a_0y = b_{n-1}u^{(n-1)} + b_{n-2}u^{(n-2)} + \dots + b_0u$$

Rewrite all parameters as vector

$$\theta^* = [b_{n-1}, b_{n-2}, ..., b_0, a_{n-1}, a_{n-2}, ..., a_0]^T$$

Rewrite input/output signals and their derivatives:

$$Y = \begin{bmatrix} u^{(n-1)}, u^{(n-2)}, \dots, u, -y^{(n-1)}, -y^{(n-2)}, \dots, -y \end{bmatrix}^T = \\ = \begin{bmatrix} \alpha_{n-1}^T(p)u, -\alpha_{n-1}^T(p)y \end{bmatrix}^T, \alpha_i(p) = \begin{bmatrix} p^i, p^{i-1}, \dots, 1 \end{bmatrix}^T$$

Therefore, we can rewrite system equation:

$$y^{(n)} = \theta^{*T} Y$$

System parametrization

If derivatives $y^{(n)} = \theta^{*T}Y$ are unmeasured

Apply stable filter $\frac{1}{\Lambda(p)}$ for both parts of equation, $\Lambda(p)$ is a Hurwitz polynomial:

$$z = \theta^{*T} \phi,$$

$$z = \frac{p^n}{\Lambda(p)} y, \phi = \left[\frac{\alpha_{n-1}^T(p)}{\Lambda(p)} u, -\frac{\alpha_{n-1}^T(p)}{\Lambda(p)} y \right]$$

$$\Lambda(p) = p^n + \lambda_{n-1}p^{n-1} + \dots + \lambda_0$$

All signals of filtered model are measured.

System parametrization

Consider $\Lambda(p)$ as $\Lambda(p)=p^n+\lambda^T\alpha_{n-1}(p), \lambda=[\lambda^{n-1},\dots,\lambda_0]^T$ In this case:

$$z = \frac{p^{n}}{\Lambda(p)} y = \frac{\Lambda(p) - \lambda^{T} \alpha_{n-1}(p)}{\Lambda(p)} y = y - \lambda^{T} \frac{\alpha_{n-1}(p)}{\Lambda(p)} y$$

$$y = z + \lambda^{T} \frac{\alpha_{n-1}(p)}{\Lambda(p)} y$$

$$z = \theta^{*T} \phi = \theta_{1}^{*T} \phi_{1} + \theta_{2}^{*T} \phi_{2}, \theta_{1}^{*T} = [b_{n-1}, \dots, b_{0}], \theta_{2}^{*T} = [a_{n-1}, \dots, a_{0}],$$

$$\phi_{1} = \frac{\alpha_{n-1}(p)}{\Lambda(p)} u, \phi_{2} = -\frac{\alpha_{n-1}(p)}{\Lambda(p)} y$$

$$y = \theta_{1}^{*T} \phi_{1} + \theta_{2}^{*T} \phi_{2} - \lambda^{T} \phi_{2}$$

$$y = \theta_{\lambda}^{*T} \phi, \qquad \theta_{\lambda}^{*T} = [\theta_{1}^{*T}, \theta_{2}^{*T}, -\lambda^{T}]$$

State observers

Observer is an algorithm that allows to estimate the unmeasurable variables of the state vector.

Consider linear dynamic model:

$$\dot{x} = Ax + Bu,$$

$$v = C^T x$$

Parameters of system are known. Vector x is unmeasured.

If x_0 is known, than algorithm

$$\dot{\hat{x}} = A\hat{x} + Bu, \hat{x}(0) = x_0$$

provide $\hat{x}(t) = x(t) \forall t \geq 0$.

State observers

If x_0 is unknown and matrix A is stable we can use observer:

$$\dot{\hat{x}} = A\hat{x} + Bu, \hat{x}(0) = \hat{x}_0$$

Consider observation error:

$$\tilde{x} = x - \hat{x}$$

Its dynamics satisfy equation:

$$\dot{\tilde{x}} = A\tilde{x}, \tilde{x}(0) = x(0) - \hat{x}(0)$$

Solution of error dynamic equation:

$$\tilde{x}(t) = e^{At}\tilde{x}(0)$$

Because of A is stable \tilde{x} exponentially converges to zero

Luenberger observer

If x_0 is unknown and matrix A is unstable or we need increase speed of convergence:

$$\dot{\hat{x}} = A\hat{x} + Bu + K(y - \hat{y}), \hat{x}(0) = \hat{x}_0,
\hat{y} = C^T \hat{x},$$

where K is chosen by developer.

Dynamics of estimation error:

$$\dot{\tilde{x}} = (A - KC^T)\tilde{x}, \tilde{x}(0) = x(0) - \hat{x}(0)$$

So;ution of error dynamics equation:

$$\tilde{x}(t) = e^{(A - KC^T)t} \tilde{x}(0)$$

By tuning K we ensure the stability of the error model and adjust its transient (overshoot, transient time, etc.)

Luenberger observer. Example

System:

$$\dot{x} = \begin{bmatrix} -4 & 1 \\ -4 & 0 \end{bmatrix} x + \begin{bmatrix} 1 \\ 3 \end{bmatrix} u, x(0) = \begin{bmatrix} 14 \\ 0,5 \end{bmatrix}$$
$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} x.$$

Luenberger observer

$$\dot{\hat{x}} = \begin{bmatrix} -4 & 1 \\ -4 & 0 \end{bmatrix} \hat{x} + \begin{bmatrix} 1 \\ 3 \end{bmatrix} u + \begin{bmatrix} k_1 \\ k_2 \end{bmatrix} (y - \hat{y}),$$

$$\hat{y} = \begin{bmatrix} 1 & 0 \end{bmatrix} \hat{x}.$$

Luenberger observer. Example

Denote
$$A_0 = A - KC^T = \begin{bmatrix} -4 & 1 \\ -4 & 0 \end{bmatrix} - \begin{bmatrix} k_1 \\ k_2 \end{bmatrix} \begin{bmatrix} 1 & 0 \end{bmatrix} = \begin{bmatrix} -4 - k_1 & 1 \\ -4 - k_2 & 0 \end{bmatrix}.$$

Let we need speed of convergence faster than e^{-5t} .

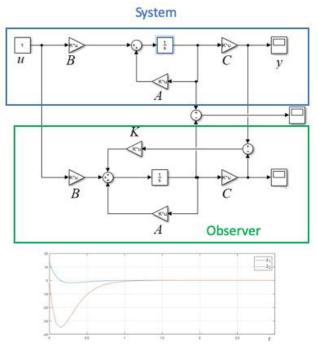
In this case real part of A_0 eigenvalues should be less than -5. Let $\lambda_1 = -6, \lambda_2 = -8$.

Therefore:

$$\det(pI-A_0)=p^2+(4+k_1)p+4+k_2=(p+6)(p+8)$$
 We can find:

$$k_1 = 10, k_2 = 44$$

Luenberger observer. Example

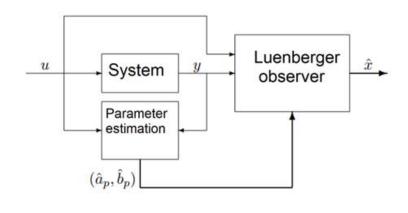


Adaptive Luenberger observer

State vector is unmeasured.

System parameters are unknown.

Solution: simultaneously use the observer and the parameter estimation algorithm.



Adaptive Luenberger observer

In state space form we need to estimate $n^2 + 2n$ parameters. In input output form we need to estimate $n + m + 1 \le 2n$ parameters.

Obtain transfer function:

$$C^{T}(pI - A)^{-1}B = \frac{b_{n-1}p^{n-1} + \dots + b_{1}p + b_{0}}{p^{n} + a_{n-1}p^{n-1} + \dots + a_{0}}$$

Rewrite system in canonical observable form:

$$\begin{split} \dot{x}_{\alpha} &= \begin{bmatrix} \vdots & I_{n-1} \\ -a_p & \vdots & \cdots \\ \vdots & 0 \end{bmatrix} x_{\alpha} + b_p u, y = \begin{bmatrix} 1 & 0 & \dots & 0 \end{bmatrix} x_{\alpha} \\ a_p &= \begin{bmatrix} a_{n-1}, a_{n-2}, \dots, a_0 \end{bmatrix}^T, b_p = \begin{bmatrix} b_{n-1}, b_{n-2}, \dots, b_0 \end{bmatrix}^T \end{split}$$

Adaptive Luenberger observer

Observer:

$$\begin{split} \dot{\hat{x}} &= \hat{A}\hat{x} + \hat{b}_p u + K(y - \hat{y}), \hat{x}(0) = \hat{x}_0, \\ \hat{y} &= \begin{bmatrix} 1 \ 0 \dots 0 \end{bmatrix} \hat{x}, \\ \hat{A} &= \begin{bmatrix} \vdots & I_{n-1} \\ -\hat{a}_p & \vdots & \cdots \\ \vdots & 0 \end{bmatrix}, K = \alpha^* - \hat{a}_p \end{split}$$

 a^* is chosen such that

$$A^* = \begin{bmatrix} \vdots & I_{n-1} \\ -a^* & \vdots & \cdots \\ \vdots & 0 \end{bmatrix}$$

is stable, i.e. roots of $det(pI - A^*) = 0$ have negative real part.

Digital twins

It is necessary for development of digital twin:

- ·Build mathematical model of system
- ·Estimate unknown parameters with identification algorithm
- Build observer for state vector estimation
- •Run obtained model in real time with the same input signal as a real system

Nonlinear control systems

Nonlinear Control Systems

Zimenko Konstantin

Nonlinear versus linear systems

Linear systems

- Huge body of work in analysis and control of linear systems
- Most models currently available are linear (but most real systems are nonlinear...)

Nonlinear systems

 Dynamics of linear systems are not rich enough to describe many commonly observed phenomena

Nonlinear systems can (sometime) be approximated by linear systems. Nonlinear systems can (sometime) be "transformed" into linear systems.

State-space model

State equation

$$\dot{x} = f(t, x, u)$$

Output equation

$$y = h(t, x, u)$$

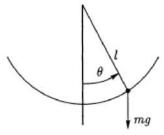
$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \quad u = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_m \end{bmatrix}, \quad f(t, x, u) = \begin{bmatrix} f_1(t, x, u) \\ f_2(t, x, u) \\ \vdots \\ f_n(t, x, u) \end{bmatrix}$$

where $x\in\mathbb{R}^n$ is the state variable, $u\in\mathbb{R}^m$ is the input signal, and $y\in\mathbb{R}^q$ the output signal. The symbol $\dot{x}=\frac{dx}{dt}$ denotes the derivative of x with respect to time t.

3

Nonlinear systems: Example

Pendulum equation (equation of motion in the tangential direction) $ml\ddot{\theta} = -mg\sin\theta - kl\dot{\theta}.$



State equations $(x_1 = \theta, x_2 = \dot{\theta})$

$$\begin{split} \dot{x}_1 &= x_2, \\ \dot{x}_2 &= -\frac{g}{l} \sin x_1 - \frac{k}{m} x_2 \end{split}$$

Equilibrium points $(n\pi;0)$, $n=0,\pm 1,\pm 2,\ldots$

4

Nonlinear systems: Example

State equations (frictional resistance is neglected)

$$\dot{x}_1 = x_2,$$

$$\dot{x}_2 = -\frac{g}{l}\sin x_1$$

Equilibrium points $(n\pi;0)$, $n=0,\pm 1,\pm 2,\ldots$

State equations (with friction and applied torque)

$$\dot{x}_1 = x_2,$$

 $\dot{x}_2 = -\frac{g}{l}\sin x_1 - \frac{k}{m}x_2 + \frac{1}{ml^2}T$

where *T* is the torque.

Equilibrium points (arcsin(T/mgl);0)

5

Nonlinear systems: Example

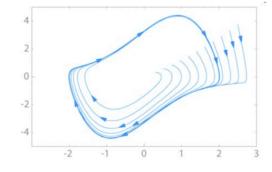
Robust oscillation

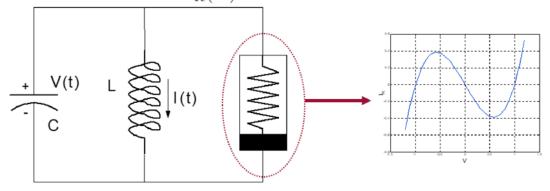
$$\dot{x}_1 = x_2,
\dot{x}_2 = -x_1 + \epsilon (1 - x_1^2) x_2$$

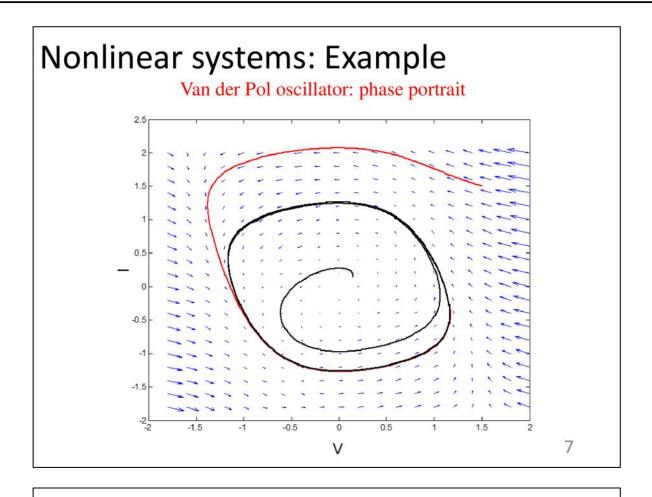
Van der Pol oscillator

$$L\dot{I} = V$$

$$C\dot{V} = -I - I_R(V)$$



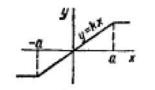




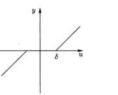
Nonlinear phenomena

- Finite escape time (the state of unstable linear system goes to infinity as $t \to \infty$)
- Nonasimptotic stability (e.g. finite-time stability) (linear systems – infinite time of convergence)
- Multiple isolated equilibria
 (linear systems only one isolated equilibrium point)
- Limit cycles
 (linear systems system oscilates iff there is a pair of eigenvalues on the imaginary axis, which is a nonrobust condition)
- Subharmonic, harmonic, or almost-periodic oscillations
 (stable linear system under periodic input produces an output of the same frequency)
- Chaos
 (More complicated steady-state behavior)
- · Multiple modes of behavior

Common nonlinearities



0 x

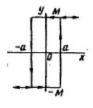


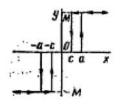
Saturation

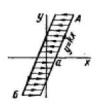
Relay

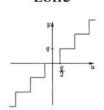
Dead zone

Relay with dead zone









Relay with hysteresis

Three-position relay

Backslash

Quantization

9

Qualitative behavior of linear systems

Linear second order system

$$\dot{x} = Ax, \ x \in \mathbb{R}^2, A \in \mathbb{R}^{2 \times 2}$$

Apply a similarity transformation M to A:

$$M^{-1}AM = J, \ M \in \mathbb{R}^{2 \times 2}$$

where J is the real $Jordan\ form\ of\ A$, which depending on the eigenvalues of A may take one of the three forms

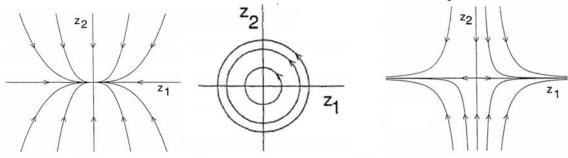
$$\begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}, \quad \begin{bmatrix} \lambda & k \\ 0 & \lambda \end{bmatrix}, \quad \begin{bmatrix} \alpha & -\beta \\ \beta & \alpha \end{bmatrix}$$

with k being either 0 or 1.

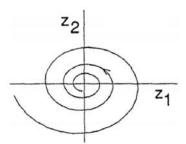
Present a change of coordinates

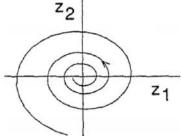
$$z = M^{-1}x$$
$$\dot{z} = M^{-1}\dot{x}$$

Qualitative behavior of linear systems



Stable node $(\lambda_{1,2} < 0)$ Center $(\lambda_{1,2} = \pm j\beta)$ Saddle point $(\lambda_2 < 0 < \lambda_1)$

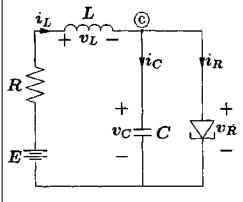


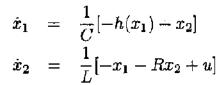


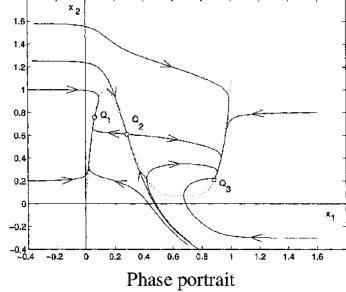
Stable focus $(\lambda_{1,2} = a \pm j, a < 0)$ Stable focus $(\lambda_{1,2} = a \pm j\beta, a > 0)$

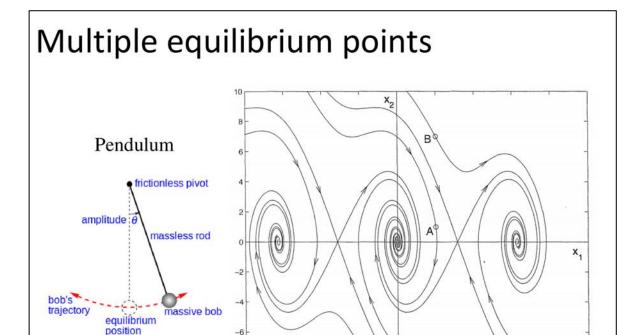
Multiple equilibrium points

Tunnel-diode circuit









Phase portrait of the pendulum equation

13

Qualitative behavior near equilibrium

Consider autonomous system

$$\dot{x}_1 = f_1(x_1, x_2),$$

 $\dot{x}_2 = f_2(x_1, x_2).$

where $f_1(x_1, x_2)$, $f_2(x_1, x_2)$ are continuously differentiable.

Let $p = (p_1, p_2)$ is the equilibrium point. Expanding the right-hand side into its Taylor series about the point p, obtain

$$\begin{split} \dot{x}_1 &= f_1(p_1,p_2) + a_{11}(x_1-p_1) + a_{12}(x_2-p_2) + HOT, \\ \dot{x}_2 &= f_2(p_1,p_2) + a_{21}(x_1-p_1) + a_{22}(x_2-p_2) + HOT, \end{split}$$

where HOT denotes high order terms and

$$\begin{vmatrix} a_{11} = \frac{\partial f_1(x_1, x_2)}{\partial x_1} \\ a_{21} = \frac{\partial f_2(x_1, x_2)}{\partial x_1} \begin{vmatrix} x_{1} = p_1, x_2 = p_2 \\ x_{1} = p_1, x_2 = p_2 \end{vmatrix}, \ a_{22} = \frac{\partial f_2(x_1, x_2)}{\partial x_2} \begin{vmatrix} x_{1} = p_1, x_2 = p_2 \\ x_{1} = p_1, x_2 = p_2 \end{vmatrix}$$

Since $p = (p_1, p_2)$ is an equilibrium point

$$f_1(p_1, p_2) = f_2(p_1, p_2) = 0$$

Qualitative behavior near equilibrium

Define

$$y_1 = x_1 - p_1$$
, и $y_2 = x_2 - p_2$

and rewrite the state equation as

$$\dot{y}_1 = \dot{x}_1 = a_{11}y_1 + a_{12}y_2 + HOT$$

 $\dot{y}_2 = \dot{x}_2 = a_{21}y_1 + a_{22}y_2 + HOT$

HOT is negligible in a small neighborhood of equilibrium point:

$$\dot{y}_1 = \dot{x}_1 = a_{11}y_1 + a_{12}y_2$$

 $\dot{y}_2 = \dot{x}_2 = a_{21}y_1 + a_{22}y_2$

Rewriting in a vector form, obtain

$$\dot{y} = Ay$$

where

$$A = \begin{bmatrix} a_{11} \ a_{12} \\ a_{21} \ a_{22} \end{bmatrix} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} \ \frac{\partial f_1}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} \ \frac{\partial f_2}{\partial x_2} \end{bmatrix} \bigg|_{x=p} = \frac{\partial f}{\partial x} \bigg|_{x=p}$$

15

Example 1

Pendulum equation

$$\dot{x}_1 = x_2,
\dot{x}_2 = -10\sin x_1 - x_2.$$

Equilibrium points (0;0) и $(\pi;0)$

Jacobian

$$\frac{\partial f}{\partial x} = \begin{bmatrix} 0 & 1\\ -10\cos x_1 & -1 \end{bmatrix}$$

Jacobian evaluated at the equilibrium point

$$A_{1} = \begin{bmatrix} 0 & 1 \\ -10 & -1 \end{bmatrix}, \qquad \lambda_{1,2} = -0.5 \pm j3/12$$

$$A_{2} = \begin{bmatrix} 0 & 1 \\ 10 & -1 \end{bmatrix}, \qquad \lambda_{1,2} = -3.7, 2.7$$

Equilibrium point (0;0) is a stable focus, equilibrium point (π ;0) is a saddle point

Example 2

Consider the system

$$\dot{x}_1 = -x_2 - \mu x_1 (x_1^2 + x_2^2) \dot{x}_2 = x_1 - \mu x_2 (x_1^2 + x_2^2)$$

Jacobian at (0;0) has eigenvalues $\pm j$.

Transition to polar coordinates:

$$x_1 = r\cos\theta$$
 и $x_2 = r\sin\theta$

The system in polar coordinates

$$\dot{r} = -\mu r^3$$
 и $\dot{\theta} = 1$

For $\mu > 0$ the equilibrium point (0;0) is a stable focus, for $\mu < 0$ is a unstable focus.

17

Lyapunov function

Consider the system

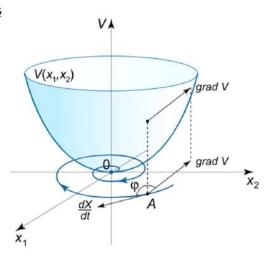
$$\dot{x} = f(x),$$

where $f: D \to \mathbb{R}^n$ is locally Lipschitz

Let p = 0 is equilibrium point and $D \subset R^n$ is an open set, which contains p. Let $V : D \to R$ is a continuously differentiable function such, that

$$V(0) = 0$$
 and $V(x) > 0$ for $D \setminus \{0\}$

If $\dot{V}(x) \le 0$ for $x \in D$, then p = 0 is stable.



If $\dot{V}(x) < 0$ for $x \in D \setminus \{0\}$, then p = 0 is asymptotically stable.

Lyapunov function

Consider the system

$$\dot{x} = f(x), f(0) = 0.$$

Expanding the right-hand side into its Taylor series

$$\dot{x} = f(0) + \frac{\partial f}{\partial x}\Big|_{x=0} x + g(x) = Ax + g(x),$$

where

$$A = \frac{\partial f}{\partial x} \bigg|_{x=0}.$$

Choose the candidate Lyapunov function in the form

$$V(x) = x^T P x, \quad P > 0$$

Then

$$\dot{V}(x) = \dot{x}^T P x + x^T P \dot{x} = \left[x^T A^T + g^T(x) \right] P x + x^T P \left[A x + g(x) \right] = x^T \left(A^T P + P A \right) x + 2x^T P g(x) =$$

$$= -x^T Q x + 2x^T P g(x),$$

where Q>0 such, that

$$A^T P + PA = -Q$$
 Lyapunov equation

19

Lyapunov function

Let

$$|g(x)| < \gamma x|,$$

where $\gamma > 0$.

Since

$$x^T Q x \ge \lambda_{\min}(Q) x^T x = \lambda_{\min}(Q) |x|^2,$$

where $\lambda_{\min}(Q)$ is the smallest eigenvalue of the matrix Q, then

$$\dot{V}(x) \le -\lambda_{\min}(Q)|x|^2 + 2\gamma ||P|||x|^2 = -[\lambda_{\min}(Q) - 2\gamma ||P|]|x|^2.$$

Lyapunov function derivative is negative if

$$\lambda_{\min}(Q) - 2\gamma ||P|| > 0 \Leftrightarrow \gamma < \frac{\lambda_{\min}(Q)}{2||P||}.$$

Example

Consider the system

$$\dot{x} = ax^3$$

Linearization:

$$A = \left. \frac{\partial f}{\partial x} \right|_{x=0} = 3ax^2 \big|_{x=0} = 0.$$

Choose the Lyapunov function

$$V(x)=x^2$$
.

Then

$$\dot{V}(x) = 2ax^4.$$

The equilibrium point is:

- 1) stable, if a = 0;
- 2) asymptotically stable, if a < 0;
- 3) unstable, if a > 0.

21

Stabilization: steady-state control

Consider the system

$$\dot{x} = f(x, u)$$

with desired equilibrium point $x=x_{
m ss}$

Steady-State Problem: Find steady-state control $u_{\rm ss}$ s.t.

$$0 = f(x_{
m ss}, u_{
m ss})$$
 $x_{\delta} = x - x_{
m ss}, \quad u_{\delta} = u - u_{
m ss}$
 $\dot{x}_{\delta} = f(x_{
m ss} + x_{\delta}, u_{
m ss} + u_{\delta}) \stackrel{
m def}{=} f_{\delta}(x_{\delta}, u_{\delta})$
 $f_{\delta}(0, 0) = 0$
 $u_{\delta} = \gamma(x_{\delta}) \implies u = u_{
m ss} + \gamma(x - x_{
m ss})$ 22

State feedback stabilization

Nonlinear system

$$\dot{x} = f(x, u) \qquad [f(0, 0) = 0]$$
$$u = \gamma(x) \qquad [\gamma(0) = 0]$$

Problem: stabilize the system at the origin

$$\dot{x} = f(x, \gamma(x))$$

where f and γ are locally Lipschitz functions

23

Stabilization: linearization approach

$$\dot{x} = Ax + Bu$$

$$A = \left. \frac{\partial f}{\partial x}(x,u) \right|_{x=0,u=0}; \quad B = \left. \frac{\partial f}{\partial u}(x,u) \right|_{x=0,u=0}$$

Closed-loop system:

$$\dot{x} = f(x, -Kx)$$

$$\dot{x} = \left[\frac{\partial f}{\partial x}(x, -Kx) + \frac{\partial f}{\partial u}(x, -Kx) (-K) \right]_{x=0} x$$

$$= (A - BK)x$$

(A - BK) is Hurwitz \Rightarrow the origin is an exponentially stable equilibrium point

Example: pendulum equation

$$\ddot{\theta} = -a\sin\theta - b\dot{\theta} + cT$$

Stabilize the pendulum at $\theta = \delta$

$$x_1 = \theta - \delta$$
, $x_2 = \dot{\theta}$, $u = T - T_{\rm ss}$

 $0 = -a \sin \delta + cT_{ss}$

$$\dot{x}_1 = x_2
\dot{x}_2 = -a[\sin(x_1 + \delta) - \sin \delta] - bx_2 + cu$$

$$A = \begin{bmatrix} 0 & 1 \\ -a\cos(x_1 + \delta) & -b \end{bmatrix}_{x_1 = 0} = \begin{bmatrix} 0 & 1 \\ -a\cos\delta & -b \end{bmatrix}$$

Example: pendulum equation

$$A = \left[egin{array}{cc} 0 & 1 \ -a\cos\delta & -b \end{array}
ight]; \quad B = \left[egin{array}{c} 0 \ c \end{array}
ight]$$

$$K=\left[egin{array}{cc} k_1 & k_2 \end{array}
ight]$$

$$A-BK=\left[egin{array}{ccc} 0 & 1 \ -(a\cos\delta+ck_1) & -(b+ck_2) \end{array}
ight]$$

$$k_1 > -\frac{a\cos\delta}{c}, \quad k_2 > -\frac{b}{c}$$

$$T = \frac{a\sin\delta}{c} - Kx = \frac{a\sin\delta}{c} - k_1(\theta - \delta) - k_2\dot{\theta}$$

Feedback linearization

Consider the nonlinear system

$$\dot{x} = f(x) + G(x)u$$

$$f(0) = 0, \ x \in \mathbb{R}^n, \ u \in \mathbb{R}^m$$

Suppose there is a change of variables z=T(x), defined for all $x\in D\subset R^n$, that transforms the system into the controller form

$$\dot{z} = Az + B\gamma(x)[u - \alpha(x)]$$

where (A,B) is controllable and $\gamma(x)$ is nonsingular for all $x\in D$

$$u = \alpha(x) + \gamma^{-1}(x)v \Rightarrow \dot{z} = Az + Bv$$

27

Feedback linearization

$$v = -Kz$$

Design K such that (A - BK) is Hurwitz

$$u = \alpha(x) - \gamma^{-1}(x)KT(x)$$

Closed-loop system in the x-coordinates:

$$\dot{x} = f(x) + G(x) \left[\alpha(x) - \gamma^{-1}(x) KT(x) \right]$$

Nonlinear System

Linear System

Control Input Transformation

Linear Controller

Feedback linearization

Closed-loop system:

$$u = \hat{\alpha}(x) - \hat{\gamma}^{-1}(x)K\hat{T}(x)$$

$$\dot{z} = (A - BK)z + B\delta(z)$$

$$\delta = \gamma [\hat{\alpha} - \alpha + \gamma^{-1} K T - \hat{\gamma}^{-1} K \hat{T}]$$

where $\hat{\alpha}$, $\hat{\gamma}$, \hat{T} are nominal models of α , γ and T.

$$V(z) = z^T P z, \quad P(A-BK) + (A-BK)^T P = -1$$

If $\|\delta(z)\| \le k\|z\|$ for all z, where

$$0 \le k < \frac{1}{2\|PB\|}$$

then the origin is globally exponentially stable

20

Example: pendulum equation

$$\ddot{\theta} = -a\sin\theta - b\dot{\theta} + cT$$

$$x_1 = \theta - \delta$$
, $x_2 = \dot{\theta}$, $u = T - T_{ss} = T - \frac{a}{c}\sin\delta$

$$\dot{x}_1 = x_2$$

 $\dot{x}_2 = -a[\sin(x_1 + \delta) - \sin \delta] - bx_2 + cu$

$$u = \frac{1}{c} \left\{ a[\sin(x_1 + \delta) - \sin \delta] - k_1 x_1 - k_2 x_2 \right\}$$

$$A-BK=\left[egin{array}{cc} 0 & 1 \ -k_1 & -(k_2+b) \end{array}
ight]$$
 is Hurwitz

Example: pendulum equation

$$T = u + \frac{a}{c}\sin\delta = \frac{1}{c}\left[a\sin(x_1 + \delta) - k_1x_1 - k_2x_2\right]$$

Let \hat{a} and \hat{c} be nominal models of a and c

$$T=rac{1}{\hat{c}}\left[\hat{a}\sin(x_1+\delta)-k_1x_1-k_2x_2
ight]$$

$$\dot{x} = (A - BK)x + B\delta(x)$$

$$\delta(x) = \left(\frac{\hat{a}c - a\hat{c}}{\hat{c}}\right)\sin(x_1 + \delta_1) - \left(\frac{c - \hat{c}}{\hat{c}}\right)(k_1x_1 + k_2x_2)$$

31

Example: pendulum equation

$$\delta(x) = \left(\frac{\hat{a}c - a\hat{c}}{\hat{c}}\right)\sin(x_1 + \delta_1) - \left(\frac{c - \hat{c}}{\hat{c}}\right)(k_1x_1 + k_2x_2)$$

$$|\delta(x)| \le k||x|| + \varepsilon$$

$$k = \left|rac{\hat{a}c - a\hat{c}}{\hat{c}}
ight| + \left|rac{c - \hat{c}}{\hat{c}}
ight| \sqrt{k_1^2 + k_2^2}, \quad arepsilon = \left|rac{\hat{a}c - a\hat{c}}{\hat{c}}
ight| \left|\sin\delta_1
ight|$$

$$P=\left[egin{array}{cc} p_{11} & p_{12} \ p_{12} & p_{22} \end{array}
ight], \quad PB=\left[egin{array}{cc} p_{12} \ p_{22} \end{array}
ight]$$

$$k < \frac{1}{2\sqrt{p_{12}^2 + p_{22}^2}}$$

$$\sin \delta_1 = 0 \implies \varepsilon = 0$$

Backstepping

$$\dot{\eta} = f(\eta) + g(\eta)\xi$$

 $\dot{\xi} = u, \quad \eta \in \mathbb{R}^n, \ \xi, \ u \in \mathbb{R}$

Stabilize the origin using state feedback

View ξ as "virtual" control input to

$$\dot{\eta} = f(\eta) + g(\eta)\xi$$

Suppose there is $\xi = \phi(\eta)$ that stabilizes the origin of

$$\dot{\eta} = f(\eta) + g(\eta)\phi(\eta)$$

$$\frac{\partial V}{\partial \eta}[f(\eta) + g(\eta)\phi(\eta)] \le -W(\eta), \quad \forall \ \eta \in D$$

Backstepping

 $\dot{\eta} = [f(\eta) + g(\eta)\phi(\eta)] + g(\eta)z$

 $z = \xi - \phi(\eta)$

Backstepping

$$egin{align} V_c(\eta, \xi) &= V(\eta) + rac{1}{2}z^2 \ \dot{V}_c &= rac{\partial V}{\partial \eta}[f(\eta) + g(\eta)\phi(\eta)] + rac{\partial V}{\partial \eta}g(\eta)z + zv \ &\leq -W(\eta) + rac{\partial V}{\partial \eta}g(\eta)z + zv \ \ v &= -rac{\partial V}{\partial \eta}g(\eta) - kz, \;\; k > 0 \ \dot{V}_c &< -W(\eta) - kz^2 \ \end{array}$$

35

Backstepping

$$\dot{x} = f_0(x) + g_0(x)z_1$$
 $\dot{z}_1 = f_1(x,z_1) + g_1(x,z_1)z_2$
 $\dot{z}_2 = f_2(x,z_1,z_2) + g_2(x,z_1,z_2)z_3$
 \vdots
 $\dot{z}_{k-1} = f_{k-1}(x,z_1,\ldots,z_{k-1}) + g_{k-1}(x,z_1,\ldots,z_{k-1})z_k$
 $\dot{z}_k = f_k(x,z_1,\ldots,z_k) + g_k(x,z_1,\ldots,z_k)u$
 $g_i(x,z_1,\ldots,z_i) \neq 0 \text{ for } 1 \leq i \leq k$

Example

$$\dot{x}_1 = x_1^2 - x_1^3 + x_2, \qquad \dot{x}_2 = u$$
 $\dot{x}_1 = x_1^2 - x_1^3 + x_2$
 $x_2 = \phi(x_1) = -x_1^2 - x_1 \implies \dot{x}_1 = -x_1 - x_1^3$
 $V(x_1) = \frac{1}{2}x_1^2 \implies \dot{V} = -x_1^2 - x_1^4, \quad \forall \ x_1 \in R$
 $z_2 = x_2 - \phi(x_1) = x_2 + x_1 + x_1^2$
 $\dot{x}_1 = -x_1 - x_1^3 + z_2$
 $\dot{z}_2 = u + (1 + 2x_1)(-x_1 - x_1^3 + z_2)$

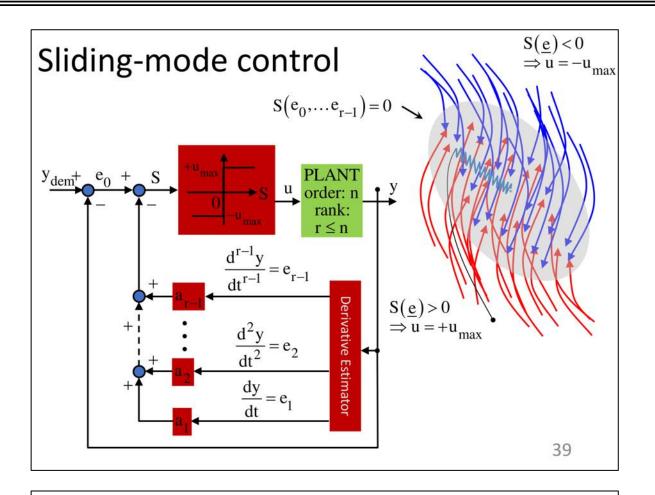
37

Example

$$V_c(x) = \frac{1}{2}x_1^2 + \frac{1}{2}z_2^2$$

$$\dot{V}_c = x_1(-x_1 - x_1^3 + z_2) + z_2[u + (1 + 2x_1)(-x_1 - x_1^3 + z_2)]$$

$$egin{array}{lll} \dot{V}_c &=& -x_1^2 - x_1^4 \ &+ z_2[x_1 + (1+2x_1)(-x_1 - x_1^3 + z_2) + u] \ &u = -x_1 - (1+2x_1)(-x_1 - x_1^3 + z_2) - z_2 \ &\dot{V}_c = -x_1^2 - x_1^4 - z_2^2 \ &\dot{V}_c = -x_1^2 - x_1^4 - (x_2 + x_1 + x_1^2)^2 \end{array}$$



Sliding-mode control

$$\dot{x}_1 = x_2$$
 $\dot{x}_2 = h(x) + g(x)u$, $g(x) \ge g_0 > 0$

Sliding Manifold (Surface):

$$s = a_1 x_1 + x_2 = 0$$

$$s(t) \equiv 0 \implies \dot{x}_1 = -a_1 x_1$$

$$a_1 > 0 \implies \lim_{t \to \infty} x_1(t) = 0$$

Sliding-mode control

$$\dot{s} = a_1 \dot{x}_1 + \dot{x}_2 = a_1 x_2 + h(x) + g(x)u$$

Suppose

$$\left| \frac{a_1 x_2 + h(x)}{g(x)} \right| \le \varrho(x)$$

$$V = \frac{1}{2} s^2$$

$$\dot{V}=s\dot{s}=s[a_1x_2+h(x)]+g(x)su\leq g(x)|s|\varrho(x)+g(x)su$$
 $eta(x)\geq arrho(x)+eta_0,\quad eta_0>0$ $s>0,\quad u=-eta(x)$ $\dot{V}\leq g(x)|s|\varrho(x)-g(x)eta(x)|s|$

$$\dot{V} \le g(x)|s|\varrho(x) - g(x)(\varrho(x) + \beta_0)|s| = -g(x)\beta_0|s|$$

Sliding-mode control

$$s < 0, \quad u = \beta(x)$$

$$\dot{V} \le g(x)|s|\varrho(x) + g(x)su = g(x)|s|\varrho(x) - g(x)\beta(x)|s|$$

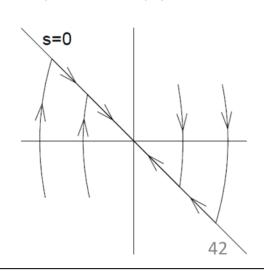
$$\dot{V} \le g(x)|s|\varrho(x) - g(x)(\varrho(x) + \beta_0)|s| = -g(x)\beta_0|s|$$

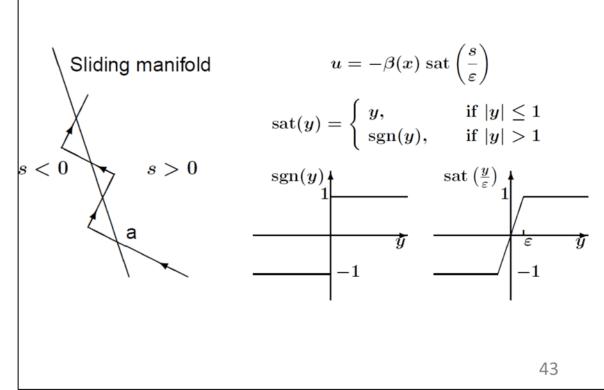
$$\operatorname{sgn}(s) = \begin{cases} 1, & s > 0 \\ -1, & s < 0 \end{cases}$$

$$u = -\beta(x) \operatorname{sgn}(s)$$

$$\dot{V} \le -g(x)\beta_0|s| \le -g_0\beta_0|s|$$

$$\dot{V} \le -g_0 \beta_0 \sqrt{2V}$$





Homogeneity of nonlinear systems

Homogeneity: analysis and control design for dynamical systems

Zimenko Konstantin

Homogeneity and heterogeneity

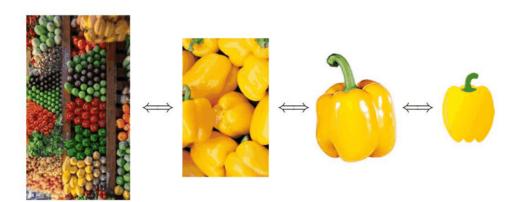
https://en.wikipedia.org/wiki/Homogeneity_and_heterogeneity:

Homogeneity and heterogeneity are concepts often used in the sciences and statistics relating to the uniformity in a substance or organism. A material or image that is homogeneous is uniform in composition or character; one that is heterogeneous is distinctly nonuniform in one of these qualities.

2

Beauty of homogeneity

- We are living in a heterogeneous world.
- Homogeneous object/system is an idealization.
- Studying of idealized case in order to deal with the general one.



Homogeneity in mathematics is a kind of symmetry.

.

History of the subject

The homogeneity is a property of dynamical systems: state rescaling does not change the system behavior (Euler; Zubov, 1958; Rothschild and Stein, 1976; Hermes, 1986).

Applications:

- stability analysis (Andrieu, Praly, Astolfi, 2008; Bacciotti and Rosier, 2001; Hermes, 1991a; 1991b; Rosier, 1992);
- systems approximation (Hermes, 1991a);
- stabilization (Bhat and Bernstein, 2005; Grüne, 2000; Kawski, 1991; Moulay and Perruquetti, 2006; Sepulchre and Aeyels, 1996);
- observation (Andrieu, Praly, Astolfi, 2008).

Extensions:

- coordinate-free homogeneity (Khomenuk, 1961; Kawski, 1995);
- homogeneity in the bi-limit (Andrieu, Praly, Astolfi, 2008);
- local homogeneity (Efimov and Perruquetti, 2010);
- time-delay systems (Efimov and Perruquetti, 2011; Efimov et al., 2014; 2015), differential inclusions (Filippov, 1988; Bernuau et al., 2013).

4

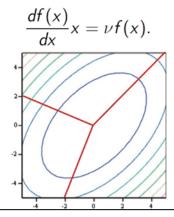
Mathematical definition of homogeneity

Definition For a function $f : \mathbb{R}^n \to \mathbb{R}$, if for any (positive) constant λ and all $x \in \mathbb{R}^n$

$$f(\lambda x) = \lambda^{\nu} f(x),$$

then the function f is called (positively) homogeneous with degree ν .

Theorem (Euler's theorem on homogeneous functions) Let $f: \mathbb{R}^n \to \mathbb{R}$ be a C^1 homogeneous function of degree ν , then



Examples of homogeneous functions

• A polynomial function of degree $\nu=2$:

$$f(x) = x_1^2 + x_1x_2 + x_2^2, \quad f(\lambda x) = \lambda^2 x_1^2 + \lambda^2 x_1 x_2 + \lambda^2 x_2^2 = \lambda^2 f(x),$$

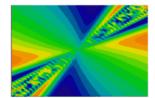
$$\frac{df(x)}{dx} x = (2x_1 + x_2)x_1 + (2x_2 + x_1)x_2 = 2(x_1^2 + x_1x_2 + x_2^2) = 2f(x).$$

• Functions of degree $\nu = 0$: f(x) = 1

$$f(x) = \operatorname{sign}(x_1^2 - x_2^2), \ f(\lambda x) = \operatorname{sign}(\lambda^2 x_1^2 - \lambda^2 x_2^2) = \operatorname{sign}(x_1^2 - x_2^2) = f(x);$$

$$f(x) = \frac{x_1 + x_2}{x_1 - x_2}, \ f(\lambda x) = \frac{\lambda x_1 + \lambda x_2}{\lambda x_1 - \lambda x_2} = \frac{x_1 + x_2}{x_1 - x_2} = f(x).$$

• A combination of degree $\nu = 0.5$: $f(x) = \sin\left(\frac{x_1 + x_2}{x_1 - x_2}\right) \left(x_1^2 + x_1 x_2 + x_2^2\right)^{\frac{1}{4}}$



6

Homogeneity for dynamical systems

$$\dot{x} = f(x), \ x \in \mathbb{R}^n, \ f(0) = 0.$$
 (1)

Definition For a function $f: \mathbb{R}^n \to \mathbb{R}^n$, if for any $\lambda > 0$ and all $x \in \mathbb{R}^n$

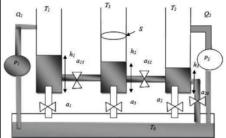
$$f(\lambda x) = \lambda^{\nu+1} f(x),$$

then the function f is called homogeneous with degree ν .

• Linear systems with degree $\nu = 0$:

$$f(x) = Ax$$
, $f(\lambda x) = \lambda Ax = \lambda f(x)$.

• Nonlinear hydraulic three tank system with $\nu = -0.5$:



$$\dot{h}_{1} = - \frac{a_{13}}{S} \left[h_{1} - h_{3} \right]^{0.5} + \frac{1}{S} Q_{1}, \quad \left[s \right]^{\alpha} = \left| s \right|^{\alpha} \operatorname{sign}(s),
\dot{h}_{2} = \frac{a_{32}}{S} \left[h_{3} - h_{2} \right]^{0.5} - \frac{a_{20}}{S} \left[h_{2} \right]^{0.5} + \frac{1}{S} Q_{2},
\dot{h}_{3} = \frac{a_{13}}{S} \left[h_{1} - h_{3} \right]^{0.5} - \frac{a_{32}}{S} \left[h_{3} - h_{2} \right]^{0.5}.$$

Stability definitions

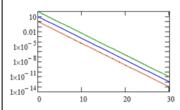
Denote solution to (1) with initial condition $x_0 \in \mathbb{R}^n$ as $X(t, x_0)$, $0 \in \Omega \subset \mathbb{R}^n$.

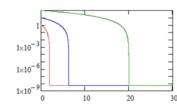
Definition 1 At equilibrium x = 0 the system (1) is said to be

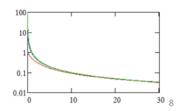
- (a) Lyapunov stable if $\forall x_0 \in \Omega$ the solution $X(t, x_0)$ is defined $\forall t \geq 0$, and $\forall \epsilon > 0 \ \exists \delta > 0 \ \text{s.t.} \ \forall x_0 \in \Omega \colon \|x_0\| \leq \delta \Rightarrow \|X(t, x_0)\| \leq \epsilon \ \forall t \geq 0$;
- (b) asymptotically stable if it is Lyapunov stable and $\forall \kappa > 0$ and $\forall \epsilon > 0$ $\exists T(\kappa, \epsilon) \geq 0$ s.t. $\forall x_0 \in \Omega \colon \|x_0\| \leq \kappa \Rightarrow \|X(t, x_0)\| \leq \epsilon \ \forall t \geq T(\kappa, \epsilon);$
- (c) finite-time stable if it is Lyapunov stable and finite-time converging from Ω : $\forall x_0 \in \Omega \ \exists 0 \leq T_0(x_0) < +\infty \ \text{s.t.} \ X(t,x_0) = 0 \ \forall t \geq T_0(x_0)$;
- (d) fixed-time stable if it is finite-time stable and $\sup_{x_0 \in \Omega} T_0(x_0) < +\infty$.

The set Ω is called the *domain* of stability/attraction.

If $\Omega = \mathbb{R}^n$, then these properties are called *global*.







Rate of convergence and homogeneous systems

$$\dot{x} = -a \left[x \right]^{\alpha}, \ x \in \mathbb{R}, \ a > 0, \ \alpha \geq 0.$$

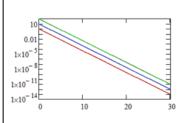
- The system is Lyapunov stable: $V(x) = 0.5x^2$ and $\dot{V} = -a|x|^{\alpha+1} < 0$.
- The system is homogeneous of degree $\nu=\alpha-1$.

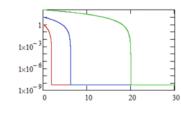
Solutions for $x(0) = x_0$ and $\beta = a(1 - \alpha)$:

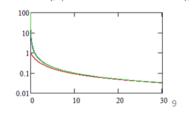
$$X(t,x_0) = \begin{cases} -\frac{\nu}{\sqrt{|x_0|^{-\nu} - \beta t}} \operatorname{sign}(x_0) & \alpha < 1 \\ e^{-at}x_0 & \alpha = 1 \\ \frac{x_0}{\frac{\nu}{\sqrt{1 - |x_0|^{\nu}\beta t}}} & \alpha > 1 \end{cases};$$

- finite-time stability for $\nu < 0$ ($\alpha \in [0,1)$) with $T_0(x_0) = \frac{|x_0|^{-\nu}}{\beta}$,
- exponential (asymptotic) stability for $\nu = 0$ ($\alpha = 1$),
- fixed-time stable with respect to unit ball for $\nu>0$ ($\alpha>1$) :

 $T_{\mathbf{1}}(x_{\mathbf{0}}) = \frac{1 - |x_{\mathbf{0}}|^{-\nu}}{|\beta|}, \lim_{x_{\mathbf{0}} \to +\infty} T_{\mathbf{1}}(x_{\mathbf{0}}) = \frac{1}{|\beta|}.$





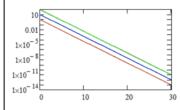


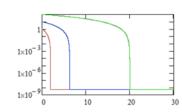
Scaling of trajectories

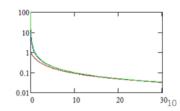
If $X(t,x_0)$ is a solution of (1) with initial condition $x_0 \in \mathbb{R}^n$, and (1) is homogeneous of degree ν , then $Y(t,y_0) = \lambda X(\lambda^{\nu}t,\lambda^{-1}y_0)$ for any $\lambda > 0$ is solution of (1) for initial condition $y_0 = \lambda x_0$:

$$\frac{d}{dt}Y(t,y_0) = \lambda \frac{d}{dt}X(\lambda^{\nu}t,\lambda^{-1}y_0)
= \lambda^{\nu+1} \frac{d}{d\lambda^{\nu}t}X(\lambda^{\nu}t,\lambda^{-1}y_0)
= \lambda^{\nu+1}f(X(\lambda^{\nu}t,\lambda^{-1}y_0)) = f(\lambda X(\lambda^{\nu}t,\lambda^{-1}y_0))
= f(Y(t,y_0)).$$

"Homogeneity" of solutions: $X(t, \lambda x_0) = \lambda X(\lambda^{\nu} t, x_0)$.



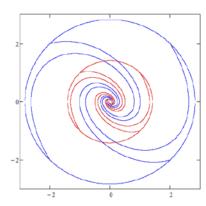




Local ⇒Global

Denote $y \in \mathbb{S} = \{x \in \mathbb{R}^n : \|x\| = 1\}$, then

 $\forall x \in \mathbb{R}^n \ \exists y \in \mathbb{S} : \ x = \lambda y, \ \lambda = \|x\|.$



- Behavior of all trajectories initiated on a sphere \Rightarrow Behavior in \mathbb{R}^n .
- Local stability ⇒ Global stability.
- Attractivity ⇒ Stability.

Lyapunov functions

Let (1) be *homogeneous* of degree ν , asymptotically stable and have a homogeneous Lyapunov function V of degree μ :

$$f(\lambda x) = \lambda^{\nu+1} f(x), \quad V(\lambda x) = \lambda^{\mu} V(x).$$

- \exists a Lyapunov function $\iff \exists$ a homogeneous Lyapunov function.
- The Lyapunov function is positive definite:

$$c_1 = \inf_{y \in \mathbb{S}} V(y), \ c_2 = \sup_{y \in \mathbb{S}} V(y), \ V(x) = \|x\|^{\mu} V(y),$$

 $c_1 > 0, \ c_2 > 0 \Longrightarrow c_1 \|x\|^{\mu} \le V(x) \le c_2 \|x\|^{\mu}.$

• Let $\sup_{y \in \mathbb{S}} \frac{\partial}{\partial y} V(y) f(y) = -a$, a > 0, then for any $x \in \mathbb{R}^n$ exists $y \in \mathbb{S}$ such that $x = \lambda y$ with $\lambda = ||x||$:

$$\frac{\partial}{\partial x}V(x)f(x) = \frac{\partial}{\partial \lambda y}V(\lambda y)f(\lambda y) = \lambda^{\nu+\mu}\frac{\partial}{\partial y}V(y)f(y) \le -a\|x\|^{\nu+\mu} \le -\frac{a}{c_2}V^{1+\frac{\nu}{\mu}}(x).$$

12

Role of homogeneity

Homogeneity is an algebraic property \Rightarrow It can be easily checked.

Linear systems \in Homogeneous systems \in Nonlinear systems:

Linear systems	Homogeneous systems	Nonlinear systems
Scalability of trajectories	Scalability of trajectories	?
Local = Global	Local = Global	$Local \neq Global$
$Attractivity \Rightarrow Stability$	$Attractivity \Rightarrow Stability$	Attractivity ⇒ Stability
Quadratic LF	Homogeneous LF	?
Exponential convergence	Degree dependent	?
0-GAS ⇒ ISS	0 -GAS \Rightarrow ISS via degree	0-GAS ⇒ ISS
Robustness to delay	Robustness to delay	?

 ${\sf Conventional} \ ({\sf Euler}) \Rightarrow {\sf Weighted} \Rightarrow {\sf Local} \Rightarrow {\sf Geometric/Coordinate-free}$

Weighted homogeneity

$$\dot{x} = f(x), \ x \in \mathbb{R}^n. \tag{2}$$

- For any $r_i > 0$, $i = \overline{1, n}$ define vector of weights $r = [r_1...r_n]^T$.
- For any r and $\lambda > 0$ define dilation matrix $\Lambda_r = \text{diag}\{\lambda^{r_i}\}_{i=1}^n$.
- A homogeneous norm can be defined for any r:

$$|x|_r = \left(\sum_{i=1}^n |x_i|^{\rho/r_i}\right)^{1/\rho}, \rho > 0 \implies |\Lambda_r x|_r = \lambda |x|_r.$$

For $x \in \mathbb{R}^n$, its Euclidean norm |x| is related with $|x|_r$:

$$\underline{\sigma}_r(|x|_r) \le |x| \le \overline{\sigma}_r(|x|_r), \ \underline{\sigma}_r, \overline{\sigma}_r \in K_{\infty}.$$

• The homogeneous sphere $S_r = \{x \in \mathbb{R}^n : |x|_r = 1\}.$

14

Weighted homogeneity

Definition 2

Function $g: \mathbb{R}^n \to \mathbb{R}$ is called r-homogeneous if

$$\exists d \geq 0 : g(\Lambda_r x) = \lambda^d g(x) \quad \forall x \in \mathbb{R}^n \ \forall \lambda > 0.$$

The function $f: \mathbb{R}^n \to \mathbb{R}^n$ is called r-homogeneous if

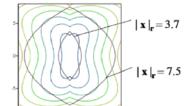
$$\exists d \geq -\min_{1 \leq i \leq n} r_i : f(\Lambda_r x) = \lambda^d \Lambda_r f(x) \quad \forall x \in \mathbb{R}^n \ \forall \lambda > 0.$$

d is called degree of homogeneity.

Homogeneous function:

$$g(x_1, x_2) = \frac{x_1^2 + x_2^4}{|x_1| + |x_2|^2}, r = [2\ 1]^T, d = 2; \qquad \mathbf{f}(x_1, x_2) = [\sqrt[3]{x_2} - x_1^3 - x_2]^T, r = [1\ 3]^T, d = 0.$$

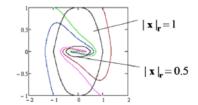
$$g(\mathbf{\Lambda}_{\mathbf{r}}\mathbf{x}) = g(\lambda x_1, \lambda x_2) = \lambda^2 g(x_1, x_2). \qquad \qquad \mathbf{f}(\mathbf{\Lambda}_{\mathbf{r}}\mathbf{x}) = \mathbf{f}(\lambda x_1, \lambda^3 x_2) = \mathbf{\Lambda}_{\mathbf{r}}\mathbf{f}(\mathbf{x}).$$

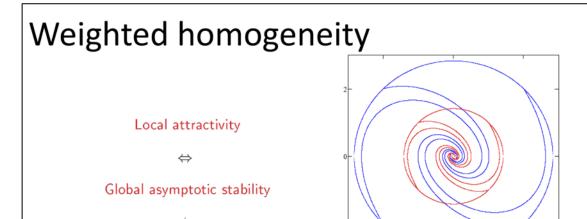


Homogeneous system:

$$\mathbf{f}(x_1, x_2) = [\sqrt[3]{x_2} - x_1^3 - x_2]^T, \ r = [1\ 3]^T, \ d = 0.$$

$$\mathbf{f}(\mathbf{\Lambda}_{\mathbf{r}}\mathbf{x}) = \mathbf{f}(\lambda x_1, \lambda^3 x_2) = \mathbf{\Lambda}_{\mathbf{r}}\mathbf{f}(\mathbf{x}).$$





Homogeneous Lyapunov function

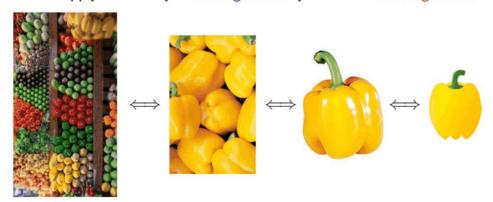
Proposition 1 Let (2) be a r-homogeneous system with degree d and x(t) be a trajectory with initial condition x_0 . The curve $t \mapsto \Lambda_r x(\lambda^d t)$ is a trajectory of the system with initial condition $\Lambda_r x_0$ for all $\lambda > 0$:

$$\frac{d}{dt} \left(\Lambda_r x(\lambda^d t) \right) = \lambda^d \Lambda_r f(x(\lambda^d t)) = f(\Lambda_r x(\lambda^d t)).$$

16

Homogeneity & Heterogeneity

- Homogeneous systems have global behaviors
 - no limit cycles
 - no isolated equilibria
- Homogeneous systems have many useful properties
 - analysis
 - synthesis
- How to apply the theory of homogeneous systems in a heterogeneous world?



Local homogeneity

Definition 3 Function $g: \mathbb{R}^n \to \mathbb{R}$ is called (r, λ_0, g_0) -homogeneous $(g_0: \mathbb{R}^n \to \mathbb{R})$

$$\exists d_0 \geq 0 : \lim_{\lambda \to \lambda_0} \lambda^{-d_0} g(\Lambda_r x) = g_0(x) \quad \forall x \in S_r.$$

Function $f: \mathbb{R}^n \to \mathbb{R}^n$ is called (r, λ_0, f_0) -homogeneous $(f_0: \mathbb{R}^n \to \mathbb{R}^n)$ if

$$\exists d_0 \geq -\min_{1 \leq i \leq n} r_i : \lim_{\lambda \to \lambda_0} \lambda^{-d_0} \Lambda_r^{-1} f(\Lambda_r x) = f_0(x) \quad \forall x \in S_r.$$

- Bi-limit homogeneity in (Andrieu, Praly, Astolfi, 2008) for $\lambda_0 \in \{0, +\infty\}$ (the limit has to be uniform on S_r).
- The approximating functions g_0, f_0 for $0 < \lambda_0 < +\infty$ can be chosen homogeneous:

$$g_0(x) = |x|_r^d \lambda_0^{-d_0} g(\Lambda_{r,0} \Lambda_{|x|}^{-1} x), \quad f_0(x) = |x|_r^d \lambda_0^{-d_0} \Lambda_{r,0}^{-1} f(\Lambda_{r,0} \Lambda_{|x|}^{-1} x), \qquad (3)$$

$$\Lambda_{r,0} = \operatorname{diag}\{\lambda_0^{r_i}\}_{i=1}^n, \ \Lambda_{|x|} = \operatorname{diag}\{|x|_r^{r_i}\}_{i=1}^n.$$

• Linearization \neq Local homogeneity: $f(x) = -x^3 + x^5 \Rightarrow f_0(x) = -x^3$.

18

Stability analysis

Relations between $\dot{x} = f(x)$ and $\dot{x} = f_0(x)$ (Zubov, 1958; Rosier, 1992; Andrieu, Praly, Astolfi, 2008):

- f_0 is GAS for $\lambda_0 = 0 \Longrightarrow f$ is LAS at the origin;
- f_0 is GAS for $\lambda_0 = +\infty \Longrightarrow f$ is Lagrange stable.

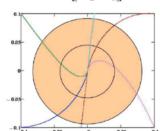
$$\mathbf{f}(x_1, x_2) = \begin{bmatrix} -x_1 + x_1 x_2^4 - x_1^5 + 2x_1^2 - 2x_1^2 x_2 \\ -x_2 + x_1 - x_2^5 - x_1^2 x_2^3 - x_1 x_2^2 - x_2^2 \end{bmatrix}$$

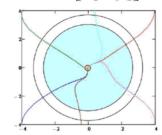
$$\lambda_{1} = 0, \mathbf{r}_{1} = [1 \ 1]^{T}, d_{1} = 0$$

$$\lambda_{2} = +\infty, \mathbf{r}_{2} = [1 \ 1]^{T}, d_{2} = 4$$

$$\mathbf{f}_{1}(x_{1}, x_{2}) = \begin{bmatrix} -x_{1} \\ -x_{2} + x_{1} \end{bmatrix}$$

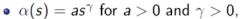
$$\mathbf{f}_{2}(x_{1}, x_{2}) = \begin{bmatrix} x_{1}x_{2}^{4} - x_{1}^{5} \\ -x_{2}^{5} - x_{2}^{2} x_{2}^{3} \end{bmatrix}$$



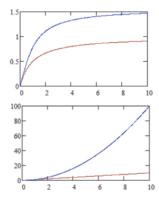


Functions of classes \mathcal{K} , \mathcal{K}_{∞} and \mathcal{KL}

- A C⁰ function α: R₊ → R₊ belongs to the class K if α(0) = 0 and it is strictly increasing:
 - $\alpha(s) = as^2 \text{ for } a > 0$,
 - $\alpha(s) = \arctan(s)$,
 - $\alpha(s) = \frac{s}{1+s}.$
- The function $\alpha: R_+ \to R_+$ belongs to the class \mathcal{K}_{∞} if $\alpha \in \mathcal{K}$ and it is increasing to ∞ :



• $\alpha(s) = \ln(1+s)$.



- A C^0 function $\beta: \mathbb{R}_+ \times \mathbb{R}_+ \to \mathbb{R}_+$ is of class \mathcal{KL} , if $\beta(\cdot, t) \in \mathcal{K}$ for any $t \in \mathbb{R}_+$, and $\beta(s, \cdot)$ is strictly decreasing to 0 for any fixed $s \in \mathbb{R}_+$:
 - $\beta(s,t) = ae^{-rt}s$ for r > 0 and a > 0,
 - $\beta(s,t) = \frac{bs}{\sqrt[k]{1+as^{\nu}t}}$ for b>0, a>0 and $\nu>1$.

20

ISS property

$$\dot{x}(t) = f(x(t), d(t)), \ t \ge 0,$$
 (4)

where $x(t) \in \mathbb{R}^n$ is the state, $d(t) \in \mathbb{R}^m$ is the external input, $d \in \mathcal{L}_{\infty}$.

Definition 4 The system (6) is called *input-to-state practically stable (ISpS*), if $\forall d \in \mathcal{L}_{\infty}$ and $\forall x_0 \in \mathbb{R}^n \exists \beta \in \mathcal{KL}, \ \gamma \in \mathcal{K} \text{ and } c \geq 0 \text{ such that}$

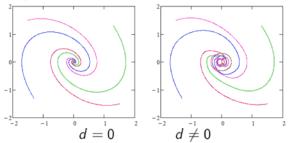
$$||X(t,x_0,d)|| \le \beta(||x_0||,t) + \gamma(||d||_{[0,t)}) + c \quad \forall t \ge 0.$$

The system is called *ISS* if c = 0.

Definition 5 The system (6) is called *integral ISS* (iISS), if $\forall d \in \mathcal{L}_{\infty}$ and $\forall x_0 \in \mathbb{R}^n$ $\exists \alpha \in \mathcal{K}_{\infty}, \gamma \in \mathcal{K}$ and $\beta \in \mathcal{KL}$ such that

$$\alpha(\|X(t,x_0,d)\|) \leq \beta(\|x_0\|,t) + \int_0^t \gamma(\|d(s)\|) ds \quad \forall t \geq 0.$$

ISS property



Definition 6 A C^{∞} function $V: \mathbb{R}^n \to \mathbb{R}_+$ is called *ISpS*-Lyapunov function if (i) $\exists \alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$ s.t. $\forall x \in \mathbb{R}^n$:

$$\alpha_1(|x|) \leqslant V(x) \leqslant \alpha_2(|x|);$$

(ii) $\exists \sigma, \alpha_3 \in \mathcal{K}_{\infty}$ and a constant $c \geqslant 0$ s.t. $\forall x \in \mathbb{R}^n$ and $\forall d \in \mathbb{R}^m$:

$$\frac{\partial}{\partial x}V(x)f(x,d) \leqslant -\alpha_3(|x|) + \sigma(|d|) + c.$$

It is called ISS-Lyapunov function if c = 0.

It is called iISS-Lyapunov function if c=0 and α_3 is a positive definite function.

22

ISS/iISS for homogeneous systems

Define $\tilde{f}(x,d) = [f(x,d)^T \ 0_m]^T \in \mathbb{R}^{n+m}$, where 0_m is a zero vector.

Theorem 2 Let \tilde{f} be homogeneous with the weights $\mathbf{r} = [r_1, \dots, r_n] > 0$, $\tilde{\mathbf{r}} = [\tilde{r}_1, \dots, \tilde{r}_m] \geq 0$ with a degree $\nu \geq -\min_{1 \leq j \leq n} r_j$, i.e. $f(\Lambda_r x, \Lambda_{\tilde{r}} d) = \lambda^{\nu} \Lambda_r f(x, d)$. Let (6) be GAS for d = 0, then the system (6) is ISS if $\tilde{r}_{\min} > 0$, where $\tilde{r}_{\min} = \min_{1 \leq j \leq m} \tilde{r}_j$; iISS if $\tilde{r}_{\min} = 0$ and $\nu \leq 0$.

Corollary 1 Let $f_0: \mathbb{R}^n \to \mathbb{R}^n$ be r-homogeneous with a degree ν and GAS. If $f(x,d) = f_0(x) + d$, then (6) is ISS for $\nu > -r_{\min}$, and iISS for $\nu = -r_{\min}$. If $f(x,d) = f_0(x+d)$, then (6) is always ISS.

Example:
$$\mathbf{r}=[1\ 3]$$
, $\tilde{\mathbf{r}}=[2\ 2]$, $\nu=2$
$$\dot{x}_1 = -x_1^3 + x_2^{1/3}d_1,$$

$$\dot{x}_2 = -x_2^{5/3} + x_1^3d_2.$$

ISS/iISS for homogeneous systems

Analysis of ISS/ISSS/ISpS \iff Find an ISS/ISSS/ISpS LF for $\dot{x} = f(x, d)$.

Analysis of ISS/iISS via homogeneity

 \Longrightarrow

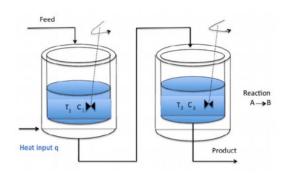
Algebraic operations + a LF for $\dot{x} = f(x, 0)$.

Analysis of ISpS via homogeneity

Algebraic operations + a LF for $\dot{x} = f_{\infty}(x, 0)$.

24

Homogeneity & delays



Time delay systems arise in:

- Chemical processing (transportation delays)
- Remote control (delays from communication links)
- Economics (delayed effects of economic polices)

0

BUT delays may induce: Poor performances; Instability; Difficulties in control design.

Homogeneity & delays

Denote by $C^n[a,b]$, $0 \le a < b \le +\infty$ the Banach space of continuous functions $\phi: [a,b] \to \mathbb{R}^n$ with the uniform norm $||\phi|| = \sup_{a < \zeta < b} |\phi(\zeta)|$.

Autonomous functional differential equation of retarded type:

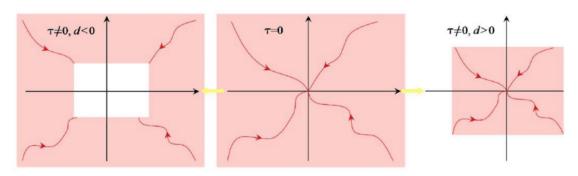
$$dx(t)/dt = f(x_t), \ t \ge 0, \tag{5}$$

- $x \in \mathbb{R}^n$ and $x_t \in C^n[-\tau, 0]$ is the state function;
- $x_t(s) = x(t+s), -\tau \le s \le 0$;
- $f: C^n[-\tau, 0] \to \mathbb{R}^n$ is locally Lipschitz continuous, f(0) = 0.

26

Homogeneity & delays

Lemma 1 Let $f(x_t) = F[x(t), x(t-\tau)]$ in (5) be r-homogeneous with degree d > 0 (d < 0) and GAS for $\tau = 0$, then $\forall \rho \exists 0 < \tau_0 < +\infty$ such that (2) is LAS in B_{ρ}^{τ} (GAS with respect to B_{ρ}^{τ}) $\forall \rho \exists 0 < \tau < \tau_0$.



Theorem 3 Let the system (1) be $(r,+\infty,f_0)$ -homogeneous with $d_0 < 0$, $f_0(x_t) = F_0[x(t),x(t-\tau)]$ and the origin for the approximating system (3) be *GAS* for $\tau = 0$. Then (1) has bounded trajectories *IOD*.

Homogeneity & delays

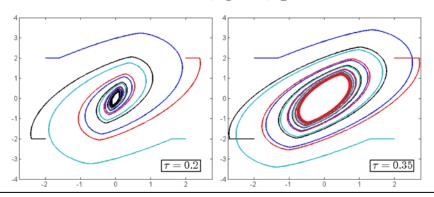
Consider the following system

$$\begin{cases} \dot{x}_1 = x_2 - l_1 |x_1|^{\alpha} \operatorname{sign}(x_1), \\ \dot{x}_2 = -l_2 |x_1|^{2\alpha - 1} \operatorname{sign}(x_1), \end{cases}$$

where $l_1 > 0$, $l_2 > 0$, $\alpha \in \left(\frac{1}{2},1\right)$. The system is homogeneous for $r = [1,\alpha]^T$ with degree $\mu = \alpha - 1 < 0$.

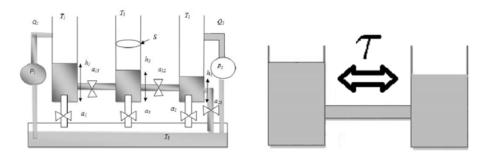
The state x_1 is available with delay $0 \le \tau \le \tau_0 < +\infty$.

The results of simulation for $\alpha = 0.7$, $l_1 = 1$, $l_2 = 2$:



Homogeneity & delays

Liquid flows between the tanks with delays $\tau_i \in (0, \tau_{\text{max}})$, $i = \overline{1, 2}$, $0 < \tau_{\text{max}} \le \tau_0 < +\infty$:

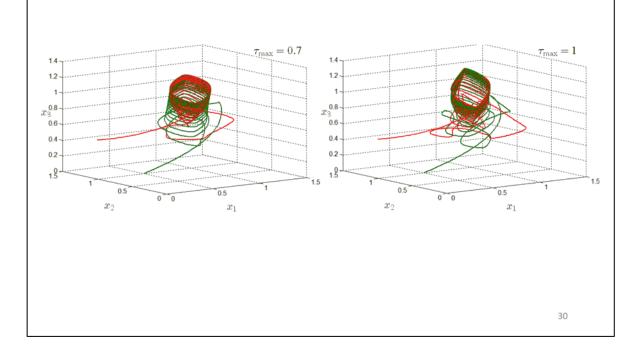


$$\begin{cases} \dot{x}_{1}(t) = -\frac{a_{13}}{5} \left[x_{1}(t) - x_{3}(t - \tau_{1}) \right]^{0.5} + \frac{1}{5} u_{1}(t), \\ \dot{x}_{2}(t) = \frac{a_{32}}{5} \left[x_{3}(t - \tau_{2}) - x_{2}(t) \right]^{0.5} - \frac{a_{20}}{5} \left[x_{2}(t) \right]^{0.5} + \frac{1}{5} u_{2}(t), \\ \dot{x}_{3}(t) = \frac{a_{13}}{5} \left[x_{1}(t - \tau_{1}) - x_{3}(t) \right]^{0.5} - \frac{a_{32}}{5} \left[x_{3}(t) - x_{2}(t - \tau_{2}) \right]^{0.5}, \end{cases}$$

For $u_1=const$, $u_2=const$ the system is $(r,+\infty,f_0)$ -homogeneous with $d_0=-0.5$. Then by Theorem 1 the system has bounded trajectories *IOD*.

29

Homogeneity & delays



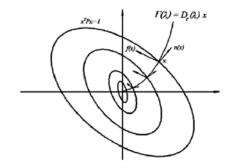
Control design example

Consider the following system:

$$\dot{x}(t) = Ax(t) + bu(t) + d(t,x), \tag{3}$$

where $x \in \mathbb{R}^n$ is the state vector, $u \in \mathbb{R}$ is the control input, $d(t,x) \colon \mathbb{R}^{n+1} \to \mathbb{R}^n$ describes the system uncertainties and disturbances,

$$A = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 0 \end{pmatrix} \quad \text{and} \quad b = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix}$$



Introduce homogenenous ILF

$$Q(V,x) := x^T D(V^{-1}) P D(V^{-1}) x - 1,$$
 (4)

where $P = P^T \in \mathbb{R}^{n \times n} : P > 0$, $D(\lambda)$ is the dilation matrix of the form $D(\lambda) = diag\{\lambda^{1+(n-i)\mu}\}_{i=1}^n$ for $0 < \mu \le 1$.

Control design example

Theorem 4 The system $\dot{x} = Ax + bu + d(t, x)$ is finite-time robustly stable if:

1) for $\mu \in (0,1]$, $\alpha, \beta, \gamma, c \in \mathbb{R}_+$: $\alpha > \beta$ the following system of inequalities is feasible

$$\begin{cases}
AX + XA^T + by + y^Tb^T + \alpha X + \beta I_n \leq 0, \\
-\nu X \leq XH_{\mu} + H_{\mu}X < 0, \quad X > 0
\end{cases}$$

2) the control has the form

$$u(V,x) = V^{1-\mu} k D(V^{-1})x,$$

where $V \in \mathbb{R}_+$: Q(V, x) = 0 and Q(V, x) presented by (4) with $P = X^{-1}$; 3) the disturbance function d(t, x) satisfies the following inequality

$$d^{T}(t,x)D^{2}(V^{-1})d(t,x) \leq \beta^{2}V^{-2\mu}$$
.

32

Control design example

Corollary 2

If $\tilde{d} \equiv 0$ then the system (12), (17) is r-homogeneous of degree $-\mu$ with $r = (1 + (k-1)\mu, 1 + (k-2)\mu, ..., 1)$. The Implicit Lyapunov Function V(x) is r-homogeneous of degree 1.

Proof

Obviously, we have $Q(V, D_r(\lambda)s) = Q(\lambda^{-1}V, s)$, i.e. $V(D_r(\lambda)s) = \lambda V(s)$. Now, we derive

$$\tilde{u}(D_r(\lambda)s) = V^{1-\mu}(D_r(\lambda)s)KD_r(V^{-1}(D_r(\lambda)s))D_r(\lambda)s$$
$$= \lambda^{1-\mu}V^{1-\mu}(s)KD_r(\lambda^{-1}V^{-1}(s))D_r(\lambda)s = \lambda^{1-\mu}\tilde{u}(x)$$

and $\tilde{A}D_r(\lambda)s + \tilde{B}\tilde{u}(D_r(\lambda)s) = \lambda^{-\mu}D_r(\lambda)(\tilde{A}s + \tilde{B}\tilde{u}(s)).$

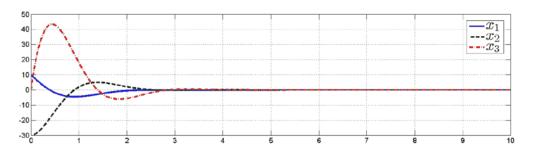
Homogeneity imply:

- robustness abilities to external perturbations, e.g. Input-to-State
 Stability;
- robustness abilities to time-delays;
- it allows to reject some non-Lipschitz disturbances in the case of non-zero homogeneity degree;

Control design example

Finite-time control $(\mu=1)$

Disturbances: $d_1 = d_2 = 0$, $d_3 = \operatorname{sign} x_2$.

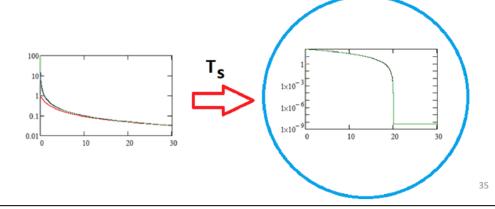


34

Control design example

• Fixed-time convergence can be achieved by changing the homogeneity degree in hybrid control algorithm

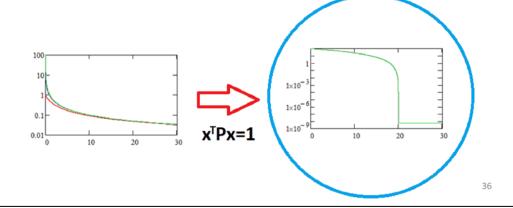
$$\begin{split} Q_1(V,s) &:= s^T D_{r_\mu}(V^{-1}) P D_{r_\mu}(V^{-1}) s - 1, \\ Q_2(V,s) &:= s^T D_{r_\nu}(V^{-1}) P D_{r_\nu}(V^{-1}) s - 1, \\ D_{\mathbf{1}}(\lambda) &= \left\{ \lambda^{1+(n-i)\mu} \right\}_{i=1}^n \text{ and } D_{\mathbf{2}}(\lambda) = \left\{ \lambda^{1+(i-1)\nu} \right\}_{i=1}^n \end{split}$$



Control design example

 Fixed-time convergence can be achieved by changing the homogeneity degree in hybrid control algorithm

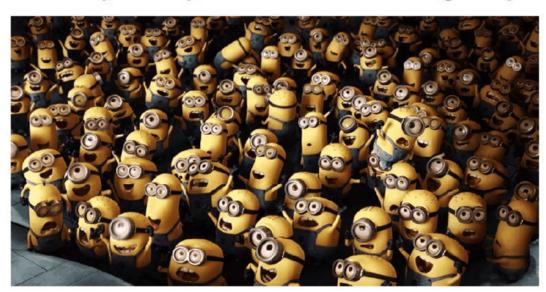
$$\begin{split} Q_1(V,s) &:= s^T D_{r_\mu}(V^{-1}) P D_{r_\mu}(V^{-1}) s - 1, \\ Q_2(V,s) &:= s^T D_{r_\nu}(V^{-1}) P D_{r_\nu}(V^{-1}) s - 1, \\ D_1(\lambda) &= \left\{\lambda^{1+(n-i)\mu}\right\}_{i=1}^n \text{ and } D_2(\lambda) = \left\{\lambda^{1+(i-1)\nu}\right\}_{i=1}^n \\ \mathbf{u} &= \left\{\begin{array}{c} V^{1+\nu} k D_2\left(V^{-1}\right) \times & \text{for} \quad \mathbf{x}^T P \mathbf{x} \geq 1 \Longrightarrow \text{ fixed-time attr. of the ball,} \\ V^{1-\mu} k D_1\left(V^{-1}\right) \times & \text{for} \quad \mathbf{x}^T P \mathbf{x} < 1 \Longrightarrow \text{ finite-time stab. of the origin} \end{array} \end{split}$$



Conclusions

- Verification of homogeneity: algebraic operations.
- An "intermediate" class of systems between linear and non-linear: local ≡ global.
- Local homogeneity: stability/instability in large ←⇒ analysis at the origin of a simplified system.
- ullet Robustness: ISpS, ISS and iISS \Longleftrightarrow GAS + degree constraints.
- Robustness to delays.
- Control design with time constraints

Thank you for your attention to homogeneity:



Fault-Tolerant control Robust Detection of Actuator Faults in Nonlinear Systems

Robust Detection of Actuator Faults in Nonlinear Systems

Anton Zhilenkov

Outline

- Introduction
- Fault Diagnosis Methodologies
- Robust Observer-Based Fault Diagnosis: An Overview
- Detection and Isolation of Actuator Faults

Introduction

 A fault can be defined as an unexpected deviation of at least one characteristic property, called the feature of the system, from the normal condition which tends to degrade the overall performance of a system and leads to undesirable but still tolerable behavior of the system.

.

Common types of faults:

- Actuator faults, such as damage in the bearings, deficiencies in force and momentum, defects in the gears, aging effects, and stuck faults. Actuators are used to generate the desired inputs to control the process to behave normally. When actuator faults occur, the faulty actuators are no longer able to generate the desired control inputs.
- Sensor faults, such as scaling errors, drifts, dead zones, short cuts, and contact failures. Sensors are used to provide measurements that are needed for monitoring the system and computing the desired inputs. When sensor faults occur, the faulty sensors are no longer able to provide accurate measurements which are needed to generate the control inputs.
- Abnormal parameter variations in the system. When some components of the plant are faulty, the original process is changed into a different process so that the controller designed for the original process is no longer able to achieve the expected system performance.
- Construction defects such as cracks, ruptures, fractures, leaks, and loose parts etc.
- External obstacles such as collisions and clogging of outflows.

Common types of faults:

- We will focus on the type of faults which can be modelled as additive changes appearing in actuators or sensors.
- A faulty system with actuator and sensor faults is depicted in fig. 1.1.

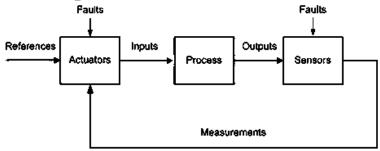


Fig. 1.1 A faulty system which is subject to actuator faults and sensor faults

Fault Diagnosis Methodologies

- Knowledge-based Fault Detection and Isolation (FDI) methods
- Signal-based FDI methods
- Model-based FDI methods

We will focus on model-based fault diagnosis methods. More specifically, observer-based fault diagnosis methods will be the main concern.

FDI methods

Model-based FDI methods comprise two principal steps:

- residual generation,
- residual evaluation.

Corresponding to different residual generation techniques, model-based FDI methods can be divided into three groups:

- (1) Parity-equation approach
- (2) Parameter-estimation approach
- (3) Observer-based approach

7

Robust Observer-Based Fault Diagnosis: An Overview

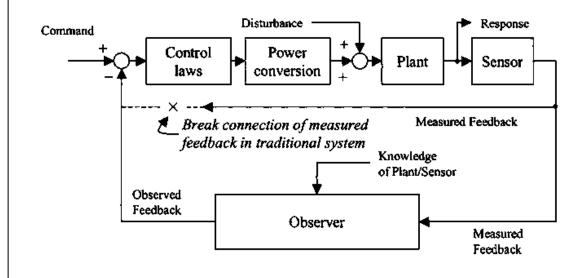
- A major downside of the model-based fault diagnosis methods is that they require an accurate mathematical model of the considered system.
- The system parameters often vary during the process, that can cause a misleading alarm and therefore make the model-based fault diagnosis system ineffective.
- A robust fault diagnosis system should have the ability to be sensitive to fault signals but insensitive to other signals.

Robust Observer-Based Fault Diagnosis: An Overview

- Some of robust observer-based fault diagnosis methods:
- 1. Beard-Jones fault detection filter (BJFDF)-based fault diagnosis.
- 2.Unknown-input observer (UIO)-based fault diagnosis.
- Adaptive observer (AO)-based fault diagnosis.
- 4.Sliding-mode observer (SMO)-based fault diagnosis.

9

Role of an observer in a control system



Detection of Actuator Faults

- Problem formulation
- The general form of the Luenberger observer
- Robust observer-based FD system
- Simulation Results

- 1

Problem Formulation

Consider a nonlinear system described by

$$\begin{cases} \dot{x}(t) = Ax(t) + f(x,t) + Bu(t) + Df_a(t) + E\Delta\psi(t), \\ y(t) = Cx(t), \end{cases}$$
(1.1)

where $x \in \mathcal{R}^n$ - vector of state variables;

 $u \in \mathcal{R}^{\mathsf{m}}$ - vector of inputs; $y \in \mathcal{R}^{\mathsf{p}}$ - vector of outputs;

 $f_a \in \mathcal{R}^h$ - vector of unknown actuator faults;

 $\Delta \psi \in \mathcal{R}^r$ - lumped uncertainties and disturbances;

f(x, t) - known nonlinear continuous term.

 $A \in \mathcal{R}^{n \times n}$, $B \in \mathcal{R}^{n \times m}$, $C \in \mathcal{R}^{p \times n}$, $D \in \mathcal{R}^{n \times h}$ and $E \in \mathcal{R}^{n \times r}$ are known constant matrices with C and E both being of full rank.

Note that

A nonlinear system of the form

$$\dot{x}(t) = \Omega(x, u, t)$$

can be expressed as

$$\dot{x}(t) = Ax(t) + f(x, t)$$

if $\Omega(x, u, t)$ is continuously differentiable with respect to x.

13

Problem Formulation

Remark 1.1

It is assumed in this example that the fault distribution matrix D is known.

We assume that the actuator faults could occur in each input channel, and therefore we have

$$D = B$$

and

$$f_o \in \mathcal{R}^h$$
.

Assumption 1.1

$$rank(CE) = rank(E)$$
.

• **Assumption 1.2** For every complex number *s* with nonnegative real part

$$rank\begin{bmatrix} sI - A & E \\ C & 0 \end{bmatrix} = n + rank(E)$$

- 5

Problem Formulation

Assumption 1.3 The nonlinear continuous term
 f(x,t) is assumed to be known and Lipschitz about
 the state x uniformly, i.e.,

$$||f(x, t) - f(\hat{x}, t)|| \le \mathcal{L}_f ||x - \hat{x}||, \quad \forall x, \hat{x} \in \mathcal{R}^t$$

where \mathcal{L}_f is the known Lipschitz constant.

• **Assumption 1.4** The actuator fault vector f_a and uncertainty vector $\Delta \psi$ satisfies the following constraint:

$$||f_a|| \le \rho_a$$
 and $||\Delta \psi|| \le \xi$, (1.4)

where ρ_a and ξ are two known positive constants.

17

Problem Formulation

• **Lemma 1.1** Under Assumption 1.1, there exist state and output transformations:

$$z = Tx = \begin{bmatrix} z_1 \\ z_2 \end{bmatrix}, \quad w = Sy = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$$
 (1.5)

such that in the new coordinate, the system matrices become,

$$TAT^{-1} = \begin{bmatrix} A_1 & A_2 \\ A_3 & A_4 \end{bmatrix}, TB = \begin{bmatrix} B_1 \\ B_2 \end{bmatrix},$$

$$TE = \begin{bmatrix} E_1 \\ 0 \end{bmatrix}, SCT^{-1} = \begin{bmatrix} C_1 & 0 \\ 0 & C_4 \end{bmatrix}$$
(1.6)

where E_I and C_I are invertible.

 After introducing the state and output transformations (1.5), system (1.1) is expressed as,

$$\dot{z} = TAT^{-1}z + Tf(T^{-1}z, t) + TB(u + f_a) + TE\Delta\psi$$

$$v = CT^{-1}z$$
(1.8)

Using the relations in (1.6), system (1.8) is converted into two subsystems as

$$\begin{cases} \dot{z}_1 = A_1 z_1 + A_2 z_2 + f_1 (T^{-1} z, t) + B_1 (u + f_a) + E_1 \Delta \psi \\ w_1 = C_1 z_1 \end{cases}$$
 (1.9)

$$\begin{cases} \dot{z}_2 = A_3 z_1 + A_4 z_2 + f_2 (T^{-1} z, t) + B_2 (u + f_a) \\ w_2 = C_4 z_2 \end{cases}$$
 (1.10)

where $f_1(T^{-1}z, t) = T_1f(T^{-1}z, t)$ and $f_2(T^{-1}z, t) = T_2f(T^{-1}z, t)$.

- 4

Problem Formulation

Lemma 1.2 The pair (A_4, C_4) is detectable if and only if Assumption 1.2 holds.

It follows from Lemma 1.2 that there exists a matrix $L \in \mathcal{R}^{(n-r)\times(p-r)}$ such that $A_4 - LC_4$ is stable, and thus for any $Q_2 > 0$, the Lyapunov equation,

$$(A_4 - LC_4)^T P_2 + P_2 (A_4 - LC_4) = -Q_2,$$
 (1.11)

has a unique solution $P_2 > 0$.

Remark 1.2 It is seen from Lemma 1.1 that the satisfaction of Assumption 1.1 ensures the existence of coordinate transformations T and S, such that in the new coordinate, the subsystem-1, formulated in (1.9), is prone to both actuator faults and system uncertainties, while the subsystem-2, formulated in (1.10), is only prone to actuator faults but free from system uncertainties.

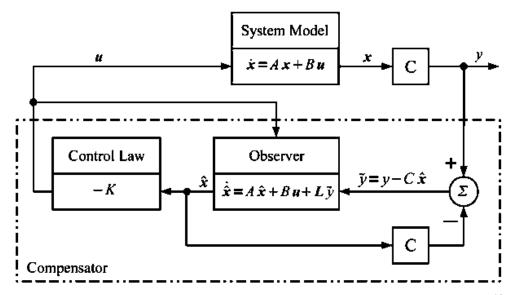
It follows from Assumption 1.2 that the pair (A_4, C_4) is detectable, which provides the necessary condition for the existence of an observer for system (1.10).

Assumption 1.3 states that the nonlinear systems considered is Lipschitz. Many practical systems satisfy the Lipschitz condition, at least locally. For example, trigonometric nonlinearities occurring in robotic applications and the nonlinearities which are square or cubic in nature, can be assumed to be Lipschitz.

21

Full-Order State Observer

$$\dot{\hat{x}}(t) = A\hat{x}(t) + Bu(t) + L(y(t) - C\hat{x}(t)),$$



Full-Order State Observer

Let the observer state estimation error be defined as follows

$$e(t) = x(t) - \hat{x}(t),$$

then

$$\dot{e}(t) = \dot{x}(t) - \dot{\hat{x}}(t) =
= \left[Ax(t) + Bu(t) + \left(A\hat{x}(t) + Bu(t) + L\left(y(t) - C\hat{x}(t) \right) \right) \right] =
= \left[Ax(t) + Bu(t) + \left(A\hat{x}(t) + Bu(t) + L\left(Cx(t) - C\hat{x}(t) \right) \right) \right] =
= \left(A - LC \right) x(t) - \left(A - LC \right) \hat{x}(t) = \left(A - LC \right) e(t).$$

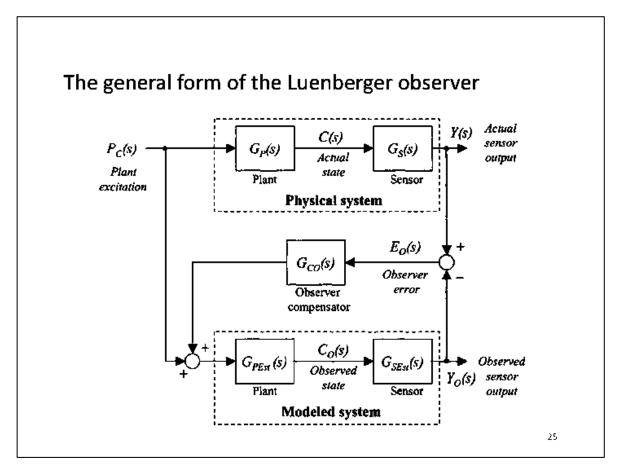
23

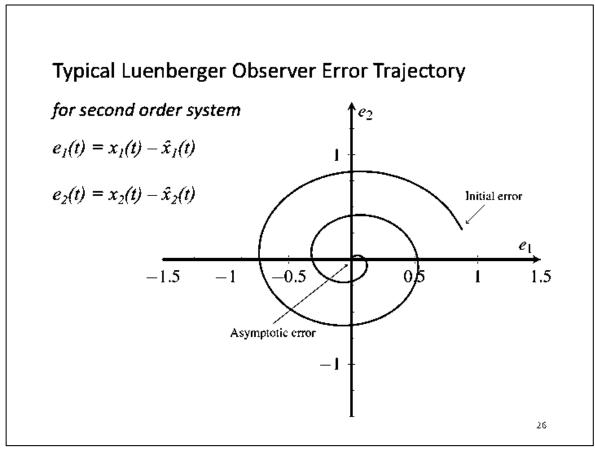
What Is a Luenberger Observer?

An observer is a mathematical structure that combines sensor output and plant excitation signals with models of the plant and sensor. An observer provides feedback signals that are superior to the sensor output alone.

We'll use the Luenberger observer, which combines five elements:

- a sensor output, Y(s),
- a power converter output (plant excitation), P_c(s),
- a model (estimation) of the plant, Gp_{Est}(S),
- a model of the sensor, Gs_{Ext}(s),
- a PI or PID observer compensator, G_{co}(S).





Luenberger Observer

For Subsystem (1.10), a Luenberger observerwith the following form is designed:

$$\begin{cases} \hat{z}_2 = A_4 \hat{z}_2 + A_3 C_1^{-1} w_1 + f_2 (T^{-1} \hat{z}, t) + B_2 u + L(w_2 - \hat{w}_2) \\ \hat{w}_2 = C_4 \hat{z}_2 \end{cases}$$
(1.14)

where $L \in \mathcal{R}^{(n-r)\times(p-r)}$ is the gain of a traditional Luenberger observer.

27

Luenberger Observer

If the state estimation errors are defined as

$$e_1 = z_1 - \hat{z}_1$$
 and $e_2 = z_2 - \hat{z}_2$,

then the state estimation error dynamics, before the occurrence of actuator faults, can be obtained as

$$\dot{e}_{1} = \dot{z}_{1} - \dot{\hat{z}}_{1}
= A_{1}z_{1} + A_{2}z_{2} + f_{1}(T^{-1}z, t) + B_{1}u + E_{1}\Delta\psi
- A_{1}\hat{z}_{1} + A_{2}\hat{z}_{2} - f_{1}(T^{-1}\hat{z}, t) - B_{1}u
- (A_{1} - A_{1}^{s})C_{1}^{-1}(w_{1} - \hat{w}_{1}) - v_{1} =
= A_{1}^{s}e_{1} + A_{2}e_{2} + [f_{1}(T^{-1}z, t) - f_{1}(T^{-1}\hat{z}, t)] + E_{1}\Delta\psi - v_{1} =
= A_{1}^{s}e_{1} + A_{2}e_{2} + \Delta f_{1} + E_{1}\Delta\psi - v_{1}$$
(1.15)

Luenberger Observer

$$\dot{e}_{2} = \dot{z}_{2} - \dot{\hat{z}}_{2} =
= A_{3}z_{1} + A_{4}z_{2} + f_{2}(T^{-1}z, t) - A_{4}\hat{z}_{2} - A_{3}C_{1}^{-1}w_{1} - f_{2}(T^{-1}\hat{z}, t)
- L(w_{2} - \hat{w}_{2}) =
= (A - LC_{4})e_{2} + [f_{2}(T^{-1}z, t) - f_{2}(T^{-1}\hat{z}, t)] =
= (A - LC_{4})e_{2} + \Delta f_{2}$$
(1.16)

where

$$\Delta f_1 = f_1(T^{-1}z, t) - f_1(T^{-1}\hat{z}, t)$$
 and $\Delta f_2 = f_2(T^{-1}z, t) - f_2(T^{-1}\hat{z}, t)$.

29

Theorem 1.1 Given System (1.1) with Assumptions 2.1–2.4. When the system is free of actuator faults, the error dynamics (1.15) and (1.16) are asymptotically stable, if there exist matrices

$$A_1^s < 0$$
, L, $P_1 = P_1^T > 0$ and $P_2 = P_2^T > 0$

and positive scalars α_1 and α_2 such that

$$\Lambda := \begin{bmatrix} \Pi_{1} + \frac{1}{\alpha_{1}} P_{1} P_{1} & P_{1} A_{2} \\ & & \\ A_{2}^{T} P_{1} & \Pi_{2} + \frac{1}{\alpha_{2}} P_{2} P_{2} + a I_{n-r} \end{bmatrix} < 0$$
 (1.17)

where
$$\Pi_I = A_I^{sT} P_I + P_I A_I^{s}$$
,
$$\Pi_2 = (A_4 - L C_4)^T P_2 + P_2 (A_4 - L C_4)$$
,
$$\alpha = \alpha_I \mathcal{L}_{fI} ||T^{-1}||^2 + \alpha_2 \mathcal{L}_{fI}^{-2}||T^{-1}||^2$$
.

• Let the actuator fault occurs at time instant t_f . Then the error dynamics (2.15) and (2.16) become

$$\dot{e}_{1} = A_{1}^{s} e_{1} + A_{2} e_{2} + \left(f_{1} (T^{-1} z, t) - f_{1} (T^{-1} \hat{z}, t) \right) + E_{1} \Delta \psi + B_{1} f_{\alpha} - v_{1}$$
(1.37)

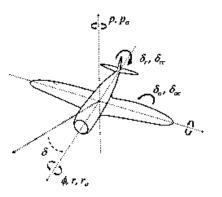
$$\dot{e}_2 = (A_4 - LC_4)e_2 + (f_2(T^{-1}z, t) - f_2(T^{-1}\hat{z}, t)) + B_2f_a$$
(1.38)

31

- Actuator FD scheme: Actuator faults can be detected if the residual $||e_{w2}||$ exceeds a predefined threshold ς . Otherwise the system is healthy within the considered time. The detection time $t_d(t_{d \ge t_f})$ is defined as the first time instant such that $||e_{w2}||$ is observed greater than ς .
- Remark 1.4 It follows from Lemma 1.3 that e_2 will approach to zero when System (2.1) is healthy. This implies that a small threshold ς can be selected. The value of ς does not significantly affect the performance of the proposed FD scheme.

Simulation Results

In this section, the effectiveness of the proposed schemes in detecting and isolating actuator faults has been demonstrated by an example of a modified seventh-order aircraft model.



33

aircraft model

The states are defined as

 $x_1 = \varphi - bank \ angle(rad)$

 $x_2 = r - yaw \ rate(rad/s)$

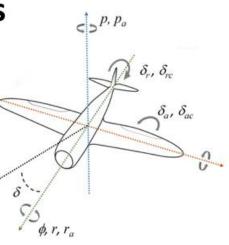
 $x_3 = p - roll \ rate(rad/s)$

 $x_4 = \delta - sideslip \ angle(rad)$

 $x_5 = x_7 - washout filter state$

 $x_6 = \delta_r - rudder de f lection(rad)$

 $x_7 = \delta_a - aileon de f lection(rad)$



Simulation Results

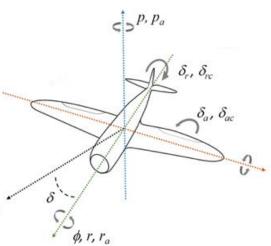
The inputs are

 $u = \delta_{x} - rudder \ command(rad)$ $u = \delta_{x} - aileon \ command(rad)$

and outputs are

 $y_1 = r_a - roll \ acceleration(rad/s)$ $y_2 = p_a - yaw \ acceleration(rad/s)$ $y_3 = \varphi - bank \ angle(rad)$

 $y_4 = x_7 - washout filter state$



35

$$\begin{cases} \dot{x}(t) = Ax(t) + f(x,t) + Bu(t) + Df_a(t) + E\Delta\psi(t), \\ y(t) = Cx(t), \end{cases}$$
(1.1)

The system is in the form of (1.1) with

$$A = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & -0.154 & -0.04 & 1.54 & 0 & -0.744 & -0.032 \\ 0 & 0.249 & -1 & -5.2 & 0 & 0.337 & -1.12 \\ 0.0386 & -0.996 & 0 & -2.117 & 0 & 0.02 & 0 \\ 0 & 0.5 & 0 & 0 & -4 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -20.000 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -25 \end{bmatrix}$$

$$B = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$

 $f(x,t) = [\sin x_3 + \sin x_3 + 0 + 0 + \sin x_3 + 0 + 0]^T$ $\Delta \psi = 2\sin t$

The actuator fault $f_{\rm a}$ = $col~(f_{\rm a1},f_{\rm a2})$ is applied to the system and defined as

$$f_{a_1} = \begin{cases} 0 & , & t \le 10s \\ 0.05 \exp(0.01t) & , & t \ge 10s \end{cases}$$

$$f_{a_2} = \begin{cases} 0 & , & t \le 20s \\ 0.07 \exp(0.03t) & , & t \ge 20s \end{cases}$$

The nonsingular transformation matrices T and S are selected as

$$T = \begin{bmatrix} 0.844 & 0.156 & 0.0405 & -1.5598 & 0 & 0.7535 & 0.0324 \\ -1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$S = \begin{bmatrix} 1 & 0 & -0.8333 & 0 \\ -1.4359 & 1 & -0.4701 & 0 \\ 1.0128 & 0 & 0.1560 & 0 \\ 1.0128 & 0 & -0.8440 & 1 \end{bmatrix}$$

$$S = \begin{bmatrix} 1 & 0 & -0.8333 & 0 \\ -1.4359 & 1 & -0.4701 & 0 \\ 1.0128 & 0 & 0.1560 & 0 \\ 1.0128 & 0 & -0.8440 & 1 \end{bmatrix}$$

37

The system matrices under the new coordinate become

$$TAT^{-1} = \begin{bmatrix} 1.4794 & 1.3088 & 0.7373 & 5.6393 & 0 & -16.3183 & -0.9083 \\ \hline -0.154 & -0.13 & -1.0338 & 1.2998 & 0 & -0.6280 & -0.027 \\ 0.249 & 0.2102 & -1.0101 & -4.8116 & 0 & 0.1494 & -1.1281 \\ -0.9574 & -0.8466 & 0.0388 & -3.6104 & 0 & 0.7414 & 0.0310 \\ -3.5 & 1.04 & -0.8583 & -5.4593 & -4 & 2.6372 & 0.1134 \\ 0 & 0 & 0 & 0 & 0 & -20 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -25 \end{bmatrix}$$

$$SCT^{-1} = \begin{bmatrix} -0.9873 & 0 & 0 & 0 & -0.0001 & 0 \\ \hline 0 & 0.4701 & -0.9426 & -7.4112 & 0 & 1.4053 & -1.0741 \\ 0 & -0.156 & -0.0405 & 1.5598 & 0 & -0.7535 & -0.0324 \\ 0 & -0.156 & -0.0405 & 1.5598 & 1 & -0.7535 & -0.0324 \end{bmatrix}$$

$$TB = \begin{bmatrix} 15.07 & 0.81 \\ \hline 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 20 & 0 \\ 0 & 25 \end{bmatrix} \qquad TE = \begin{bmatrix} \frac{1}{0} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Imposing the stability constraint to the transformed system and formulating the problem in an LMI framework gives the values of the parameters of the proposed observers.

Parameters are obtained as

$$P_1 = 0.0048$$
, $A_1^x = -25.8618$, $\alpha_1 = 0.0021$, $\gamma = 2.0190 \times 10^{-11}$

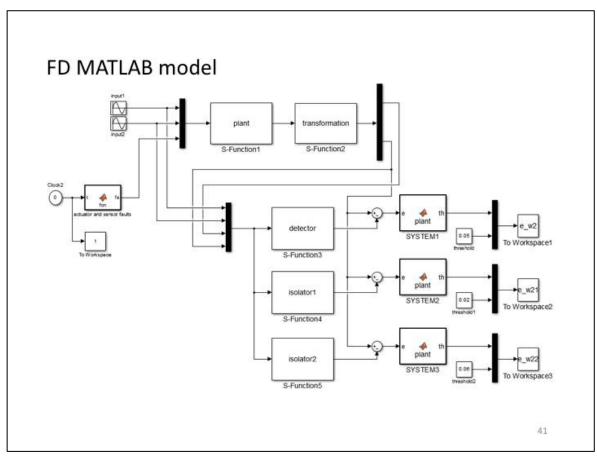
$$P_0 = \begin{bmatrix} 0.3072 & 0.0109 & -0.0689 & -0.2578 & 0.0144 & 0.0058 \\ 0.0109 & 0.2432 & 0.0527 & 0.0969 & 0.0506 & 0.0342 \\ -0.0689 & 0.0527 & 0.4599 & 0.1648 & -0.0253 & 0.0254 \\ -0.2578 & 0.0969 & 0.1648 & 0.4662 & -0.0008 & 0.0002 \\ 0.0144 & 0.0506 & -0.0253 & -0.0008 & 0.1079 & 0.0545 \\ 0.0058 & 0.0342 & 0.0254 & 0.0002 & 0.0545 & 0.0039 \end{bmatrix}$$

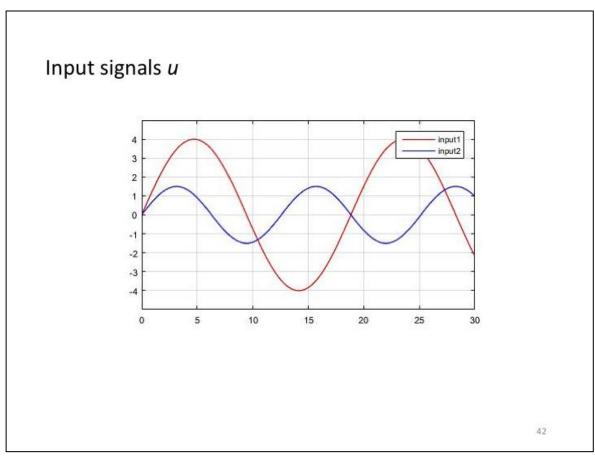
39

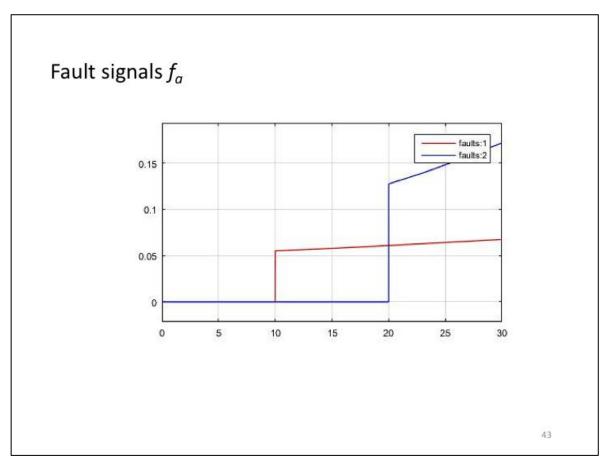
$$L = \begin{bmatrix} 2.3497 & 6.3662 & 1.6347 \\ -3.1985 & -13.8943 & -1.7068 \\ -3.8256 & -11.5108 & -1.5464 \\ 3.6515 & 10.8768 & -1.9943 \\ 58.2398 & 282.3094 & -3.8605 \\ -57.1666 & -394.4680 & 8.0411 \end{bmatrix}$$

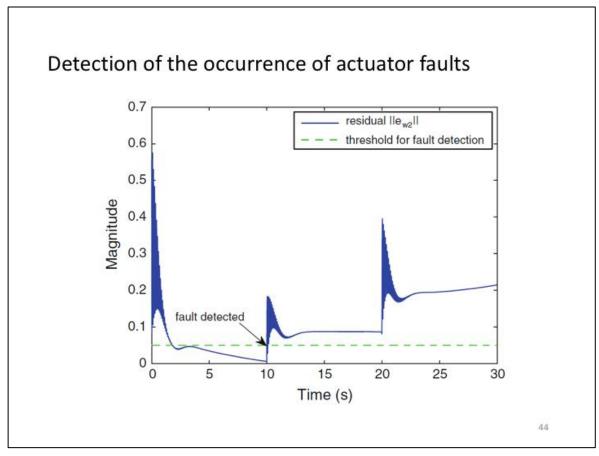
$$F = \begin{bmatrix} -0.8797 & -4.4882 & -0.0156 \\ -0.7677 & -3.2451 & 0.0039 \end{bmatrix}$$

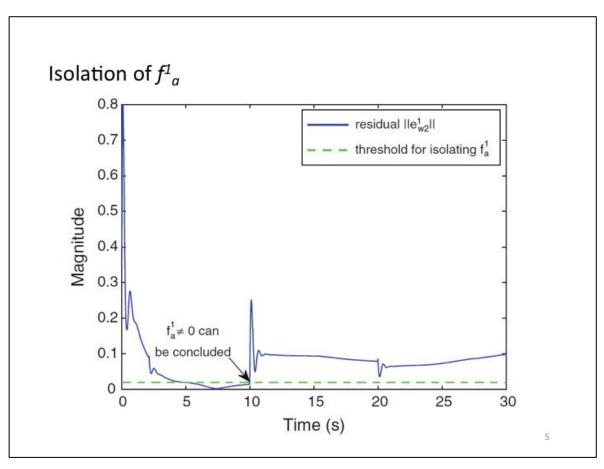
It is worth noting that the parameters obtained from LMI may differ from that shown here. This is expected because these are obtained by solving LMIs which does not give unique solutions.

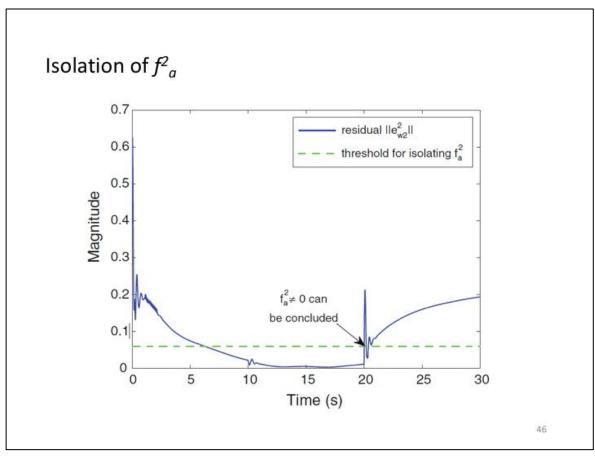












Conclusions

We propose a scheme to robustly detect and isolate incipient actuator faults for uncertain Lipschitz nonlinear systems.

The proposed FDI scheme essentially transforms the original system into two subsystems where subsystem-1 includes both actuator faults and system uncertainties while subsystem-2 has actuator faults but without uncertainties.

Actuator faults can be detected by applying a Luenberger observer for subsystem-2, and isolated using a bank of SMOs for both subsystems based on the modified dedicated observer scheme.

47

Conclusions

The most distinct feature of the proposed FDI scheme is that, by imposing a coordinate transformation to the original system, the effects of system uncertainties to the residual of subsystem-2 are completely decoupled, which makes the scheme sensitive to incipient faults while still robust to modelling uncertainty.

Thus, early detection can be achieved and a false alarm caused by modeling uncertainties can be totally avoided.

The sufficient conditions of stability of the proposed observers have been studied and represented in the form of LMI.

Its effectiveness has been demonstrated considering the example of a modified aircraft model.

Robust Detection of Sensor Faults in Nonlinear Systems

Robust Detection of Sensor Faults in Nonlinear Systems

Anton Zhilenkov

Outline

- Introduction
- Problem Formulation
- Sensor Fault Detection Scheme
- Modeling Results with an example of a single-link robotic arm with a revolute elastic joint

Introduction

- With the development of modern technology, autonomous systems are more and more dependent on sensors which often carry the most important information in automated/feedback control systems.
- Faults occurring in sensors may lead to poor regulation or tracking performance, or even affect the stability of the control system.

3

Introduction

- Therefore, the study of sensor FDI is becoming increasingly important. Compared with the study of actuator FD, the research on sensor FD is less studied in this realm.
- We will extend the method proposed for actuator FD to sensor FD.

- We will focus on the type of faults which can be modelled as additive changes appearing in sensors.
- A faulty system with actuator and sensor faults is depicted in fig. 2.1.

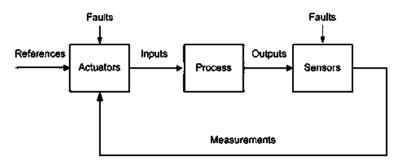
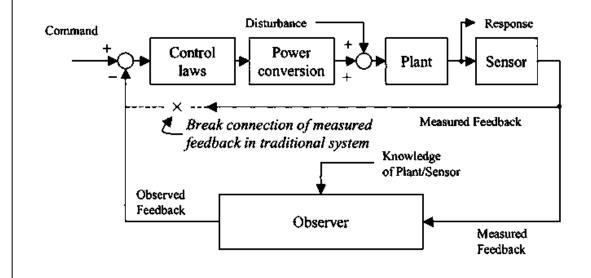


Fig. 2.1 A faulty system which is subject to actuator faults and sensor faults

5

Role of an observer in a control system



G

 It is assumed only sensor faults occur in the system. In this case, the considered system has the following form:

$$\begin{cases} \dot{x}(t) = Ax(t) + f(x,t) + Bu(t) + E\Delta\psi(t) \\ y(t) = Cx(t) + Df_s(\tau), \end{cases}$$
 (2.1)

where $x \in \mathcal{R}^n$ - vector of state variables;

 $u \in \mathcal{R}^{m}$ - vector of inputs; $y \in \mathcal{R}^{p}$ - vector of outputs;

 $f_s \in \mathcal{R}^q$ - vector of unknown sensor faults;

 $\Delta \psi \in \mathcal{R}^r$ - system uncertainties;

f(x, t) - known nonlinear continuous term.

 $A \in \mathcal{R}^{n \times n}$, $B \in \mathcal{R}^{n \times m}$, $C \in \mathcal{R}^{p \times n}$, $D \in \mathcal{R}^{n \times h}$ and $E \in \mathcal{R}^{n \times r}$ are known constant matrices with C, D and E being of full rank, (p \geq q+r).

7

Problem Formulation

Assumption 2.1

$$rank(CE) = rank(E)$$
.

 Assumption 2.2 For every complex number s with nonnegative real part

$$rank \begin{bmatrix} sI - A & E \\ C & 0 \end{bmatrix} = n + rank(E)$$

Assumption 2.3 The nonlinear continuous term
 f(x,t) is assumed to be known and Lipschitz about
 the state x uniformly, i.e.,

$$||f(x, t) - f(\hat{x}, t)|| \le \mathcal{L}_f ||x - \hat{x}||, \quad \forall x, \hat{x} \in \mathcal{R}^t$$

where \mathcal{L}_f is the known Lipschitz constant.

9

Problem Formulation

• **Assumption 2.4** The actuator fault vector f_s and uncertainty vector $\Delta \psi$ satisfies the following constraint:

$$||f_s|| \le \rho_s \text{ and } ||\Delta\psi|| \le \xi,$$
 (2.4)

where ρ_s and ξ are two known positive constants.

 Lemma 2.1 Under Assumption 2.1, there exist state and output transformations:

$$z = Tx = \begin{bmatrix} z_1 \\ z_2 \end{bmatrix}, \quad w = Sy = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$$
 (2.5)

such that in the new coordinate, the system matrices become,

$$TAT^{-1} = \begin{bmatrix} A_1 & A_2 \\ A_3 & A_4 \end{bmatrix}, TB = \begin{bmatrix} B_1 \\ B_2 \end{bmatrix},$$

$$TE = \begin{bmatrix} E_1 \\ 0 \end{bmatrix}, SCT^{-1} = \begin{bmatrix} C_1 & 0 \\ 0 & C_4 \end{bmatrix}, SD = \begin{bmatrix} 0 \\ D_2 \end{bmatrix}$$
(2.6)

where C_i is invertible.

11

Problem Formulation

 After introducing the state and output transformations T and S, system (2.1) is converted into the following two systems

$$\begin{cases} \dot{z}_1 = A_1 z_1 + A_2 z_2 + f_1 (T^{-1} z, t) + B_1 u + E_1 \Delta \psi \\ w_1 = C_1 z_1 \end{cases}$$
 (2.6)

$$\begin{cases} \dot{z}_2 = A_3 z_1 + A_4 z_2 + f_2 (T^{-1} z, t) + B_2 u \\ w_2 = C_4 z_2 + D_2 f_S \end{cases}$$
 (2.7)

where $f_1(T^1z, t) = T_1f(T^1z, t)$ and $f_2(T^1z, t) = T_2f(T^1z, t)$.

Lemma 2.2 The pair (A_4, C_4) is detectable if and only if Assumption 2.2 holds.

In order to apply the method developed in actuator FD lecture, we define a new state

$$z_3 = \int_0^{-t} w_2(\tau) d\tau$$

so that

$$\dot{z}_3(t) = C_4 z_2 + D_2 f_s \tag{2.8}$$

13

Problem Formulation

Equations (2.7) and (2.8) can be combined to form an augmented system of order n + p - 2r as

$$\begin{bmatrix} \dot{z}_{2} \\ \dot{z}_{3} \end{bmatrix} = \begin{bmatrix} A_{4} & 0 \\ C_{4} & 0 \end{bmatrix} \begin{bmatrix} z_{2} \\ z_{3} \end{bmatrix} + \begin{bmatrix} A_{3} \\ 0 \end{bmatrix} z_{1} + \\
+ \begin{bmatrix} f_{2}(T^{-1}z, t) \\ 0 \end{bmatrix} + \begin{bmatrix} B_{2} \\ 0 \end{bmatrix} u + \begin{bmatrix} 0 \\ D_{2} \end{bmatrix} f_{s}, \tag{2.9}$$

$$w_3=z_3.$$

System (2.9) can then be rewritten in a more compact form as

$$\begin{cases} \dot{z}_0 = A_0 z_0 + \overline{A}_3 z_1 + \overline{f}_2 (T^{-1} z, t) + B_0 u + D_0 f_s \\ w_3 = C_0 z_0, \end{cases}$$
 (2.10)

where
$$z_0 = \begin{bmatrix} z_2 \\ z_3 \end{bmatrix} \in {}^{n+p-2r}, \quad \overline{A}_3 = \begin{bmatrix} A_3 \\ 0 \end{bmatrix} \in {}^{n+p-2r) \times r},$$

$$w_3 \in {}^{n-r}, \quad A_0 = \begin{bmatrix} A_4 & 0 \\ C_4 & 0 \end{bmatrix} \in {}^{n+p-2r) \times (n+p-2r)},$$

$$B_0 = \begin{bmatrix} B_2 \\ 0 \end{bmatrix} \in {}^{n+p-2r) \times m}, \quad D_0 = \begin{bmatrix} 0 \\ D_1 \end{bmatrix} \in {}^{n+p-2r) \times q}$$

- 5

Problem Formulation

$$\begin{cases} \dot{z}_0 = A_0 z_0 + \overline{A}_3 z_1 + \overline{f}_2 (T^{-1} z, t) + B_0 u + D_0 f_s \\ w_3 = C_0 z_0, \end{cases}$$
 (2.10)

where

$$C_0 = \begin{bmatrix} 0 \\ I_{p-r} \end{bmatrix}^T \in {}^{\sim \{p-r\}\times(n+p-2r)}, \quad \overline{f}_2(T^{-1}z,t) = \begin{bmatrix} f_2(T^{-1}z,t) \\ 0 \end{bmatrix}.$$

Accordingly, System (2.6) can be rewritten as

$$\begin{cases} \dot{z}_1 = A_1 z_1 + \overline{A}_2 z_0 + f_1 (T^{-1} z, t) + B_1 u + E_1 \Delta \psi \\ w_1 = C_1 z_1, \end{cases}$$
 (2.11)

where

$$\overline{A}_2 = \begin{bmatrix} A_2 \\ 0_{r \times (p-r)} \end{bmatrix}^T$$

17

Sensor FD Scheme

For Subsystem (2.11), Sliding Mode Observer has the form as

$$\begin{cases} \dot{\hat{z}} = A_1 \hat{z}_1 + \overline{A}_2 \hat{z}_0 + f_1 (T^{-1} \hat{z}, t) + B_1 u + (A_1 - A_1^s) C_1^{-1} (w_1 - \hat{w}_1) + v_1 \\ \hat{w}_1 = C_1 \hat{z}_1 \end{cases}$$
(2.17)

where $A_1^s \in {}^{\sim r \times r}$ is a stable matrix which needs to be determined.

 \hat{z} is defined as $\hat{z} := col(C_1^{-1}w_1\hat{z}_2)$

Sensor FD Scheme

The discontinuous output error injection term v_1 is defined by

$$\overline{v}_{1} = \begin{cases} k_{1} \frac{P_{1}(C_{1}^{-1}w_{1} - \hat{z}_{1})}{\|P_{1}(C_{1}^{-1}w_{1} - \hat{z}_{1})\|} & if \quad C_{1}^{-1}w_{1} \neq 0\\ 0 & otherwise, \end{cases}$$
(2.18)

where $k_1 = ||E_1|| \xi + \eta_1$ and η_1 is a positive scalar which needs to be determined.

19

Luenberger Observer

For Subsystem (2.10), we design the following Luenberger observer:

$$\begin{cases} \dot{\hat{z}}_0 = A_0 \hat{z}_0 + \overline{A}_3 C_1^{-1} w_1 + \overline{f}_2 (T^{-1} \hat{z}, t) + B_0 u + L_0 (w_3 - \hat{w}_3) \\ \hat{w}_3 = C_0 \hat{z}_0 \end{cases}$$
(2.19)

where $L_0 \in {}^{\sim (n+p-2r)\times (p-r)}$ is the gain of the Luenberger observer

Luenberger Observer

If the state estimation errors are defined as

$$e_1 = z_1 - \hat{z}_1$$
 and $e_2 = z_2 - \hat{z}_2$,

then the state estimation error dynamics, before the occurrence of sensor faults, can be obtained as

$$\dot{e}_1 = A_1^s e_1 + \overline{A}_2 e_0 + (f_1(T^{-1}z, t) - f_1(T^{-1}\hat{z}, t)) + E_1 \Delta \psi - v_1$$
(2.20)

$$\dot{e}_0 = (A_0 - L_0 C_0) e_0 + (\overline{f}_2 (T^{-1} z, t) - \overline{f}_2 (T^{-1} \hat{z}, t).$$
(2.21)

21

Luenberger Observer

• We now present Theorem 2.1 which establishes sufficient conditions for the existence of the proposed observers (2.17)–(2.19) and outlines a constructive design procedure.

Theorem 2.1 Given System (2.1) with Assumptions 2.1–2.4. When the system is free of sensor faults, the error dynamics (2.20) and (2.21) are asymptotically stable, if there exist matrices

$$A_1^s < 0, L_0, P_1 = P_1^T > 0 \text{ and } P_0 = P_0^T > 0$$

and positive scalars α_1 and α_2 such that

$$\Lambda := \begin{bmatrix} \Pi_{1} + \frac{1}{\alpha_{1}} P_{1} P_{1} & P_{1} \overline{A}_{2} \\ \overline{A}_{2}^{T} P_{1} & \Pi_{2} + \frac{1}{\alpha_{0}} P_{0} P_{0} + a I_{n+p-2r} \end{bmatrix} < 0$$
 (2.22)

where $\Pi_I = A_I^{sT} P_I + P_I A_I^{s}$,

$$\Pi_{2} = (A_{0} - L_{0}C_{0})^{T} P_{0} + P_{0} (A_{0} - L_{0}C_{0}),
\alpha = \alpha_{1} \chi_{fl} ||T^{-1}||^{2} + \alpha_{2} \chi_{fl}^{-2}||T^{-1}||^{2}.$$

23

Remark 2.2 The problem of finding matrices to satisfy Inequality (3.22) can be transformed into the following LMI feasibility problem using Schur complement

$$\begin{bmatrix} X + X^{T} & P_{1} & P_{1}\overline{A}_{2} & 0 \\ P_{1} & -\alpha_{1}I & 0 & 0 \\ \overline{A}_{2}^{T}P_{1} & 0 & A_{0}^{T}P_{0} + P_{0}A_{0} - C_{0}^{T}Y_{0}^{T} - Y_{0}C_{0} + aI & P_{0} \\ 0 & 0 & P_{0} & -\alpha_{0}I \end{bmatrix} < 0$$

• Sensor FD scheme: Actuator faults can be detected if the residual $||e_{w3}||$ exceeds a predefined threshold ς . Otherwise the system is healthy within the considered time. The detection time $t_d(t_{d \ge} t_f)$ is defined as the first time instant such that $||e_{w3}||$ is observed greater than ς .

25

Simulation Results

 In this section, the effectiveness of the proposed schemes in detecting and isolating actuator faults has been demonstrated considering an example of a single-link robotic arm with a revolute elastic joint.

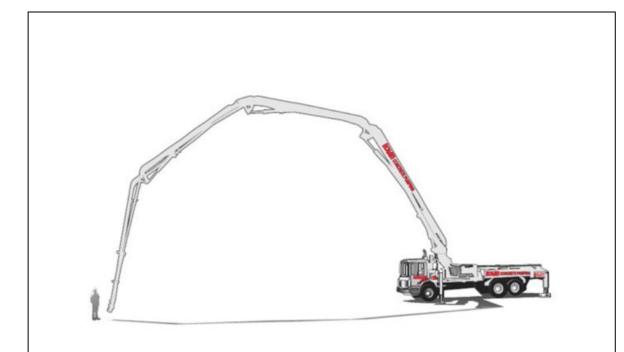
The dynamics is described by

$$J_{l}\ddot{q}_{1} + F_{1}\dot{q}_{1} + k(q_{1} - q_{2}) + mgl\sin q_{1} = 0$$

$$J_{m}\ddot{q}_{2} + F_{m}\dot{q}_{2} - k(q_{1} - q_{2}) = u$$
(2.51)

• Space shuttle remote manipulation system

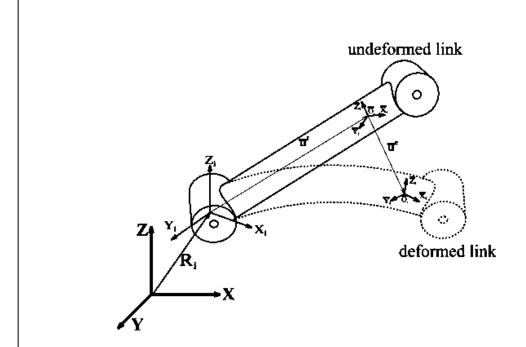
27



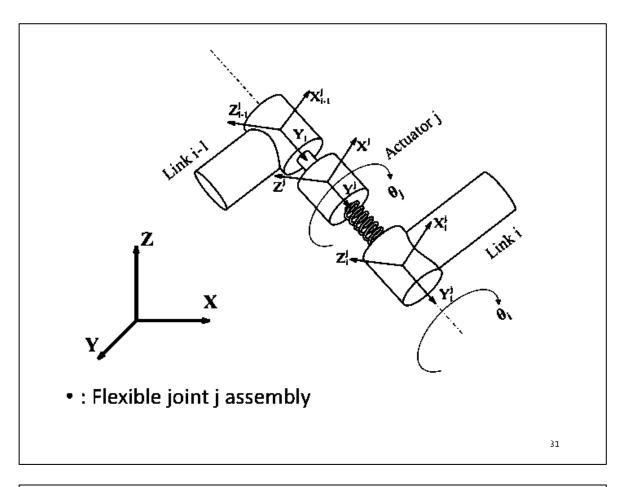
• Truck mounted concrete boom pump

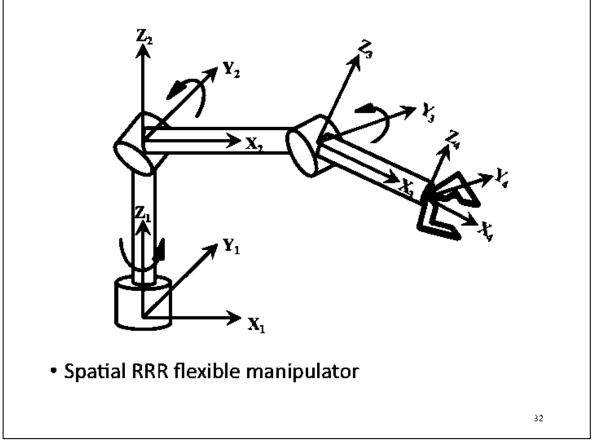
• Kuka DLR Light weight robot

29



• Representation of an arbitrary point on a flexible link





The dynamics is described by

$$J_{l}\ddot{q}_{1} + F_{1}\dot{q}_{1} + k(q_{1} - q_{2}) + mgl\sin q_{1} = 0$$

$$J_{m}\ddot{q}_{2} + F_{m}\dot{q}_{2} - k(q_{1} - q_{2}) = u$$
(2.51)

where q_1 and q_2 denote the link position and the rotor position, respectively;

u is the torque delivered by the motor;

m is the linkmass, l is the center of mass,

 J_m is the link inertia, J_l is the motor rotor inertia,

33

Simulation Results

The dynamics is described by

$$J_{l}\ddot{q}_{1} + F_{1}\dot{q}_{1} + k(q_{1} - q_{2}) + mgl\sin q_{1} = 0$$

$$J_{m}\ddot{q}_{2} + F_{m}\dot{q}_{2} - k(q_{1} - q_{2}) = u$$
(2.51)

 F_m is the viscous friction coefficient,

 F_i is the viscous friction coefficient,

k is the elastic constant, and g is the gravity constant.

In the simulation, the values of these parameters are chosen as

$$m = 4$$
, $l = 0.5$, $J_m = 1$, $J_l = 2$,
 $F_m = 1$, $F_l = 0.5$, $k = 2$
and $g = 9.8$
(all in SI units).

35

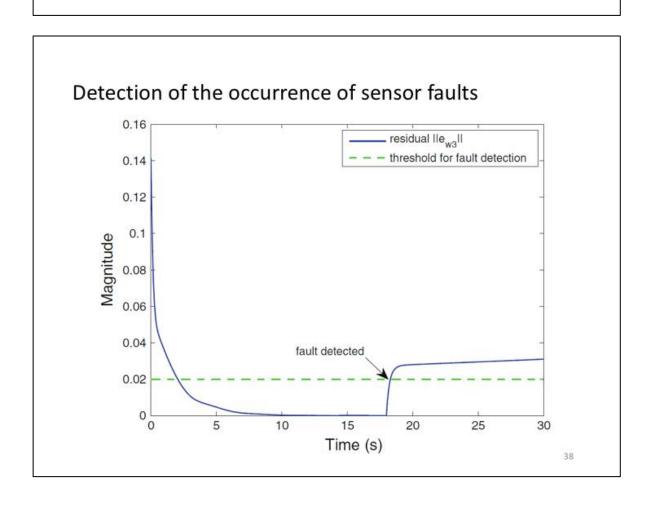
Choosing $x_1 = q_1$, $x_2 = q_1$, $x_3 = q_2$, $x_4 = q_2$ and assuming that the link position, the link velocity and the rotor position can be measured, the dynamics (2.51) can be represented in the following state-space form as

$$\begin{bmatrix} \dot{x}_{1} \\ \dot{x}_{2} \\ \dot{x}_{3} \\ \dot{x}_{4} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ \frac{-k}{J_{i}} & \frac{-F_{i}}{J_{i}} & \frac{k}{J_{i}} & 0 \\ 0 & 0 & 0 & 1 \\ \frac{k}{J_{m}} & 0 & \frac{-k}{J_{m}} & \frac{-F_{m}}{J_{m}} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{-mgl}{J_{i}} \sin x_{1} \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} u + \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} \Delta \psi,$$

$$y = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 2 & 0 \\ 0 & 1 \end{bmatrix} f_{s}. \tag{2.52}$$

Case-1 In this case the sensor faults are given as

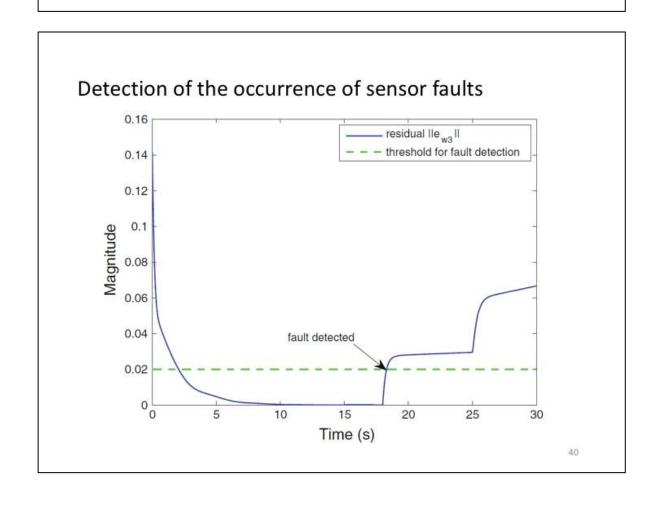
$$f_{s1} = \begin{cases} 0, & t \le 18s \\ 0.05 \exp(0.01t), & t \ge 18s \end{cases}$$
$$f_{s2} = 0, \forall t$$



Case-2 In this case the sensor faults are given as

$$f_{s1} = \begin{cases} 0, & t \le 18s \\ 0.05 \exp(0.01t), & t \ge 18s \end{cases}$$

$$f_{s2} = \begin{cases} 0, & t \le 25s \\ 0.07 \exp(0.03t), & t \ge 25s \end{cases}$$



Conclusions

In this lecture, a new sensor FD scheme is presented. The proposed FD scheme essentially transforms the original system into two subsystems where subsystem-1 includes system uncertainties, but is free from sensor faults and subsystem-2 has sensor faults but without uncertainties. Using the integral observer-based approach, sensor faults in subsystem-2 are transformed into actuator faults and detected by designing a Luenberger observer for this subsystem.

41

Conclusions

Its effectiveness has been demonstrated considering the example of a single-link robotic arm with a revolute elastic joint.

Simulation results confirm that the proposed method can effectively detect and isolate incipient sensor faults in the presence of system

Modeling of systems and complexes

Modeling and control of robotic systems Kinematics of industrial robots

Kinematics of Industrial Robots

Dr. Oleg Borisov

Basic Concepts and Definitions: Joints and Generalized Coordinates

Kinematic Chain

The *kinematic chain* is used to describe the geometry of the robot manipulator. Ot represents a graphic representation of the sequence of manipulator links connected by joints.

There are two elementary types of 1-DOF joints

- revolte (joint coordinate is angular)
- prismatic (joint coordinat is linear)

Both joint coordinates are so-called generalized coordinates

$$q_i = \begin{cases} \theta_i, & \text{if the link } i \text{ is revolute,} \\ d_i, & \text{if the link } i \text{ is prisnatic.} \end{cases}$$
 (1)

Configuration

A set of all the generalized coordinates of the manipulator, which uniquely determines it in the space, is called *configuration*.

Basic Concepts and Definitions: FK and IK

There are two fundamental tasks of the kinematics analysis

- forward kinematics
- inverse kinematics

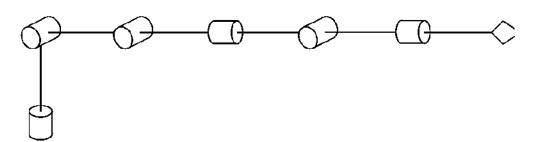
Forward kinematics

The forward kinematics (FK) is to calculate the coordinates of the tool frame (its position and orientation) given the configuration of the robot.

Inverse kinematics

The *inverse kinematics* (*IK*) is to calculate the configuration of the robot given the coordinates of the tool frame (its position and orientation).

Forward Kinematics: Algorithm



Kinematic chain of 6-DOF robot

- 1. Assigning frames to the links.
- 2. Determining Denavit-Hartenberg parameters
- 3. Forming homogeneous transformation matrices
- 4. Parametrization of rotation matrix

Forward Kinematics: Assigning Frames

Choice of z_i -axes

Choose the axis z_i so that it coincides with the axis of rotation or translational motion of the subsequent joint i+1 depending on its type. This means that the relative location of adjacent links (coordinate systems) will be determined precisely by the variable around (or along) this axis.

Choice of x_i -axes

Choose the axis x_i , $i = \{1, 2, ..., n-1\}$ so that the following two conditions are satisfied.

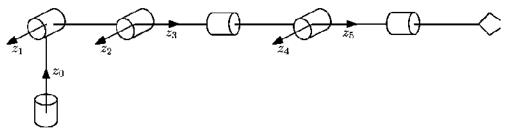
- The axis x_i is perpendicular to the axis z_{i-1} .
- The axis x_i intersects the axis z_{i-1} .

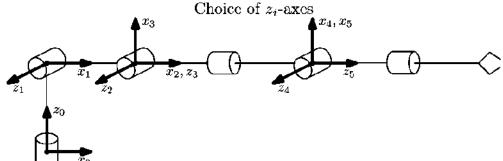
Choice of y_i -axes

Choose the axis y_i so that the frame given by the unit vectors \vec{x}_i , \vec{y}_i , \vec{z}_i is right-handed, i.e. in the direction given by the vector product:

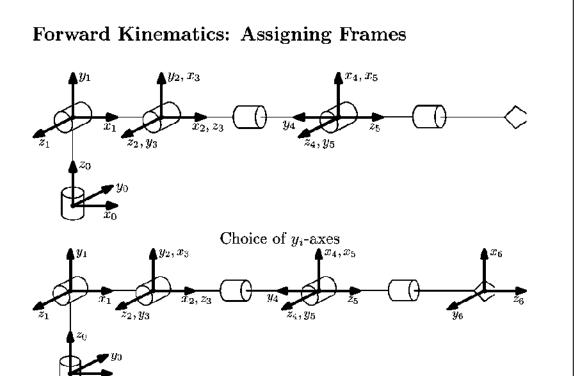
$$\vec{y}_i = \vec{z}_i \times \vec{x}_i. \tag{2}$$

Forward Kinematics: Assigning Frames





Choice of x_i -axes

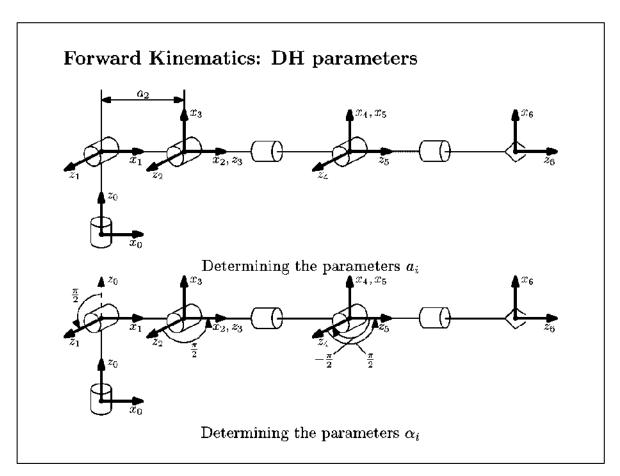


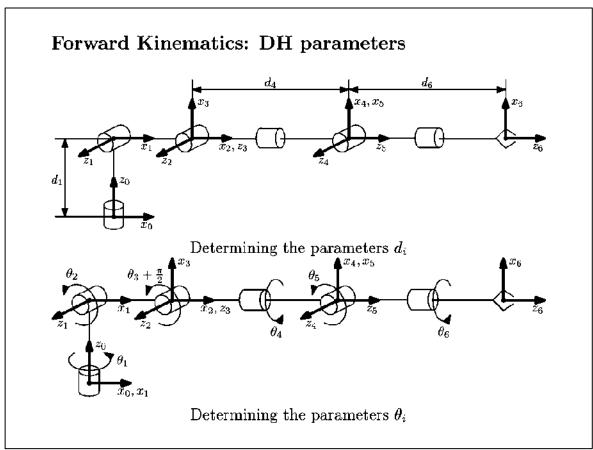
Choice of n-axes

Forward Kinematics: DH parameters

The Denavit-Hartenberg convention allows to reduce the number of coordinates that uniquely determine the body (its frame) in the space, from six to four, known as the *Denavite-Harteberg parameters* listed below.

- a_i is the distance along the axis x_i from z_{i-1} to z_i
- α_i is the angle around the axis x_i from z_{i-1} to z_i
- d_i is the distance along the axis z_{i-1} from x_{i-1} to x_i
- θ_i is the angle around the axis z_{i-1} from x_{i-1} to x_i





Forward Kinematics: DH parameters

Link, i	a_i	α_i	d_i	$ heta_i$
1	0	$\frac{\pi}{2}$	d_1	θ_1
2	a_2	0	0	$ heta_2$
3	0	$\frac{\pi}{2}$	0	$ heta_3 + rac{\pi}{2}$
4	0	$-\frac{\pi}{2}$	d_4	$ heta_4$
5	0	$\frac{\pi}{2}$	0	$ heta_5$
6	0	Ü	d_6	θ_6

DH parameters of the 6-DOF robot

Forward Kinematics: HT Matrix

Consider to sets of coordinates k^0 and k^n of the same point in the space expressed with respect to two frames $o_0x_0y_0z_0$ and $o_nx_ny_nz_n$, respectively:

$$k^0 = T_n^0 k^n, (3)$$

where T_n^0 is the transformation carrying information about relative position and orientation of one frame with respect to another one.

Homogeneous Transformation Matrixe

The matrix T_n^0 defining the relation between frames $o_0x_0y_0z_0$ and $o_nx_ny_nz_n$ is called a homogeneous transformation (HT) matrix and has the form

$$T_n^0 = \begin{bmatrix} n_x & s_x & a_x & p_x \\ n_y & s_y & a_y & p_y \\ n_z & s_z & a_z & p_z \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} n_n^0 & s_n^0 & a_n^0 & p_n^0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} R_n^0 & p_n^0 \\ 0 & 1 \end{bmatrix}, \quad (4)$$

where the vectors n_n^0 , s_n^0 and a_n^0 express directions of x_n , y_n and z_n with respect to $o_0x_0y_0z_0$, $R_n^0 \in \mathcal{SO}(3)$ is the rotation matrix of the frame $o_nx_ny_nz_n$ with respect to $o_0x_0y_0z_0$, $p_n^0 \in \mathbb{R}^3$ is the vector of linear displacement of the origin of $o_nx_ny_nz_n$ with respect to $o_0x_0y_0z_0$.

Forward Kinematics: Properties of HT Matrix

1. The rotation by zero angle is determined by the identity matrix

$$R_{\beta=0} = \begin{bmatrix} \mathbf{1} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \mathbf{1} \end{bmatrix} = I.$$
 (5)

2. Rotation in the negative direction is determined by

$$R_{-\beta} = R_{\beta}^{-1} = R_{\beta}^{T}. \tag{6}$$

3. There are three basic rotation matrices around $x,\,y$ and z axes given as

$$R_{x,\beta} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\beta & -\sin\beta \\ 0 & \sin\beta & \cos\beta \end{bmatrix}, R_{y,\beta} = \begin{bmatrix} \cos\beta & 0 & \sin\beta \\ 0 & 1 & 0 \\ -\sin\beta & 0 & \cos\beta \end{bmatrix}, R_{z,\beta} = \begin{bmatrix} \cos\beta & -\sin\beta & 0 \\ \sin\beta & \cos\beta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

where β is some angle.

Forward Kinematics: Properties of HT Matrix

4. Serial rotations around several *current* axes are determined by multiplying on the right. For example, the transformation parametrized by Euler angles ϕ , θ and ψ is given as

$$R_{zyz} = R_{z,\phi} R_{y,\theta} R_{z,\psi} = \begin{bmatrix} c_{\phi} & -s_{\phi} & 0 \\ s_{\phi} & c_{\phi} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} c_{\theta} & 0 & s_{\theta} \\ 0 & 1 & 0 \\ -s_{\theta} & 0 & c_{\theta} \end{bmatrix} \begin{bmatrix} c_{\psi} & -s_{\psi} & 0 \\ s_{\psi} & c_{\psi} & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} c_{\phi} c_{\theta} c_{\psi} - s_{\phi} s_{\psi} & -c_{\phi} c_{\theta} s_{\psi} - s_{\phi} c_{\psi} & c_{\phi} s_{\theta} \\ s_{\phi} c_{\theta} c_{\psi} + c_{\phi} s_{\psi} & -s_{\phi} c_{\theta} s_{\psi} + c_{\phi} c_{\psi} & s_{\phi} s_{\theta} \\ -s_{\theta} c_{\psi} & s_{\theta} s_{\psi} & c_{\theta} \end{bmatrix},$$
(7)

where $c_{\beta} \equiv \cos \beta$, $s_{\beta} \equiv \sin \beta$, $\beta = \{\phi, \theta, \psi\}$.

Forward Kinematics: Properties of HT Matrix

Using the DH convention form the homogeneous transformation matrices for each link as follows

$$T_{i} = T_{z,\theta_{i}} T_{z,d_{i}} T_{x,\alpha_{i}} T_{x,\alpha_{i}} = \begin{bmatrix} R_{z,\theta_{i}} & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} I & p_{d_{i}} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} I & p_{a_{i}} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} R_{x,\alpha_{i}} & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} c_{\theta_{i}} & -s_{\theta_{i}} c_{\alpha_{i}} & s_{\theta_{i}} s_{\alpha_{i}} & a_{i} c_{\theta_{i}} \\ s_{\theta_{i}} & c_{\theta_{i}} c_{\alpha_{i}} & -c_{\theta_{i}} s_{\alpha_{i}} & a_{i} s_{\theta_{i}} \\ 0 & s_{\alpha_{i}} & c_{\alpha_{i}} & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix},$$

$$(8)$$

where i is the link number, R_{z,θ_i} and R_{x,α_i} are the basic rotation matrices, p_{d_i} and p_{α_i} are vectors with nonzero components $p_z = d_i$ and $p_x = a_i$

$$R_{z,\theta_i} = \begin{bmatrix} \cos \theta_i & -\sin \theta_i & 0 \\ \sin \theta_i & \cos \theta_i & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad R_{x,\alpha_i} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha_i & -\sin \alpha_i \\ 0 & \sin \alpha_i & \cos \alpha_i \end{bmatrix},$$

$$p_{d_i} = \begin{bmatrix} 0 \\ 0 \\ d_i \end{bmatrix}, \qquad p_{a_i} = \begin{bmatrix} a_i \\ 0 \\ 0 \end{bmatrix}. \tag{9}$$

Forward Kinematics: Parametrization of Rotation Matrices

There different ways to parametrize rotation matrices

- Euler angles
- Roll-Pitch-Yaw angles
- Axis-Angle Representation

All of them are intended to reduce amount of parameters from 9 to 3.

Forward Kinematics: Euler Angles

The matrix of ZYZ-transformation is given as

$$R_{n}^{0}(q) = \begin{bmatrix} r_{11}(q) & r_{12}(q) & r_{13}(q) \\ r_{21}(q) & r_{22}(q) & r_{23}(q) \\ r_{31}(q) & r_{32}(q) & r_{33}(q) \end{bmatrix} = \begin{bmatrix} c_{\psi}c_{\theta}c_{\psi} - s_{\psi}s_{\psi} & -c_{\psi}c_{\theta}s_{\psi} - s_{\psi}c_{\psi} & c_{\phi}s_{\theta} \\ s_{\phi}c_{\theta}c_{\psi} + c_{\phi}s_{\psi} & -s_{\phi}c_{\theta}s_{\psi} + c_{\phi}c_{\psi} & s_{\phi}s_{\theta} \\ -s_{\theta}c_{\psi} & s_{\theta}s_{\psi} & c_{\theta} \end{bmatrix}.$$
(10)

Consider three cased depending on the entry $r_{33}(q)$.

First Case

If $r_{33}(q) \neq \pm 1$ then $\sin \theta(q) \neq 0$. Use the Pythagorean trigonometric identity

$$\sin^2 \theta(q) + \cos^2 \theta(q) = 1, \tag{11}$$

$$\sin(\theta(q)) = \pm \sqrt{1 - \cos^2 \theta(q)} = \pm \sqrt{1 - r_{33}(q)}$$
, (12)

from which it follows that $\theta(q)$ can be calculated as

$$\theta(q) = \operatorname{atan2}\left(\pm\sqrt{1 - r_{33}^2(q)}, r_{33}(q)\right).$$
 (13)

Note that the remaining expressions to calculate $\phi(q)$ and $\psi(q)$ depend on the choice of the sign in front of the root in (13)

$$\phi(q) = \operatorname{atan2}(\pm r_{23}(q), \pm r_{13}(q)), \qquad (14)$$

$$\psi(q) = \operatorname{atan2}(\pm r_{32}(q), \mp r_{31}(q)).$$
(15)

Second Case

If $r_{33}(q) = 1$ then $\cos \theta(q) = 1$, $\sin \theta(q) = 0$, from which $\theta(q) = 0$ and as a result

$$R_{n}^{0}(q) = \begin{bmatrix} c_{\phi}c_{\psi} - s_{\phi}s_{\psi} & -c_{\phi}s_{\psi} - s_{\phi}c_{\psi} & 0 \\ s_{\phi}c_{\psi} + c_{\phi}s_{\psi} & s_{\phi}s_{\psi} + c_{\phi}c_{\psi} & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} c_{\phi+\psi} & -s_{\phi+\psi} & 0 \\ s_{\phi+\psi} & c_{\phi+\psi} & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} r_{11}(q) & r_{12}(q) & 0 \\ r_{21}(q) & r_{22}(q) & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

$$(16)$$

This case leads to uncertainty, since only the sum $\phi(q) + \psi(q)$ can be computed

$$\phi(q) + \psi(q) = \operatorname{atan2}(r_{21}(q), r_{11}(q)). \tag{17}$$

Third Case

If $r_{33}(q) = -1$ then $\cos \theta(q) = -1$, $\sin \theta(q) = 0$, from which $\theta(q) = \pi$, as a result

$$R_{n}^{0}(q) = \begin{bmatrix} -c_{\phi}c_{\psi} - s_{\phi}s_{\psi} & c_{\phi}s_{\psi} - s_{\phi}c_{\psi} & 0\\ -s_{\phi}c_{\psi} + c_{\phi}s_{\psi} & s_{\phi}s_{\psi} + c_{\phi}c_{\psi} & 0\\ 0 & 0 & -1 \end{bmatrix} = \begin{bmatrix} -c_{\phi-\psi} & -s_{\phi-\psi} & 0\\ s_{\phi-\psi} & c_{\phi-\psi} & 0\\ 0 & 0 & -1 \end{bmatrix} = \begin{bmatrix} r_{11}(q) & r_{12}(q) & 0\\ r_{21}(q) & r_{22}(q) & 0\\ 0 & 0 & -1 \end{bmatrix}.$$

$$(18)$$

This case leads to uncertainty, since only the difference $\phi(q) - \psi(q)$ can be computed

$$\phi(q) - \psi(q) = \operatorname{atan2}(-r_{12}(q), -r_{11}(q)). \tag{19}$$

Inverse Kinematics

Initial data for IK are

- three linear coordinates (components of the vector p_n^0)
- three angular coordinates (e.g. Euler angles ϕ , ϕ and ψ)
- DH parameters

The geometric (analytical) method of solving IK is to find explicit expressions using the apparatus of trigonometric functions, taking into account the kinematic scheme of the manipulator.

Consider kinematic decoupling approach applied to standard 6-DOF robot with spherical wrist. It is comprised of two subtasks

- position IK (to compute q_1 , q_2 and q_3)
- orientation IK (to compute q_4 , q_5 and q_6)

Inverse Kinematics: Position IK

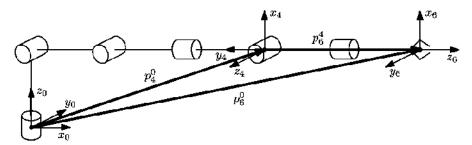
Spherical wrist

A spherical wrist is a kinematic scheme of the last three rotational joints such that their axes of rotation intersect at the same point.

The subtask is

- to determine relations between the given point of the end-effector and the point of three axes intersection
- to derive expressions for q_1 , q_2 and q_3 given the point of three axes intersection

Inverse Kinematics: Position IK



Kinematic decoupling

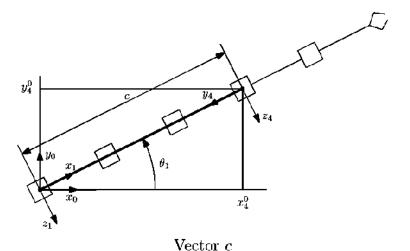
Using the sum of the vectors

$$p_6^0 = p_4^0 + d_6 R_6^0 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \tag{20}$$

express coordinates of the point as

$$p_4^0 = p_6^0 - d_6 R_6^0 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} x_4^0 \\ y_4^0 \\ z_4^0 \end{bmatrix}. \tag{21}$$

Inverse Kinematics: Position IK



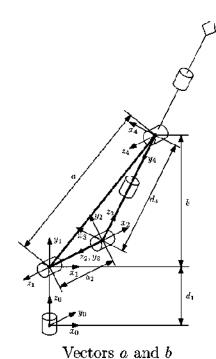
The first generalized coordinate can be computed as

$$\theta_1 = \operatorname{atan2}(y_4^0, x_4^0) \tag{22}$$

 \mathbf{or}

$$\theta_1 = \operatorname{atan2}(y_4^0, x_4^0) + \pi. \tag{23}$$

Inverse Kinematics: Position IK



Use the following notations

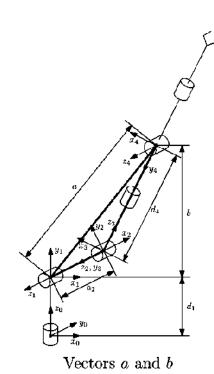
$$a = \sqrt{(x_4^1)^2 + (y_4^1)^2 + (z_4^1)^2}, (24)$$

$$b = (z_4^0 - d_1), (25)$$

$$b = (z_4^0 - d_1), (25)$$

$$c = \sqrt{(x_4^0)^2 + (y_4^0)^2}. (26)$$

Inverse Kinematics: Position IK Using the Pythagorean theorem write



$$a^2 = b^2 + c^2. (27)$$

Using the law of cosines write

$$a^{2} = a_{2}^{2} + d_{4}^{2} - 2a_{2}d_{4}\cos(\pi - \theta_{3}) =$$

$$= a_{2}^{2} + d_{4}^{2} + 2a_{2}d_{4}\cos\theta_{3}.$$
 (28)

Combining the both expressions write

$$b^2 + c^2 = a_2^2 + d_4^2 + 2a_2d_4\cos\theta_3, \qquad (29)$$

from which express $\cos \theta_3$

$$\cos \theta_3 = \frac{b^2 + c^2 - a_2^2 - d_4^2}{2a_2 d_4}.$$
 (30)

As a result the generalized coordinate θ_3 can be computed as

$$\theta_3 = \operatorname{atan2}\left(\pm\sqrt{1-\cos^2\theta_3},\cos\theta_3\right).$$
 (31)

Inverse Kinematics: Position IK

Consider difference between to angles

- angle α formed by a and c
- angle β formed by a and a_2

Express the generalized coordinate θ_2 as

$$\theta_2 = \alpha - \beta. \tag{32}$$

Taking into account trigonometric expressions

$$\tan \alpha = \frac{b}{c}, \tag{33}$$

$$\tan \alpha = \frac{b}{c},$$

$$\tan \beta = \frac{d_4 \sin \theta_3}{a_2 + d_4 \cos \theta_3},$$
(33)

rewrite (32) as

$$\theta_2 = \operatorname{atan2}(b, c) - \operatorname{atan2}(d_4 \sin \theta_3, a_2 + d_4 \cos \theta_3).$$
 (35)

Inverse Kinematics: Orientation IK

Express the rotation matrix R_6^0 as

$$R_6^0 = R_3^0 R_6^3, (36)$$

where R_6^0 is given, R_3^0 can be calculated solving FK. Express R_6^3 as

$$R_6^3 = (R_3^0)^{-1} R_6^0 = (R_3^0)^T R_6^0. (37)$$

Consider ZYZ-transformation given by the Euler angles as

$$R_6^3 = R_{zyz} = R_{z,\phi} R_{y,\theta} R_{z,\psi} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}.$$
(38)

The remaining three generalized coordinates can be computed as

$$\theta_4 = \phi = \operatorname{atan2}(\pm r_{23}, \pm r_{13}),$$
(39)

$$\theta_5 = \theta = \operatorname{atan2}\left(\pm\sqrt{1 - r_{33}^2}, r_{33}\right),$$
 (40)

$$\theta_6 = \psi = \operatorname{atan2}(\pm r_{32}, \mp r_{31}).$$
 (41)

Inverse Kinematics: Summary

- 1. Solve forward kinematics
- 2. Calculate the coordinates of the intersection between the rotation axes given the coordinated of the tool
- 3. Solve position IK and get θ_1 , θ_2 and θ_3
- 4. Calculate R_3^0 from forward kinematics
- 5. Calculate matrix R_6^3
- 6. Solve orientation IK and get θ_4 , θ_5 and θ_6 as the Euler angles forming the matrix R_6^3

Dynamics of industrial robots

Dynamics of Industrial Robots

Dr. Oleg Borisov

Dynamical Model of Revolute Joint: Two Components

The electrical component of the model describes a circuit with the inductance, resistance and motor as

$$L\dot{i}(t) + Ri(t) = u(t) - K_{\varepsilon}\omega(t) = u(t) - K_{\varepsilon}\dot{\theta}(t), \tag{1}$$

where L, R, i(t), u(t) are the inductance, resistance, current and voltage of the armature, respectively, K_{ε} is the back emf constant, $\omega(t)$, $\theta(t)$ are the angular velocity and position of the rotor, respectively.

The mechanical component of the model describes a gear train with the gear ratio j connected with the motor as

$$J\ddot{\theta}(t) + K_f \dot{\theta}(t) = K_{\mu} i(t) - \mu_l(t), \tag{2}$$

where J is the sum of the actuator and gear moments of inertia, K_f is the friction constant, K_{μ} is the torque constant, $\mu_l(t) = \frac{1}{j}\mu_l(t)$, $\mu_l(t)$ is the load torque, j is the gear ratio.

Dynamical Model of Revolute Joint: Transfer Functions

Apply the Laplace transform and rewrite the model (1) and (2) as

$$(Ls+R)I(s) = U(s) - K_{\varepsilon}s\Theta(s), \tag{3}$$

$$(Js + K_f)s\Theta(s) = K_{\mu}I(s) - M_l(s). \tag{4}$$

Taking into account (3) and (4) let us write the transfer function from the input U(s) to the output $\Theta(s)$ with $M_l(s) = 0$

$$\frac{\Theta(s)}{U(s)} = \frac{K_{\mu}}{s((Ls+R)(Js+K_f) + K_{\varepsilon}K_{\mu})}.$$
 (5)

The transfer function from $M_l(s)$ to $\Theta(s)$ with U(s) = 0 is

$$\frac{\Theta(s)}{M_l(s)} = -\frac{Ls + R}{s((Ls + R)(Js + K_f) + K_\varepsilon K_\mu)}.$$
 (6)

Dynamical Model of Revolute Joint: plification

Now divide numerator and denominator of the transfer functions (5) and (6) by R

$$\frac{\Theta(s)}{U(s)} = \frac{\frac{K_{\mu}}{R}}{s\left(\left(\frac{L}{R}s+1\right)(Js+K_f)+\frac{K_{\varepsilon}K_{\mu}}{R}\right)},\tag{7}$$

$$\frac{\Theta(s)}{M_l(s)} = -\frac{\frac{L}{R}s + 1}{s\left(\left(\frac{L}{R}s + 1\right)(Js + K_f) + \frac{K_e K_\mu}{R}\right)}.$$
 (8)

Since the time constant of the electrical component is reasonably much smaller than the time constant of the mechanical one

$$\frac{L}{R} << \frac{J}{K_f},\tag{9}$$

rewrite transfer functions (7) and (8)

$$\frac{\Theta(s)}{U(s)} \approx \frac{\frac{K_{\mu}}{R}}{s \left(Js + K_f + \frac{K_{\epsilon}K_{\mu}}{R}\right)}, \frac{\Theta(s)}{M_l(s)} \approx \frac{-1}{s \left(Js + K_f + \frac{K_{\epsilon}K_{\mu}}{R}\right)}. \quad (10)$$

Dynamical Model of Revolute Joint: The Resultant Model

Define new notations for these transfer functions

$$\frac{\Theta(s)}{M_u(s)} \approx \frac{1}{s(Js+K)},$$

$$\frac{\Theta(s)}{M_l(s)} \approx \frac{1}{s(Js+K)},$$
(11)

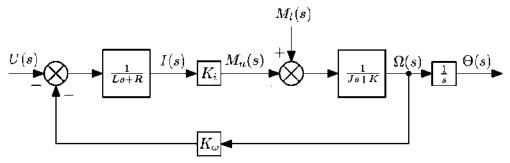
$$\frac{\Theta(s)}{M_l(s)} \approx \frac{1}{s(Js+K)},$$
(12)

where $M_u(s) = \frac{K_\mu}{R} U(s)$, $K = K_f + \frac{K_e K_\mu}{R}$.

Combining transfer functions (11) and (12) we get

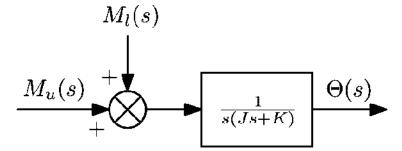
$$\Theta(s) = \frac{1}{s(Js+K)} (M_u(s) - M_l(s)) = P(s) (M_u(s) - M_l(s)). \quad (13)$$

Dynamical Model of Revolute Joint: Initial Scheme



Initial scheme of the revolute joint model

Dynamical Model of Revolute Joint: Simplified Scheme



Simplified scheme of the revolute joint model

Dynamical Model of the Robot: Euler-Lagrange Equation

Dynamics of mechanical systems can be described by the Euler-Lagrange equation as

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \right) - \frac{\partial L}{\partial q_i} = \mu_i, \tag{14}$$

where L is the Lagrangian, q_i , \dot{q}_i are the generalized coordinates and velocities, μ_i are the generalized torques applied to the joints.

The Langragian L can be computed as

$$L = K - P, (15)$$

where K and L are the full kinetic and potential energies of the system, respectively.

Dynamical Model of the Robot: Kinetic Energy

The kinetic energy of the link is comprised of the linear and angular components

$$K_{i} = \frac{1}{2}m_{i}|v_{i}|^{2} + \frac{1}{2}\omega_{i}^{T}I_{i}^{0}\omega_{i}, \qquad (16)$$

where m_i is the mass of the link, v_i is the linear velocity of the center of mass, ω_i is the angular velocity of the frame assigned with the link, I_i^0 is the inertia tensor with respect to the base frame.

Express the linear and angular velocities using the Jacobian matrix

$$v_i = J_{v_i}(q)\dot{q}, \tag{17}$$

$$\omega_i = J_{\omega_a}(q)\dot{q}. \tag{18}$$

Dynamical Model of the Robot: Kinetic Energy

Express the inertia tensor as

$$I_i^0 = R_i I R_i^T, \tag{19}$$

where R_i is the rotation matrix between the base and link frames, I is the

where R_i is the rotation matrix between the scale $I = \begin{bmatrix} i_{11} & i_{12} & i_{13} \\ i_{21} & i_{22} & i_{23} \\ i_{21} & i_{22} & i_{23} \end{bmatrix}$, inertia tensor with respect to the link frame given as $I = \begin{bmatrix} i_{11} & i_{12} & i_{13} \\ i_{21} & i_{22} & i_{23} \\ i_{21} & i_{22} & i_{23} \end{bmatrix}$,

where the elements are defined as

$$\begin{split} i_{11} &= \int \!\!\! \int \!\!\! \int (y^2 + z^2) \rho(x,y,z) dx dy dz, \quad i_{12} = i_{21} = -\int \!\!\! \int \!\!\! \int xy \rho(x,y,z) dx dy dz, \\ i_{12} &= \int \!\!\! \int \!\!\! \int (x^2 + z^2) \rho(x,y,z) dx dy dz, \quad i_{13} = i_{31} = -\int \!\!\! \int \!\!\! \int xz \rho(x,y,z) dx dy dz, \\ i_{13} &= \int \!\!\! \int \!\!\! \int (x^2 + y^2) \rho(x,y,z) dx dy dz, \quad i_{23} = i_{32} = -\int \!\!\! \int \!\!\! \int yz \rho(x,y,z) dx dy dz, \end{split}$$

where $\rho(x, y, z)$ is the function of mass density.

Rewrite the kinetic energy as

$$K_{i} = \frac{1}{2} m_{i} \dot{q}^{T} J_{v_{i}}^{T} J_{v_{i}} \dot{q} + \frac{1}{2} \dot{q}^{T} J_{\omega_{i}}^{T} R_{i} I R_{i}^{T} J_{\omega_{i}} \dot{q}.$$
 (20)

Dynamical Model of the Robot: Full Energy

The full kinetic energy of the robot can be computed as

$$K = \frac{1}{2}\dot{q}^{T} \sum_{i=1}^{n} \left(m_{i} J_{v_{i}}^{T} J_{v_{i}} + J_{\omega_{i}}^{T} R_{i} I R_{i}^{T} J_{\omega_{i}} \right) \dot{q} = \frac{1}{2} \dot{q}^{T} \Lambda(q) \dot{q}.$$
 (21)

The potential energy of the each link is computed as

$$P_i = m_i g^T p_i, (22)$$

whre m_i is the mass of the link, g is the vector defining the direction of the gravitation with respect to the base frame, p_i is the radius-vector to the center of mass of the link expressed with respect to the base frame.

The full potential energy of the robot can be computed as

$$P = \sum_{i=1}^{n} m_i g^T p_i. \tag{23}$$

Dynamical Model of the Robot: Model of Multilink System

Substitute the kinetic and potential energies to the Lengrangian

$$L = \frac{1}{2}\dot{q}^T \Lambda(q)\dot{q} - \sum_{i=1}^n m_i g^T p_i.$$
 (24)

Substitute the Langrangian to the Euler-Langrange equation

$$\Lambda(q)\ddot{q} + C(q,\dot{q})\dot{q} + G(q) = \mu, \tag{25}$$

where $\Lambda(q) \in \mathbb{R}^{n \times n}$ is the symmetrical matrix of inertia, $C(q, \dot{q}) \in \mathbb{R}^{n \times 1}$ is the matrix of Coriolis forces, $G(q) \in \mathbb{R}^{n \times 1}$ is the vector of gravitational forces.

Dynamical Model of the Robot: Actuator Dynamics Revised

Write the dynamical model of the actuator dynamics as follows

$$J_i \ddot{\theta}_i(t) + F_i \dot{\theta}_i(t) = K_i \frac{u_i(t)}{r_i} - \mu_i(t), \qquad (26)$$

where $F_i = K_f$, $K_i = K_{\mu}$, $r_i = R$, $\frac{u_i(t)}{r_i} = i(t)$, $i = \{1, 2, ..., n\}$ is the number of the link.

Take into account gear box

$$q_i = \frac{\theta_i}{j_i}. (27)$$

Rewrite the actuator dynamics as

$$j_i^2 J_i \ddot{q}_i(t) + j_i^2 F_i \dot{q}_i(t) = j_i K_i \frac{u_i(t)}{r_i} - \bar{\mu}_i(t), \qquad (28)$$

where $\mu_i = \mu_l$ for the link *i*.

Dynamical Model of the Robot: Actuator Dynamics Augmentation

Add the actuator dynamical model to the model of the mechanical system and get

$$\Gamma(q)\ddot{q} + C(q,\dot{q})\dot{q} + F\dot{q} + G(q) = u, \tag{29}$$

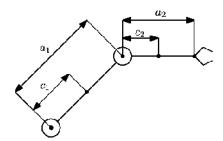
where the matrix $\Gamma(q)$ is of the form

$$\Gamma(q) = \Lambda(q) + J = \Lambda(q) + \begin{bmatrix} j_1^2 J_1 & 0 & \dots & 0 \\ 0 & j_2^2 J_2 & \dots & 0 \\ \vdots & \dots & \ddots & \vdots \\ 0 & 0 & 0 & j_n^2 J_n \end{bmatrix},$$
(30)

where the friction vector and vector of control inputs are given respectively as

$$\begin{bmatrix} j_1^2 F_1 \\ j_2^2 F_2 \\ \vdots \\ j_n^2 F_n \end{bmatrix}, \begin{bmatrix} j_1 K_1 \frac{u_1(t)}{E_1}(t) \\ j_2 K_2 \frac{u_2(t)}{R_2}(t) \\ \vdots \\ j_n K_n \frac{u_n(t)}{R_n}(t) \end{bmatrix}.$$
(31)

Example of Two-Link Planar Manipulator: Jacobian matrices



Kinematic chain of two-link robot

Write relations between linear end-effector velocities and generalized ones using the notion of the Jacobian matrix as follows

$$v_1 = J_{v,1}\dot{q}, \quad v_2 = J_{v,2}\dot{q},$$
 (32)

w-hore

$$J_{v,1} = \begin{bmatrix} -a_1 \sin q_1 & 0 \\ c_1 \cos q_1 & 0 \\ 0 & 0 \end{bmatrix}, J_{v,2} = \begin{bmatrix} -a_1 \sin q_1 - c_2 \sin(q_1 + q_2) & -c_2 \sin(q_1 + q_2) \\ a_1 \cos q_1 + c_2 \cos(q_1 + q_2) & c_2 \cos(q_1 + q_2) \\ 0 & 0 \end{bmatrix}.$$

Example of Two-Link Planar Manipulator: Kinetic Energy

The kinetic energy is comprised of translational and rotational components. Let us address them separately. The translational component caused by the linear velocity can be computed as

$$K_{tr} = \frac{m_1 v_1^T v_1}{2} + \frac{m_2 v_2^T v_2}{2} = \underbrace{0.5 \dot{q}^T m_1 J_{v,1}^T J_{v,1} \dot{q}}_{1\text{st link}} + \underbrace{0.5 \dot{q}^T m_2 J_{v,2}^T J_{v,2} \dot{q}}_{2\text{nd link}}$$
(33)

The rotational component caused by the angular velocity can be computed as

$$K_{rt} = \underbrace{0.5\dot{q}^T I_1 \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \dot{q}}_{1\text{st. link}} + \underbrace{0.5\dot{q}^T I_2 \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \dot{q}}_{2\text{nd. link}}$$
(34)

Example of Two-Link Planar Manipulator: Inertia Matrix

The inertia matrix $\Lambda(q)$ becomes of the form

$$\begin{split} \Lambda(q) &= m_1 J_{v,1}^T J_{v,1} + m_2 J_{v,2}^T J_{v,2} + \begin{bmatrix} I_1 + I_2 & I_2 \\ I_2 & I_2 \end{bmatrix} = \begin{bmatrix} \lambda_{11} & \lambda_{12} \\ \lambda_{21} & \lambda_{22} \end{bmatrix} \\ &= \begin{bmatrix} m_1 c_1^2 + m_2 (a_1^2 + c_2^2 + 2a_1 c_2^2 + 2a_1 c_2 \cos q_2) + I_1 + I_2 & m_2 (c_2^2 + a_1 c_2 \cos q_2) + I_2 \\ m_2 (c_2^2 + a_1 c_2 \cos q_2) + I_2 & m_2 c_2^2 + I_2 \end{bmatrix} \end{split}$$

Example of Two-Link Planar Manipulator: Matrix of Coriolis Forces

Each element of the matrix of Coriolis forces C(q) can be calculated using the equation

$$c_{kj} = \sum_{i=1}^{n} 0.5 \left(\frac{\partial \lambda_{kj}}{\partial q_i} + \frac{\partial \lambda_{ki}}{\partial q_j} - \frac{\partial \lambda_{ij}}{\partial q_k} \right) \dot{q}_i$$
 (35)

The matrix of Coriolis forces C(q) becomes of the form

$$C(q) = \begin{bmatrix} -m_2 a_1 c_2 \sin q_2 \dot{q}_2 & -m_2 a_1 c_2 \sin q_2 (\dot{q}_2 + \dot{q}_1) \\ m_2 a_1 c_2 \sin q_2 \dot{q}_1 & 0 \end{bmatrix}$$
(36)

Example of Two-Link Planar Manipulator: Vector of Gravitational Forces

Each element of the vector of gravitational forces G(q) can be calculated using the equation

$$g_i = \frac{\partial P}{\partial g_i} \tag{37}$$

The vector of gravitational forces G(q) becomes of the form

$$G(q) = \begin{bmatrix} (m_1c_1 + m_2a_1)g\cos q_1 + m_2c_2g\cos(q_1 + q_2) \\ m_2c_2\cos(q_1 + q_2) \end{bmatrix}$$
(38)

Example of Two-Link Planar Manipulator: Resultant Model

The resultant model of the two-link robot is

$$\lambda_{11}\ddot{q}_1 + \lambda_{12}\ddot{q}_2 + c_{11}\dot{q}_1 + c_{12}\dot{q}_2 + (m_1c_1 + m_2a_1)g\cos q_1 + m_2c_2g\cos(q_1 + q_2) = \mu_1$$
$$\lambda_{21}\ddot{q}_1 - \lambda_{22}\ddot{q}_2 + c_{21}\dot{q}_1 + m_2c_2\cos(q_1 + q_2) = \mu_2$$

Summary

- Dynamical models of industrial robots allow to describe and take into account (designing a control law) physical processes specific to them
- The simplified model of the revolute joint can be represented by the transfer function of the relative degree 2
- The dynamical model of the industrial robot can be derived using the Euler-Lagrange approach

Motion planning for industrial robots Motion Planning for Industrial Robots Dr. Oleg Borisov

Basic Concepts and Definitions: Configuration Space

Configuration

A configuration q is a set of all intermediate generalized coordinates (joint variables).

Configuration space

Configurations space Q is a set of all possible configurations q

$$Q = \{q\}. \tag{1}$$

Basic Concepts and Definitions: Workspace

Workspace

Workspace W is a set of points, which belong to the robot itself and the reachable environment including all the obstacles

$$\mathcal{R}(q) \subset \mathcal{W}, \quad \mathcal{O} \subset \mathcal{W},$$
 (2)

where $\mathcal{R}(q)$ is space occupied by the robot and \mathcal{O} is space occupied by the obstacles.

In case of a planar manipulator which movements are constrained by the plane

$$\mathcal{W} \subset \mathbb{R}^2, \tag{3}$$

its workspace has two-dimensional.

In case of a spatial manipulator, which is able to move along three orthogonal axes

$$\mathcal{W} \subset \mathbb{R}^3,\tag{4}$$

its workspace is three-dimensional.

Basic Concepts and Definitions: Collision-Free Space

Collision-Free Space

Space corresponding to collision of the robot with some obstacle is defined as follows

$$Q_{\times} = \{ q \in \mathcal{Q} | \mathcal{R}(q) \cap \mathcal{O} \neq 0 \}, \tag{5}$$

from which collision-free space can be expressed as

$$Q_0 = Q \setminus Q_{\times}. \tag{6}$$

Basic Concepts and Definitions: Path and Trajectory

Path Planning

Path planning is a process of searching a cosecutive set of configurations within collision-free space connecting the initial configuration with the given final one.

Trajectory Planning

Trajectory planning is a process of time parametrization of the path, i.e. computation of reference functions of time for generalized coordinates, velocities and accelerations.

Path Planning: Exact Cell Decomposition Approach

Exact Cell Decomposition

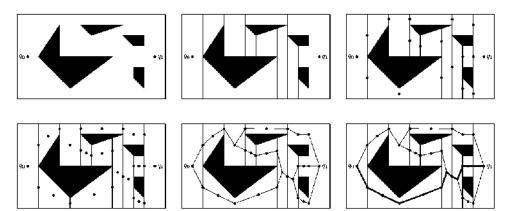
The idea of *exact cell decomposition* is to divide whole free configuration space on triangle or trapezoid cells and to construct a graph. Its nodes are represented by centers of the cells and its links are common sides between adjacent cells.

In case of exact cell decomposition there are two types of cells

- white cells correspond to the collision-free space
- black cells correspond to the collision space

Then given initial and final configurations, search of consecutive transition from one white cell to another one is carrying out to connect these two configurations and avoid all the black cells.

Path Planning: Exact Cell Decomposition Approach



Steps of Exact Cell Decomposition Approach

Path Planning: Approximate Cell Decomposition Approach

Approximate Cell Decomposition

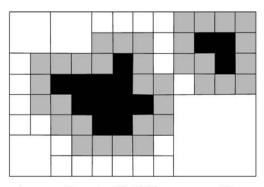
Difference of the approximate cell decomposition with respect to its "exact" version is that instead of the whole configuration space its subset is divided on cells. So, the remaining space could include also slight parts of collision-free space, which is caused by complex shape of the collision space.

In case of approximate cell decomposition there are two types of cells

- white cells correspond to the collision-free space
- black cells correspond to the collision space
- gray cells correspond to the both spaces

While searching a path could pass both white and gray cells. If it touches grays cells, additional cell decomposition should be carried out until the path connecting initial and final configurations goes through white cells only.

Path Planning: Approximate Cell Decomposition Approach



Approximate Cell Decomposition

Path Planning: Potential Field Approach

Potential Field Approach

he robot is considered as a material point moving in a configuration space under influence of a potential field function P(q). It has attraction component $P_a(q)$ assigned with the final configuration and repulsive component $P_r(q)$ assigned with the collision space

$$P(q) = P_a(q) + P_r(q). (7)$$

Path Planning: Potential Field Approach

Set the global minimum of the function P(q) as the attraction component $P_a(q)$

$$P_a(q) = \frac{1}{2}k_a||q - q_d||^2, \tag{8}$$

where q, q_d are the current and desired configurations, respectively, k_a is the scaling factor.

The repulsive component $P_r(q)$ ensures singularity of the function P(q) when the material point is approaching the collision space

$$P_r(q) = \begin{cases} \frac{1}{2} k_r \left(\frac{1}{\delta(q)} - \frac{1}{\delta_0} \right)^2 & \text{if } \delta(q) \le \delta_0, \\ 0 & \text{if } \delta(q) > \delta_0, \end{cases}$$
(9)

where k_r is the scaling factor, $\delta(q)$ is the shortest distance from the current configuration to the collision space, δ_0 is the minimum value.

Path Planning: Potential Field Approach

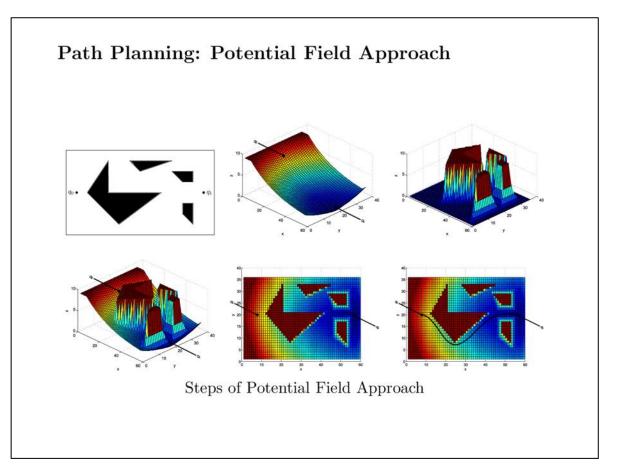
The gradient descent algorithm can be used to plan a path

$$q_{j+1} = q_j - \gamma_j \nabla P(q_j), \tag{10}$$

where $\nabla P(q) = \begin{bmatrix} \frac{\partial P}{\partial q_1} & \frac{\partial P}{\partial q_2} \dots & \frac{\partial P}{q_n} \end{bmatrix}^T$, γ_j is a iterative step, which can be either fixed, fractioned, or calculated in the direction of the fastest descent as

$$\gamma_j = \operatorname{argmin}_j P(q_j - \gamma \nabla P(q_j)).$$
 (11)

The main disadvantage of the potential field approach is possibility to stuack at the local minimum instead of the global one. So called random motion approach is used to avoid this issue.



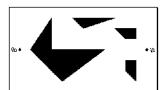
Path Planning: Probabilistic Roadmap Approach

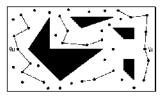
Probabilistic Roadmap Approach

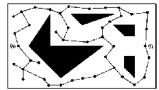
Probabilistic roadmap approach is useful for fast path generation. It is based on the usage of random samples from the configuration space.

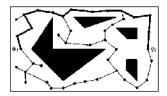
- 1. Several nodes (samples) are chosen randomly from the configuration space. Each node is assigned with a particular configuration.
- 2. Adjacent nodes are being connected between each other within the specified norm in the configuration space.
- 3. The first two steps are repeated to cover sufficiently large area between the initial and final configurations.
- 4. A cosequtive set of samples are chosen to connect the initial and final configurations.

Path Planning: Probabilistic Roadmap Approach









Steps of Probabilistic Roadmap Approach

Trajectory Planning: Spline Functions Approach

Spline Functions Approach

The idea of this approach is to interpolate generalized coordinates, velocities and accelerations between the reference points using the polynomials of the form

$$q_i(t) = a_{l,i}t^l + a_{l-1,i}t^{l-1} + \dots + a_{2,i}t^2 + a_{1,i}t + a_{0,i},$$
 (12)

$$\dot{q}_i(t) = la_{l,i}t^{l-1} + (l-1)a_{l-1,i}t^{l-2} + \dots + 2a_{2,i}t + a_{1,i},$$
 (13)

$$\ddot{q}_i(t) = l(l-1)a_{l,i}t^{l-2} + (l-1)(l-2)a_{l-1,i}t^{l-3} + \dots + 2a_{2,i}, (14)$$

where the degree l and coefficients a_{ji} , $j = \{1, 2, ..., l\}$ are calculated depending on the constraints and continuity requirements on the trajectory.

- 1. Divide the whole trakectory on several elementary subtrajectories.
- 2. Compute relative time functions τ_i for each subtriactory.
- 3. Apply constraints and continuity requirements on the trajectory.
- 4. Determine the highst polynomial degree for each subtrajectory.
- 5. Solve matrix equation to compute coefficients of all the polynomials.

Trajectory Planning: Single Subtrajectory Case

Only initial and final configurations are given. No intermediate requirements.

Consider the following constraints for each link of the robot

$$q_i(t_0) = \vartheta_0, \quad \dot{q}_i(t_0) = \upsilon_0, \quad \ddot{q}_i(t_0) = \alpha_0,$$
 (15)

$$q_i(t_1) = \vartheta_1, \quad \dot{q}_i(t_1) = \upsilon_1, \quad \ddot{q}_i(t_1) = \alpha_1.$$
 (16)

Choose the polynomial to interpolate intermediate values of the generalized coordinates

$$\vartheta(t) = a_5 t^5 + a_4 t^4 + a_3 t^3 + a_2 t^2 + a_1 t + a_0. \tag{17}$$

Calculate the first and second derivatives of this polynomial to interpolate values of generalized velocities and accelerations

$$\dot{\vartheta}(t) = v(t) = 5a_5t^4 + 4a_4t^3 + 3a_3t^2 + 2a_2t + a_1, \tag{18}$$

$$\ddot{\vartheta}(t) = \alpha(t) = 20a_5t^3 + 12a_4t^2 + 6a_3t + 2a_2. \tag{19}$$

Trajectory Planning: Single Subtrajectory Case

Write the system of equations taking into account the imposed constraits and continuity requirements as follows

$$\begin{cases}
\vartheta_{0} = a_{5}t_{0}^{5} + a_{4}t_{0}^{4} + a_{3}t_{0}^{3} + a_{2}t_{0}^{2} + a_{1}t_{0} + a_{0}, \\
v_{0} = 5a_{5}t_{0}^{4} + 4a_{4}t_{0}^{3} + 3a_{3}t_{0}^{2} + 2a_{2}t_{0} + a_{1}, \\
\alpha_{0} = 20a_{5}t_{0}^{3} + 12a_{4}t_{0}^{2} + 6a_{3}t_{0} + 2a_{2}, \\
\vartheta_{1} = a_{5}t_{1}^{5} + a_{4}t_{1}^{4} + a_{3}t_{1}^{3} + a_{2}t_{1}^{2} + a_{1}t_{1} + a_{0}, \\
v_{1} = 5a_{5}t_{1}^{4} + 4a_{4}t_{1}^{3} + 3a_{3}t_{1}^{2} + 2a_{2}t_{1} + a_{1}, \\
\alpha_{1} = 20a_{5}t_{1}^{3} + 12a_{4}t_{1}^{2} + 6a_{3}t_{1} + 2a_{2}.
\end{cases} (20)$$

Rewrite this system in matrix form as

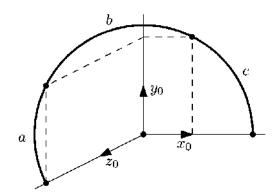
$$\underbrace{\begin{bmatrix} \vartheta_0 \\ v_0 \\ \alpha_0 \\ \vartheta_1 \\ v_1 \\ \alpha_1 \end{bmatrix}}_{\varrho} = \underbrace{\begin{bmatrix} t_0^5 & t_0^4 & t_0^3 & t_0^2 & t_0 & 1 \\ 5t_0^4 & 4t_0^3 & 3t_0^2 & 2t_0 & 1 & 0 \\ 20t_0^3 & 12t_0^2 & 6t_0 & 2 & 0 & 0 \\ t_0^5 & t_1^4 & t_1^3 & t_1^2 & t_1 & 1 \\ 5t_1^4 & 4t_1^3 & 3t_1^2 & 2t_1 & 1 & 0 \\ 20t_1^3 & 12t_1^2 & 6t_1 & 2 & 0 & 0 \end{bmatrix}}_{T} \underbrace{\begin{bmatrix} a_5 \\ a_4 \\ a_3 \\ a_2 \\ a_1 \\ a_0 \end{bmatrix}}_{\varsigma}, \tag{21}$$

from which the vector of unknown coefficients can be easily expressed as

Trajectory Planning: Multiple Subtrajectory Case

Consider a trajectory comprised of three subtrajectories as follows

- Leaving (a)
- Transition (b)
- Approach (c)



Trajectory comprised of three segments

Trajectory Planning: Multiple Subtrajectory Case

Consider the following constraints for each link of the robot

$$q_i(t_0) = \vartheta_0, \quad q_i(t_1) = \vartheta_1, \quad q_i(t_2) = \vartheta_2, \quad q_i(t_3) = \vartheta_3,$$
 (23)

$$\dot{q}_i(t_0) = v_0, \quad \ddot{q}_i(t_0) = \alpha_0, \quad \dot{q}_i(t_3) = v_3, \quad \ddot{q}_i(t_3) = \alpha_3.$$
 (24)

Use the relative time functions for each subtrajectory

$$\tau_a = \frac{t - t_0}{t_1 - t_0}, \qquad \tau_b = \frac{t - t_1}{t_2 - t_1}, \qquad \tau_c = \frac{t - t_2}{t_3 - t_2},$$
(25)

where t_0 , t_1 , t_2 , t_3 are the given time moments of passing all the reference configurations.

Impose continuity requirements to get a smooth trajectory

$$v_a(1) = v_b(0), \quad \alpha_a(1) = \alpha_b(0), \quad v_b(1) = v_c(0), \quad \alpha_b(1) = \alpha_c(0).$$
 (26)

Taking into account the relative time functions rewrite constraints on the trajectory

$$\vartheta_a(0) = \vartheta_0, \quad \vartheta_b(0) = \vartheta_1, \quad \vartheta_c(0) = \vartheta_2,$$
(27)

$$\vartheta_a(1) = \vartheta_1, \quad \vartheta_b(1) = \vartheta_2, \quad \vartheta_c(1) = \vartheta_3,$$
(28)

and continuity requirements as follows

Trajectory Planning: Multiple Subtrajectory Case

Choose the polynomial to interpolate intermediate values of the generalized coordinates within each subtrajectory

$$\vartheta_a(\tau_a) = a_4 \tau_a^4 + a_3 \tau_a^3 + a_2 \tau_a^2 + a_1 \tau_a + a_0, \tag{30}$$

$$\vartheta_b(\tau_b) = b_3 \tau_b^3 + b_2 \tau_b^2 + b_1 \tau_b + b_0, \tag{31}$$

$$\vartheta_c(\tau_c) = c_4 \tau_c^4 + c_3 \tau_c^3 + c_2 \tau_c^2 + c_1 \tau_c + c_0, \tag{32}$$

Calculate the first derivative of these polynomials to interpolate values of generalized velocities

$$\dot{\vartheta}_a(\tau_a) = \upsilon_a(\tau_a) = 4a_4\tau_a^3 + 3a_3\tau_a^2 + 2a_2\tau_a + a_1, \tag{33}$$

$$\dot{\vartheta}_b(\tau_b) = \psi_b(\tau_b) = 3b_3\tau_b^2 + 2b_2\tau_b + b_1, \tag{34}$$

$$\dot{\vartheta}_c(\tau_c) = v_c(\tau_c) = 4c_4\tau_c^3 + 3c_3\tau_c^2 + 2c_2\tau_c + c_1, \tag{35}$$

Calculate the second derivative of these polynomials to interpolate values of generalized accelerations

$$\ddot{\vartheta}_a(\tau_a) = \alpha_a(\tau_a) = 12a_4\tau_a^2 + 6a_3\tau_a + 2a_2, \tag{36}$$

$$\ddot{\vartheta}_b(\tau_b) = \alpha_b(\tau_b) = 6b_3\tau_b + 2b_2, \tag{37}$$

$$\ddot{\vartheta}_c(\tau_c) = \alpha_c(\tau_c) = 12c_4\tau_c^2 + 6c_3\tau_c + 2c_2, \tag{38}$$

Trajectory Planning: Multiple Subtrajectory Case

Write the system of equations taking into account the imposed constraits and continuity requirements as follows

$$\begin{cases}
\vartheta_0 = a_0, \\
v_0 = a_1, \\
\alpha_0 = 2a_2, \\
\vartheta_1 = a_4 + a_3 + a_2 + a_1 + a_0, \\
\vartheta_1 = b_0, \\
0 = 4a_4 + 3a_3 + 2a_2 + a_1 - b_1, \\
0 = 12a_4 + 6a_3 + 2a_2 - 2b_2, \\
\vartheta_2 = b_3 + b_2 + b_1 + b_0, \\
\vartheta_2 = c_0, \\
0 = 3b_3 + 2b_2 + b_1 - c_1, \\
0 = 6b_3 + 2b_2 - 2c_2, \\
\vartheta_3 = c_4 + c_3 + c_2 + c_1 + c_0, \\
v_3 = 4c_4 + 3c_3 + 2c_2 + c_1, \\
\alpha_3 = 12c_4 + 6c_3 + 2c_2.
\end{cases}$$
(39)

Trajectory Planning: Multiple Subtrajectory Case

Rewrite this system in matrix form as

from which the vector of unknown coefficients can be easily expressed as

$$\varsigma = T^{-1}\varrho. \tag{41}$$

Arc Approximation Algorithm of Spatial Movements

Research Objective

This study focuses on spatial motion planning algorithms, which allows to characterize sophisticated reference paths in 3D space and simplify the way how they can be given. The key point used in this study is approximation of a sequence of points by a sequence of arcs within a specified δ -region.

In industry such algorithm can be applied for such tasks as surface finishing, engraving and welding. The last operation represents the main interest of this research.

Problem

Mitsubishi RV-3SDB

Objective

The purpose is automated code generating to move the endeffector along some counters specified by the input bitmap image or 3D model.

After extracting coordinates of initial points sequence they already can be programmed using trivial point-to-point motion, but it might lead to some issues.

- significant input data (robot controller overload)
- decrease of the motion velocity (reconfiguration at each reference point)

Arc Approximation Algorithm

Basic Idea

This approach is based on the feasibility of the standard software to move the end-effector along an arc, specified with only three points. This basic motion provided by the internal software is more natural then complex combinations of multiple linear point-to-point movements. As a result, the robot reconfigures only three times at the reference points forming this arc. Such solution allows to reduce the code size and increase the velocity.

Planar Planning

Consider three reference points

$$p_1 = \begin{bmatrix} x_1 \\ y_1 \end{bmatrix}, \quad p_2 = \begin{bmatrix} x_2 \\ y_2 \end{bmatrix}, \quad p_3 = \begin{bmatrix} x_3 \\ y_3 \end{bmatrix}.$$
 (42)

All intermediate points between p_1 , p_2 and p_3 should belong to a corresponding arc within some δ_{arc} -region.

Consider two lines p_1-p_2 and p_2-p_3 . In order to find coordinates of the arc center $c=\begin{bmatrix}x_c\\y_c\end{bmatrix}$ consider three cases.

Case 1

If $x_2 = x_3$ and $x_1 \neq x_2$ then

$$y_c = \frac{y_2 + y_3}{2}, \quad x_c = -k_1 \frac{y_c - (y_1 + y_2)}{2} + \frac{x_1 + x_2}{2},$$

where k_1 is the slope of the line $(x_1; y_1)$ – $(x_2; y_2)$ given by $k_1 = \frac{y_2-y_1}{x_2-x_1}$

Case 2

If $x_1 = x_2$ and $x_2 \neq x_3$ then

$$y_c = \frac{y_1 + y_2}{2}, \quad x_c = -k_2 \frac{y_c - (y_2 + y_3)}{2} + \frac{x_2 + x_3}{2},$$

where k_2 is the slope of the line $(x_2; y_2)$ – $(x_3; y_3)$ given by $k_2 = \frac{y_3 - y_2}{x_3 - x_2}$.

Case 3

If all x-coordinates are distinct, then

$$x_c = \frac{k_1 k_2 (y_1 - y_3) + k_2 (x_1 + x_2) - k_1 (x_2 + x_3)}{2(k_2 - k_1)}, \tag{43}$$

$$y_c = -\frac{x_c - \frac{x_1 + x_2}{2}}{k_1} + \frac{y_1 + y_2}{2}, \tag{44}$$

where k_1 and k_2 are given above.

Calculate distance from a forth point $p_4=\begin{bmatrix}x_4\\y_4\end{bmatrix}$ to the arc formed by $p_1,\,p_2$ and p_3 as follows

$$d_{arc} = \sqrt{(x_c - x_4)^2 + (y_c - y_4)^2} - r \, , \tag{45}$$

where $r = \sqrt{(x_1 - x_c)^2 + (y_1 - y_c)^2}$ is the radius of the arc.

As a result we get a sequence of arcs each specified by three consecutive points. Such point list can be used together with the operator MVR P1 P2 P3, which allows to move along an arc specified by three reference points.

Spatial Planning

Consider three points that do not lie on the same line. Coordinates of vectors specified in the Cartesian space are defined as

$$p_1^0 = \begin{bmatrix} x_1^0 \\ y_1^0 \\ z_1^0 \end{bmatrix}, \quad p_2^0 = \begin{bmatrix} x_2^0 \\ y_2^0 \\ z_2^0 \end{bmatrix}, \quad p_3^0 = \begin{bmatrix} x_3^0 \\ y_3^0 \\ z_3^0 \end{bmatrix}. \tag{46}$$

Consider two coordinate systems denoted as $x_0y_0z_0o_0$ and $x_1y_1z_1o_1$. Derive a normal to the plane $x_1y_1o_1$ through a cross product

$$n = \begin{bmatrix} n_x \\ n_y \\ n_z \end{bmatrix} = (p_2^0 - p_1^0) \times (p_3^0 - p_1^0). \tag{47}$$

Then calculate a unit vector

$$z = \begin{bmatrix} z_x \\ z_y \\ z_z \end{bmatrix} = \frac{n}{\sqrt{n_x^2 + n_y^2 + n_z^2}}.$$
 (48)

Compute the rotational transformation as $R_1^0 = R_{z,\alpha}R_{y,\beta}$, where the angles α and β can be calculated as follows

$$\alpha = \operatorname{atan2} 2 \left(\frac{z_y}{\sqrt{z_x^2 + z_y^2}}, \frac{z_x}{\sqrt{z_x^2 + z_y^2}} \right), \quad \beta = \operatorname{atan2} 2 \left(\sqrt{z_x^2 + z_y^2}, z_z \right).$$

Substitute α and β into the rotation matrices around z- and y-axes

$$R_{1}^{0} = \begin{bmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta \end{bmatrix}. \tag{49}$$

Calculate coordinates of the reference points with respect to the local coordinate system using the rotation matrix

$$p_1^1 = R_0^1 p_1^0, \quad p_2^1 = R_0^1 p_2^0, \quad p_3^1 = R_0^1 p_3^0,$$
 (50)

where $R_0^1 = [R_1^0]^T$.

Denote coordinates as follows

$$p_{1}^{1} = \begin{bmatrix} x_{1}^{1} \\ y_{1}^{1} \\ z_{1}^{1} \end{bmatrix}, \quad p_{2}^{1} = \begin{bmatrix} x_{2}^{1} \\ y_{2}^{1} \\ z_{2}^{1} \end{bmatrix}, \quad p_{3}^{1} = \begin{bmatrix} x_{3}^{1} \\ y_{3}^{1} \\ z_{3}^{1} \end{bmatrix}.$$
 (51)

In order to find coordinates of the arc center $c^1 = \begin{bmatrix} x_c^1 \\ y_c^1 \\ z_c^1 \end{bmatrix}$ consider three cases.

Case 1

If $x_2^1 = x_3^1$ and $x_1^1 \neq x_2^1$ then

$$y_c^1 = \frac{y_2^1 + y_3^1}{2}, \quad x_c^1 = -k_1 \frac{y_c^1 - (y_1^1 + y_2^1)}{2} + \frac{x_1^1 + x_2^1}{2},$$

where k_1 is the slope of the line $(x_1^1; y_1^1) - (x_2^1; y_2^1)$ given by $k_1 = \frac{y_2^1 - y_1^1}{x_2^1 - x_1^1}$.

Case 2

If $x_1^1 = x_2^1$ and $x_2^1 \neq x_3^1$ then

$$y_c^1 = \frac{y_1^1 + y_2^1}{2}, \quad x_c^1 = -k_2 \frac{y_c^1 - (y_2^1 + y_3^1)}{2} + \frac{x_2^1 + x_3^1}{2},$$

where k_2 is the slope of the line $(x_2^1; y_2^1) - (x_3^1; y_3^1)$ given by $k_2 = \frac{y_3^1 - y_2^1}{x_3^1 - x_2^1}$.

Case 3

If all x-coordinates are distinct, then

$$x_c^1 = \frac{k_1 k_2 (y_1^1 - y_3^1) + k_2 (x_1^1 + x_2^1) - k_1 (x_2^1 + x_3^1)}{2(k_2 - k_1)},$$
 (52)

$$y_c^1 = -\frac{x_c^1 - \frac{x_1^1 + x_2^1}{2}}{k_1} + \frac{y_1^1 + y_2^1}{2}, \tag{53}$$

where k_1 and k_2 are given above.

The third z-coordinate can be derived trivially as

$$z_c^1 = z_1^1 = z_2^1 = z_3^1. (54)$$

Express coordinates of the center with respect to the base coordinate system

$$c^{0} = \begin{bmatrix} x_{c}^{0} \\ y_{c}^{0} \\ z_{c}^{0} \end{bmatrix} = R_{1}^{0}c^{1}.$$
 (55)

The equation of a plane is given as

$$n_x x + n_y y + n_z z + n_0 = 0, (56)$$

where $n_0 = -(n_x x_3^0 + n_y y_3^0 + n_z z_3^0)$.

Distances from a forth point $p_4 = \begin{bmatrix} x_4^0 \\ y_4^0 \\ z_4^0 \end{bmatrix}$ respectively to the plane d_{plane} and

to the arc formed by p_1 , p_2 and p_3 can be computed as

$$d_{plane} = \frac{|n_x x_4^0 + n_y y_4^0 + n_z z_4^0 + n_0|}{\sqrt{n_x^2 + n_y^2 + n_z^2}},$$
 (57)

$$d_{arc} = \left| \sqrt{(x_c^0 - x_4^0)^2 + (y_c^0 - y_4^0)^2 + (z_c^0 - z_4^0)^2} - r \right|, \tag{58}$$

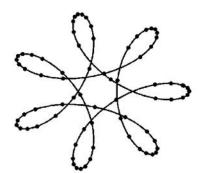
where $r = \sqrt{(x_1^0 - x_c^0)^2 + (y_1^0 - y_c^0)^2 + (z_1^0 - z_c^0)^2}$ is the radius of the arc.

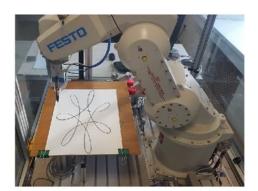
Then all points should be processed and checked on belonging them to a particular plane and arc within the specified δ_{plane} - and δ_{arc} -regions, respectively. As a result of this procedure, a sequence of three-points-sets each specifying a particular arc should be obtained.

Experimental Approval

Experimental Approval

Experimental Results: Planar Planning



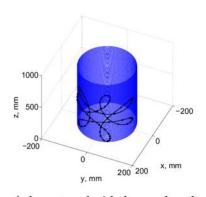


A hypotrochoid drawn by the robot on a flat surface

Experimental Results: Planar Planning

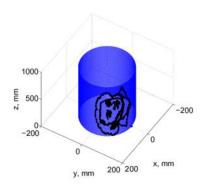
A portrait of Alexander Pushkin drawn by the robot on a flat surface

Experimental Results: Spatial Planning



A hypotrochoid drawn by the robot on the a curved (cylindrical) surface

Experimental Results: Spatial Planning



A portrait of Alexander Pushkin drawn by the robot on a curved (cylindrical) surface

Summary

- Reference motion can be programmed manually using a teach pendant or automatically using some path planning algorithm
- Once a path is generated, its intermediate positions, velocities and accelerations should be interpolated
- Advanced algorithms for spatial movement planning can be designed for industrial applications
- The next step is control design to make the robot to track the reference trajectory

Control design for industrial robots

Control Design for Industrial Robots

Dr. Oleg Borisov

PD Controller

Consider the control plant specified by the transfer function. We introduce a proportional-differential (PD) controller with a transfer function

$$R(s) = k_v + k_d s. (1)$$

We calculate the transfer function of a closed-loop system

$$W(s) = \frac{R(s)P(s)}{1 + R(s)P(s)} = \frac{\frac{k_p - k_d s}{Js^2 + Ks}}{1 + \frac{k_p + k_d s}{Js^2 + Ks}} = \frac{k_p + k_d s}{Js^2 + (K + k_d)s + k_p}.$$
 (2)

PD Controller scheme

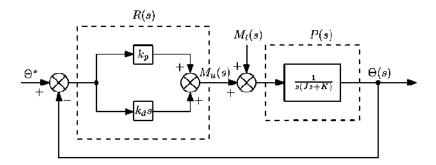


Figure 1: Simulation scheme of a closed-loop system with PD controller

Further, with known parameters of the object J & K, based on the roots of the characteristic polynomial of the transfer function $Js^2 + (K + k_d)s + k_p$, it is possible to calculate such coefficients of the PD controller $k_p \& k_d$ to ensure the required quality indicators of the closed system.

PID Controller

Consider the control plant given by the transfer function. We introduce a proportional-integral-differential (PID) controller with a transfer function

$$R(s) = k_p + k_i \frac{1}{s} + k_d s. \tag{3}$$

With structural transformations we express the output variable

$$\Theta(s) = \frac{R(s)P(s)}{1 + R(s)P(s)}\Theta^*(s) + \frac{P(s)}{1 + R(s)P(s)}M_l(s). \tag{4}$$

We calculate the transfer function of a closed-loop system

$$W(s) = \frac{R(s)P(s)}{1+R(s)P(s)} = \frac{\frac{k_d s^2 + k_p s + k_i}{J s^3 + K s^2}}{1+\frac{k_d s^2 + k_p s + k_i}{J s^3 + K s^2}} = \frac{k_d s^2 + k_p s + k_i}{J s^3 + (K + k_d) s^2 + k_p s + k_i}.$$
 (5)

PID Controller scheme

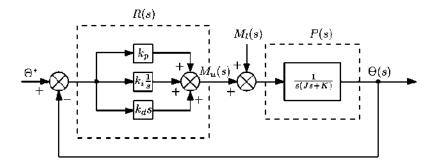


Figure 2: Simulation scheme of a closed-loop system with a PID controller

Further, with known parameters of the object J & K, based on the roots of the characteristic polynomial of the transfer function $Js^3 + (K + k_d)s^2 + k_p s + k_i$, it is possible to calculate such coefficients of the PID regulator k_p , $k_i \& k_d$ in order to ensure the required quality indicators of the closed system.

Robust control

Let us write down the consequtive compensator in the form of a transfer function

$$R(s) = k\gamma_0 \sigma^{\rho - 1} \frac{\alpha(s)}{\gamma(s)},\tag{6}$$

where ρ — relative degree of the plant, $k \& \sigma > k$ — tuning parameters of the controller, $\alpha(s)$ — an arbitrary Hurwitz polynomial of degree $\rho - 1$, $\gamma(s)$ — Hurwitz polynomial of the form

$$\gamma(s) = s^{\rho - 1} + \sigma \gamma_{\rho - 2} s^{\rho - 2} + \dots + \sigma^{\rho - 2} \gamma_1 s + \sigma^{\rho - 1} \gamma_0. \tag{7}$$

Robust control in closed-loop system

Consider the control object specified by the transfer function. Its relative degree is $\rho = 2$, so, chosen $\alpha(s) = s + 1$ & $\gamma_0 = 1$, rewrite the regulator (6) like

$$R(s) = \frac{k\sigma s + k\sigma}{s + \sigma}. (8)$$

Transfer function of a closed-loop system is

$$W(s) = \frac{R(s)P(s)}{1+R(s)P(s)} = \frac{\frac{k\sigma s + k\sigma}{(s+\sigma)(Js^2 + Ks)}}{1+\frac{k\sigma s + k\sigma}{(s+\sigma)(Js^2 + Ks)}} =$$

$$= \frac{k\sigma s + k\sigma}{(s+\sigma)(Js^2 + Ks) + k\sigma s + k\sigma}.$$
(9)

Robust control scheme

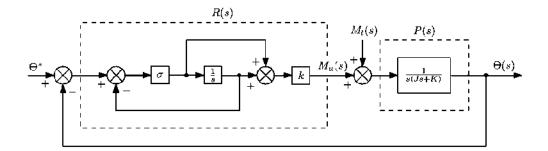


Figure 3: Simulation scheme of a closed-loop system with a consecutive compensator

The characteristic polynomial of the transfer function (9) contains unknown parameters of the plat, but due to the robustness of the regulator (8), for sufficiently large coefficients $k & \sigma$ exponential stability is attained.

Robust control extended

Adding the integral component we rewrite the regulator (6)

$$R(s) = k\gamma_0 \sigma^{\rho-1} \frac{\beta(s)}{s\gamma(s)},\tag{10}$$

where $\beta(s)$ — Hurwitz polynomial of degree ρ .

Having chosen $\beta(s) = s^2 + s + 1$ & $\gamma_0 = 1$ rewrite the regulator (10) like

$$R(s) = \frac{k\sigma s^2 + k\sigma s + k\sigma}{s^2 + \sigma s}.$$
 (11)

Transfer function of a closed-loop system

$$W(s) = \frac{R(s)P(s)}{1+R(s)P(s)} = \frac{\frac{k\sigma s^2 + k\sigma s + k\sigma}{(s^2 + \sigma s)(Js^2 + Ks)}}{1+\frac{k\sigma s^2 + k\sigma s + k\sigma}{(s^2 + \sigma s)(Js^2 - Ks)}} = \frac{k\sigma s^2 + k\sigma s + k\sigma}{(s^2 + \sigma s)(Js^2 + Ks) + k\sigma s^2 + k\sigma s + k\sigma}$$
(12)

Robust control extended scheme

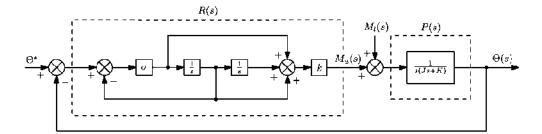


Figure 4: Simulation scheme for a closed-loop system with a consecutive compensator with integral loop

The increased order of a staticism of a system with a transfer function (12) makes it possible to compensate the effect of gravitational forces.

Anti-Windup Control

Saturated input

$$\hat{u}(t) = \text{sat } u(t) = \begin{cases} u_t, & \text{if } u(t) \ge u_t, \\ u(t), & \text{if } u_b < u(t) < u_t, \\ u_b, & \text{if } u(t) \le u_b, \end{cases}$$
(13)

where $u_t \& u_b$ — upper and lower limits of the input signal.

Let us write down the control law of the PID controller (3) like

$$u(t) = k_p \tilde{q}(t) + k_i \frac{\tilde{q}(t)}{p} + k_d p \tilde{q}(t), \tag{14}$$

where $p=\frac{d}{dt}$ — differentiation operator, $\tilde{q}(t)=q^*-q(t)$ — error.

Following the antivindap correction method we add to (14) an additional contour

$$u(t) = k_p \tilde{q}(t) + k_i \frac{\tilde{q}(t) + k_u \tilde{u}(t)}{p} + k_d p \tilde{q}(t), \tag{15}$$

where $k_u > 0$ — gain, $\tilde{u}(t) = \hat{u}(t) - u(t)$ — difference signal between saturated and source control.

Anti-Windup Control scheme

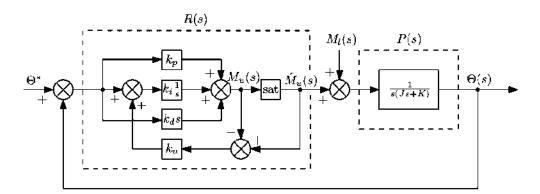


Figure 5: Simulation scheme of a closed-loop system with a PID controller and anti-windup correction

The control law (15) helps to avoid the effect of integral saturation in conditions of limited input.

Anti-Windup Robust Control

Let us write down the control law of a consequtive compensator with an integrated circuit (10) like

$$u(t) = k \frac{\beta(p)}{p} \hat{q}(t), \qquad (16)$$

$$\dot{\xi}(t) = \sigma(\Gamma \xi(t) + d\gamma_0 \tilde{q}(t)), \tag{17}$$

$$\hat{\tilde{q}}(t) = h^T \xi(t), \tag{18}$$

where $\hat{q}(t)$ — error signal estimation $\tilde{q}(t)$, matrices and vectors Γ, d, h in form

$$\Gamma = \begin{bmatrix}
0 & 1 & 0 & \dots & 0 \\
0 & 0 & 1 & \dots & 0 \\
0 & 0 & 0 & \dots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
-\gamma_0 & -\gamma_1 & -\gamma_2 & \dots & -\gamma_{p-1}
\end{bmatrix}, d = \begin{bmatrix}
0 \\ 0 \\ 0 \\ \vdots \\ 1
\end{bmatrix}, h = \begin{bmatrix}
1 \\ 0 \\ 0 \\ \vdots \\ 0
\end{bmatrix}. (19)$$

Anti-Windup Robust Control

Transform the control law (16), with integrator

$$u(t) = k \frac{\beta(p)}{p} \hat{q}(t) = k \left(\bar{\beta}(p) + \frac{\beta_0}{p} \right) \hat{q}(t) = k \bar{\beta}(p) \hat{q}(t) + k \frac{\beta_0}{p} \hat{q}(t), \quad (20)$$

where $\bar{\beta}(p) = \frac{\beta(p) - \beta_0}{p}$.

Following the anti-windup correction method we add to the (20) an additional contour

$$u(t) = k\bar{\beta}(p)\hat{q}(t) + k\frac{\beta_0}{p} \left(\hat{q}(t) + k_u\tilde{u}(t)\right), \tag{21}$$

where $k_u > 0$ — gain, $\tilde{u}(t) = \hat{u}(t) - u(t)$ — difference signal between saturated and source control.

Having chosen $\beta(p)=p^2+p+1$ & $\gamma_0=1$, rewrite the regulator (21) like

$$u(t) = kp\hat{q}(t) + k\hat{q}(t) + k\frac{1}{p}(\hat{q}(t) + k_u\tilde{u}(t)).$$
 (22)

Anti-Windup Robust Control

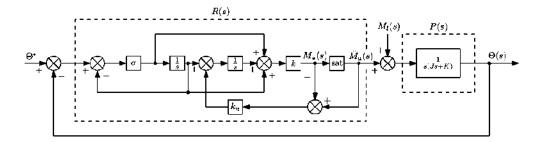


Figure 6: Simulation scheme of a closed-loop system with a consecutive compensator and anti-windup correction

The regulator (22) allows to solve the stabilization problem with the increased order of astaticism in comparison with the regulator (6) and with compensation of the integral saturation effect by means of anti-windup.

Tracking control

Let's express the output signal $\Theta(s)$:

$$\Theta(s) = \frac{R(s)P(s) + F(s)P(s)}{1 + R(s)P(s)}\Theta^*(s) + \frac{P(s)}{1 + R(s)P(s)}M_l(s).$$
 (23)

We choose the transfer function of direct coupling in the form:

$$F(s) = \frac{1}{P(s)},\tag{24}$$

then the expression (23) takes the form:

$$\Theta(s) = \Theta^*(s) + \frac{P(s)}{1 + R(s)P(s)} M_l(s).$$
 (25)

Tracking control scheme

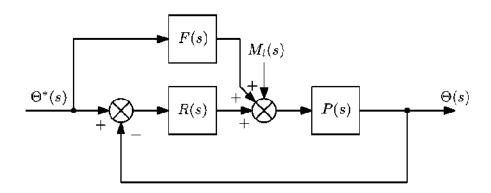


Figure 7: Simulation scheme for closed-loop tracking system

Direct link allows the system to monitor any given trajectory, provided that the system is completely stable. The steady-state error in this case will be due only to the influence of an external perturbation $M_l(s)$.

Multivariable control

Consider the dynamic model of a robotic system

$$\Gamma(q)\ddot{q} + C(q,\dot{q})\dot{q} + G(q) = u. \tag{26}$$

Stabilization of desired q^* will be performed with PD controller.

First, for simplicity, we neglect the effect of gravity, assuming that G(q) = 0. In view of this model (26) looks like

$$\Gamma(q)\ddot{q} + C(q,\dot{q})\dot{q} = u. \tag{27}$$

We choose the vector of control actions u like

$$u = K_p(q^* - q(t)) - K_d \dot{q}(t) = K_p \tilde{q}(t) + K_d \dot{\tilde{q}}(t), \tag{28}$$

where $\tilde{q}(t) = q^* - q(t)$ — error between the specified configuration and the current one, K_p & K_d looks like

$$K_{p} = \begin{bmatrix} k_{p,1} & 0 & \dots & 0 \\ 0 & k_{p,2} & \dots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & 0 & k_{p,n} \end{bmatrix}, K_{d} = \begin{bmatrix} k_{d,1} & 0 & \dots & 0 \\ 0 & k_{d,2} & \dots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & 0 & k_{d,n} \end{bmatrix}.$$
(29)

Multivariable control

Substituting the control law (28) to the plant (27) we obtain a model of a closed system

$$\Gamma(q)\ddot{q} + C(q,\dot{q})\dot{q} = K_p\tilde{q}(t) + K_d\dot{\tilde{q}}(t). \tag{30}$$

To analyze the stability of a closed-loop system (30) we consider the candidate Lyapunov function in quadratic form

$$V(t) = \frac{1}{2}\tilde{q}^T K_p \tilde{q} + \frac{1}{2}\tilde{\dot{q}}^T \Gamma \dot{\tilde{q}}. \tag{31}$$

Taking the time derivative of (31) we get

$$\dot{V}(t) = -\dot{\tilde{q}}^T K_d \dot{\tilde{q}} \le 0, \tag{32}$$

this together with the Lassalle theorem shows the asymptotic stability of a closed system (30).

Multivariable control

When $\dot{V}=0$ from (32) we can conclude that the generalized velocities and accelerations are zero $\dot{q}(t)=0$ & $\ddot{q}(t)=0$. Taking this into account we rewrite the equation of a closed system for $t\to\infty$

$$0 = K_p \tilde{q}(t), \tag{33}$$

from which it follows that $\tilde{q}(t) = q^* - q(t) = 0$ with $t \to \infty$.

The influence of gravity $G(q) \neq 0$ leads to the appearance of a steady error. The PD controller in this case does not provide asymptotic stability. The equation (33) looks like

$$G(q) = K_{\nu}\tilde{q}(t). \tag{34}$$

To eliminate the established error we supplement the law of control

$$u = K_p \tilde{q}(t) + K_d \dot{\tilde{q}}(t) + G(q), \tag{35}$$

which makes it possible to provide asymptotic stability with the influence of gravity.

Dynamics of Robotic Systems Euler-Lagrange Method and Special Cases Sergey Kolyubin

Outline

- Motivation
- Energy-based Approach Euler-Lagrange Method
 - Energy calculation
 - Motion equation
- Special Cases
 - Drive dynamics
 - Flexible joints modeling
- Motion Equation in Operational Space

** simulation ** defining dynamic constraints ** mechanical design optimization ** trajectory planners and controllers synthesis

Tasks

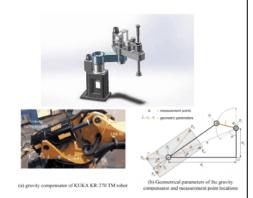
- Forward Dynamics: given desired trajectory (coordinates, velocities, acceleration) find generalized forces/torques
- Inverse Dynamics: given generalized forces/torques, find generated motion (trajectory)

Tasks

- Forward Dynamics: given desired trajectory (coordinates, velocities, acceleration) find generalized forces/torques
- Inverse Dynamics: given generalized forces/torques, find generated motion (trajectory)

Practical tasks

- f/t calculation find external (control design) and internal (find reaction forces in kinematic pairs)
- performance indicators find possible cycle time given dynamic constraints
- (serial) manipulators balancing unload drives in statics
- (parallel) manipulators dynamic balancing minimize distortions during the motion by placing counter-weights



Tasks

- Forward Dynamics: given desired trajectory (coordinates, velocities, acceleration) find generalized forces/torques
- Inverse Dynamics: given generalized forces/torques, find generated motion (trajectory)

Theoretical sub-tasks

- trajectories calculation
- motion stability analysis
- calculating time response
- identifying critical motion modes

Methods Comparison

- E-L kinetic and potential energy
 - multibody dynamics as a whole
 - · exclude reaction forces between links
 - symbolic form
 - · better for analysis
- N-E forces/torques balance
 - separate equation for each body
 - explicit relations for reaction forces
 - numeric recursion form
 - better for synthesis and real-time applications

By excluding reaction forces and substituting these relations we can derive E-L equations from N-E equations

E-L General Framework

- 1. select generalized coordinates $q_1, q_2, \dots q_n$
- 2. derive relations for kinetic ${\cal K}$ and potential ${\cal P}$ energy as functions of generalized coordinates and its derivatives
- 3. calculate system Lagrangian \mathcal{L}
- 4. derive motion equation

$$\frac{d}{dt} \frac{\partial L}{\partial \dot{q}_k} = \frac{\partial L}{\partial q_k} = \tau_k, k = 1, 2, \dots n$$
(1)

 τ_k is a generalized force/torque

Full Kinetic Energy

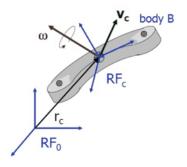


Figure 1: ©DeLuca

Konig theorem

Full energy consist of an energy assoc. with body CoM motion and relative body motion around it CoM

$$\mathcal{K} = \frac{1}{2}m|v|^2 + \frac{1}{2}\omega^T \mathcal{I}\omega$$

where m is a body mass, v and ω are linear and rotational velocities vectors, $\mathcal I$ is an inertia tensor

All values in the same CF

Formula for rotational velocity

$$\omega \leftarrow S(\omega) = \dot{R}(t)R^{T}(t)$$
,

where *R* is a rotation matrix from body frame to inertial frame

Kinetic Energy of *n*-links Robot

Sum of kinetic energy of linear and rotational motions

$$\mathcal{K} = \frac{1}{2}m |v_c|^2 + \frac{1}{2}\omega^T \mathcal{I}\omega$$

CoM velocities

• $v_c = \dot{r}_c$ and ω are functions of generalized coordinates q and velocities \dot{q}

Kinetic Energy of n-links Robot

Sum of kinetic energy of linear and rotational motions

$$\mathcal{K} = \frac{1}{2}m |v_c|^2 + \frac{1}{2}\omega^T \mathcal{I}\omega$$

CoM velocities

• $v_c = \dot{r}_c$ and ω are functions of generalized coordinates q and velocities \dot{q}

Relations can be computed via Jacobian assoc. with links CoMs

$$v_{c,i} = J_{v_i}(q)\dot{q}, \quad \omega_i = J_{\omega_i}(q)\dot{q}$$

Kinetic Energy of *n*-links Robot

Sum of kinetic energy of linear and rotational motions

$$\mathcal{K} = \frac{1}{2}m |v_c|^2 + \frac{1}{2}\omega^T \mathcal{I}\omega$$

CoM velocities

• $v_c = \dot{r}_c$ and ω are functions of generalized coordinates q and velocities \dot{q}

Relations can be computed via Jacobian assoc. with links CoMs

$$v_{c,i} = J_{v_i}(q)\dot{q}, \quad \omega_i = J_{\omega_i}(q)\dot{q}$$

Robot kinetic energy

$$\mathcal{K} = \frac{1}{2} \dot{q}^{T} \left[\sum_{i=1}^{n} m_{i} J_{v_{i}}(q)^{T} J_{v_{i}}(q) + J_{\omega_{i}}(q)^{T} R_{i}(q) I R_{i}(q)^{T} J_{\omega_{i}}(q) \right] \dot{q}$$

Recurrent Velocities Formulas

rotation (angular) velocities

$$\omega_{i} = \left(R_{i}^{i-1}(q_{i})\right)^{T} \left[\omega_{i-1} + (1 - \sigma_{i})\dot{q}_{i}z_{i-1}\right] = \left(R_{i}^{i-1}(q_{i})\right)^{T} \omega_{i}^{i-1}.$$
 (2)

where $R_i^{t-1}(q_i)$ is a rotation matrix for neighbor CFs $O_{i-1}x_{i-1}y_{i-1}z_{i-1}$ and $O_ix_iy_iz_i$,

$$\sigma_i = \left\{ egin{array}{l} 0, \emph{for rotational joint,} \\ 1, \emph{for prismatic joint,} \end{array}
ight.$$

 $z_{i-1} = [001]^T$ is a vector of z axis coord. if D-H convention used, ω_i^{i-1} is a rotational velocity of i-th link with respect to CF $O_{i-1}x_{i-1}y_{i-1}z_{i-1}$

· linear velocities

$$v_{c,i} = v_i + \omega_i \times r_{c,i},\tag{3}$$

where

$$v_{i} = \left(R_{i}^{i-1}(q_{i})\right)^{T} \left[v_{i-1} + \sigma_{i}\dot{q}_{i}z_{i-1} + \omega_{i}^{i-1} \times r_{i-1,i}^{i-1}\right]$$
(4)

denotes linear velocity of a CF origin O_i , $r_{c,i}$ is a CoM vector for i-th link with respect to O_i , $r_{i-1,i}^{i-1}$ are coordinates of radius-vectors from O_{i-1} to O_i with respect to CF $O_{i-1}x_{i-1}y_{i-1}z_{i-1}$.

Potential Energy of *n*-links Robot

Potential energy of i-th link

$$P_i = m_i g^T r_{c,i}$$

where $r_{c,i}$ is a CoM coordinates vector

$$\begin{vmatrix} r_{c,i} \\ 1 \end{vmatrix} = {}^{0} H_{1}(q_{1})^{1} H_{2}(q_{2}) \cdots {}^{i-1} H_{i}(q_{i}) \begin{vmatrix} i \\ 1 \end{vmatrix}$$
 (5)

Robot potential energy

$$\mathbf{P} = \sum_{i=1}^{n} \mathbf{P}_{i} = \sum_{i=1}^{n} m_{i} g^{T} r_{c,i}$$

For a serial kinematic chain

$$\mathcal{P} = \sum_{i=1}^{n} \mathcal{P}_i$$

$$\mathcal{P}_i = \mathcal{P}_i(q_j, j \leq i)$$

Motion Equation

Kinetic energy

$$\mathcal{K} = \frac{1}{2}\dot{q}^T \left[\sum_{i=1}^n m_i J_{v_i}(q)^T J_{v_i}(q) + J_{\omega_i}(q)^T R_i(q) I R_i(q)^T J_{\omega_i}(q) \right] \dot{q}$$

$$= \frac{1}{2}\dot{q}^T M(q) \dot{q} = \frac{1}{2} \sum_{k,j} m_{kj}(q) \dot{q}_k \dot{q}_j$$
• for conservative generalized forces $\psi_k = -\frac{\partial \mathcal{P}}{\partial q_k} + \tau_k$

- system Lagrangian $\mathcal{L} = \mathcal{K} \mathcal{P}$

$$\frac{d}{dt} \frac{\partial \mathcal{L}}{\partial \dot{q}_k} - \frac{\partial \mathcal{L}}{\partial q_k} = \tau_k$$

$$\frac{d}{dt} \frac{\partial (\mathcal{K} - \mathcal{P})}{\partial \dot{q}_k} - \frac{\partial (\mathcal{K} - \mathcal{P})}{\partial q_k} = \tau_k$$

$$\frac{d}{dt} \frac{\partial \mathcal{K}}{\partial \dot{q}_k} - \frac{\partial (\mathcal{K} - \mathcal{P})}{\partial q_k} = \tau_k$$

Motion Equation (contd.)

Equation structure

$$\frac{d}{dt}\frac{\partial \mathcal{K}}{\partial \dot{q}_k} - \frac{\partial (\mathcal{K} - \mathcal{P})}{\partial q_k} = \tau_k, \qquad k = 1, \dots, n$$

1st term

$$\frac{\partial \mathcal{K}}{\partial \dot{q}_k} = \frac{\partial}{\partial \dot{q}_k} \left[\frac{1}{2} \dot{q}^T M(q) \dot{q} \right] = \sum_{i=1}^n m_{kj} \dot{q}_j$$

and

$$\frac{d}{dt} \frac{\partial \mathcal{K}}{\partial \dot{q}_k} = \frac{d}{dt} \left[\sum_{j=1}^n m_{kj} \dot{q}_j \right] = \sum_{j=1}^n m_{kj} \ddot{q}_j + \sum_{j=1}^n \frac{d}{dt} \left[m_{kj}(q) \right] \dot{q}_j$$

$$= \sum_{j=1}^n m_{kj} \ddot{q}_j + \frac{1}{2} \sum_{j=1}^n \sum_{i=1}^n \left(\frac{\partial m_{kj}}{\partial q_i} + \frac{\partial m_{ki}}{\partial q_j} \right) \dot{q}_i \dot{q}_j$$

Motion Equation (contd.)

2nd term

$$\frac{\partial(\mathcal{K} - \mathcal{P})}{\partial q_k} = \frac{\partial}{\partial q_k} \left[\frac{1}{2} \dot{q} M(q) \dot{q} - \mathcal{P} \right] = \frac{1}{2} \dot{q} \left[\frac{\partial}{\partial q_k} M(q) \right] \dot{q} - \frac{\partial}{\partial q_k} \mathcal{P}$$

$$= \frac{1}{2} \sum_{j=1}^{n} \sum_{i=1}^{n} \frac{\partial m_{ij}}{\partial q_k} \dot{q}_i \dot{q}_j - \frac{\partial}{\partial q_k} \mathcal{P}$$

Motion Equation (contd.)

2nd term

$$\frac{\partial(\mathcal{K} - \mathcal{P})}{\partial q_k} = \frac{\partial}{\partial q_k} \left[\frac{1}{2} \dot{q} M(q) \dot{q} - \mathcal{P} \right] = \frac{1}{2} \dot{q} \left[\frac{\partial}{\partial q_k} M(q) \right] \dot{q} - \frac{\partial}{\partial q_k} \mathcal{P}$$

$$= \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \frac{\partial m_{ij}}{\partial q_k} \dot{q}_i \dot{q}_j - \frac{\partial}{\partial q_k} \mathcal{P}$$

Resulting relations

$$\sum_{j=1}^{n} m_{kj} \ddot{q}_{j} + \frac{1}{2} \sum_{j=1}^{n} \sum_{i=1}^{n} \left(\frac{\partial m_{kj}}{\partial q_{i}} + \frac{\partial m_{ki}}{\partial q_{j}} \right) \dot{q}_{i} \dot{q}_{j}$$
$$-\frac{1}{2} \sum_{j=1}^{n} \sum_{i=1}^{n} \frac{\partial m_{ij}}{\partial q_{k}} \dot{q}_{i} \dot{q}_{j} + \frac{\partial}{\partial q_{k}} \mathcal{P} = \tau_{k}$$

Motion Equation (contd.)

2nd term

$$\frac{\partial(\mathcal{K} - \mathcal{P})}{\partial q_k} = \frac{\partial}{\partial q_k} \left[\frac{1}{2} \dot{q} M(q) \dot{q} - \mathcal{P} \right] = \frac{1}{2} \dot{q} \left[\frac{\partial}{\partial q_k} M(q) \right] \dot{q} - \frac{\partial}{\partial q_k} \mathcal{P}$$

$$= \frac{1}{2} \sum_{i=1}^n \sum_{i=1}^n \frac{\partial m_{ij}}{\partial q_k} \dot{q}_i \dot{q}_j - \frac{\partial}{\partial q_k} \mathcal{P}$$

Resulting relations

$$\sum_{j=1}^{n} m_{kj}(q) \ddot{q}_{j} + \sum_{j=1}^{n} \sum_{i=1}^{n} c_{ijk}(q) \dot{q}_{i} \dot{q}_{j} + g_{k}(q) = \tau_{k} , \quad k = 1, \ldots, n$$

where $c_{ijk} = c_{jik}$ is a Christoffel symbol and

$$c_{ijk}(q) = \frac{1}{2} \left(\frac{\partial m_{kj}}{\partial q_i} + \frac{\partial m_{ki}}{\partial q_j} - \frac{\partial m_{ij}}{\partial q_k} \right), \quad \mathbf{g}_k(q) = \frac{\partial}{\partial q_k} \mathbf{P}$$

is a potential energy gradient

Motion Equation (contd.)

2nd term

$$\begin{split} \frac{\partial (\mathcal{K} - \mathcal{P})}{\partial q_k} &= \frac{\partial}{\partial q_k} \left[\frac{1}{2} \dot{q} M(q) \dot{q} - \mathcal{P} \right] = \frac{1}{2} \dot{q} \left[\frac{\partial}{\partial q_k} M(q) \right] \dot{q} - \frac{\partial}{\partial q_k} \mathcal{P} \\ &= \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \frac{\partial m_{ij}}{\partial q_k} \dot{q}_i \dot{q}_j - \frac{\partial}{\partial q_k} \mathcal{P} \end{split}$$

Resulting relations

$$\sum_{j=1}^{n} m_{kj}(q) \ddot{q}_{j} + \sum_{j=1}^{n} \sum_{i=1}^{n} c_{ijk}(q) \dot{q}_{i} \dot{q}_{j} + g_{k}(q) = \tau_{k} , \quad k = 1, \ldots, n$$

in a vectorial form

$$M(q)\ddot{q} + C(q,\dot{q})\dot{q} + G(q) = \tau$$

with Coriolis and centrifugal forces C(q), $c_{kj} = \sum_{i=1}^{n} c_{ijk}(q)\dot{q}_i$.

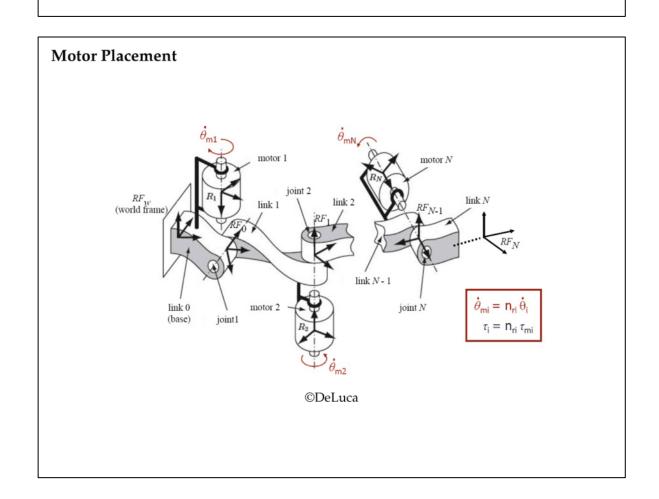
Accounting for Gear and Motor Dynamics

Assumptions

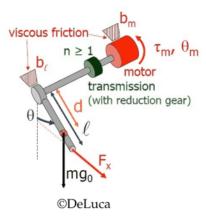
- drive is fixed to the link preceding the link it is moving
- · motor and joint axis are coinciding

General considerations

- drive mass should be added to link mass
- drive rotor inertia should be taking into account when computing total kinetic energy
- · gear ration should be taken into account when computing velocities and forces



Pendulum with Gear



 I_l – link moment of inertia w.r.t. its CoM

m – link mass

d – distance from axis of rotation to link CoM

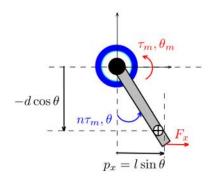
 $\dot{\theta}$ – link rotation velocity (after gear)

 $\dot{\theta}_m = n\dot{\theta}$ – motor rotation velocity (before gear)

n – gear ratio

 I_m – drive moment of inertia w.r.t its axis of rotation

Kinetic Energy



Pendulum kinetic energy

$$\mathcal{K}_{l}=\frac{1}{2}\left(I_{l}+md^{2}\right)\dot{\theta}^{2},$$

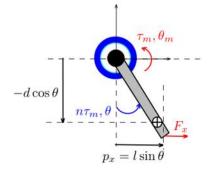
Drive kinetic energy

$$\mathcal{K}_m = \frac{1}{2} I_m \dot{\theta}_m^2,$$

Total kinetic energy
$$\mathcal{K}=\mathcal{K}_l+\mathcal{K}_m=\frac{1}{2}I\dot{\theta}^2 \text{,}$$

where $I = I_l + md^2 + n^2I_m$ is a total moment of inertia w.r.t. axis of rotation

Potential Energy and Lagrangian



Total potential energy

$$\mathcal{P} = \mathcal{P}_0 - mg_0 d\cos\theta.$$

System Lagrangian

$$\mathcal{L} = \frac{1}{2}I\dot{\theta}^2 + mg_0d\cos\theta - \mathcal{P}_0.$$

Motion Equation

From the link side

$$I\ddot{\theta} + mg_0 d\sin\theta = \tau.$$

From the motor side $% \left\{ \mathbf{r}^{\prime}\right\} =\left\{ \mathbf{r}^{\prime}\right$

$$\frac{1}{n^2}\ddot{\theta}_m + \frac{m}{n}g_0d\sin\frac{\theta_m}{n} = \tau_m - \left(\frac{k_{fl}}{n^2} + k_{fm}\right)\dot{\theta}_m + \frac{l}{n}\cos\frac{\theta_m}{n}F_x.$$

Friction Forces

General considerations

- · is a dissipative force
- localized in joints
- static model captures major influence for relatively fast motion

$$\tau = n\tau_m - k_{fl}\dot{\theta} - nk_{fm}\dot{\theta}_m + \dot{p}_xF_x = n\tau_m - (k_{fl} + n^2k_{fm})\dot{\theta} + l\cos\theta F_x,$$

where τ_m is drive torque before gear, k_{fm} and k_{fl} are viscous friction coefficients

• dynamic models are more accurate, but usually hard to identify

Flexible-Joints Robots

Flexible joints

Motor (input) and link (output) are connected by a flexible (deformable) element

- · long shaft
- harmonic drive gearbox
- belts

Figure 2: Flexible joint sketch

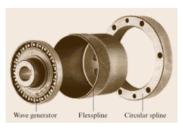


Figure 3: Harmonic drive

Useful flexibility

- 1. physically (VSA, SEA)
- 2. on a software level

for

- safe pHRI
- · explosive motions

Modeling Flexible Joints

Assumptions

- 1. flexibility is localized in joint
- 2. small deformations for linear spring model
- 3. symmetric drive shafts with CoM on the axis of rotation
- 4. drive is located before the link it is actuating

Modeling Flexible Joints

- introduce 2n generalized coordinates $q \in R^n$ for links and $\theta \in R^n$ for drives $(\theta_i = \theta_{mi}/r_i, r_i)$ is a gear ratio)
- · add drive kinetic energy

$$\mathcal{K}_{mi} = rac{1}{2}\mathcal{I}_m heta_{mi}^2 = rac{1}{2}\mathcal{I}_m extbf{r}_i^2 heta_i^2$$

$$\mathcal{K}_m = \sum_{i=1}^n \mathcal{K}_{mi} = \frac{1}{2}\dot{\theta}^{\mathsf{T}} \mathbf{M}_m \dot{\theta}$$

 M_m is a diagonal drive inertia matrix

• add potential energy of a deformed spring

$$\mathcal{P}_{ei} = \frac{1}{2}K_i(q_i - \theta_i)^2$$

$$\mathcal{P}_e = \sum_{i=1}^n \mathcal{P}_{ei} = \frac{1}{2} (q - \theta)^T K (q - \theta)$$

K is a matrix of joint stiffness coefficients

Modeling Flexible Joints

Motion equation

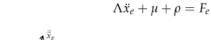
$$\begin{split} M(q)\ddot{q}-c(q,\dot{q})+G(q)+K(q-\theta)&=0,\\ M_m\ddot{\theta}+K(\theta-q)&=\tau \end{split}$$

Operational Space Formulation

· Configuration space

Operational space

$$M(q)\ddot{q}+c(q,\dot{q})+g(q)=\tau$$



Operational Space Formulation

• Configuration space

· Operational space

$$M(q)\ddot{q} + c(q,\dot{q}) + g(q) = \tau$$

$$\Lambda \ddot{x}_e + \mu + \rho = F_e$$

• projecting joint forces/torques to end-effector forces

$$\tau = J_{\epsilon}^{T} F_{\epsilon}$$

• kinematic relations

$$\dot{x}_e = J_e \dot{q} \Rightarrow \ddot{x}_e = J_e \ddot{q}_e + J_e \dot{q}_e$$

$$\ddot{x}_e = J_e M^{-1} \left(J_e^T F_e - \left(c(q, \dot{q}) + g(q) \right) \right) + \dot{J}_e \dot{q}_e \Rightarrow$$

$$\ddot{x}_{\varepsilon} + J_{\varepsilon}M^{-1}(c(q,q) + g(q)) - \dot{J}_{\varepsilon}q_{\varepsilon} = J_{\varepsilon}M^{-1}J_{\varepsilon}^{T}F_{\varepsilon}$$

• operational-space model

$$\Lambda = \left(J_e M^{-1} J_e^T\right)^{-1} \qquad \mu = \Lambda J_e M^{-1} c(q,q) - \Lambda \dot{J}_e q_e \qquad \rho = \Lambda J_e M^{-1} g(q)$$

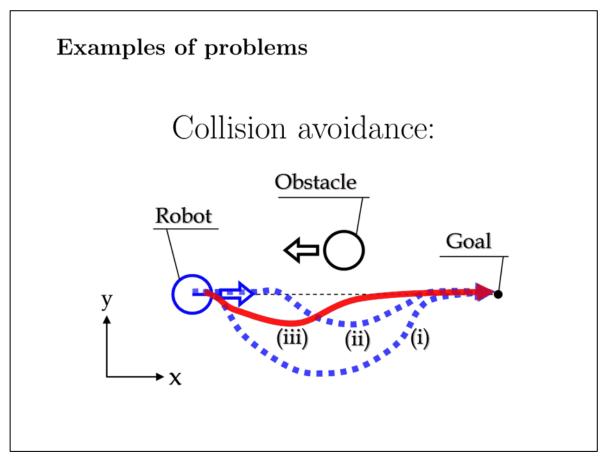
Trajectory control algorithms Trajectory control algorithms based on stabilization of sets

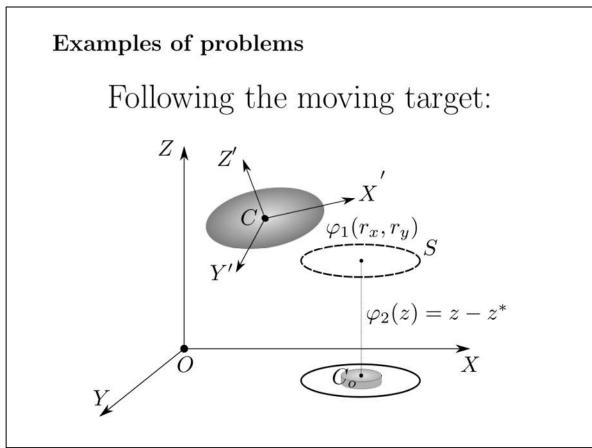
Trajectory control algorithms based on stabilisation of sets

Aleksandr Y. Krasnov

Examples of problems

Autonomous vehicles control





Examples of problems

Control of underwater biomimetic robots (Robotic Fish)

Problem: robot can not stop after reaching a goal.

Possible solution: continue motion along closed curve around the the goal

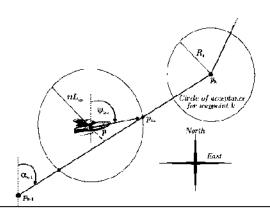
Possible solutions: Tracking approaches

- Virtual Target Tracking:
 - Backstepping based

Aguiar, A.P.; Hespanha, J.P., Kokotovic, P.V., "Path-following for nonminimum phase systems removes performance limitations," Automatic Control, IEEE Transactions on , vol.50, no.2, pp.234,259. Feb. 2005

• LOS(Line-of-Sight) methods

M. Breivik and T.I. Fossen Principles of Guidance Based Path Following in 2D and 3D Proceedings of the IEEE Conference on Decision and Control, Seville, Spain, 2005, pp. 627-634



Possible solutions: Set stabilization approaches

• Sliding mode

Ashruftuon, H., Muske, K. R., McNinch, L. C., and Soltan, R., "Sliding Model Tracking Central of Surface

Vessels," IEEE Transactions on Industrial Electronics SS on Sliding Mode Control in Industrial Applications,

2008

Passification

M. El-Hawwary, M. Maggiore, Case Studies on Passivity-Based Stabilization of Closed Sets, International Journal of Control, 2011

- Feedback linearization:
 - Methods of transversal linearization

Nielsen, C.; Fulford, C.; Maggiore, M., "Path following using transverse feedback linearization: Application to a maglev positioning system," American Control Conference, 2009

• Vector Field Path Following

Nelson, D.R.; Burber, D.B.; McLain, T.W.; Beard, R.W., "Vector field path following for small unmanned air vehicles," American Control Conference, 2005

• Coordination control by Iliya V. Miroshnik

Description of the desired trajectory

Three ways to describe straight line:

Explicit description

$$y = \frac{ax - c}{b}$$

• Implicit description

$$ax + by + c = 0$$

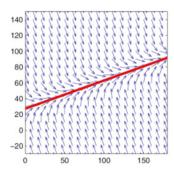
• Parametric description

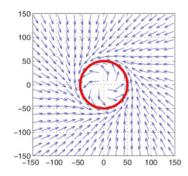
$$x = x_0 + ft$$

$$y = y_0 + gt$$

Main ideas of methods based on the stabilization of sets

- Implicit representation of curve
- Dependence on the current position in the space
- Invariance of desired path(an attractor in the output space)
- Potentially higher accuracy of motion





Sujit, P.B.; Saripalli, S.; Sousa, J.B., "An evaluation of UAV path following algorithms," Control Conference (ECC),

Nelson, D.R.; Barber, D.B.; McLain, T.W.; Beard, R.W., "Vector field path following for small unmanned air

Formal statement of control problem

• Geometric sub-task:

$$dist(p-f(p_d)) \to 0,$$

where $f(p_d)$ - a desired path of motion, p_d - spatial coordinates of space, p - current position of a plant.

• Kinematic sub-task - maintenance of desired velocity of motion along the path:

$$\lim_{t\to\infty}\Delta V=\lim_{t\to\infty}(V-V^*)\to 0,$$

where V - current velocity of motion, V^* - desired velocity.

Motion on the plane

Dynamic model of robot motion:

$$\dot{v}_x = v_y \omega + \frac{1}{m} F_x, \qquad (1)$$

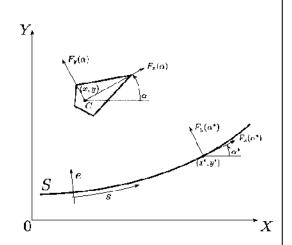
$$\dot{v}_y = -v_x \omega + \frac{1}{m} F_y, \quad (2)$$

$$\dot{\omega} = \frac{1}{J} M_c, \qquad (3)$$

where v_x and v_y are linear velocities,

 F_x and F_y are control forces.

 ω is the angular velocity, m is the mass of the plant, J is the moment of inertia, M_c is the control torque.



Motion on the plane

Relation of linear velocities in the fixed and absolute frames:

$$\begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} = T^{T}(\alpha) \begin{bmatrix} v_{x} \\ v_{y} \end{bmatrix}, \tag{4}$$

where $T^T(\alpha) = \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix}$ is the rotational matrix of C-fixed frame.

Linear accelerations in absolute frame

$$\begin{bmatrix} \ddot{x} \\ \ddot{y} \end{bmatrix} = \frac{1}{m} T^{T}(\alpha) \begin{bmatrix} F_{x} \\ F_{y} \end{bmatrix}. \tag{5}$$

Motion on the plane

The desired path is an implicitly described smooth segment of curve S:

$$\varphi(x,y) = 0, (6)$$

and relevant local coordinate s (path length) is defined as

$$s = \psi(x, y) \tag{7}$$

Selection of functions (6) and (7) is mostly limited by regularity condition implying that Jacobian matrix

$$\Upsilon(x,y) = \begin{bmatrix} \frac{\partial \psi}{\partial x} & \frac{\partial \psi}{\partial y} \\ \frac{\partial \varphi}{\partial x} & \frac{\partial \varphi}{\partial y} \end{bmatrix}$$
 (8)

is not degenerate for any (x,y) belonging to curve S, i.e. $det\Upsilon(x,y)\neq 0$

For regular geometrical objects there exists normalized description with orthogonal Jacobian matrix:

$$\Upsilon(x,y) = T(\alpha^*(s)) = \begin{bmatrix} \cos \alpha^*(s) & \sin \alpha^*(s) \\ -\sin \alpha^*(s) & \cos \alpha^*(s) \end{bmatrix} \in SO(2)$$

where $T(\alpha^*(s))$ is the rotational matrix of moving Frenet frame, $\alpha^*(s)$ is s-dependent target angle determining the current orientation of Frenet frame.

Frenet matrix satisfies to the differential equation

$$\dot{T}^*(\alpha^*) = \dot{s}\xi(s)ET^*(\alpha^*),\tag{9}$$

where $E = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ and $\xi(s)$ is the path curvature.

From (9) also follows

$$\dot{\alpha^*} = \dot{s}\xi(s). \tag{10}$$

Angular orientation

Robot angular orientation with respect to curve S is defined as

$$\alpha = \alpha^*(s) + \Delta\alpha,\tag{11}$$

where $\Delta \alpha = const$ is the desired robot orientation with respect to the path.

In matrix notation, (11) takes the form

$$T(\alpha) = T(\Delta \alpha)T(\alpha^*). \tag{12}$$

Introducing errors and problem statement

Violation of condition (6) is characterised by orthogonal deviation

$$e = \varphi(x, y). \tag{13}$$

Violation of condition (10) is characterised by angular deviation

$$\delta = \alpha - \alpha^* + \Delta \alpha. \tag{14}$$

Therefore, the path following control problem consists in determination of inputs F_x , F_y and M in closed loop, which provides:

- stabilization of robot motion with respect to curve S;
- stabilization of robot angular orientation with respect to curve S:
- maintenance of the desired longitudinal motion by asymptotic zeroing of velocity error

$$\Delta V_s = V_s^* - \dot{s}. \tag{15}$$

Coordinate transformation

Perform the transformation of the system model (1)-(3) to the task-based form with outputs s, e and δ . To do so, differentiate (7), (13) and (14) with respect to time:

$$\begin{bmatrix} \dot{s} \\ \dot{e} \end{bmatrix} = \Upsilon(x, y) \begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} = T(\alpha^*) \begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix}, \tag{16}$$

$$\dot{\delta} = -\xi(s)\dot{s} + \omega. \tag{17}$$

Find the inverse transformation:

$$\begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} = T^{T}(\alpha^{*}) \begin{bmatrix} \dot{s} \\ \dot{e} \end{bmatrix},$$
$$\omega = \dot{\delta} + \xi(s)\dot{s}.$$

Control design

Once more differentiate (16) and (17) with account for (5), (9) and (12):

$$\begin{bmatrix} \ddot{s} \\ \ddot{e} \end{bmatrix} + \xi(s)\dot{s}E^T \begin{bmatrix} \dot{s} \\ \dot{e} \end{bmatrix} = \frac{1}{m}T^T(\Delta\alpha) \begin{bmatrix} F_x \\ F_y \end{bmatrix}, \tag{18}$$

$$\ddot{\delta} + \xi(s)\ddot{s} + \dot{\xi}(s)\dot{s} = \frac{1}{I}M. \tag{19}$$

Now consider virtual task-based controls:

$$\begin{bmatrix} u_s \\ u_e \end{bmatrix} = \frac{1}{m} T^T(\Delta \alpha) \begin{bmatrix} F_x \\ F_y \end{bmatrix}$$
 (20)

$$u_{\delta} = \frac{1}{J}M - \xi(s)u_{s} \tag{21}$$

Control design

Substitute (20) and (21) to (18) and (19):

$$\begin{bmatrix} \ddot{s} \\ \ddot{e} \end{bmatrix} + \xi(s)\dot{s}E^T \begin{bmatrix} \dot{s} \\ \dot{e} \end{bmatrix} = \begin{bmatrix} u_s \\ u_c \end{bmatrix}, \tag{22}$$

$$\ddot{\delta} + \dot{\xi}(s)\dot{s} + \xi^2(s)\dot{s}\dot{e} = u_{\delta}. \tag{23}$$

Rewrite equations (22) and (23) with account for (15) for determining the velocity error dynamics:

$$\Delta \dot{V} + \xi(s)\dot{s}\dot{e} = -u_s,$$
$$\ddot{e} + \xi(s)\dot{s}^2 = u_e,$$
$$\ddot{\delta} + \dot{\xi}(s)\dot{s} + \xi^2(s)\dot{s}\dot{e} = u_{\delta}.$$

Control design

Now select the controllers:

$$u_s = -\xi(s)\dot{s}\dot{e} + k_s\Delta V,\tag{24}$$

$$u_e = \xi(s)\dot{s}^2 \quad k_{e1}\dot{c} \quad k_{e2}c,$$
 (25)

$$u_{\delta} = \dot{\xi}(s)\dot{s} + \xi^{2}(s)\dot{s}\dot{c} - k_{\delta 1}\dot{\delta} - k_{\delta 2}\delta, \tag{26}$$

where k_s , k_{e1} , k_{e2} , $k_{\delta 1}$, $k_{\delta 2}$ are positive constants.

Finally we determine actual control actions F_x , F_y and M and obtain

$$\begin{bmatrix} F_x \\ F_y \end{bmatrix} = mT(\Delta\alpha) \begin{bmatrix} -\xi(s)\dot{s}\dot{e} + k_s\Delta V \\ \xi(s)\dot{s}^2 - k_{e1}\dot{e} - k_{e2}e \end{bmatrix},$$
 (27)

$$M = J(\xi(s)u_s + \dot{\xi}(s)\dot{s} + \xi^2(s)\dot{s}\dot{e} - k_{\delta 1}\dot{\delta} - k_{\delta 2}\delta). \tag{28}$$

Example. Straight line segment

The normalized equation of the straight line

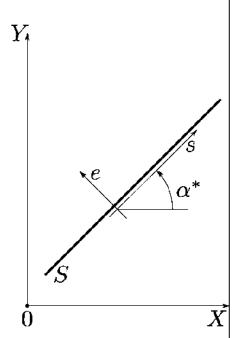
$$\varphi(q) = -\sin\alpha^* x + \cos\alpha^* y + \varphi_0 = 0,$$

$$\psi(q) = \cos \alpha^* x + \sin \alpha^* y + \psi_0,$$

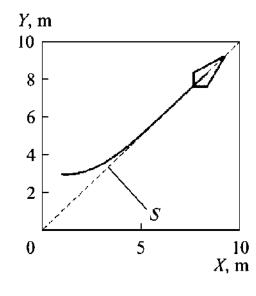
where α^* is the line inclination, $\varphi_0 = const$, $\psi_0 = const$. Orthogonal Jacobian matrix takes the form

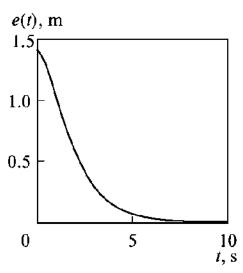
$$\Upsilon(q) = egin{bmatrix} \cos lpha^* & \sin lpha^* \ -\sin lpha^* & \cos lpha^* \end{bmatrix} \in SO(2).$$

Obviously, the path curvature is zero.



Example. Simulation of the motion along the straight line.





Example. An arc of a circle

The normalized equation of the arc of the circle

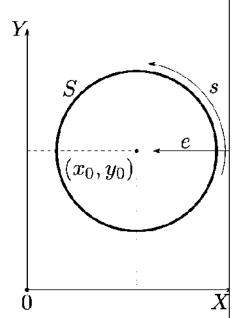
$$\varphi(q) = \frac{1}{2R} (R^2 - (x - x_0)^2 - (y - y_0)^2) = 0,$$

$$\psi(q) = R \arctan \frac{(y - y_0)}{(x - x_0)}.$$

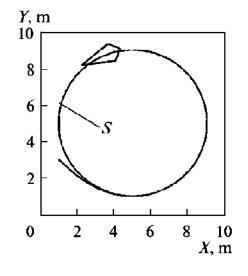
Orthogonal Jacobian matrix takes the form

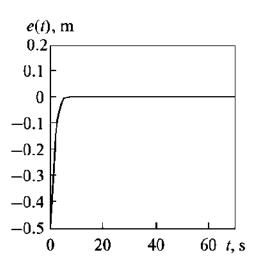
$$\Upsilon(q) = rac{1}{R} egin{bmatrix} -(y-y_0) & (x-x_0) \ -(x-x_0) & -(y-y_0) \end{bmatrix} \in SO(2).$$

The path curvature is $\xi(s) = \frac{1}{R}$



Example. Simulation of the motion along the arc of a circle.





Dynamic model

$$m\ddot{q} = F, \tag{29}$$

$$\dot{q} = R_O^I(\alpha)v,$$
 (30)

$$R_O^I(\alpha) = \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix}, \quad (31)$$

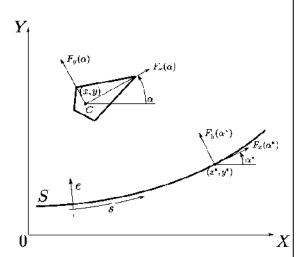
$$\dot{\alpha} = \omega, \tag{32}$$

where $q = \begin{bmatrix} x & y \end{bmatrix}^T \in \mathbb{R}^2$ is vector of the Cartesian coordinates,

$$F = \begin{bmatrix} F_x & F_y \end{bmatrix}^T \in \mathbb{R}^2$$
 is vector of the control forces,

 α is the orientation angle,

 ω is the angular velocity.



Motion on the plane

The desired path is an implicitly described smooth segment of curve S:

$$\varphi(q) = 0, \tag{33}$$

and relevant local coordinate s (path length) is defined as

$$s = \psi(q) \tag{34}$$

Selection of functions (33) and (34) is mostly limited by regularity condition implying that Jacobian matrix

$$\Upsilon(q) = \begin{bmatrix} \frac{\partial \psi(q)}{\partial x} & \frac{\partial \psi(q)}{\partial y} \\ \frac{\partial \varphi(q)}{\partial x} & \frac{\partial \varphi(q)}{\partial y} \end{bmatrix}$$
(35)

is not degenerate for any (x,y) belonging to curve S, i.e. $det\Upsilon(x,y)\neq 0$

Control design

Design of the velocity (inner) loop. Consider Lyapunov Function:

$$V_1 = \frac{1}{2}(\dot{q} - \bar{v})^T(\dot{q} - \bar{v}), \tag{36}$$

where \bar{v} - a vector of desired velocities.

Find the derivation of the Lyapunov function V_1 :

$$\dot{V}_1 = (\dot{q} - \bar{v})^T (\ddot{q} - \dot{\bar{v}}) = (\dot{q} - \bar{v})^T (\frac{F}{m} - \dot{\bar{v}}). \tag{37}$$

Control design

Define the control signal as:

$$\frac{1}{m}F = \dot{\bar{v}} - k_q(\dot{q} - \bar{v}),\tag{38}$$

where k_q is a positive constant. Then the derivation of the Lyapunov function V_1 is

$$\dot{V}_1 = -k_a(\dot{q} - \bar{v})^T(\dot{q} - \bar{v}) \le 0, \tag{39}$$

which means asymptotic stability of the point $\dot{q} - v = 0$.

Now we can rewrite original system in reduced form:

$$\dot{q} = \bar{v}$$
.

Let's construct the control \bar{v} in th following form:

$$\bar{v} = u_e + u_s$$

where u_e is the term, which provides stabilization with respect to the desired path and u_s provides desired velocity along the path.

Reduced system

Perform the transformation of the system model (29)-(32) to the task-based form with outputs s and e_1 , using Jacobian matrix (35):

$$\begin{bmatrix} \dot{s} \\ \dot{e}_1 \end{bmatrix} = \Upsilon(q)\dot{q} = \Upsilon(q)R_I^O(\alpha)v. \tag{40}$$

We can choose the control signal u_s in the form

$$u_s = R_O^I \Upsilon^{-1}(r) \begin{bmatrix} V^* \\ 0 \end{bmatrix}$$
 (41)

Now design stabilization control u_e . Consider Lyapunov Function:

$$V_2 = \frac{k_e}{2} \varphi^2(q), \tag{42}$$

Reduced system

Find the derivation of the Lyapunov function V_2 .

$$\begin{split} \dot{V}_2 &= k_e \varphi(q) \nabla \varphi(q) = (k_e \varphi(q) \nabla \varphi(q))^\top u_e + \\ + (k_e \varphi(q) \nabla \varphi(q))^\top \Upsilon^{-1} q) \begin{bmatrix} V^* \\ 0 \end{bmatrix} = (k_e \varphi(q) \nabla \varphi(q))^\top u_e. \end{split}$$

As you can see, the second half of the expression is identically zero due to orthogonality. Now select u_e as

$$u_e = -k_e \varphi(q) \frac{\partial}{\partial q} \varphi(q), \tag{43}$$

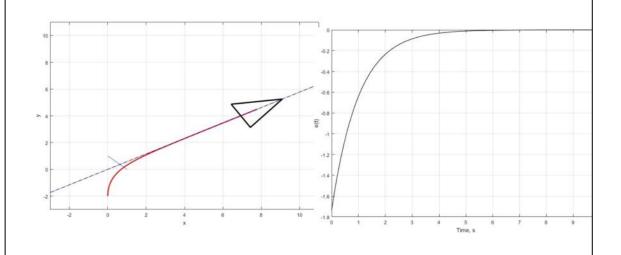
where k_e is positive constant.

Then the derivation of the Lyapunov function V_2 is

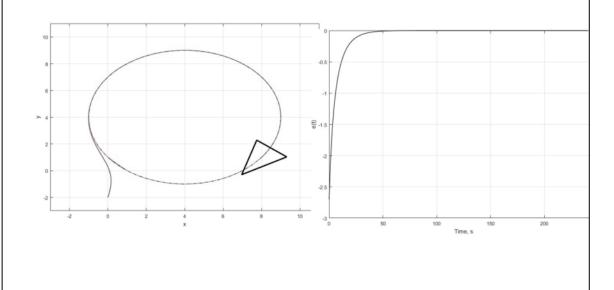
$$\dot{V}_2 = -u_e^2 \le 0$$

It proves the asymptotic stability of the initial system at the point e(q) = 0.

Example. Simulation of the motion along the straight line.



Example. Simulation of the motion along the arc of a circle.



2D moving frame

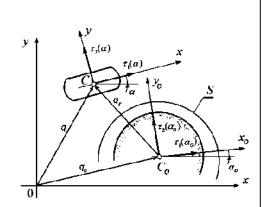
Dynamic model of the plant:

$$\begin{bmatrix} \dot{q} \\ \dot{\alpha} \end{bmatrix} = R^T(\alpha) \begin{bmatrix} v \\ \omega \end{bmatrix}, \qquad (44)$$

$$A \left[\begin{array}{c} \dot{v} \\ \dot{\omega} \end{array} \right] = R^{T}(\alpha) \left[\begin{array}{c} F \\ M \end{array} \right], \quad (45)$$

$$R(lpha) = \left[egin{array}{cc} T(lpha) & 0 \ 0 & 1 \end{array}
ight],$$

$$A = \left[\begin{array}{ccc} m & 0 & 0 \\ 0 & m & 0 \\ 0 & 0 & J \end{array} \right],$$



External moving object

Dynamic model of the external moving object:

$$\dot{q}_o = v_o, \tag{46}$$

$$\dot{T}(\alpha_o) = \omega_o ET(\alpha_o), \tag{47}$$

Desired trajectory in relative coordinates

$$\varphi(q_r) = 0, (48)$$

Local coordinate

$$s = \psi(q_r),\tag{49}$$

Relative coordinates

Position, velocity and acceleration of the plant in moving frame:

$$q_r = T(\alpha_o)(q - q_o), \tag{50}$$

$$\alpha_r = \alpha - \alpha_o. \tag{51}$$

$$\dot{q}_r = \omega_o E q_r + T(\alpha_o) \left(\dot{q} - \dot{q}_o \right), \tag{52}$$

$$\dot{\alpha}_r = \omega - \omega_o, \tag{53}$$

$$\ddot{q}_r = (\omega_o)^2 q_r + 2\omega_o ET(\alpha_o) (\dot{q} - \dot{q}_o) + \frac{1}{m} T(\alpha_o) T^T(\alpha) F_z,$$
(54)

$$\ddot{\alpha}_r = \frac{1}{J}M. \tag{55}$$

Task-oriented coordinates

Consider orthogonal deviation

$$e(q_r) = \varphi(q_r),\tag{56}$$

and local coordinate s

$$s = \psi(q_r) \tag{57}$$

Choosing of functions (56) and (57) based on regularity condition which implies that Jacoby matrix

$$\Upsilon(q_r) = \begin{bmatrix} \partial \psi / \partial q_r \\ \partial \varphi / \partial q_r \end{bmatrix}$$
 (58)

is nondegenerate for all q_r , belongs to curve S, i.e. $det \Upsilon(q_r) \neq 0$.

Trajectory control synthesis

Imply the transformation of model (44)-(45) to the task-oriented coordinates:

$$\begin{bmatrix} \dot{s} \\ \dot{e} \end{bmatrix} = T(\alpha_r^*) \left(T^T(\alpha_r) v_z + \omega_o E q_r - T(\alpha_o) v_o \right), \tag{59}$$

$$\dot{\delta} = -\dot{s}\xi(s) + \omega - \omega_o. \tag{60}$$

Choose local controllers as

$$u_s = k_s \Delta V - \dot{s}\xi(s)\dot{e} - 2\omega_o\dot{e}, \tag{61}$$

$$u_e = k_{e1}e + k_{e2}\dot{e} + \dot{s}^2\xi(s)\dot{e} + 2\omega_o\dot{s},$$
 (62)

$$u_{\delta} = k_{\delta 1}\delta + k_{\delta 2}\dot{\delta} + \frac{\partial \xi}{\partial s}\dot{s} + \ddot{s}\xi(s). \tag{63}$$

Final control laws

$$F = mT(\alpha_r)T^T(\alpha_r^*)\left(\begin{bmatrix} u_s \\ u_e \end{bmatrix} - (\omega_o)^2T(\alpha^*)q_r\right), \qquad (64)$$

$$M = Ju_{\delta}. \tag{65}$$

Collision avoidance strategies

Some collision avoidance strategies

- Bypass
- Detour

Equidistant border around the obstacle

$$\varphi^*(q) = x^2 + y^2 - R^2 = 0, (66)$$

Trajectory control in presence of moving external object.

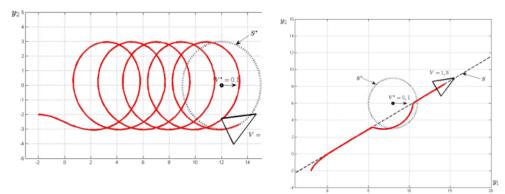


Figure 1: The results of modeling the motion relative to a moving external object.

Figure 2: The results of modeling the detour of a moving obstacle.

Spatial motion

Dynamic model:

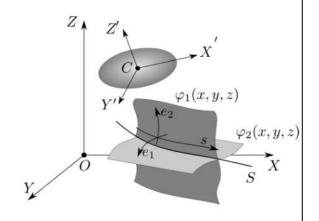
$$\dot{q} = v, \tag{67}$$

$$\dot{v} = \frac{1}{m} F_c, \tag{68}$$

$$\dot{R}(\alpha) = S(\omega)R(\alpha),$$
 (69)

$$J\dot{\omega} + \omega \times J\omega = M_c, \qquad (70)$$

$$S(\omega) = \begin{bmatrix} 0 & \omega_3 & -\omega_2 \\ -\omega_3 & 0 & \omega_1 \\ \omega_2 & -\omega_1 & 0 \end{bmatrix}.$$



Rotational matrix

The rotation matrix $R(\alpha)$ can be represented through Euler angles as

$$R(\alpha) = R_3(\psi)R_2(\theta)R_1(\phi), \tag{71}$$

where

$$R_1(\phi) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \phi & \sin \phi \\ 0 & \sin \phi & \cos \phi \end{bmatrix}$$

$$R_2(\theta) = \begin{bmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{bmatrix}$$

$$R_3(\psi) = egin{bmatrix} \cos \psi & -\sin \psi & 0 \ \sin \psi & \cos \psi & 0 \ 0 & 0 & 1 \end{bmatrix}$$

Desired path

The desired path S describes as an intersection of two implicit surfaces:

$$\varphi_1(x, y, z) = 0 \cap \varphi_2(x, y, z) = 0. \tag{72}$$

Tangential velocity along the curve S is defined as

$$\dot{s} = \frac{\nabla \varphi_1 \times \nabla \varphi_2}{\|\nabla \varphi_1 \times \nabla \varphi_2\|} v,\tag{73}$$

where \times is the vector product and $\|\cdot\|$ is the vector norm. Jacobian matrix:

$$\Upsilon(x, y, z) = \begin{bmatrix} \frac{\nabla \varphi_1 \times \nabla \varphi_2}{\|\nabla \varphi_1 \times \nabla \varphi_2\|} \\ \frac{\nabla \varphi_1}{\|\nabla \varphi_1\|} \\ \frac{\nabla \varphi_2}{\|\nabla \varphi_2\|} \end{bmatrix}$$
(74)

Introducing errors and problem statement

Violation of condition (72) is characterised by orthogonal deviations

$$e_1 = \varphi_1(x, y, z). \tag{75}$$

$$e_2 = \varphi_2(x, y, z).$$
 (76)

Therefore, the path following control problem consists in determination of inputs $F_c = \begin{bmatrix} F_x & F_y & F_z \end{bmatrix}$ and M_c in closed loop, which provides:

- stabilization of robot motion with respect to curve S;
- maintenance of the desired longitudinal motion by asymptotic zeroing of velocity error

$$\Delta V_s = V_s^* - \dot{s}; \tag{77}$$

• stabilization of robot angular orientation with respect to curve S.

Translation motion control

Perform the transformation of the system model (67)-(70) to the task-based form with outputs s, e_1 and e_2 . To do so, differentiate (73), (75) and (76) with respect to time:

$$\begin{bmatrix} \dot{s} \\ \dot{e_1} \\ \dot{e_2} \end{bmatrix} = \Upsilon(x, y, z)v. \tag{78}$$

Once more differentiate (78) with account for (68):

$$\begin{bmatrix} \ddot{s} \\ \ddot{e_1} \\ \ddot{e_2} \end{bmatrix} = \dot{\Upsilon}(x, y, z)v + \Upsilon(x, y, z)\frac{F_c}{m}.$$
 (79)

Translation motion control

Consider the virtual (task-based) controls:

$$\dot{\Upsilon}(x,y,z)v + \Upsilon(x,y,z)\frac{F_c}{m} = \begin{bmatrix} u_s \\ u_{e1} \\ u_{e2} \end{bmatrix}$$
(80)

Substitute (80) to (79) and obtain

$$\begin{bmatrix} \ddot{s} \\ \ddot{e_1} \\ \ddot{e_2} \end{bmatrix} = \begin{bmatrix} u_s \\ u_{e1} \\ u_{e2} \end{bmatrix}. \tag{81}$$

Translation motion control

Now select the controllers:

$$u_s = K_s \Delta \dot{s},\tag{82}$$

$$u_{e1} = -K_{1e1}\dot{e_1} - K_{2e1}e_1, \tag{83}$$

$$u_{e2} = -K_{1e2}\dot{e_2} - K_{2e2}e_2, \tag{84}$$

where K_s , K_{1e1} , K_{2e1} , K_{1e2} , K_{2e2} are positive constants.

Finaly we determine actual control action F_c and obtain

$$F_c = m\Upsilon(x, y, z)^{-1} \begin{pmatrix} u_s \\ u_{e1} \\ u_{e2} \end{pmatrix} - \dot{\Upsilon}(x, y, z)v).$$
 (85)

Rotation motion control

Introduce vector of angular errors $\delta = \begin{bmatrix} \delta_{\phi} & \delta_{\theta} & \delta_{\psi} \end{bmatrix}^T \in \mathbb{R}^3$ and the angular deviation matrix

$$R(\delta) = R(\alpha)R^{T}(\alpha^{*})R^{T}(\Delta), \tag{86}$$

where $R(\alpha^*) \in SO(3)$ is the matrix of angular orientation of the body-fixed frame along the curve S, $R(\Delta) \in SO(3)$ is the matrix of the desired angular orientation. Define the angular error function as

$$e_r = \frac{1}{2} (R(\delta) - R(\delta)^T)^{\vee}, \tag{87}$$

where \vee it the transformation $SO(3) \to R^3$.

Rotation motion control

Define the angular speed error e_{ω} . Differentiate (86) with account for (69) and obtain the equation

$$\frac{d}{dt}R(\delta) = S(\dot{\delta})R(\delta) = e_{\omega}R(\delta), \tag{88}$$

$$\frac{d}{dt}R(\delta) = S(\omega)R(\delta) - R(\alpha)R^{T}(\alpha^{*})S(\omega^{*})R^{T}(\Delta), \tag{89}$$

Use the property of skew symmetric matrix $RS(\omega)R^T=S(R\omega)$ and obtain final expression

$$\frac{d}{dt}R(\delta) = (S(\omega) - S(R(\alpha)R^{T}(\alpha^{*})\omega^{*}))R(\delta), \tag{90}$$

and

$$e_{\omega} = \omega - R(\alpha)R^{T}(\alpha^{*})\omega^{*}. \tag{91}$$

Rotation motion control

Differentiating (91) with account for (69)

$$\dot{e_{\omega}} = \frac{1}{J}(M - \omega \times J\omega) + a_d, \tag{92}$$

where $a_d = -S(\omega)R(\alpha)R^T(\alpha^*)\omega^* + R(\alpha)R^T(\alpha^*)\dot{\omega}^*$. Resulting attitude controller has form

$$M_c = \omega \times J\omega - Ja_d - K_R e_r - K_\omega e_\omega. \tag{93}$$

where K_R , K_{ω} , are positive constants.

Numerical example

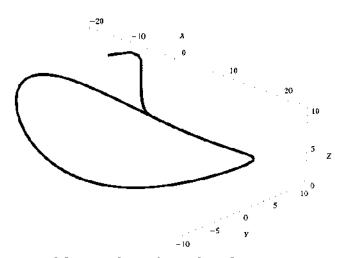
Consider the plant as a rigid body described by model (67)-(70) with $m=1,\,J=1.$

Initial position of the plant is $x_0 = \begin{bmatrix} -10 & 5 & 10 \end{bmatrix}^T$ and initial orientation is $\alpha_0 = \begin{bmatrix} 3 & 2 & 1 \end{bmatrix}^T$.

Parameters of the controller are $K_{1e1}=1,\,K_{2e1}=10,\,K_{1e2}=1,\,K_{2e2}=10,\,K_R=20,\,K_{\omega}=50.$

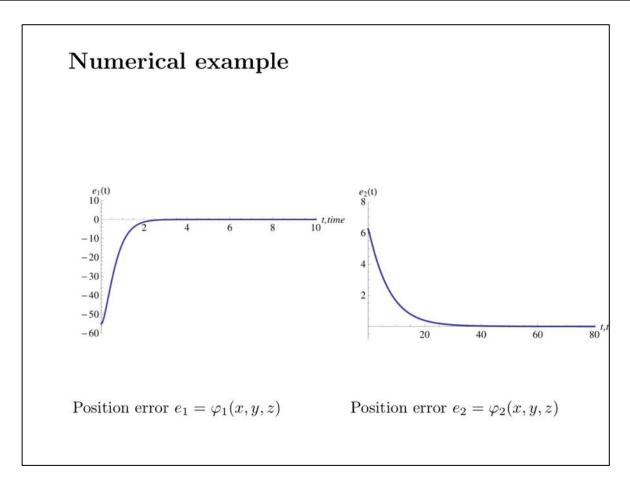
Desired speed along the path $\dot{s} = 1$.

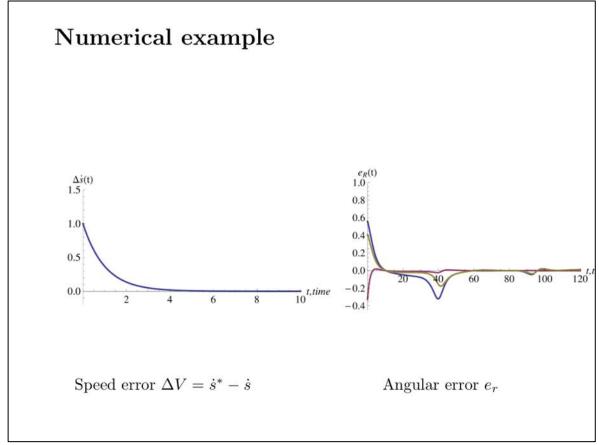
Numerical example



Motion along desired path:

$$\varphi_1(x,y,z) = 0.2x^2 + y^2 - R^2 = 0 \cap \varphi_2(x,y,z) = z + 0.05y^2 - 5 = 0$$





Moving frame description

Model of the plant motion:

$$\ddot{x}(t) = g - \frac{f(t)}{m}\vec{n}(t), \qquad (94)$$

$$\dot{R}(t) = R(t)S(\omega(t)), \tag{95}$$

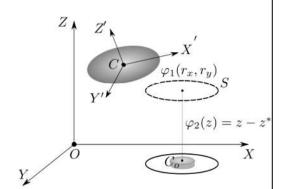
$$M_c(t) = J\dot{\omega}(t) + \omega(t) \times J\omega(t).$$
 (96)

Description of the moving frame:

$$\dot{x}_i = R_T(\alpha^*) v_i, \tag{97}$$

$$\dot{\alpha}^* = \omega_i, \tag{98}$$

$$\dot{R}_T(\alpha^*) = R_T S(\omega_i). \tag{99}$$



Moving frame description

Relative position:

$$r = R_T^{\top}(\alpha^*)(x - x_i), \tag{100}$$

Relative velocity:

$$\dot{r} = R_T^{\mathsf{T}}(\alpha^*)\dot{x} - S(\omega_i)r, \tag{101}$$

Relative acceleration:

$$\ddot{r} = R_T^{\perp}(\alpha^*)\ddot{x} - 2S(\omega_i)\dot{r} - S^2(\omega_i)r. \tag{102}$$

Control design

Design of the velocity (inner) loop. Consider Lyapunov Function:

$$V_1 = \frac{1}{2} (\dot{r}_x - \bar{v})^T (\dot{r}_x - \bar{v}) + k_d \ln(2 - (R^{\mathsf{T}}\bar{n})^{\mathsf{T}} (R^{\mathsf{T}}R_T\bar{n}_d)), \quad (103)$$

where \bar{v} - a vector of desired velocities, \bar{n}_d - a vector of desired orientation and k_d - a positive constant.

Find the derivation of the Lyapunov function V_1 :

$$\dot{V}_1 = (\dot{r} - \bar{u})^{\top} (R_T^{\top} - \frac{f}{m} R_T^{\top} \bar{n} - 2S(\omega_i) \dot{r} - S^2(\omega_i) r - \dot{\bar{u}})
+ \gamma^{\top} \left(\omega - \omega_i - \frac{S(R^{\top} R_T \bar{n}_d)}{|\bar{n}_d|} R^{\top} R_T \dot{\bar{n}}_d \right),$$
(104)

where $\gamma^{\top} = \frac{k_d(R^{\top}\bar{n})^{\top}S^{\top}(R^{\top}R_T\bar{n}_d)}{(2-(R^{\top}\bar{n})^{\top}(R^{\top}R_T\bar{n}_d))}$ and |a| is the euclidean norm of vector a.

Control design

Define the substitution of variables if following form:

$$\delta = R_T^{\mathsf{T}} g - 2S(\omega_i)\dot{r} - S^2(\omega_i)r - \dot{\bar{u}}, \delta = \frac{f_d}{m}\bar{n}_d,$$

where $f_d = |\delta|$ and $\bar{n}_d = \frac{\delta}{|\delta|}$.

Select control signals f and $\omega = \omega_i$ in the form

$$f = f_{d} \cdot ((R_{T}^{\mathsf{T}} \bar{n})^{\mathsf{T}} \bar{n}_{d}) \quad k_{v} (\dot{r} - \bar{u})^{\mathsf{T}} R_{T}^{\mathsf{T}} \bar{n}, \tag{105}$$

$$\omega_d = \omega_i + \frac{S(R^{\top} R_T \bar{n}_d)}{|\bar{n}_d|} R^{-} R_T \dot{\bar{n}}_d) + \sigma - K_{\gamma} \gamma, \tag{106}$$

where k_v , k_{γ} are positive constants and σ is

$$\sigma = \left(\frac{f_d(2 - (R^\top n)^\top (R^\top R_T n_d))}{mk_d} (\dot{r} - \bar{u})^\top S(R_T^\top \bar{n}) R_T^\top R\right). \tag{107}$$

Then the derivation of the Lyapunov function V_1 is

$$\dot{V}_1 = -k_v ((\dot{r} - \bar{u})^\top R_T^\top \bar{n})^2 - k_\gamma \gamma^\top \gamma \le 0, \tag{108}$$

which means asymptotic stability of the point $r - \bar{u} = 0$, $\bar{n} - \bar{n}_d$. Now we can rewrite original system in reduced form:

$$\dot{r} = \bar{u}$$
.

Let's construct the control \bar{u} in th following form:

$$\bar{u} = u_e + u_s,$$

where u_e is the term, which provides stabilization with respect to the desired path and u_s provides desired velocity along the path.

Reduced system

Perform the transformation of the system model (100)-(102) to the task-based form with outputs s, e_1 and e_2 , using Jacobian matrix (74):

$$\left[egin{array}{c} \dot{s} \ \dot{e}_1 \ \dot{e}_2 \end{array}
ight] = \Upsilon(r)\dot{r}$$

We can choose the control signal u_s in the form

$$u_s = \Upsilon^{-1}(r) \begin{bmatrix} V_s^* \\ 0 \\ 0 \end{bmatrix}$$
 (109)

Now design stabilization control u_e . Consider Lyapunov Function:

$$V_2 = \frac{k_1}{2}\varphi_1^2(r) + \frac{k_2}{2}\varphi_2^2(r), \tag{110}$$

Reduced system

Find the derivation of the Lyapunov function V_2 .

$$\dot{V}_2 = (k_1 \varphi_1(r) \nabla \varphi_1(r) + k_2 \varphi_2(r) \nabla \varphi_2(r))^{\top} \dot{r} = (k_1 \varphi_1(r) \nabla \varphi_1(r) + k_2 \varphi_2(r) \nabla \varphi_2(r))^{\top} u_s + (k_1 \varphi_1(r) \nabla \varphi_1(r) + k_2 \varphi_2(r) \nabla \varphi_2(r))^{\top} \Upsilon^{-1} r) \begin{bmatrix} V^* \\ 0 \\ 0 \end{bmatrix} = (k_1 \varphi_1(r) \nabla \varphi_1(r) + k_2 \varphi_2(r) \nabla \varphi_2(r))^{\top} u_s.$$

As you can see, the second half of the expression is identically zero due to orthogonality. Now select u_{ε} as

$$u_e = -(k_1\varphi_1(r)\nabla\varphi_1(r) + k_2\varphi_2(r)\nabla\varphi_2(r)), \tag{111}$$

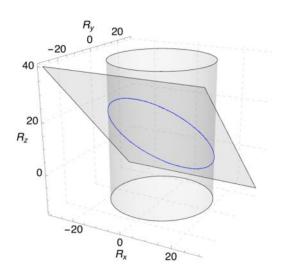
where k_1 and k_2 are positive constants.

Resulting control

Resulting control:

$$\begin{split} M_c &= \omega \times J\omega + J\dot{\omega}_d + k_\omega J(\omega - \omega_d), \\ \omega_d &= \omega_T + \frac{S\left(R^\top R_T \bar{n}_d\right)}{|\bar{n}_d|} R^\top R_T \dot{\bar{n}}_d + \sigma - k_\gamma \gamma, \\ \sigma^\top &= \frac{f_d \cdot \left(2 - (R^\top \bar{n})^\top (R^\top R_T \bar{n}_d)\right)}{mk_d} (\dot{r} - u)^\top S(R_T^\top n) R_T^\top R \\ \gamma^\top &= \frac{k_d (R^\top \bar{n})^\top S^\top \left(R^\top R_T \bar{n}_d\right)}{(2 - (R^\top \bar{n})^\top (R^\top R_T \bar{n}_d))}, \\ \delta &= R_T^\top g - 2S(\omega_T) \dot{r} - S^2(\omega_T) r - \dot{\bar{u}}, \\ f_d &= |\delta|, \quad \bar{n}_d = \frac{\delta}{|\delta|}, \\ f &= f_d \cdot \left((R_T^\top \bar{n})^\top \bar{n}_d\right) - k_v (\dot{r} - \bar{u})^\top R_T^\top \bar{n}. \end{split}$$

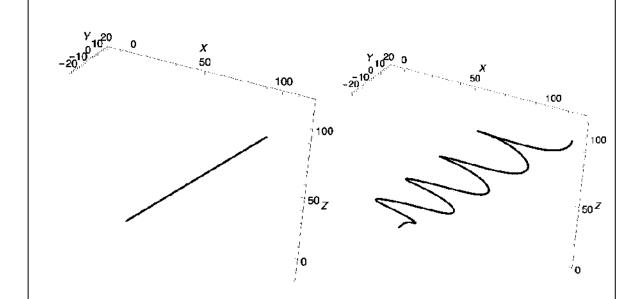
Example



$$\varphi_1(r) = r_x^2 + r_y^2 - 400 = 0 \cap \varphi_2(r) = r_z + r_y - 10 = 0$$

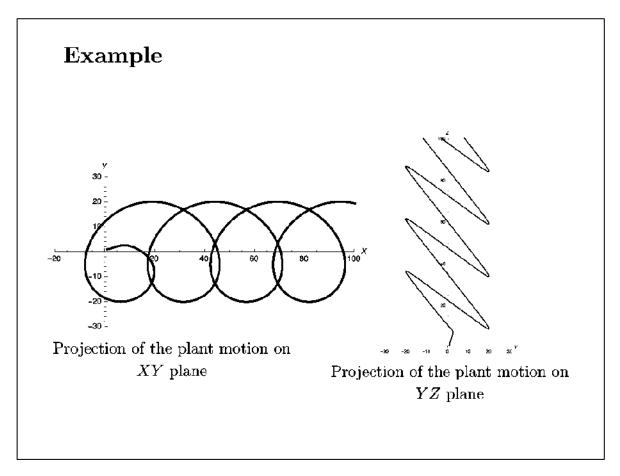
The desired speed along the given path $\dot{s}^* = 30$.

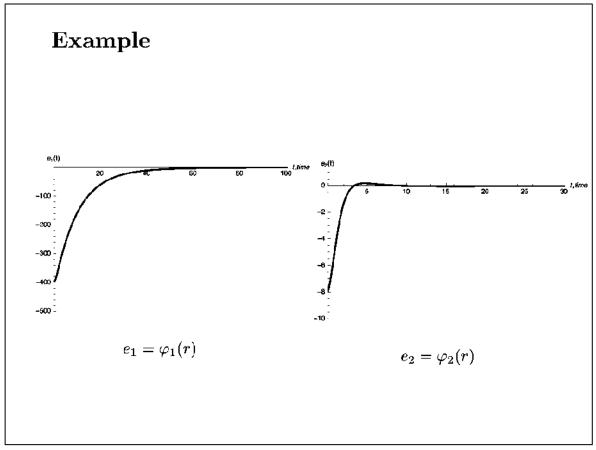
Example

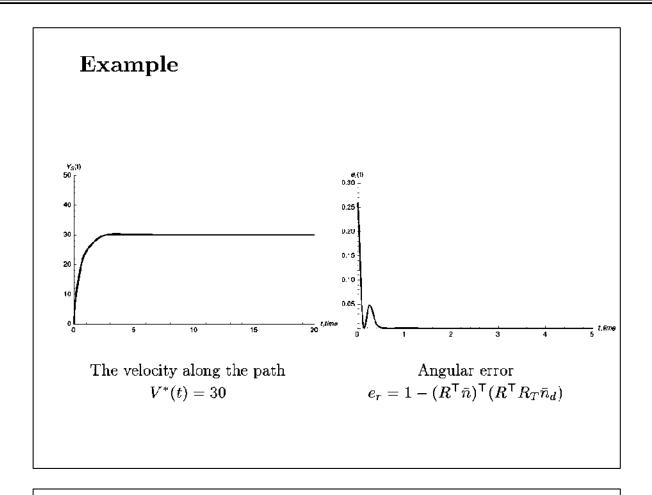


Moving frame spatial motion

Plant spatial motion







Omnidirectional mobile robot "Robotino" by Festo Didactics

Geometric dimensions:

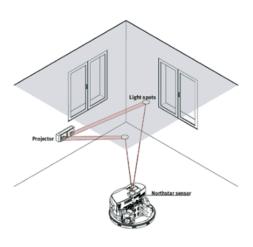
• Diameter: 370 mm

• Height: 210 mm

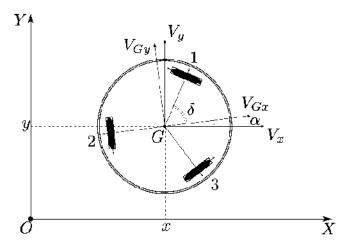
• Weight: 11 kg

Omni wheels "Robotino"

Local Navigation "Northstar"



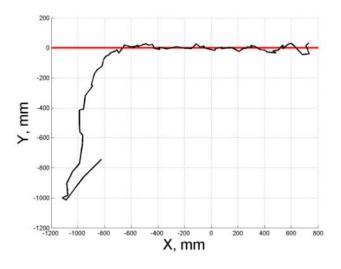
Mathematical model



$$\left[\begin{array}{c} \dot{\theta}_1 \\ \dot{\theta}_2 \\ \dot{\theta}_3 \end{array} \right] = \left[\begin{array}{ccc} -\sin\frac{\pi}{3} & \cos\frac{\pi}{3} & L \\ 0 & -1 & L \\ \sin\frac{\pi}{3} & \cos\frac{\pi}{3} & L \end{array} \right] \left[\begin{array}{c} V_{Gx} \\ V_{Gy} \\ \dot{\alpha} \end{array} \right]$$

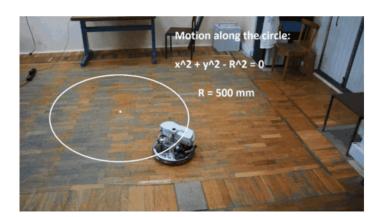
Motion along a straight line

Motion along a straight line

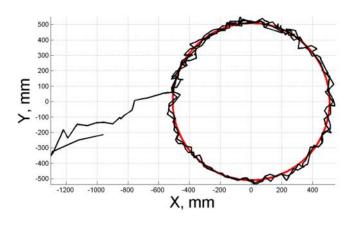


$$\varphi(x,y) = -\sin\alpha x + \cos\alpha y = 0,$$

Motion along the circle



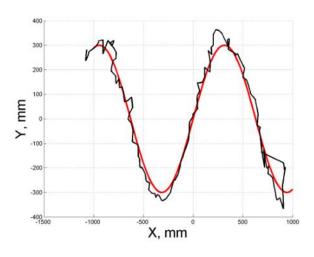
Motion along the circle



$$\varphi(x,y) = x^2 + y^2 - 2500 = 0$$

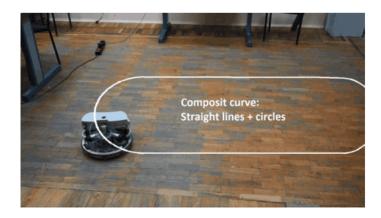
Motion along the sinusoid

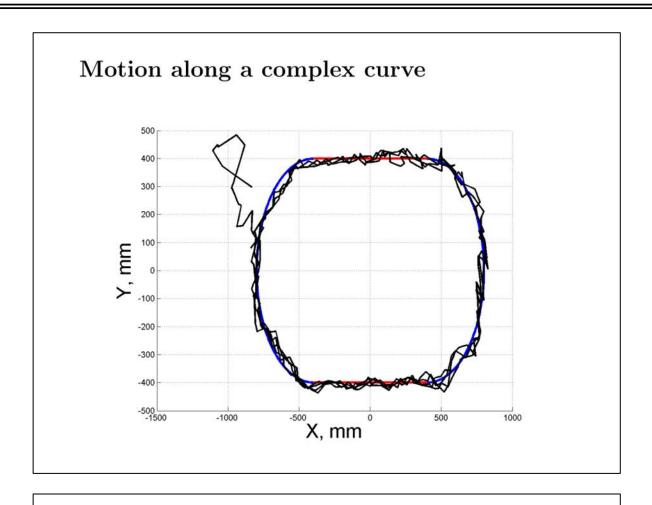
Motion along the sinusoid



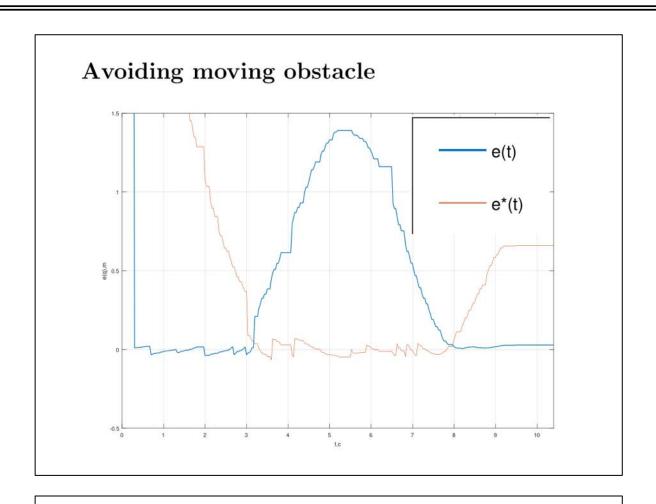
$$\varphi(x, y) = -300 \sin 0.005x + y = 0$$

Motion along a complex curve

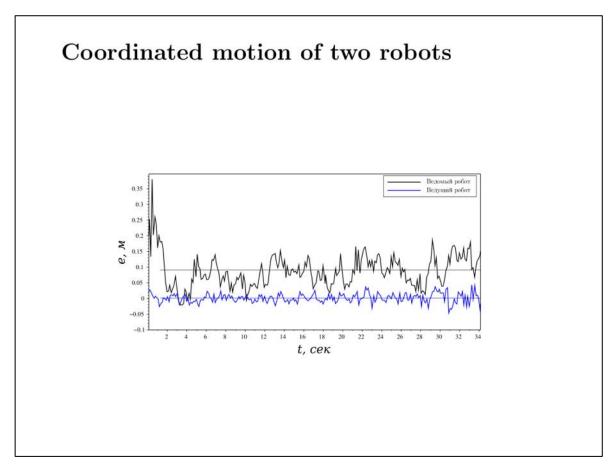




Avoiding moving obstacle



Coordinated motion of two robots



Modeling and structural properties of wheeled mobile robots

Modeling and structural properties of wheeled mobile robots

Aleksandr Y. Krasnov

Wheeled mobile robots

Four state space models

- The posture kinematic model
- The configuration kinematic model
- The configuration dynamic model
- The posture dynamic model

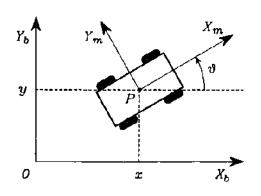
Robot description

The robot posture

$$\xi = \begin{bmatrix} x \\ y \\ \theta \end{bmatrix}, \tag{1}$$

Orientation of the base frame with respect to the moving frame

$$R(\vartheta) = \begin{bmatrix} \cos\vartheta & \sin\vartheta & 0 \\ -\sin\vartheta & \cos\vartheta & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad (2)$$



Constrains on different wheels. Fixed or steering wheel.

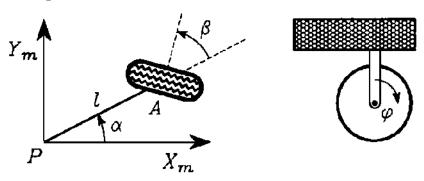


Figure 1: Fixed wheel or steering wheel.

Constraint on the wheel plane

$$\begin{bmatrix} -sin(\alpha + \beta) & cos(\alpha + \beta) & lcos\beta \end{bmatrix} R(\vartheta)\dot{\xi} + r\dot{\varphi} = 0;$$
 (3)

Constraint orthogonal to the wheel plane

Constrains on different wheels. Castor wheel.

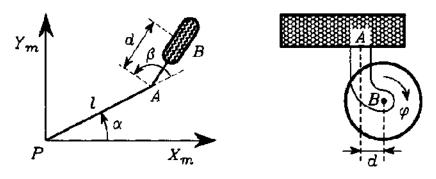


Figure 2: Castor wheel.

Constraint on the wheel plane

$$\begin{bmatrix} -sin(\alpha + \beta) & cos(\alpha + \beta) & lcos\beta \end{bmatrix} R(\vartheta)\dot{\xi} + r\dot{\varphi} = 0;$$
 (5)

Constraint orthogonal to the wheel plane

Constrains on different wheels. Swedish wheel.

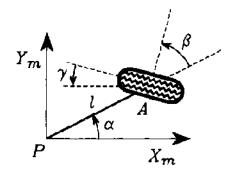


Figure 3: Swedish wheel.

The motion constraint

$$\begin{bmatrix} -\sin(\alpha + \beta + \gamma) & \cos(\alpha + \beta + \gamma) & \log(\beta + \gamma) \end{bmatrix} R(\theta)\dot{\xi} + r\cos\gamma\dot{\varphi} = 0.$$
(7)

Restrictions on robot mobility

The configuration of the robot is fully described by the following coordinate vectors:

- posture coordinates $\xi(t) = \begin{bmatrix} x(t) & y(t) & \vartheta(t) \end{bmatrix}^T$ for the position in the plane;
- orientation coordinates $\beta(t) = \begin{bmatrix} \beta_s^T(t) & \beta_c^T(t) \end{bmatrix}^T$ for the orientation angles of the steering and castor wheels, respectively;
- rotation coordinates $\varphi(t) = \begin{bmatrix} \varphi_f(t) & \varphi_s(t) & \varphi_c(t) & \varphi_s w(t) \end{bmatrix}^T$ for the rotation angles of the wheels about their horizontal axle of rotation.

$$J_1(\beta_s, \beta_c)R(\vartheta)\dot{\xi} + J_2\dot{\varphi} = 0, \tag{8}$$

$$C_1(\beta_s, \beta_c)R(\vartheta)\dot{\xi} + C_2\dot{\beta}_c = 0. \tag{9}$$

where
$$J_1(\beta_s, \beta_c) = \begin{bmatrix} J_{1f} \\ J_{1s}(\beta_s) \\ J_{1c}(\beta_c) \\ J_{1sw} \end{bmatrix}$$
, $C_1(\beta_s, \beta_c) = \begin{bmatrix} C_{1f} \\ C_{1s}(\beta_s) \\ C_{1c}(\beta_c) \end{bmatrix}$, $C_2 = \begin{bmatrix} 0 \\ 0 \\ C_{2c} \end{bmatrix}$.

Restrictions on robot mobility

Consider the first $(N_f + N_s)$ non-slipping constrains from (9) and written explicitly as

$$C_{1f}R(\vartheta)\dot{\xi} = 0, (10)$$

$$C_{1s}(\beta_s)R(\vartheta)\dot{\xi} = 0. \tag{11}$$

These constraints imply that the vector $R(\vartheta)\dot{\xi} \in \aleph(C_1^*(\beta_s))$, where

$$C_1^*(\beta_s) = \begin{bmatrix} C_{1f} \\ C_{1s}(\beta_s) \end{bmatrix}. \tag{12}$$

Obviously, it is $rank(C_1^*(\beta_s)) \leq 3$. If $rank(C_1^*(\beta_s)) = 3$, then $R(\vartheta)\dot{\xi} = 0$ and any motion in the plane is impossible.

Define the degree of mobility δ_m of a mobile robot as

$$\delta_m = \dim(\aleph(C_1^*(\beta_s))) = 3 - \operatorname{rank}(C_1^*(\beta_s)). \tag{13}$$

Restrictions on robot mobility

If $rank(C_{1f}) = 2$ the only possible motion is a rotation of the robot about a fixed ICR. Obviously, this limitation is not acceptable in practice and thus we assume that $rank(C_{1f}) \leq 1$. Moreover, we assume that a mobile robot is non-degenerate if

$$rank(C_{1f}) \leq 1rank(C_1^*(\beta_s)) = rank(C_{1f}) + rank(C_{1s}(\beta_s)) \leq 2.$$

This assumption is equivalent to the following conditions:

- if the robot has more than one fixed wheel $(N_f > 1)$, then they are all on a single common axle;
- the centres of the steering wheels do not belong to this common axle of the fixed wheels;
- the number $rank(C_{1s}(\beta_s)) \leq 2$ is the number of steering wheels that can be oriented independently in order to steer the robot.

Define the degree of steerability δ_s of a mobile robot as

$$\delta_s = rank(C_{1s}(\beta_s)). \tag{14}$$

Restrictions on robot mobility

It follows that only 5 non-singular structures are of practical interest, which can be inferred by the following conditions.

• The degree of mobility δ_m satisfies the inequality

$$1 \le \delta_m \le 3. \tag{15}$$

• The degree of steerability δ_s satisfies the inequality

$$0 \le \delta_s \le 2. \tag{16}$$

• The following inequality is satisfied:

$$2 \le \delta_m + \delta_s \le 3. \tag{17}$$

Table 1: Degrees of mobility and steerability for possible wheeled mobile robots.

δ_m	3	2	2	1	1
δ_s	0	0	1	1	2

Types of possible wheeled mobile robots

• Type (3,0) robot. In this case it is

$$\delta_m = dim(\aleph(C_1^*(\beta_s))) = 3 \qquad \delta_s = 0.$$

• Type (2,0) robot. In this case it is

$$\delta_m = \dim(\aleph(C_1^*(\beta_s))) = \dim(\aleph(C_{1f})) = 2 \qquad \delta_s = 0.$$

• Type (2,1) robot. In this case it is

$$\delta_m = dim(\aleph(C_1^*(\beta_s))) = dim(\aleph(C_{1s}(\beta_s))) = 3$$
 $\delta_s = 1$.

• Type (1,1) robot. In this case it is

$$\delta_m = dim(\aleph(C_1^*(\beta_s))) = 1 \quad \delta_s = 1.$$

• Type (1,2) robot. In this case it is

$$\delta_m = \dim(\aleph(C_1^*(\beta_s))) = \dim(\aleph(C_{1s}(\beta_s))) = 1 \qquad \delta_s = 2.$$

Type 3,0 robot with swedish wheels The constrains have from (8)

The constrains have nom (o

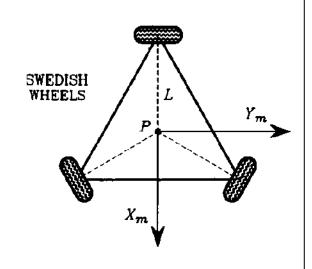
where

$$J_1 = J_{1sw} = \begin{bmatrix} -\sqrt{3}/2 & 1/2 & L \\ 0 & -1 & L \\ \sqrt{3}/2 & 1/2 & L \end{bmatrix},$$

$$J_2 = \begin{bmatrix} r & 0 & 0 \\ 0 & r & 0 \\ 0 & 0 & r \end{bmatrix}.$$

Table 2: Characteristic constants of type 3,0 robot with swedish wheels.

Wheels	α	β	γ	l
1sw	$\pi/3$	0	0	L
2sw	π	0	0	L
3sw	$5\pi/3$	0	0	L



Type 3,0 robot with castor wheels

The constrains have from (8) and (9) where

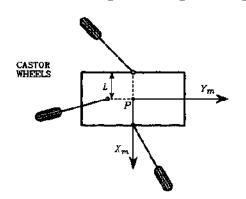
$$J_{1} = J_{1c}(\beta_{c}) = \begin{bmatrix} -\sin\beta_{c1} & \cos\beta_{c1} & L\cos\beta_{c1} \\ \sin\beta_{c2} & -\cos\beta_{c2} & L\cos\beta_{c2} \\ \cos\beta_{c3} & \sin\beta_{c3} & L\cos\beta_{c3} \end{bmatrix}, J_{2} = \begin{bmatrix} r & 0 & 0 \\ 0 & r & 0 \\ 0 & 0 & r \end{bmatrix}.$$

$$J_{1} = J_{1c}(\beta_{c}) = \begin{bmatrix} -sin\beta_{c1} & cos\beta_{c1} & Lcos\beta_{c1} \\ sin\beta_{c2} & -cos\beta_{c2} & Lcos\beta_{c2} \\ cos\beta_{c3} & sin\beta_{c3} & Lcos\beta_{c3} \end{bmatrix}, J_{2} = \begin{bmatrix} r & 0 & 0 \\ 0 & r & 0 \\ 0 & 0 & r \end{bmatrix}.$$

$$C_{1} = C_{1c}(\beta_{c}) = \begin{bmatrix} cos\beta_{c1} & sin\beta_{c1} & d + Lsin\beta_{c1} \\ -cos\beta_{c2} & -sin\beta_{c2} & d + Lsin\beta_{c2} \\ sin\beta_{c3} & -cos\beta_{c3} & d + Lsin\beta_{c3} \end{bmatrix}, C_{2c} = \begin{bmatrix} d & 0 & 0 \\ 0 & d & 0 \\ 0 & 0 & d \end{bmatrix}.$$

Table 3: Characteristic constants of type 3,0 robot with castor wheels.

Wheels	α	β	l
1c	0	1	L
2c	π	-	L
3c	$3\pi/2$	-	L



Type 2,0 robot

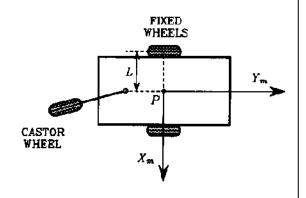
The constrains have from (8) and (9) where

$$J_1 = \begin{bmatrix} J_{1f} \\ J_{1c}(\beta_{c3}) \end{bmatrix} = \begin{bmatrix} 0 & 1 & L \\ 0 & -1 & L \\ cos\beta_{c3} & sin\beta_{c3} & Lcos\beta_{c3} \end{bmatrix}, J_2 = \begin{bmatrix} r & 0 & 0 \\ 0 & r & 0 \\ 0 & 0 & r \end{bmatrix}.$$

$$C_1 = \begin{bmatrix} C_{1f} \\ C_{1c}(\beta_{c3}) \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 0 & 0 \\ sin\beta_{c3} & -cos\beta_{c3} & d + Lsin\beta_{c3} \end{bmatrix}, C_2 = \begin{bmatrix} 0 \\ C_{2c} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ d \end{bmatrix}.$$

Table 4: Characteristic constants of type 2, 0 robot.

Wheels	α	β	l
1f	0	0	L
2f	π	0	L
3c	$3\pi/2$	-	L



Type 2,1 robot

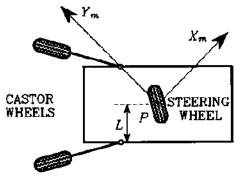
The constrains have from (8) and (9) where

$$J_{1} = \begin{bmatrix} J_{1s}(\beta_{s1}) \\ J_{1c}(\beta_{c2}, \beta_{c3}) \end{bmatrix} = \begin{bmatrix} -sin\beta_{s1} & cos\beta_{s1} & 0 \\ -cos\beta_{c2} & -sin\beta_{c2} & \sqrt{2}Lcos\beta_{c2} \\ sin\beta_{c3} & cos\beta_{c3} & \sqrt{2}Lcos\beta_{c3} \end{bmatrix}, J_{2} = \begin{bmatrix} r & 0 & 0 \\ 0 & r & 0 \\ 0 & 0 & r \end{bmatrix}.$$

$$C_{1} = \begin{bmatrix} C_{1s}(\beta_{s1}) \\ C_{1c}(\beta_{c2}, \beta_{c3}) \end{bmatrix} = \begin{bmatrix} \cos\beta_{s1} & \sin\beta_{s1} & 0 \\ -\sin\beta_{c2} & \cos\beta_{c2} & d + \sqrt{2}L\sin\beta_{c2} \\ -\cos\beta_{c3} & -\sin\beta_{c3} & d + \sqrt{2}L\sin\beta_{c3} \end{bmatrix}, C_{2} = \begin{bmatrix} 0 & 0 \\ d & 0 \\ 0 & d \end{bmatrix}.$$

Table 5: Characteristic constants of type 2, 1 robot.

Wheels	α	β	l
$\perp s$	0	-	0
2c	$\pi/2$	-	$L\sqrt{2}$
3c	π	-	$L\sqrt{2}$



Type 1,1 robot

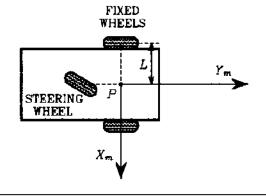
The constrains have from (8) and (9) where

$$J_{1} = \begin{bmatrix} J_{1f} \\ J_{1s}(\beta_{s3}) \end{bmatrix} = \begin{bmatrix} 0 & 1 & L \\ 0 & -1 & L \\ \cos\beta_{s3} & \sin\beta_{s3} & L\cos\beta_{s3} \end{bmatrix}, J_{2} = \begin{bmatrix} r & 0 & 0 \\ 0 & r & 0 \\ 0 & 0 & r \end{bmatrix}.$$

$$C_{1} = \begin{bmatrix} C_{1f} \\ C_{1s}(\beta_{c3}) \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 0 & 0 \\ sin\beta_{s3} & -cos\beta_{s3} & Lsin\beta_{s3} \end{bmatrix}, C_{2} = 0.$$

Table 6: Characteristic constants of type 1, 1 robot.

Wheels	α	β	l
1f	0	0	L
2f	π	0	L
3s	$3\pi/2$	-	L



Type 1, 2 robot

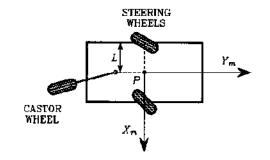
The constrains have from (8) and (9) where

$$J_{1} = \begin{bmatrix} J_{1s}(\beta_{s1}, \beta_{s2}) \\ J_{1c}(\beta_{c3}) \end{bmatrix} = \begin{bmatrix} -\sin\beta_{s1} & \cos\beta_{s1} & L\cos\beta_{s1} \\ \sin\beta_{s2} & -\cos\beta_{s2} & L\cos\beta_{s2} \\ \cos\beta_{c3} & \sin\beta_{c3} & L\cos\beta_{c3} \end{bmatrix}, J_{2} = \begin{bmatrix} r & 0 & 0 \\ 0 & r & 0 \\ 0 & 0 & r \end{bmatrix}.$$

$$C_1 = \begin{bmatrix} C_{1s}(\beta_{s\perp}, \beta_{s2}) \\ C_{1c}(\beta_{c3}) \end{bmatrix} = \begin{bmatrix} \cos\beta_{s1} & \sin\beta_{s1} & L\sin\beta_{s1} \\ -\cos\beta_{s2} & -\sin\beta_{s2} & L\sin\beta_{s2} \\ \sin\beta_{c3} & -\cos\beta_{c3} & d + L\sin\beta_{c3} \end{bmatrix}, C_2 = \begin{bmatrix} 0 \\ 0 \\ d \end{bmatrix}.$$

Table 7: Characteristic constants of type 1, 2 robot.

Wheels	α	β	l
1s	0	-	L
2s	π	-	L
3c	$3\pi/2$	-	L



Posture kinematic model

Whatever the type of mobile robot, the velocity $\dot{\xi}(t)$ is restricted to belong to a distribution Δ_c defined as

$$\dot{\xi}(t) \in \Delta_c = span\{col(R^T(\vartheta)\Sigma(\beta_s))\} \forall t,$$

where columns of matrix $\Sigma(\beta_s)$ form a basis of $\aleph(C_1^*(\beta_s))$, i.e.

$$\aleph(C_1^*(\beta_s)) = span\{col(\Sigma(\beta_s)).$$

This is equivalent to the following statement: for all t, there exists a time-varying vector $\eta(t)$ such that

$$\dot{\xi} = R^T(\vartheta)\Sigma(\beta_s)\eta. \tag{18}$$

The dimension of the vector $\eta(t)$ is the degree of mobility (13) of the robot.

Posture kinematic model

If robot has no steering wheels ($\delta_s = 0$), the matrix Σ is constant and the expression (18) reduces to

$$\dot{\xi} = R^T(\vartheta) \Sigma \eta. \tag{19}$$

In the opposite case ($\delta_s \geq 1$), the matrix Σ explicitly depends on the orientation coordinates β_s and the expression (18) can be augmented as follows:

$$\dot{\xi} = R^T(\vartheta)\Sigma(\beta_s)\eta. \tag{20}$$

$$\dot{\beta}_s = \zeta. \tag{21}$$

The kinematic state space model is in fact only a subsystem of general dynamic model that will be discussed further.

Generic models of wheeled robots

• Type (3,0) robot. The matrix Σ can always be chosen as a (3×3) identity matrix, so the equation (19) reduces to

$$\begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\vartheta} \end{bmatrix} = \begin{bmatrix} \cos\vartheta & -\sin\vartheta & 0 \\ \sin\vartheta & \cos\vartheta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \eta_1 \\ \eta_2 \\ \eta_3 \end{bmatrix}. \tag{22}$$

• **Type** (2,0) **robot.** The matrix Σ is selected as $\Sigma = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$, so the equation (19) reduces to

$$\begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\vartheta} \end{bmatrix} = \begin{bmatrix} -\sin\vartheta & 0 \\ \cos\vartheta & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \eta_1 \\ \eta_2 \end{bmatrix}. \tag{23}$$

Generic models of wheeled robots

• Type (2,1) robot. The matrix $\Sigma(\beta_s)$ is selected as

$$\Sigma(\beta_s) = \begin{bmatrix} sineta_{s1} & 0 \\ coseta_{s1} & 0 \\ 0 & 1 \end{bmatrix},$$

so the equations (20) and (21) reduces to

$$\begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\vartheta} \end{bmatrix} = \begin{bmatrix} -\sin(\vartheta + \beta_{s2}) & 0 \\ \cos(\vartheta + \beta_{s1}) & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \eta_1 \\ \eta_2 \end{bmatrix}, \tag{24}$$

$$\dot{\beta}_{s3} = \zeta_1. \tag{25}$$

Generic models of wheeled robots

• Type (1,1) robot. The matrix $\Sigma(\beta_s)$ is selected as

$$\Sigma(\beta_s) = \begin{bmatrix} 0 \\ Lsin\beta_{s3} \\ cos\beta_{s3} \end{bmatrix},$$

so the equations (20) and (21) reduces to

$$\begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\vartheta} \end{bmatrix} = \begin{bmatrix} -Lsin\vartheta sin\beta_{s3} \\ Lcos\vartheta sin\beta_{s3} \\ cos\beta_{s3} \end{bmatrix} \eta_1, \tag{26}$$

$$\dot{\beta}_{s3} = \zeta_1. \tag{27}$$

Generic models of wheeled robots

• Type (1,2) robot. The matrix $\Sigma(\beta_s)$ is selected as

$$\Sigma(\beta_s) = \begin{bmatrix} -2Lsin\beta_{s1}sin\beta_{s2} \\ Lsin(\beta_{s1} + \beta_{s2}) \\ sin(\beta_{s2} - \beta_{s1}) \end{bmatrix},$$

so the equations (20) and (21) reduces to

$$\begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\vartheta} \end{bmatrix} = \begin{bmatrix} -L(\sin\beta_{s1}\sin(\vartheta + \beta_{s2}) + \sin\beta_{s2}\sin(\vartheta + \beta_{s1})) \\ L(\sin\beta_{s1}\cos(\vartheta + \beta_{s2}) + \sin\beta_{s2}\cos(\vartheta + \beta_{s1})) \\ \sin(\beta_{s2} - \beta_{s1}) \end{bmatrix} \eta_1, (28)$$

$$\dot{\beta}_{s1} = \zeta_1. \tag{29}$$

$$\dot{\beta}_{s2} = \zeta_2. \tag{30}$$

Mobility, steerability and manoeuvrability

Rewrite the posture kinematic model in the compact form

$$\dot{z} = B(z)u,\tag{31}$$

where either (δ_s)

$$z = \xi$$
, $B(z) = R^T(\vartheta)\Sigma$, $u = \eta$

or $(\delta_s \geq 1)$

$$z = egin{bmatrix} \xi \ eta_s \end{bmatrix}, \quad B(z) = egin{bmatrix} R^T(artheta)\Sigma(eta_s) & 0 \ 0 & I \end{bmatrix}, \quad u = egin{bmatrix} \eta \ \zeta \end{bmatrix}.$$

Consider degree of manoeuvrability

$$\delta_M = \delta_m + \delta_s$$
.

The ideal situation is that of omnidirectional mobile robots where $\delta_m = \delta_M = 3.$

Irreducibility

A well-known consequence of Frobenius theorem is that the system is reducible only if $dim(\bar{\Delta}) < dim(z)$, where $\bar{\Delta}$ is the involutive closure of the following distribution Δ , expressed in local coordinates as $\Delta(z) = span\{col(B(z))\}.$

For the posture kinematic model (31) of a wheeled mobile robot, the input matrix B(z) has full rank, i.e.

$$rank(B(z)) = \delta_m + \delta_s \quad \forall z,$$

and the involutive distribution $\bar{\Delta}(z)$ has constant maximal dimension, i.e.

$$dim(\bar{\Delta}(z)) = 3 + \delta_s \quad \forall z.$$

As a consequence, the posture kinematic model (31) of a wheeled mobile robot is irreducible. This is a coordinate-free property.

Controllability

The controllability rank of the linear approximation of the posture kinematic model (31) around an equilibrium configuration $\bar{z} = \begin{bmatrix} \bar{\xi}^T & \bar{\beta}_s^T \end{bmatrix}^T$ is $\delta_m + \delta_s$.

This property follows from the fact that the linear approximation around $(\bar{z} = 0, \bar{u} = 0)$ can be written as

$$\frac{d}{dt}(z \quad \bar{z}) = B(\bar{z})u.$$

It follows that the controllability matrix reduces to $B(\bar{z})$ whose rank is $\delta_m + \delta_s$ for all \bar{z} as was shown before.

This implies that the posture kinematic model (31) of a wheeled mobile robot is controllable (completely controllable for type (3,0) robots).

Stabilizability

For omnidirectional robots feedback control

$$u(z) = B^{-1}(z)A(z - z^*),$$

with A an arbitrary Hurwitz matrix is clearly a linearizing smooth feedback control law that drives robot exponentially to z^* . Indeed, the closed loop is described by the freely assignable linear dynamics

$$\frac{d}{dt}(z-z^*) = A(z-z^*).$$

Hence, omnidirectional mobile robots are full state feedback linearizable.

For restricted mobility robots the posture kinematic model (31) is not stabilizable by a continuous static time-invariant state feedback u(z), but is stabilizable by a continuous time-varying static state feedback u(z,t).

Configuration kinematic model

From (8) and (9) it follows directly that

$$\dot{\beta}_c = -C_{2c}^{-1} C_{1c}(\beta_c) R(\vartheta) \dot{\xi}, \tag{32}$$

$$\dot{\varphi} = -J_2^{-1} J_1(\beta_s, \beta_c) R(\vartheta) \dot{\xi}. \tag{33}$$

By combining with the posture kinematic model (20), equations (32) and (33) become

$$\dot{\beta}_c = D(\beta_c) \Sigma(\beta_s) \eta, \tag{34}$$

$$\dot{\varphi} = E(\beta_s, \beta_c) \Sigma(\beta_s) \eta, \tag{35}$$

where $D(\beta_c) = -C_{2c}^{-1}C_{1c}(\beta_c)$ and $E(\beta_s, \beta_c) = -J_2^{-1}J_1(\beta_s, \beta_c)$.

Configuration kinematic model

Define the configuration kinematic model as

$$\dot{q} = S(q)u,\tag{36}$$

where

$$q = \begin{bmatrix} \xi \\ \beta_s \\ \beta_c \\ \varphi \end{bmatrix}, S(q) = \begin{bmatrix} R^T(\vartheta)\Sigma(\beta_s) & 0 \\ 0 & I \\ D(\beta_c)\Sigma(\beta_s) & 0 \\ E(\beta_s, \beta_c)\Sigma(\beta_s) & 0 \end{bmatrix}, q = \begin{bmatrix} \eta \\ \zeta \end{bmatrix}.$$

Configuration kinematic model

Reducibility of (36) is directly related to the dimension of the involutive closure of the distribution $\Delta_1(q) = span\{col(S(q))\}$. It follows immediately that

$$\delta_m + N_s = dim(\Delta_1) \le dim(inv(\Delta_1)) \le dim(q) = 3 + N + N_c + N_s.$$

Define the degree of nonholonomy M of a mobile robot as

$$M = dim(inv(\Delta_1)) - (\delta_m + N_s). \tag{37}$$

The configuration kinematic model (36) of all types of wheeled mobile robot is nonholonomic, i.e. M > 0, but is reducible, i.e. $dim(q) > dim(inv(\Delta_1))$.

Configuration kinematic model for type (3,0) robot

For this robot $\delta_m=3$ and the configuration coordinates are $q=\begin{bmatrix}x&y&\vartheta&\varphi_1&\varphi_2&\varphi_3\end{bmatrix}^T$.

The configuration model is characterised by

$$S(q) = egin{bmatrix} cos artheta & -sin artheta & 0 \ sin artheta & cos artheta & 0 \ 0 & 0 & 1 \ \sqrt{3/2r} & -1/2r & -L/r \ 0 & 1/r & L/r \ -\sqrt{3}/2r & -1/2r & -L/r \end{bmatrix}.$$

It is easy to check that $dim(\Delta_1) = 3$ and $dim(inv(\Delta_1)) = 5$. The structure of the configuration model implies that

$$\dot{\varphi}_1 + \dot{\varphi}_2 + \dot{\varphi}_3 = -\frac{3L}{r}\dot{\vartheta}.$$

Configuration kinematic model for type (2,0) robot

For this robot $\delta_m=2$ and the configuration coordinates are $q=\begin{bmatrix}x&y&\vartheta&\beta_{c3}&\varphi_1&\varphi_2&\varphi_3\end{bmatrix}^T$.

The configuration model is characterised by

$$S(q) = egin{bmatrix} -sin artheta & 0 \ cos artheta & 0 \ 0 & 1 \ rac{1}{d}cos eta_{c3} & -rac{1}{d}(d+Lsin eta_{c3}) \ -1/r & -L/r \ 1/r & -L/r \ -rac{1}{r}sin eta_{c3} & -rac{L}{r}cos eta_{c3} \ \end{pmatrix}.$$

It can be checked that $dim(\Delta_1) = 2$ and $dim(inv(\Delta_1)) = 6$. From the the configuration model it is

$$\dot{\varphi}_1 + \dot{\varphi}_2 = -\frac{2L}{r}\dot{\vartheta}.$$

Model derivation

Using the Lagrange formulation, the dynamics of wheeled mobile robots is described by the following $(3 + N_c + N + N_s)$ Lagrange's equations:

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial T}{\partial \dot{\xi}} \right)^T - \left(\frac{\partial T}{\partial \xi} \right)^T = R^T(\vartheta) J_1^T(\beta_s, \beta_c) \lambda + R^T(\vartheta) C_1^T(\beta_s, \beta_c) \mu, \tag{38}$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial T}{\partial \dot{\beta}_c} \right)^T - \left(\frac{\partial T}{\partial \beta_c} \right)^T = C_2^T \mu + \tau_c, \tag{39}$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial T}{\partial \dot{\varphi}} \right)^T - \left(\frac{\partial T}{\partial \varphi} \right)^T = J_2^T \lambda + \tau_{\varphi}, \tag{40}$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial T}{\partial \dot{\beta}_s} \right)^T - \left(\frac{\partial T}{\partial \beta_s} \right)^T = \tau_s, \tag{41}$$

where T represents the kinetic energy and λ , μ are the Lagrange multipliers associated with the constraints (8) and (9) respectively.

Model derivation

By multiplying (38), (39) and (40) by $\Sigma^{T}(\beta_s)R(\vartheta)$, $\Sigma^{T}(\beta_s)D(\beta_c)$ and $\Sigma^{T}(\beta_s)E(\beta_s,\beta_c)$ respectively and summing them up one can obtain

$$\Sigma^{T}(\beta_{s})R(\vartheta)[T]_{\xi} + D(\beta_{c})[T]_{\beta_{c}} + E(\beta_{s}, \beta_{c})[T]_{\varphi} =$$

$$= \Sigma^{T}(\beta_{s})(D^{T}(\beta_{c})\tau_{c} + E^{T}(\beta_{s}, \beta_{c})\tau_{\varphi}), \tag{42}$$

$$[T]_{\beta_e} = \tau_s, \tag{43}$$

where

$$[T]_{\psi} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial T}{\partial \dot{\psi}} \right)^T - \left(\frac{\partial T}{\partial \psi} \right)^T.$$

The kinetic energy of wheeled mobile robots can be expressed as follows:

$$T = \dot{\xi}^T R^T(\vartheta) (M(\beta_c) R(\vartheta) \dot{\xi} + 2V(\beta_c) \dot{\beta}_c + 2W \dot{\beta}_s) + \dot{\beta}_c^T I_c \dot{\beta}_c + \dot{\varphi}^T I_{\varphi} \dot{\varphi} + \dot{\beta}_s^T I_s \dot{\beta}_s.$$

Configuration dynamic model

The configuration dynamic model of wheeled mobile robots in the state space takes on the following general form:

$$\dot{\xi} = R^T(\vartheta)\Sigma(\beta_s)\eta,\tag{44}$$

$$\dot{\beta}_s = \zeta,\tag{45}$$

$$\dot{\beta}_c = D(\beta_c) \Sigma(\beta_s) \eta, \tag{46}$$

$$H_1(\beta_s, \beta_c)\dot{\eta} + \Sigma^T(\beta_s)V(\beta_c)\dot{\zeta} + f_1(\beta_s, \beta_c, \eta, \zeta) =$$

$$= \Sigma^T(\beta_s)(D^T(\beta_c)\tau_c + E^T(\beta_s, \beta_c)\tau_{\varphi}), \tag{47}$$

$$V^{T}(\beta_c)\Sigma(\beta_s)\dot{\eta} + I_s\dot{\zeta} + f_2(\beta_s, \beta_c, \eta, \zeta) = \tau_s, \tag{48}$$

$$\dot{\varphi} = E(\beta_c, \beta_s) \Sigma(\beta_s) \eta, \tag{49}$$

where
$$H_1(\beta_s, \beta_c) = \Sigma^T(\beta_s)(M(\beta_c) + D^T(\beta_c)V^T(\beta_c) + V(\beta_c)D(\beta_c) + D^T(\beta_c)I_cD(\beta_c) + E^T(\beta_s, \beta_c)I_{\varphi}E(\beta_s, \beta_c)\Sigma(\beta_s).$$

Actuator configuration

All steering wheels must be provided with an actuator for their orientation, and to ensure a full robot mobility N_m additional actuators for either the rotation of some wheels or the orientation of some castor wheels.

$$\begin{bmatrix} \tau_c \\ \tau_{\varphi} \end{bmatrix} = P\tau_m, \tag{50}$$

where P is an $((N_c + N) \times N_m)$ elementary matrix which selects the components of τ_c and τ_{φ} that are effectively used as control inputs.

Using (50) we can recognize that (47) becomes

$$H_1(\beta_s, \beta_c)\dot{\eta} + \Sigma^T(\beta_s)V(\beta_c)\dot{\zeta} + f_1(\beta_s, \beta_c, \eta, \zeta) = B(\beta_s, \beta_c)P\tau_m, \quad (51)$$

where
$$B(\beta_s, \beta_c) = \Sigma^T(\beta_s) \begin{bmatrix} D^T(\beta_c) & E^T(\beta_s, \beta_c) \end{bmatrix}$$
.

The actuator configuration is such that the matrix $B(\beta_s, \beta_c)P$ has full rank for all $(\beta_s, \beta_c) \in R^{N_s + N_c}$.

Actuator configuration for type (3,0) robot

In case of swedish wheels the matrix B is constant and nonsingular, so the only admissible configuration is to equip each wheel with an actuator.

In case of castor wheels the matrix $B(\beta_e)$ is

$$B(\beta_c) = \Sigma^T \begin{bmatrix} D^T(\beta_c) & E^T(\beta_c) \end{bmatrix}$$

with

$$\Sigma^T D^T(\beta_c) = -\frac{1}{d} \begin{bmatrix} \cos\beta_{c1} & \cos\beta_{c2} & \sin\beta_{c3} \\ \sin\beta_{c1} & -\sin\beta_{c2} & -\cos\beta_{c3} \\ d + L\sin\beta_{c1} & d + L\sin\beta_{c2} & d + L\sin\beta_{c3} \end{bmatrix},$$

$$\Sigma^T E^T(eta_c) = -rac{1}{r} egin{bmatrix} -sineta_{c1} & sineta_{c2} & coseta_{c3} \ coseta_{c1} & -coseta_{c2} & sineta_{c3} \ Lcoseta_{c1} & Lcoseta_{c2} & Lcoseta_{c3} \end{bmatrix}.$$

Actuator configuration for type (2,0) robot

For this robot the matrix $B(\beta_c)$ is

$$B(\beta_{c3}) = \begin{bmatrix} \frac{1}{d}cos\beta_{c3} & -\frac{1}{r} & \frac{1}{r} & -\frac{1}{r}sin\beta_c \\ -\frac{1}{d}(d+Lsin\beta_{c3}) & -\frac{L}{r} & -\frac{L}{r} & -\frac{L}{r}cos\beta_{c3} \end{bmatrix}.$$

Several configurations with 2 actuators is admissible: 2 rotation

actuators on wheels 1 and 2 with $P = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$; 1 actuator for the

orientation of wheel 3 and 1 actuator for the rotation of wheel 2 (or 3),

provided that d > L with $P = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$; 2 actuators (orientation and

rotation) on castor wheel 3, provided that d < L with $P = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix}$.

Actuator configuration for type (2,1) robot

For this robot we first need an orientation actuator for the steering wheel. The matrix $B(\beta_s, \beta_c)$ is then

$$B(\beta_s,\beta_c) = \Sigma^T(\beta_s) \begin{bmatrix} D^T(\beta_c) & E^T(\beta_s,\beta_c) \end{bmatrix}$$

with

$$\begin{split} \Sigma^T(\beta_s) &= \begin{bmatrix} -sin\beta_{s1} & cos\beta_{s1} & 0 \\ 0 & 0 & 1 \end{bmatrix}, \\ D^T(\beta_c) &= -\frac{1}{d} \begin{bmatrix} -sin\beta_{c2} & -cos\beta_{c3} \\ cos\beta_{c2} & -sin\beta_{c3} \\ d + \sqrt{2}Lsin\beta_{c2} & d + \sqrt{2}Lsin\beta_{c3} \end{bmatrix}, \\ E^T(\beta_s,\beta_c) &= -\frac{1}{r} \begin{bmatrix} cos\beta_{s1} & -sin\beta_{c2} & -cos\beta_{c3} \\ sin\beta_{s1} & cos\beta_{c2} & -sin\beta_{c3} \\ 0 & d + \sqrt{2}Lsin\beta_{c2} & d + \sqrt{2}Lsin\beta_{c3} \end{bmatrix}. \end{split}$$

Actuator configuration for type (2,1) robot

Hence two admissible actuator configurations are obtained by using a second actuator for the rotation of the steering wheel (number 1) and a third actuator for the orientation of either wheel 2 or wheel 3. The two corresponding matrices P are:

$$P = egin{bmatrix} 1 & 0 \ 0 & 1 \ 0 & 0 \ 0 & 0 \ 0 & 0 \end{bmatrix}, \quad P = egin{bmatrix} 1 & 0 \ 0 & 0 \ 0 & 1 \ 0 & 0 \ 0 & 0 \end{bmatrix}.$$

Actuator configuration for type (1,1) robot

For this robot we first need an orientation actuator for the steering wheel. The matrix $B(\beta_s)$ reduces to the vector

$$B = -rac{L}{r} \left[sineta_{s3} + coseta_{s3}
ight. \left. - sineta_{s3} + coseta_{s3}
ight. \left. 1
ight].$$

Since $\delta_m = 1$ a second actuator should be provided for the rotation of the third wheel. The matrix P is then

$$P = egin{bmatrix} 0 \ 0 \ 1 \end{bmatrix}.$$

Actuator configuration for type (1,2) robot

For this robot we first need 2 orientation actuators for 2 steering wheels. The matrix $B(\beta_s, \beta_c)$ is then

$$B(\beta_s, \beta_c) = \Sigma^T(\beta_s) \begin{bmatrix} D^T(\beta_c) & E^T(\beta_s, \beta_c) \end{bmatrix}$$

with

$$\Sigma^{T}(\beta_{s}) = \begin{bmatrix} -2Lsin\beta_{s1}sin\beta_{s2} & Lsin(\beta_{s1} + \beta_{s2}) & sin(\beta_{s2} - \beta_{s1}) \end{bmatrix},$$

$$D^T(eta_c) = egin{bmatrix} -rac{1}{d}sineta_{c3} \ rac{1}{d}coseta_{c3} \ -rac{1}{d}(d+Lsineta_{c3}) \end{bmatrix},$$

$$E^{T}(\beta_{s}, \beta_{c}) = \begin{array}{ccc} \frac{1}{r} \begin{bmatrix} -sin\beta_{s1} & sin\beta_{s2} & cos\beta_{c3} \\ cos\beta_{s1} & -cos\beta_{s2} & sin\beta_{c3} \\ Lcos\beta_{s1} & Lcos\beta_{s2} & Lcos\beta_{c3} \end{bmatrix}.$$

Actuator configuration for type (1,2) robot

Since $\delta_m = 1$, it would be sufficient to have one column of $B(\beta_s, \beta_c)$ being nonzero for all possible configurations. However, there is no such a column. It is therefore necessary to use 2 additional actuators, for instance for the rotation of wheels 1 and 2 giving the matrix P as

$$P = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}.$$

Posture dynamic model

The configuration dynamic model in compact form

$$\dot{q} = S(q)u, \tag{52}$$

$$H(\beta)\dot{u} + f(\beta, u) = F(\beta)\tau_0, \tag{53}$$

where
$$\beta = \begin{bmatrix} \beta_s \\ \beta_c \end{bmatrix}$$
, $q = \begin{bmatrix} \xi \\ \beta \\ \varphi \end{bmatrix}$, $u = \begin{bmatrix} \eta \\ \zeta \end{bmatrix}$,

where
$$\beta = \begin{bmatrix} \beta_s \\ \beta_c \end{bmatrix}$$
, $q = \begin{bmatrix} \xi \\ \beta \\ \varphi \end{bmatrix}$, $u = \begin{bmatrix} \eta \\ \zeta \end{bmatrix}$,
$$H(\beta) = \begin{bmatrix} H_1(\beta_s, \beta_c) & \Sigma^T(\beta_s)V(\beta_c) \\ V^T(\beta_{0c})\Sigma(\beta_s) & I_s \end{bmatrix}$$
, $f(\beta, u) = \begin{bmatrix} f_1(\beta_s, \beta_c, \eta, \zeta) \\ f_2(\beta_s, \beta_c, \eta, \zeta) \end{bmatrix}$,

$$F(\beta) = \begin{bmatrix} B(\beta_s,\beta_c) & 0 \\ 0 & I \end{bmatrix}, \ \tau_0 = \begin{bmatrix} \tau_m \\ \tau_s \end{bmatrix}.$$

Posture dynamic model

The configuration dynamic model (52)-(53) is feedback equivalent (by a smooth static time-invariant state feedback) to the following system:

$$\dot{q} = S(q)u, \tag{54}$$

$$\dot{u} = v,\tag{55}$$

where v represents a set of δ_m auxiliary control inputs.

The following smooth static time-invariant state feedback is well defined everywhere in the state space, i.e.

$$\tau_0 = F^{\dagger}(\beta)(H(\beta)\dot{u} - f(\beta, u)), \tag{56}$$

where F^{\dagger} denotes an arbitrary left inverse of $F(\beta, u)$.

Posture dynamic model

We restrict our attention to the following posture dynamic model:

$$\dot{z} = B(z)u,\tag{57}$$

$$\dot{u} = v, \tag{58}$$

where
$$z = \begin{bmatrix} \xi^T & \beta_s^T \end{bmatrix}^T$$
 and $u = \begin{bmatrix} \eta^T & \zeta^T \end{bmatrix}^T$.

The coordinates β_c and φ have apparently disappeared but it is important to notice that they are in fact hidden in the feedback (56).

The posture dynamic model is generic and irreducible, and small-time-locally-controllable; further, for restricted mobility robots, it is not stabilizable by a continuous static time-invariant state feedback, but is stabilizable by a time-varying static state feedback.

Digital control systems

Digital and microcontroller devices

Digital and Microcontroller Devices

Vlasov Sergei

Robots, what is it?

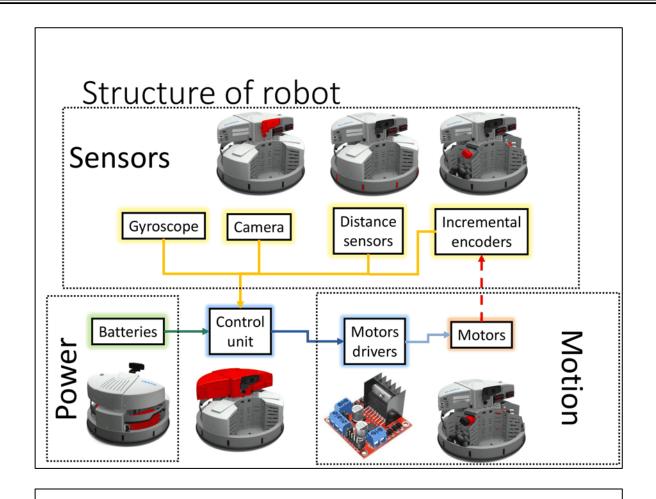
Robots, what is it?



Structure of robot

Hardware

Control	Drive systems	Sensors	Interfaces	Supply
→ Power switch	→ Omnidrive	→ Bumper	→ WLAN	→ Batteries
→ Control unit	→ Motors	→ Distance sensors	→ I/O-Interfaces	→ Power supply unit
→ Embedded PC	→ Incremental encoder	→ Gyroscope	→ Motor/encoder	→ Charging electronics
→ Microcontroller	→ Gear units	→ Camera	→ USB	→ Pedestal
→ Reset button	→ Wheels	→ Opto-electronic sensors	→ PCI Express	
		→ Inductive sensors	→ Ethernet	
			→ VGA	



- Primary Batteries
- Secondary Batteries
 - o Lithium (Li-ion, Li-pol)
 - Nickel Cadmium (Ni-Cd)
 - Nickel-Metal Hydride (Ni-MH)
 - o Lead-Acid

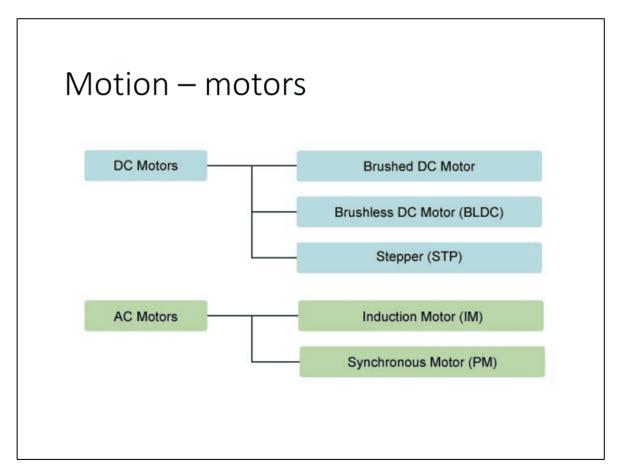
Schematic symbols
Single cell Multi-cell

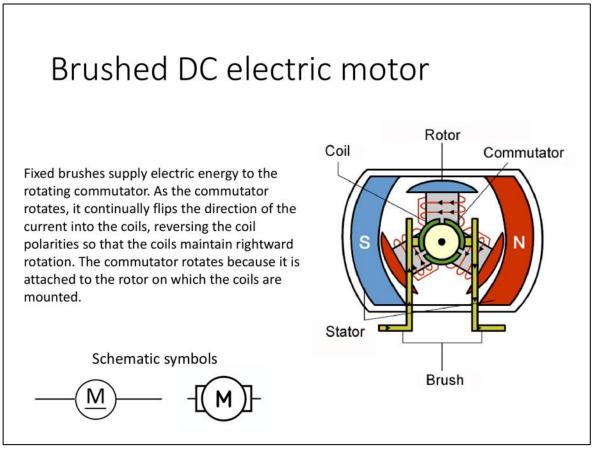
Power supply

Terminology

- Capacity Batteries have different ratings for the amount of power a
 given battery can store. When a battery is fully charged, the capacity is
 the amount of power it contains. Batteries of the same type will often
 be rated by the amount of current they can output over time. For
 example, there are 1000mAh (milli-Amp Hour) and 2000mAh batteries.
- Nominal Cell Voltage The average voltage a cell outputs when charged.
 The nominal voltage of a battery depends on the chemical reaction
 behind it. A lead-acid car battery will output 12V. A lithium coin cell
 battery will output 3V.
- The key word here is "nominal", the actual measured voltage on a battery will decrease as it discharges. A fully charged LiPo battery will produce about 4.23V, while when discharged its voltage may be closer to 2.7V.
- Shape Batteries come in many sizes and shapes. The term 'AA' references a specific shape and style of a cell. There are a <u>large variety</u>.

Power supply Common batteries, their chemistry, and their nominal voltage **Battery Shape** Chemistry Nominal Voltage Rechargeable? Alkaline or Zinc-AA, AAA, C, and D 1.5V No carbon Alkaline or Zinc-9V 9V No carbon Coin Cell Lithium 3V No Lithium Polymer Silver Flat Pack 3.7V Yes (LiPo) AA, AAA, C, D NiMH or NiCd 1.2V Yes (Rechargeable) Car Battery Six-cell lead acid 12.6V Yes

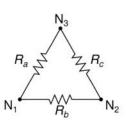


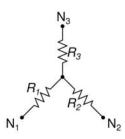


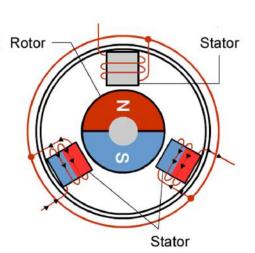
Brushless DC electric motor

Since the rotor is a permanent magnet, it needs no current, eliminating the need for brushes and commutator. Current to the fixed coils is controlled from the outside.

Schematic for delta and wye winding styles. (This image does not illustrate the motor's inductive and generator-like properties)





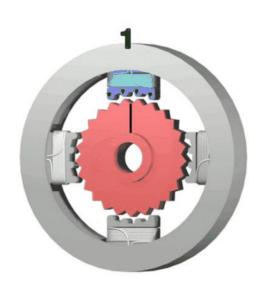


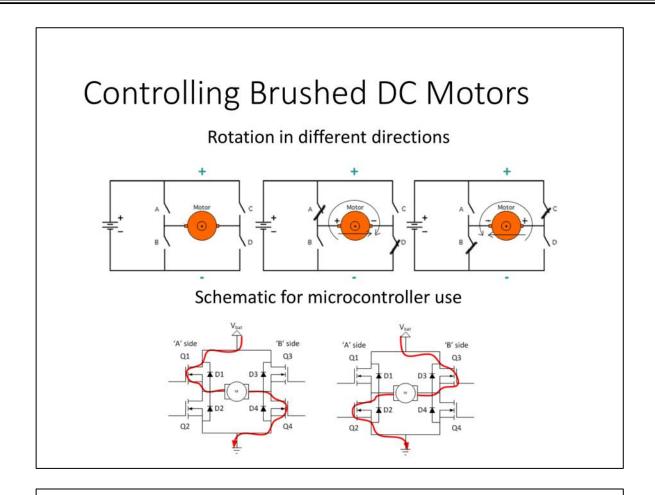
Stepper motor

A stepper motor, also known as step motor or stepping motor, is a brushless DC electric motor that divides a full rotation into a number of equal steps. The motor's position can then be commanded to move and hold at one of these steps without any position sensor for feedback (an open-loop controller), as long as the motor is carefully sized to the application in respect to torque and speed.

Schematic symbols

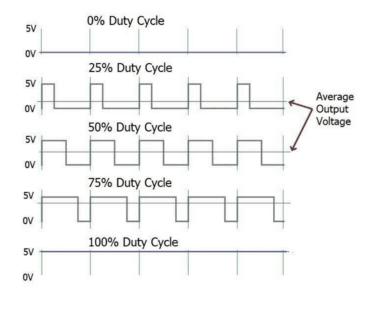




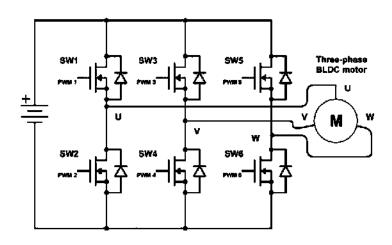


Controlling Brushed DC Motors

Control speed by PWM (Pulse-Wide Modulation)



Controlling Brushless DC Motors

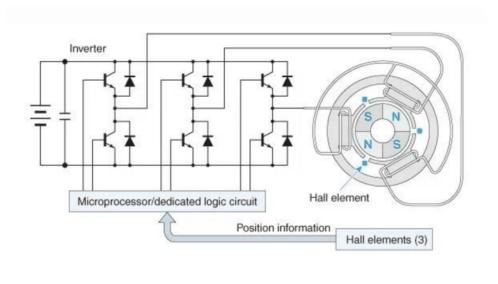


Controlling Brushless DC Motors

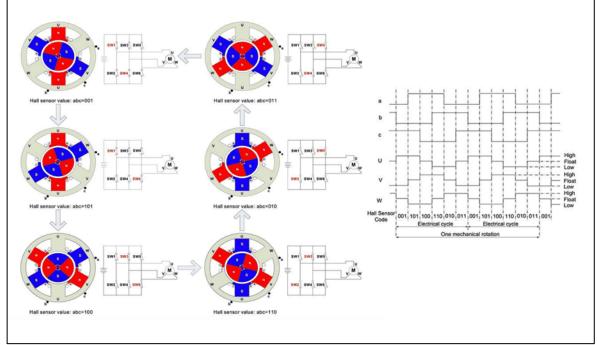
Sensored vs. sensorless

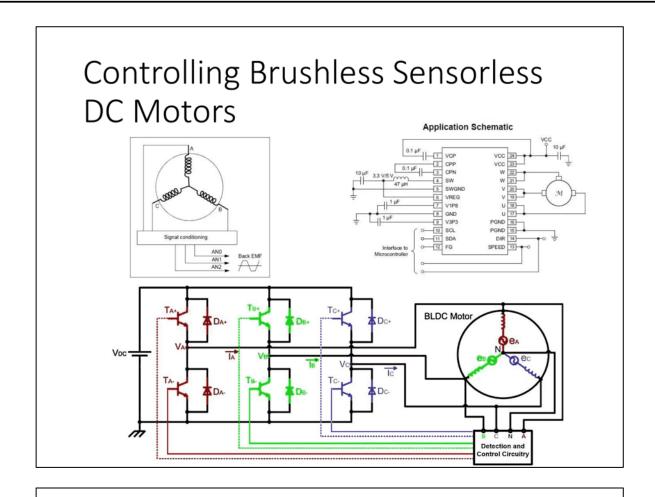
 Two technologies offer a solution for positional feedback. The first and most common uses three Hall-effect sensors embedded in the stator and arranged at equal intervals, typically 60° or 120°. A second, 'sensorless' control technology comes into its own for BLDC motors that require minimal electrical connections.

Controlling Brushless DC Motors with sensors

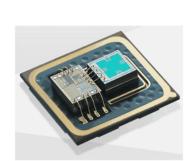


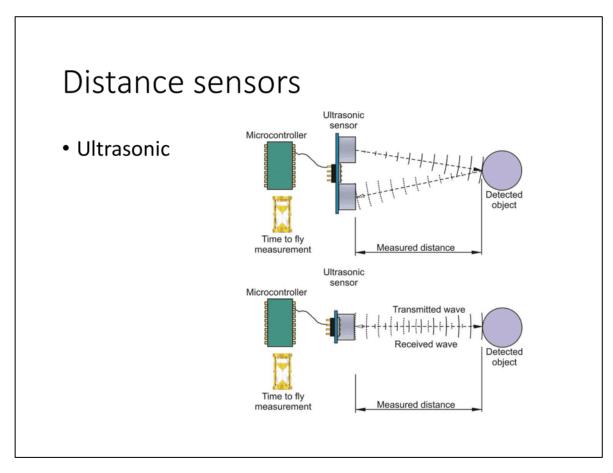
Controlling Brushless DC Motors with sensors

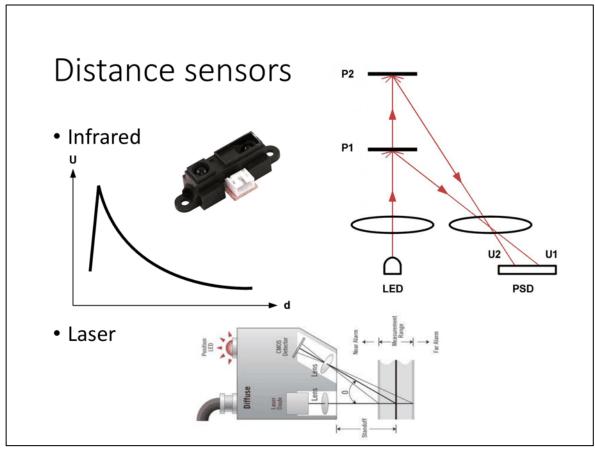




- Distance
- Position
- Velocity
- Temperature





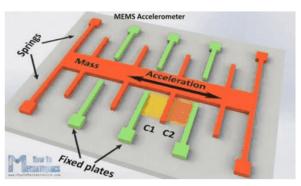


Position/Velocity sensors

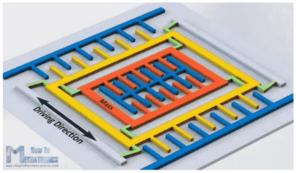
- MEMS (Micro Electro Mechanical Systems)
 - o Accelerometer
 - Gyroscope
 - o Magnetometer
- Encoder
- Potentiometer

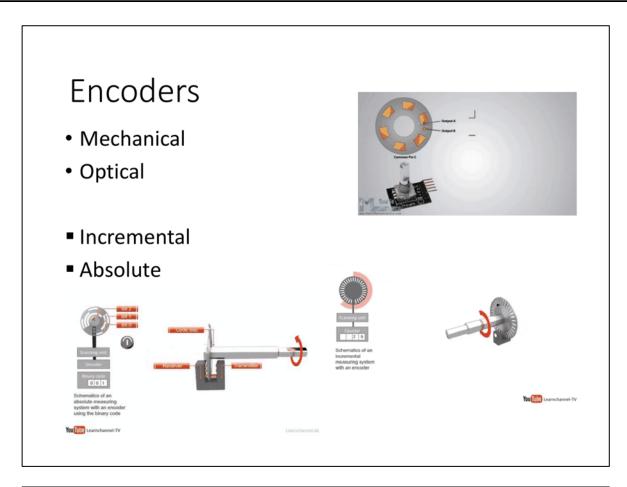
MEMS sensors

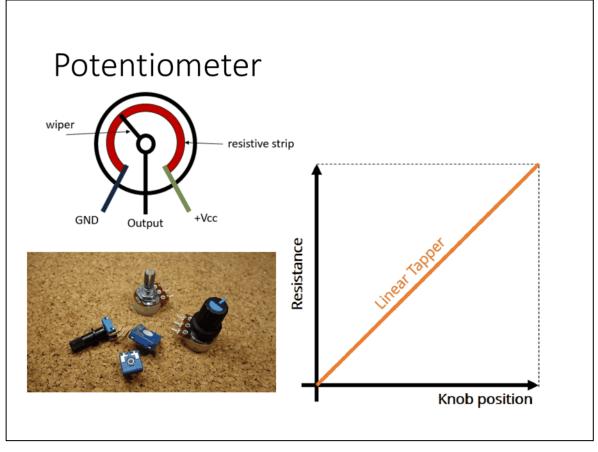
Accelerometer



Gyroscope





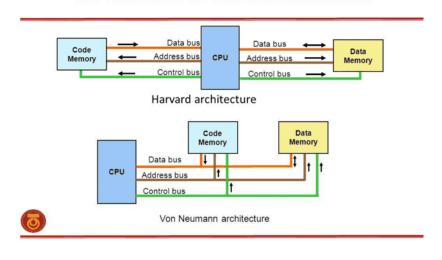


Microcontrollers

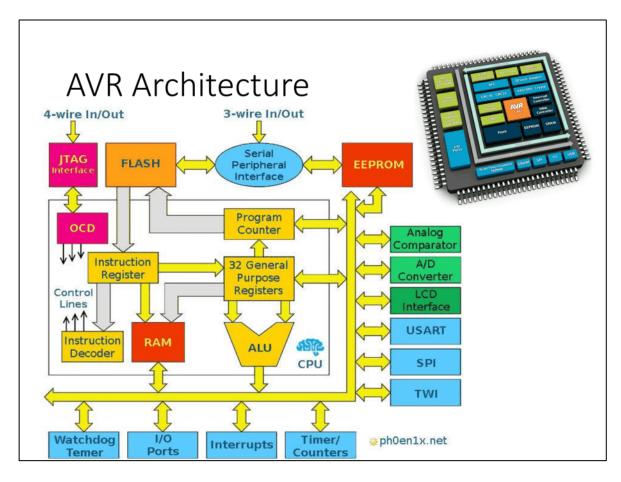
A micro-controller can be comparable to a little stand alone computer; it is an extremely powerful device, which is able of executing a series of pre-programmed tasks and interacting with extra hardware devices. Being packed in a tiny integrated circuit (IC) whose size and weight is regularly negligible, it is becoming the perfect controller for as robots or any machines required some type of intelligent automation. A single microcontroller can be enough to manage a small mobile robot, an automatic washer machine or a security system. Several microcontrollers contains a memory to store the program to be executed, and a lot of input/output lines that can be a used to act jointly with other devices, like reading the state of a sensor or controlling a motor.

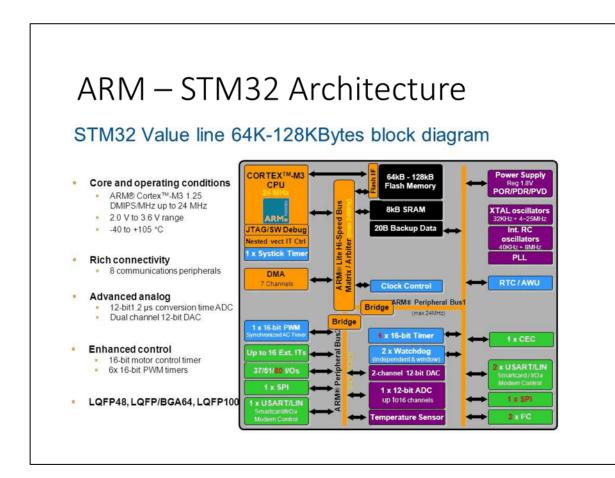
Microcontroller's architecture

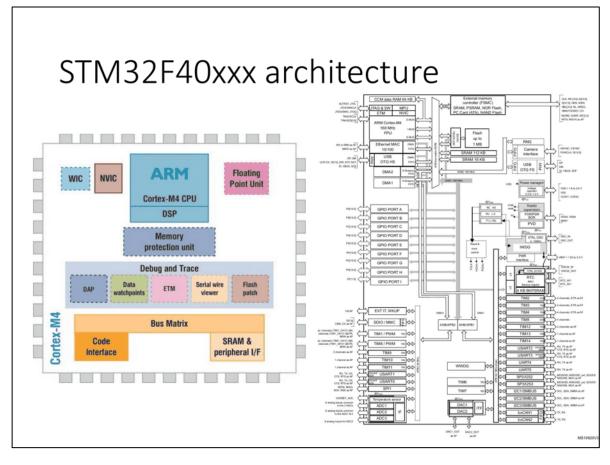
Von Neumann vs. Harvard architecture

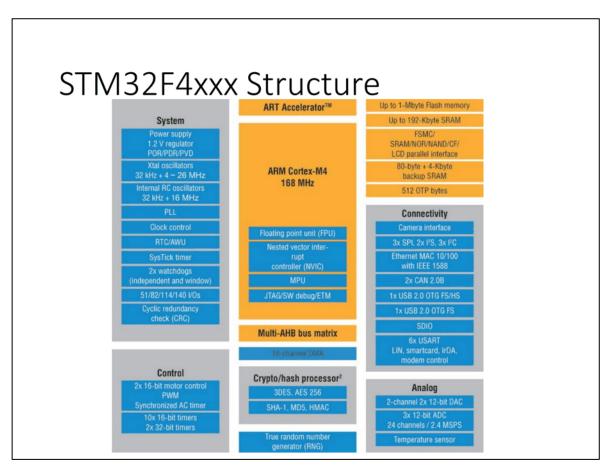


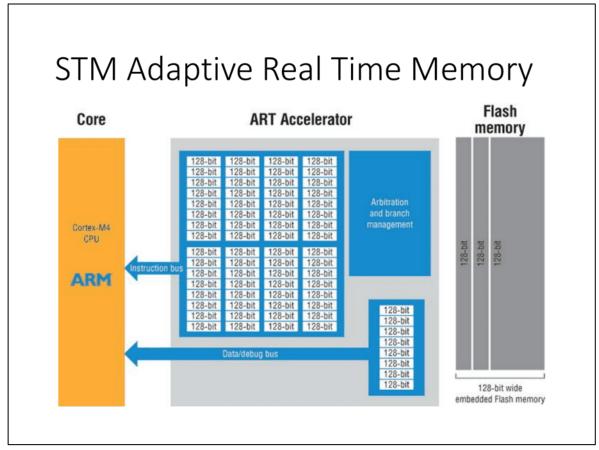
N 4.							
Microcontrollers							
	8051	PIC	AVR	ARM			
Bus width	8-bit for standard core	8/16/32-bit	8/32-bit	32-bit mostly also available in 64-bit			
Communication Protocols	UART, USART,SPI,I2C	PIC, UART, USART, LIN, CAN, Ethernet, SPI, I2S	UART, USART, SPI, I2C, (special purpose AVR support CAN, USB, Ethernet)	UART, USART, LIN, I2C, SPI, CAN, USB, Ethernet, I2S, DSP, SAI (serial audio interface), IrDA			
Speed	12 Clock/instruction cycle	4 Clock/instruction cycle	1 clock/ instruction cycle	1 clock/ instruction cycle			
Memory	ROM, SRAM, FLASH	SRAM, FLASH	Flash, SRAM, EEPROM	Flash, SDRAM, EEPROM			
ISA	CLSC	Some feature of RISC	RISC	RISC			
Memory Architecture	Von Neumann architecture	Harvard architecture	Modified	Modified Harvard architecture			
Power Consumption	Average	Low	Low	Low			
Families	8051 variants	PIC16,PIC17, PIC18, PIC24, PIC32	Tiny, Atmega, Xmega, special purpose AVR	ARMv4,5,6,7 and series			
Community	Vast	Very Good	Very Good	Vast			
Manufacturer	NXP, Atmel, Silicon Labs, Dallas, Cyprus, Infineon, etc.	Microchip Average	Atmel	Apple, Nvidia, Qualcomm, Samsung Electronics, and TI etc.			
Cost (as compared to features provide)	Very Low	Average	Average	Low			
Other Feature	Known for its Standard	Cheap	Cheap, effective	High speed operation Vast			
Popular Microcontrollers	AT89C51, P89v51, etc.	PIC18fXX8, PIC16f88X, PIC32MXX	Atmega8, 16, 32, Arduino Community	LPC2148, ARM Cortex-M0 to ARM Cortex-M7, etc.			

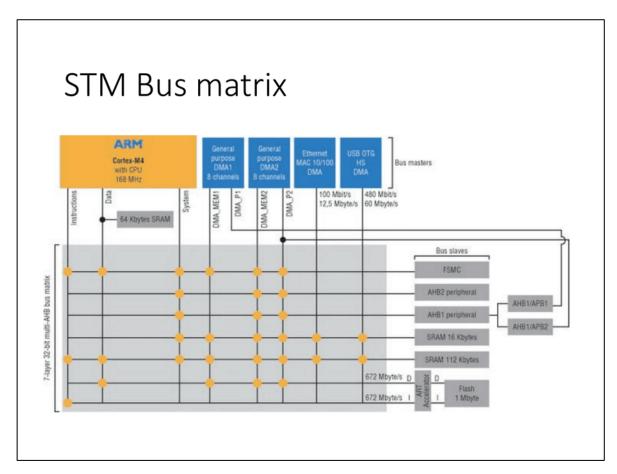


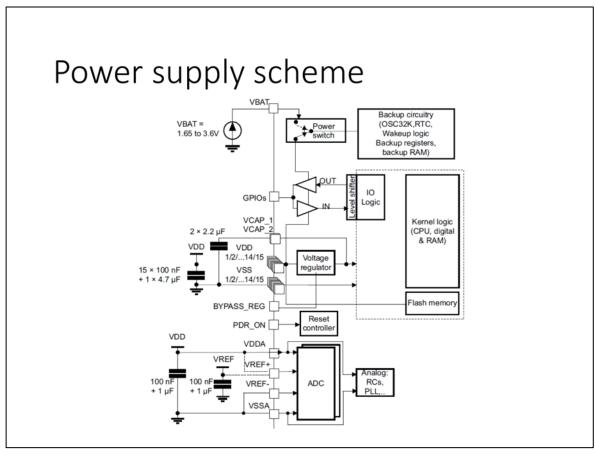


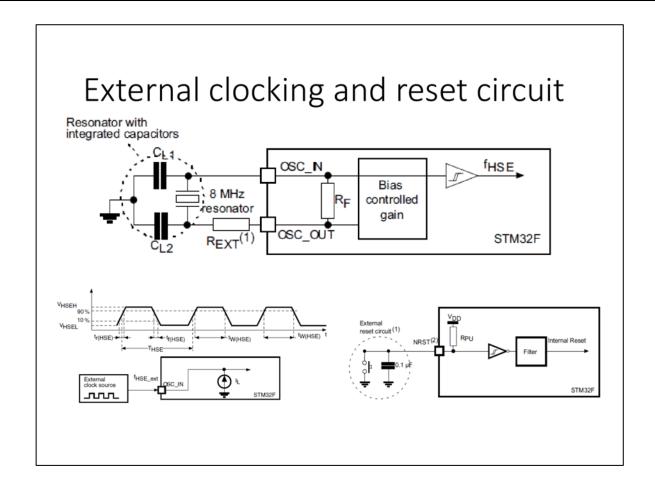












Actuators and mobile robots control Mathematical model of DC motor

Control and modeling of mobile robots Mathematical model of DC motor

Alexander A. Kapitonov

Constructon of DC motor

Figure 1. DC motor assembled.

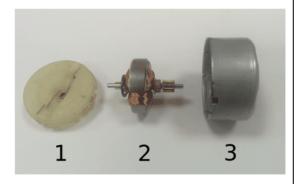


Figure 2. DC motor disassembled: 1 — cap, 2 — rotor, 3 — stator.

Constructon of DC motor

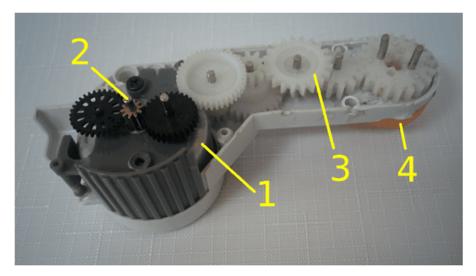


Figure 3. NXT motor disassembled: 1 — DC motor 2 — it's shaft, 3 — reducer, 4 — NXT motor external shaft; (chip with encoder isn't shown).

Mathematical model

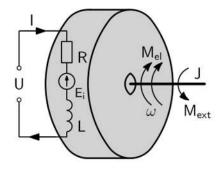


Figure 4. Physical scheme of DC motor.

$$\begin{cases}
M_{el} - M_{ext} = J\dot{\omega}, \\
U = RI + E_i + L\dot{I},
\end{cases} (1)$$

$$M_{el} = k_m I, (2)$$

$$E_i = k_e \omega, \tag{3}$$

$$\begin{cases} k_m I - M_{ext} = J\dot{\omega}, \\ U = RI + k_e \omega + L\dot{I}, \end{cases}$$
 (4)

where M_{el} — motor torque; M_{ext} — torque of external forces; J — total moment of inertia of the rotor and reducer's gears; ω — rotor speed; U — motor supply voltage; R, L — resistance and an inductance of rotor's wires; I — the current flowing through the latter; E_i — EMF which appeared in rotor's wires due to its rotation in magnetic field of stator's magnets; k_m , k_e — torque and back EMF motor constants.

Mathematical model

If $L \approx 0$ H, then

$$I = \frac{1}{R}U - \frac{k_e}{R}\omega,\tag{5}$$

therefore

$$k_m \left(\frac{1}{R} U - \frac{k_e}{R} \omega \right) - M_{ext} = J \dot{\omega}, \tag{6}$$

hence

$$\frac{JR}{k_m k_e} \dot{\omega} + \omega - \frac{1}{k_e} U - \frac{R}{k_m k_e} M_{ext}, \tag{7}$$

$$T_m \dot{\omega} + \omega = \frac{1}{k_e} U - \frac{T_m}{J} M_{ext}, \tag{8}$$

where $T_m = \frac{JR}{k_m k_e}$ is a motor mechanical constant.

Mathematical model

Also we can get differential equation which contains I, not ω :

1. differentiating (5):

$$\dot{\omega} = \frac{1}{k_*} \dot{U} - \frac{R}{ke} \dot{I} \tag{9}$$

2. putting (9) to the first equation from (4):

$$k_m I - M_{ext} = J \left(\frac{1}{k_e} \dot{U} - \frac{R}{ke} \dot{I} \right) \tag{10}$$

3. transforming (10):

$$\frac{JR}{k_mk_e}\dot{I}+I=\frac{J}{k_mk_e}\dot{U}+\frac{1}{k_m}M_{ext}, \tag{11}$$

$$T_m \dot{I} + I = \frac{T_m}{R} \dot{U} + \frac{1}{k_m} M_{ext}.$$
 (12)

Mathematical model

For a situation when

$$\begin{cases} U = const, \\ M_{ext} = 0 \ N \cdot m, \end{cases}$$
 (13)

and

$$\begin{cases} \theta(0) = 0, \\ \omega(0) = 0 \ s, \ ^{1} \end{cases}$$
 (14)

where θ — angle of rotor's rotation ($\dot{\theta} = \omega$), next expressions for $\omega(t)$ and $\theta(t)$ can be obtained from (8):

$$\omega(t) = \omega_{nls} \left(1 - \exp\left(\frac{t}{T_m}\right) \right), \tag{15}$$

$$\theta(t) = \omega_{nls}t - \omega_{nls}T_m + \omega_{nls}T_m \exp\left(\frac{t}{T_m}\right), \tag{16}$$

where $\omega_{nls} = U/k_e$ — no-load speed of the rotor.

Mathematical model

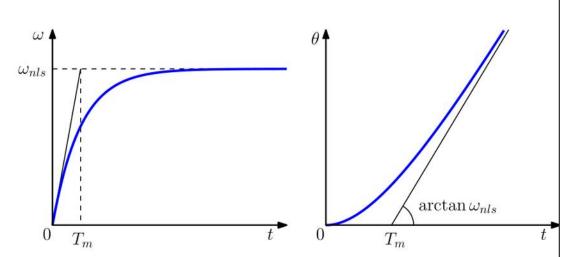


Figure 5. Graphs of $\omega(t)$ and $\theta(t)$ from (15) and (16) in case $\omega_{nls} > 0$.

Description of experiment

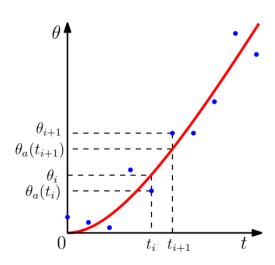


Figure 6. Approximation curve.

Least squares method:

find values for ω_{nls} and T_m such that the sum S:

$$S = \sum_{j=1}^{N} (\theta_a(t_j) - \theta_j)^2 \qquad (17)$$

would have a minimal possible value.

There

N — number of pairs (t_j, θ_j) which were recorded during the experiment,

 $\theta_a(t_j)$ — value of (16) when $t = t_j$.

Modeling scheme of DC motor in Scilab

Control and modeling of mobile robots Modeling scheme of DC motor in Scilab

Alexander A. Kapitonov

Scilab

Scilab is free and open source software for numerical computation providing a powerful computing environment for engineering and scientific applications.¹

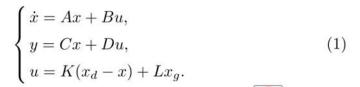
Figure 1. Scilab logo.

At this course we will use Scilab's:

- Xcos hybrid dynamic systems modeler and simulator;
- some mathematical algorithms.

System modeling

Figure 2 demonstrates example of modeling scheme for device which is desribed by this system of equations:



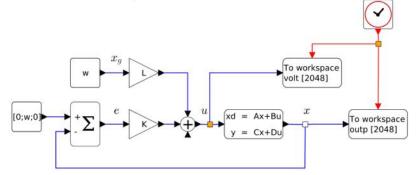
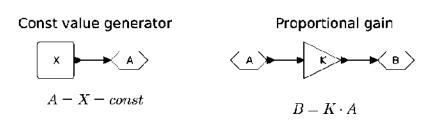


Figure 2. Example of modeling scheme.

 $^{^{1}\}mathrm{Logo}$ and some text on this slide were taken from www.scilab.org.

System modeling



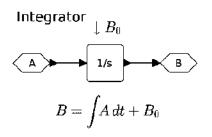


Figure 3. Some standard blocks.

System modeling

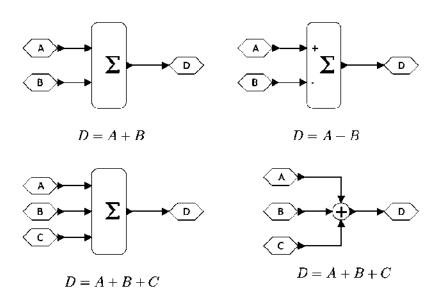


Figure 4. Summator block.

System modeling

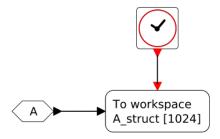


Figure 5. Some service blocks.

This subscheme saves values of A and appropriate moments of time into two matrices: A_struct.values and A_struct.time.

System modeling

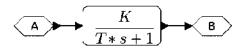


Figure 6. Transfer function block.

$$T \cdot \dot{B}(t) + B(t) = K \cdot A(t),$$
 (2)

$$\mathcal{L}\{T \cdot \dot{B}(t) + B(t)\} = \mathcal{L}\{K \cdot A(t)\},\tag{3}$$

 $T \cdot s \cdot B(s) - B(s) = K \cdot A(s), \quad (4)$

$$\frac{B(s)}{A(s)} = \frac{K}{Ts+1},\tag{5}$$

where $L\{\,\}$ — Laplace transform.

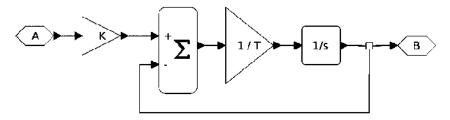


Figure 7. An equivalent sheme.

Modeling scheme of DC motor

Model of DC motor is described by two diffential equations:

$$\begin{cases} T_m \dot{\omega} + \omega = \frac{1}{k_e} U - \frac{T_m}{J} M_{ext}, \\ T_m \dot{I} + I = \frac{T_m}{R} \dot{U} + \frac{1}{k_m} M_{ext}, \end{cases}$$
(6)

therefore its modeling scheme is equal to one which is demonstrated by figure 8.

Modeling scheme of DC motor

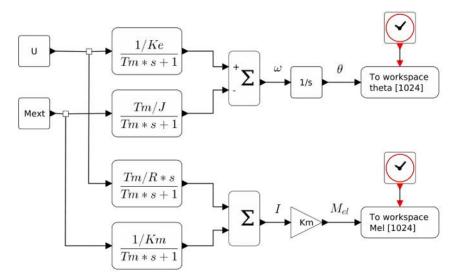


Figure 8. Modeling scheme of DC motor.

Control of DC motor using PID controller

Control and modeling of mobile robots Control of DC motor using PID regulator

Alexander A. Kapitonov

Some basics of control theory

In a control theory all systems are considered as a single object or a "box" which has some number of input and output signals.

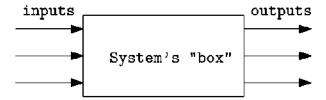


Figure 1. One of a possible representation of every system in a control theory.

input signals — some impacts which change system state

output signals — some physical quantities which describe system

state

Some basics of control theory

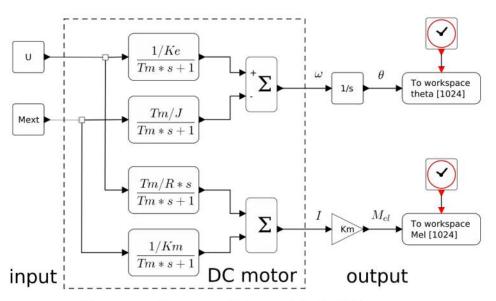


Figure 2. Structure of the model of a DC motor.

Some basics of control theory

Some important definitions:

Control is a process of changing in a desired way values of some output signals using some input signals.

Controller is a special device and/or algorithm which creates required input signals.

Methods of control:

- forward
- using feedback

Some basics of control theory

Forward control — a method of control when a controller <u>doesn't use</u> information about values of system's output signals.

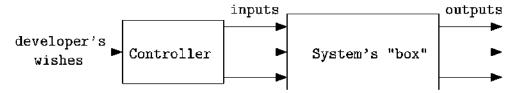


Figure 3. Scheme of forward control.

Some basics of control theory

Control with feedback — a method of control when a controller <u>use</u> information about values of system's output signals.

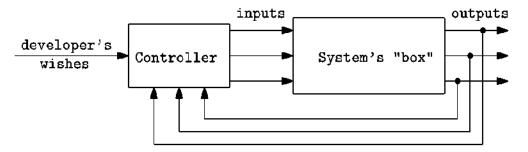


Figure 4. Scheme of control with feedback.

PID controller

PID controller is an algorithm of feedback control which calculate value for input signal in accordance to the formulas:

$$e(t) = x_d(t) - x(t), \tag{1}$$

$$u = K_p \cdot e + K_i \cdot \int e \, dt + K_d \dot{e}, \tag{2}$$

where x — controllable output signal; x_d — desired value of signal; e — error of control; u — used system's input signal; K_p , K_i , K_d — constant coefficients of PID controller.

PID controller

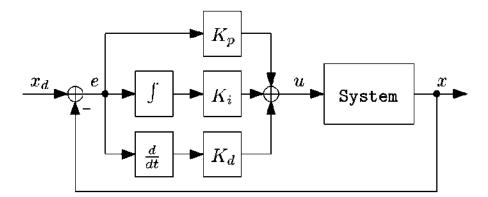


Figure 5. Scheme of PID controller sctructure.

PID controller

P controlller or a proportional piece of PID which is calculated as

$$u = K_p \cdot e, \tag{3}$$

does the main part of a controller's job;

I controlller or a piece of PID with integral which is calculated as

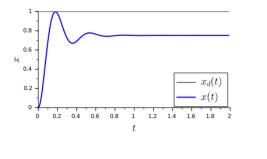
$$u = K_i \cdot \int e \, dt, \tag{4}$$

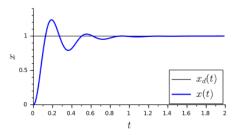
prevents errors (makes c is being equal to 0);

 ${\bf D}$ ${\bf controlller}$ or a piece of PID with derivative which is calculated

$$u = K_d \cdot \dot{e}, \tag{5}$$

dampens oscillations.





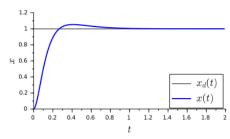


Figure 6. System with P, PI and PID controller respectively.

PID controller

Methods of tuning controller's coefficients:

- calculations using mathematical model of a controllable object;
- setting with according to one of a special algorithm;
- fully manual setting.

Ziegler-Nichols method

Algorithm of tuning values for coefficients of PID controller:

- 1. make K_i and K_d is being equal to 0;
- 2. increase value of K_p until x(t) starts making undamped oscillations; remember this value of K_p as K_u and a period of the oscillations as T_n ;
- 3. calculate coefficients of PID controller using these formulas:

$$K_p = 0.6K_u, K_i = \frac{2K_p}{T_u}, K_d = \frac{K_p T_u}{8}.$$
 (6)

Ziegler-Nichols method

This method's strengths:

• it is quite simple.

This method's weaknesses:

- it doesn't work for all systems;
- it doesn't give the best value of coefficients.

Numerical methods

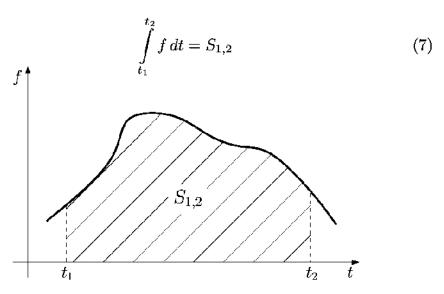


Figure 7. Geometry meaning of integrals.

Numerical methods

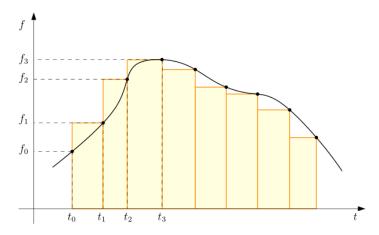


Figure 8. One of numerical methods for calculating value of integral.

$$\int_{t_m}^{t_n} f \, dt \approx \sum_{i=m+1}^n f_i(t_i - t_{i-1}), \quad m < n, \ m, n \in \mathbb{Z}$$
 (8)

Numerical methods

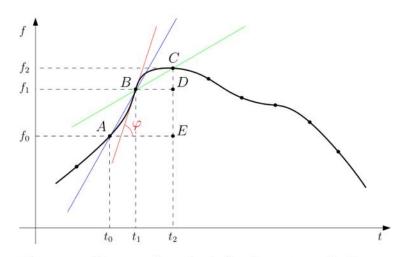


Figure 9. Numerical methods for derivative calculating.

$$f'(t_1) = \lim_{\Delta t \to 0} \frac{f(t_1 + \Delta t) - f(t_1)}{\Delta t} = \operatorname{tg} \varphi, \quad f'(t_1) \approx \frac{f_1 - f_0}{t_1 - t_0} = \operatorname{tg} \angle BAE$$

A controller for to-point motion for a mobile robot with differential drive type

Control and modeling of mobile robots A controller for to-point motion for a mobile robot with differential drive type

Alexander A. Kapitonov

Robots' drive types

Drive type	Controllable velocities
Car-like type	$v_x,\omega(v_x)$
Differential	v_x,ω
Omnidirectional	v_x, v_y, ω

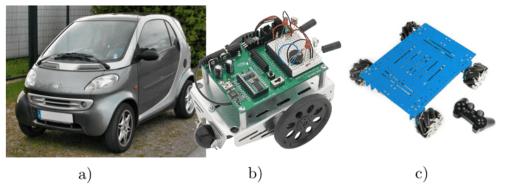


Figure 1. Examples of "robots" with different drive types: a—car-like, b—differential, c—omnidirectional

General view of the robot

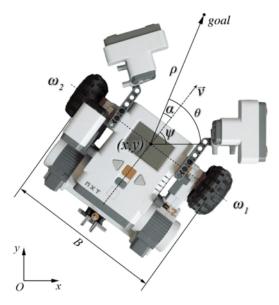


Figure 2. General view of a considered robot.

Structure of the control system

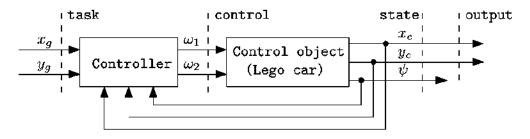


Figure 3. Structure of the control system.

 x_g, y_g — coordinates of goal point;

 $\omega_1, \, \omega_2$ — angular velocities of robot's wheels;

 x_c, y_c, ψ coordinates and rotation angle of the robot.

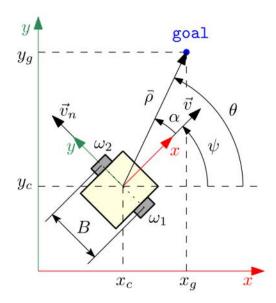


Figure 4. Useful drawing.

Kinematic model:

$$\begin{cases} \dot{x}_c = |\vec{v}| \cos \psi \\ \dot{y}_c = |\vec{v}| \sin \psi \\ \dot{\psi} = \omega \end{cases}$$
 (1)

where

$$|\vec{v}| = R \cdot \frac{\omega_1 + \omega_2}{2}, \qquad (2)$$

$$\omega = \frac{R}{B} \cdot (\omega_1 - \omega_2), \qquad (3)$$

where R — wheel radius.

Mathematical model of the robot

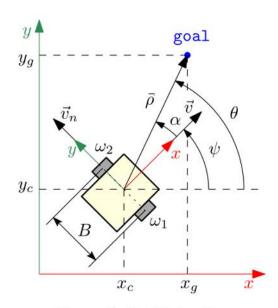


Figure 5. Useful drawing.

Some important variables:

$$\vec{\rho} = \left\{ x_g - x_c \quad y_g - y_c \right\}, \quad (4)$$

$$\theta = \arctan \frac{y_g - y_c}{x_g - x_c}, \qquad (5)$$

$$\alpha = \theta - \psi, \tag{6}$$

$$|\vec{v}_n| = |\vec{v}|. \tag{7}$$

$$|\vec{\rho}| = \sqrt{(x_g - x_c)^2 + (y_g - y_c)^2}$$
 (8)

$$\frac{d|\vec{\rho}|}{dt} = \frac{1}{2\sqrt{(x_g - x_c)^2 + (y_g - y_c)^2}} \cdot \left((x_g - x_c)^2 + (y_g - y_c)^2 \right)' =
= \frac{1}{2|\vec{\rho}|} (-2\dot{x}_c(x_g - x_c) - 2\dot{y}_c(y_g - y_c)) =
= -\frac{1}{|\vec{\rho}|} \cdot \{\dot{x}_c \ \dot{y}_c\} \cdot \{x_g - x_c \ y_g - y_c\} = -\frac{1}{|\vec{\rho}|} \cdot \vec{v} \cdot \vec{\rho} = -|\vec{v}| \cos \alpha \quad (9)$$

$$\dot{\alpha} = \dot{\theta} - \dot{\psi} \tag{10}$$

Mathematical model of the robot

$$\dot{\theta} = \left(\arctan\frac{y_g - y_c}{x_g - x_c}\right)' = \frac{1}{1 + \left(\frac{y_g - y_c}{x_g - x_c}\right)^2} \cdot \left(\frac{y_g - y_c}{x_g - x_c}\right)' = \frac{1}{1 + \left(\frac{y_g - y_c}{x_g - x_c}\right)^2} \cdot \left(\frac{y_g - y_c}{x_g - x_c}\right)' = \frac{\left(x_g - x_c\right)^2}{\left(x_g - x_c\right)^2} \cdot \frac{-\dot{y}_c(x_g - x_c) + \dot{x}_c(y_g - y_c)}{\left(x_g - x_c\right)^2} = \frac{\left\{-\dot{y}_c \ \dot{x}_c\right\} \cdot \left\{x_g - x_c \ y_g - y_c\right\}}{|\vec{\rho}|^2} = \frac{\vec{v}_n \cdot \vec{\rho}}{|\vec{\rho}|} = \frac{|\vec{v}|\sin\alpha}{|\vec{\rho}|} \quad (11)$$

$$\dot{\alpha} = \frac{|\vec{v}|\sin\alpha}{|\vec{\rho}|} - \omega \quad (12)$$

Robot's mathematical model:

$$\begin{cases}
\frac{d|\vec{\rho}|}{dt} = -|\vec{v}|\cos\alpha \\
\frac{d\alpha}{dt} = \frac{|\vec{v}|\sin\alpha}{|\vec{\rho}|} - \omega
\end{cases}
\text{ or } \dot{x} = f(x), \text{ where } x = \begin{bmatrix} |\vec{\rho}| \\ \alpha \end{bmatrix}$$
(13)

Let's use for it this control law:

$$\begin{cases} |\vec{v}| = v_{max} \cdot \tanh |\vec{\rho}| \cdot \cos \alpha \\ \omega = K_{\omega} \alpha + v_{max} \cdot \frac{\tanh |\vec{\rho}|}{|\vec{\rho}|} \cdot \sin \alpha \cdot \cos \alpha \end{cases}$$
(14)

where v_{max} and K_{ω} are constant positive coefficients.

Mathematical model of the robot

Some theoretical information:

- Stability is an ability of a controlled system to run to particular state and stay in it.
- For checking system for stability Lyapunov functions are used.
- If time derivative of Lyapunov functions for considered system is always negative, the system is stable.

Possible Lyapunov function for our system:

$$V(x) = \frac{1}{2}|\vec{\rho}|^2 + \frac{1}{2}\alpha^2 \tag{15}$$

Its derivative:

$$\frac{dV}{dt} = \frac{d|\vec{\rho}|}{dt} \cdot |\vec{\rho}| + \frac{d\alpha}{dt} \cdot \alpha = -|\vec{v}||\vec{\rho}|\cos\alpha + \alpha \left(\frac{|\vec{v}|\sin\alpha}{|\vec{\rho}|} - \omega\right)$$
(16)

or after using equations (14) for control law:

$$\frac{dV}{dt} = -v_{max} \cdot |\vec{\rho}| \cdot \tanh \vec{\rho} \cdot \cos^2 \alpha - K_{\omega} \alpha^2 < 0.$$
 (17)

Due to \dot{V} is always negative the system is stable.

Mathematical model of the robot

Note that:

 angular speeds of robot's wheels can be found using these formulas:

$$\omega_1 = \frac{1}{R} \cdot (2|\vec{v}| + B\omega), \qquad \omega_2 = \frac{1}{R} \cdot (2|\vec{v}| - B\omega). \tag{18}$$

• in the steady state angular speeds of robot's motors are proportional to voltages which are applied to them; so we will make the latters are being proportional to values obtained from equations (18).

Sources for pictures

- slide 2:
 - https://en.wikipedia.org/wiki/Car
 - https://www.parallax.com/product/boe-bot-robot
 - http://www.makeblock.com/mecanum-wheel-robot-kit

ITMO UNIVERSITY Faculty of Control systems and robotics

per. Grivtsova, 14,Saint Petersburg, Russia, 190000

+7 (812) 595-41-28 csi.ifmo.ru/en/