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The modern theory of control systems
Automatic control theory
Stability types and Lyapunov equations

Automatic Control Theory.
Stability types and Lyapunov
Equations

Madina Sinetova

Stability

* Stability is the system ability to return to initial position after
stopping action to system external disturbances.

Stable system Unstable system

Segway
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Stability types

1. Lyapunov stability.

* Guarantees bounded of all trajectories, but not guarantees
convergence to some steady value.

where x,, X, are state coordinates, £, & —some small numbers; as norm of x; and
X, can be used quadratic norm, for example; x(0) —initial position of trajectory.

* The equilibrium x = 0 is tyapunov stable if for any small number
£ > 0, exists small number 6(&) > 0, that for all trajectories
starting from the initial conditions ||x(0}|] < &{&) for any time
vt = 0 following inequality is satisfied: ||x(t)]| < e.

Root stability criterion

Given continuous system:
x=Fx,x € R F —nxn.

Characteristic polynomial of the given system:
det(F-sl)=s"+a, ;s" 1 +--+a,5+a,=0,

where s;, i = 1,n—roots of the polynomial,  — identity matrix.

If all roots have negative real parts Re(s;) < 0,i = 1,n, then the
system is stable.

Im - imaginary axis (stabifity border}, A |
Re —real axis. o ' e ‘ i
. :
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Root stability criterion

In discrete case instead of function derivative is used value on the
next discrete step:

fO)~f(m+1),
where m — number of discrete interval, t = mT —continuous time,
T —value of discrete interval.

Consider the discrete system:
x(m+1) =Fy;x(m),x € R*, F; — nXn.

Characteristic polynomial of the given system:

det[Fy —zl]|=2z"+a,_z" '+ +a,z+a,=0,
where z —is a delay, { —is an identity matrix, and z;,{ = 1,7 —roots
of the polynomial.

Root stability criterion

If all absolute values of roots less than one |z;| < 1,i{ = 1,n, then
the system is stable.

AS

* The unit circle is a stability border.

* If one or more than one absolute values of roots more than
|z;| > 1, the system is unstable.
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Stability borders

1.1. Stability border of neutral type.

Dynamic continuous system is on the border of neutral type if one
or two roots of characteristic polynomial are equal to zero and rest
roots have negative real parts:

S12 = 0,Re(s;) < 0,i =3,n.

A3

55 51,2 R

Stability borders

1.1. Stability border of neutral type.

Dynamic discrete system is on the border of neutral type if one or
two roots of characteristic polynomial are equal to one and rest
roots are in the unit circle:

21| = 1,2, < 1,i = 3,n.
A S

1

The modern theory of control systems




2019 © Madina Sinetova The modern theory of control systems
mmsinetova@itmo.ru, sinetovamadina@gmail.com Automatic control theory

Stability borders

1.2, Stability border of oscillatory type.

The dynamic continuous system is on the border of oscillatory type
if the characteristic polynomial has pair of purely imaginary roots
and rest roots have negative real parts:

512 = Hjw, @ > 0,Re(s;) < 0,i = 3,n,
where J —imaginary unit.

R
8
83 r
.
35‘ bgl‘.
g3 0
. = S9
4

Stability types

2. Asymptotic stability

The equilibrium x = 0 is asymptoticaily stable if the equilibrium is
Lyapunov stable and for any motion trajectories x(t) from the
arbitrary initial conditions x{0) the condition tlim [x(e}|| = 0is

satisfied.

In discrete case trajectories are x(m) and condition is
lim ||Jx(m)|| = 0.
m=-200

y(t)

(D)

10
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3. Exponential stability

vit)

Stability types

The equilibrium x = 0 is exponentiai stable if for any motion
trajectories x(t) from the arbitrary initial conditions x(0) exists
positive number a > 0 that for any time V¥t > 0 inequality:

lx (@) < pe™*||x(0)||; p = 1is satisfied.

Constant « is the convergence degree and characterizes
convergence velocity to equilibrium.

11

3. Exponential stability

)

(0) =

Stability types

In discrete case: ||x(m)|| < pA™||x(0}]; p =2 1,A < 1.

o o I sfeps
4

1 1
O my iy

faster convergence.

Number A characterizes convergence velocity. The smaller A the

12
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Stability types

4. Qualitative exponential stability

The equilibrium x = 0 is qualitative exponential stable if for any
motion trajectories x(t) from the arbitrary initial conditions exists
numbers @ > 0, r > 0, p = 1 that for any time ¥t 2> 0 the
following inequality:

llx(2) = e~ x(0)]| < p(e™ @+t = e~ ||x(0)||

is satisfied.

In discrete case:
lx(m) = a™x(0)|| < p({a + )™ — a™)||x(O)Il,

where0 €a<1-r.

13

Stability types

4. Qualitative exponential stability
e [z (0)]] + ple™ T — =) - [|z(0)|

z(t)
=D J5(0)]

u) §
x(0)

/ e - [l2(O)]] = ple==+ = =) - Ja(0)]

Parameter a characterizes velocity convergence to equilibrium.
Parameter r characterizes trajectory average deviation.

14
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Lyapunov functions

Lyapunov functions V{x) have properties:

1. Lyapunov function V(x) must be positive definite: for any ¥x €
R™ Lyapunov function V{x) is positive definite and V{(x} = @ in
case x is null-vector.

2. Lyapunov functions must increases (decreases) uniformly with
uniform increasing (decreasing} of x-vector norm.

3. The surfaces of constant level V(x) = C, where € —is a
constant, must cover the origin of coordinates or equilibrium.

15

Lyapunov functions

Quadratic forms: V(x) = xTPx,
P —nXn positive definite symmetric square matrix.

P

ZTTPIT = CJ

%
c, > Cy, u

P = I —identity matrix,

xTPx =[X1 X [;;] =C,

2 +xi=C=|x|?= (\/xlz + xg)z.

16

10
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Lyapunov Theorem

The equilibrium x = 0 is asymptotically stable if exists Lyapunov
function V(x) such that for any motion trajectories x(t) starting
from the arbitrary initial conditions for any time ¥t > 0 the

derivative of the function is negative: @ < 0.
dV(x(t)) _AV(x)dx _ aV(x)
. ax ot ox =
x — n-dimension state vector:
aV(x) [dV(x)

%V—JE?] = grad™V(x).

ax 0x,
So:
_dV(:t(t)) = grad’x - x.
Lyapunov Theorem

Geometric interpretation:

-
L

V(x) = C —surface of constant level.

18
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Given:
x = -x%

Lyapunov function:
V{x) = x2.

Investigation:

davi{x(t
LACO) NP (-x3) = =2x* < 0.
dt
Lyapunov function derivative is negative anytime, so, the given
system is asymptotically stable.

19

Lyapunov inequalities

* For asymptotic stability:

V{x(t)) <o.

* For exponential stability:

V{x(t)) < =2aV(x(t)),a > 0.

* For qualitative exponential stability:

V(@) + (r + a)x(t)) < r2V(x(t)).

20

12
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Rayleigh ratio

Let’s consider inequality:
CEllxll? < x"Px < €3 |1x|1%,

where x = Fx,x € R™, F — nxn, V(x) = xT Px, P —nxn positive
definite symmetric square matrix.

Omitting intermediate calculations obtain ratio:

CZ - Cz
llx ()| <z e x|, p =z 2 1.
1 1

/o /\!\/\,_._ £

)

21

Lyapunov equations

From Lyapunov inequalities follows Lyapunov equations:

* For asymptotic stability:
FTP 4+ PF = =(Q.

* For exponential stability:
FTP + PF + 2aF = =(.

* For qualitative exponential stability:

F++a))TP(F+ (@ +a)])-1riP=-Q.
F —state matrix of closed system, P, @ — positive definite symmetric
square matrices of the same dimension.

For investigation stability it’s required to choose matrix @, solve
Lyapunov equation with respect to matrix P and check it for

positive definition. ”
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Example

Given:

x = Fx, [;;] - [—01 -12] 2]

Is system stable?

Choose:
1 o _P1 P3
Q_[o 1]'P_|§3 Pz]'
And calculate:
Tp [ TP —P2 _[~Ps P1‘2P3]
FP [PZ‘ZPs p3—2pz]'PF -pPz P3—2p.)

23

Example

—p3—p3=-1
—pz =+ pl = 2p3 =0 - [115 OJS
Pr=2p3—p; =0 =FP= 0,5 051
Ps—2pz +p3—2p2 = -1
det(P-AN=A2-21405=0=> 4, = 0,29,4, = 1,7.

All eigenvalues A; of matrix P are more than zero, so, system is
asymptotically stable.

24

14
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Qualitative exponential stability

Automatic Control Theory.
Qualitative exponential
stability for discrete and

continuous linear systems

Madina Sinetova

Qualitative exponential stability

Consider linear discrete system:
x(m+ 1) = F(x(m)).

Equilibrium x = 0 is exponential stable, if exists numbers p > 0,
a > 0,d,(a) > 0 that for all initial values of ||x(0)|| < d,(a) for
any number of discreetness interval m > 0 the following inequality

is satisfied:
lx(m)|| < p - ™™ - [[x(0}].
Introduce notation: A = e~ %, where 0 < A < 1, so:
lx(m)|| < p - A™ - [[x(0)]|.

All trajectories x(m) of exponential stable system are in «estimated
tube» bounded by surfaces:

lx(m)II? = (o - 4™ - lx(0)I)>%.
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Qualitative exponential stability

Surfaces consist of circles with radiuses:
P - A" - |[x(O)]l.

Y24 [Ix)I? = df

/ . Ix(12 = P2azma2

s X24

P |
Ve II -
+ ' t + + t * -
! mr t
|

Local term

Equilibrium x = 0 is qualitative exponentiai stable, if system is
exponential stable with parameters a (A = e™%), d,.(«) and
additionally exists positive number 0 < 4, < 1 + A that for any
number of discreetness interval m > 0 the following inequality is
satisfied:

= 1—Am
) = 2O < Agp ). ANl =A0p = IxO)I.
i=0

This condition constrains state vector current values deviation from
initial conditions x(0).

System have very qualitative parameters under condition: 45 < 1.
In this case inequality is strongest.

16

The modern theory of control systems
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Qualitative exponential stability

In case of non-zero initial conditions x{0) trajectories are bounded
by surfaces:

, 1—-am 1?
lx(m) = xOIP = [40p |
with circles’ radiuses:
1-2m
Adop 779

A

«Estimated tube» cross-section:

_ (P14, . -
Oy = A A1 - first ejection;
A-pAg—-1
* 0 -
Ox = Tavag overcontrol.

Vector norms

Arbitrary vector norm:
1

n v 7
el = [,
i=1

visan integer and v = 1, 2, ..., and x; — i~th component of state
vector x.

If v = 2 the norm is Euclidean, if v = 1 the norm is absolute.

In case of two state components constant level surfaces are:
lx]I” =1 (x € R?).

Remark. For deterministic processes (not for stochastic} from the
convergence by some norm follows convergence by any norm.

17
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Lyapunov function

Consider convex positively homogeneous Lyapunov function V (x)
from a class of K7 such:

CTxN” < V{x) < CFllx|["
Using quadratic forms:
V(x) =xTPx,

where P — symmetric positive definite square matrix from a class of
K?, values CZ and C# are minimum and maximum eigenvalues of
matrix P respectively.

Sufficient conditions

For system x(m + 1) = F{x(m)) sufficiently existing number

0 < A < 1 that for any number of discreetness interval m > 0 the
inequality is satisfied:
V(x(m+ 1)) € 2"V (x(m)),

and existing number 1 — A < 45 < 1 + A4, that for the system the
inequality is satisfied:
V{x(m + 1) = x(m)) < AV (x(m)).

From these conditions follows two consequences.

18
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Conseguences

Consequence 1. For qualitative exponential stability are sufficiently
existing numbers 0 < A < 1land 1 - A4 < 4, < 1 + A that for any
number of discreetness interval m > 0 the following inequality is
satisfied:

Vix(m + 1) = (r + a)x(m)) < r’V(x(m)).

Consequence 2. For qualitative exponential stability are sufficiently
existing numbers 0 <r < 1and 0 < & < 1 — 2r that for any
number of discreetness interval m > 0 the following inequality is
satisfied:

v (x(m +1) - HTOHx(m)) < (M#"_l) v (x(m)).

A=2r+a,j=1-a.

Geometric interpretation

Exponential stability.

In case of quadratic form:
V{x(m+ 1)) < 22V {x(m)).

The each next value of state vector x(m + 1) must belongs to area:
0, (4) = {x:xTPx < 22xT (m)Px(m))}
if the previous value of state vector was on a surface x”Px =
xT (m)Px(m). 24
2,0

x(m)

TPr = s (m)Prirm}

¥TPv w 20T (mpPx{m) 10
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Geometric interpretation

Consequence 1.
1. System must be exponential stable.

2. For Lyapunov functions from a class of X? the inequality which
should be satisfied takes form:

(x(m+1) - x(m))TP(x(m +1) = x(m)) < %xT(m)Px(m).

And the each next value of state vector x(m + 1) with fixed x(m)
must belongs to area:

0, () = { x: (x = x(m))" P(x - x(m)) < 237 (m)Px(m)}.

3. The each fixed arbitrary value x{(m) the next value of state vector
x(m + 1) belongs to area:
nx(lr AO) = 'Qx('l) N ﬂ'x (AO)

11

Geometric interpretation

Consequence 1.

As a result, qualitative exponential stability distinguish from all
values of state vector {1, (1) some part £}, (4, A,) and it localizes
system motion trajectories behavior.

{x - x{m)) PQx - X0n)) = AZxT(m)Px{m)

X4
(A, Ap) = 2.(2) 0 2, (Ap)
2,0 ‘ 2:(A0)

xTPx = xT(m)Px(im)

xTPx = A2xT(m)Px(m)

12

20
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Geometric interpretation

Consequence 2.
1. System must be exponential stable.

2. For Lyapunov functions from a class of X? the inequality which
should be satisfied takes form:
(x(m+1)— (r+ a)x(m))TP(x(m + 1) = (r + 2)x(m)) < r2xT (m)Px(m),

And the each next value of state vector x(m + 1) with fixed x(m)
must belongs to area:
Q.(r.a) = {x: (x—(r+ a)x(m))TP(x - (r+mx(m)) < rzxr(m)Px(m)}.

3. The each fixed arbitrary value x(m) the next value of state vector

x(m + 1) belongs to area:
G.(r,a) € Q,(4,4,).

13

Geometric interpretation

Consequence 2.

In case A = 2r + @, 4; = 1 — a the area belongs to intersection
areas Q. (4y) and Q,(A): Q. (r,a) € ,(4,4,).

xTPx = xT(m}Px(m)

xTPx = A2x7 (m)Px(m)

14
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Summary

Consider system:

F — nxn matrix of closed system.

Lyapunov inequality:

where A=2r+a,4,=1-a.

Lyapunov equation:

x(m+1) =F - (x(m)),

(F=(r+a))TP(F - (r+a)) <r?P,

F-+a)D)TP(F-(r+a))-r*P=-0Q,

where P > 0 — positive definite symmetric square matrix, @ = 0 -
positive semi-definite symmetric square matrix.

15

Roots distribution

Ymj Ymj Nz Ymj
a) 2r,a) © ) )¥ o) 2(20)
r of
@)= %
- "‘a
? ymi AGA) | A ymp 000

16
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Continuous case

Consider continuous linear system:
x = F(x),

x — state vector.
Local conditions:

1. There is a number @ > 0 such for any time t > 0 following
inequality is satisfied: '
V(x(t)) € =2aV(x(D)),

2. There is a number A, = a such for any time t > 0 following
inequality is satisfied:
V(x(t)) < 23V (x(D),

where V(x(t)) — Lyapunov function from a class K? of quadratic
forms.

17

Geometric interpretations

15t condition: -
aVix

¥ < =2aV(x).

Fw X aVx)

*zh av

xTPx = V(x(t))

18

23
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Geometric interpretations

2™ condition:

All possible values of state vector must belong to area {1,.(4,)
bounded by surface:

TPk = 23V (x(¢)).
As a result, combine both conditions:

Values of state vector must belong to area £, (a,4y) = Q. (a) n
Qx(40)- %zj

5y
3 A 3':1
xTPx = V(x(z)}
19

Geometric interpretations

As one condition.

System is qualitative exponential stable if exists numbers @ > 0 and
r > 0such for any time t > 0 following inequality is satisfied:
V(@) + (r + a)x(t)) < r?V(x(0)),

where A = a,4, = 2r + «a.

For any time ¢ > 0 and for any state vector x(t), velocity vector
x(t) must belongs to area £, (7, &) bounded by surface:

(£ + (r + )x(®) P(x + (r + 2)x(®)) = r2V (x(2)),
where area (. (r,a) C ), (a, 4y).

20

24

The modern theory of control systems




2019 © Madina Sinetova The modern theory of control systems
mmsinetova@itmo.ru, sinetovamadina@gmail.com Automatic control theory

Geometric interpretations

le av

(1)

1,140, | ,
2.(ra) %%

xTPx = V(x(t))

21

Continuous case

Linear system:
X = F(x),

x — state vector.
Sufficient condition:
Existing such numbers (r,a): A =a,A; = 2r + a

that Lyapunov equation:
F+@+a)DTP(F+ (@ +a))-r?P=-Q,

and Lyapunov inequality:
F+T+a)D)'TPF+r+a)) <r?P

are satisfied.

22
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Roots distribution

6)

‘Vm ‘Vm

\\3

(A, 20)

\

B)

=
{'(r.a)

0L Ag)

N
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Identification theory

Identification Theory

Alexey Vedyakov

Application

e Measuring systems

e Disturbance compensation systems:
e hard drives
e ship

e active suspension vehicle

27
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First global convergent estimators

e Hsu L., Ortega R., Damm G. A globally convergent frequency
estimator // IEEE Transactions on Automatic Control. 1999.

o G. Obregon-I’ulido, B. Castillo-Toledo, A. A. Loukianov,
"Globally convergent estimator for n-frequencies,” IEEE Trans.
Autom. Control, vol. 47, no. 5, pp. 857-863, May 2002.

e A. Bobtsov, A. Lyamin, D. Romasheva, " Algorithim of
parameter’s identification of polyharmonic function,” in Proc.
15th IFAC World Congress on Automatic Control, Barcelona,
Spain, Jul. 2002.

o X. Xia, "Global frequency estimation using adaptive identifiers,”
IEEE Trans. Autom. Control, vol. 47, no. 7, pp. 1188-1193, Jul.
2002,

e R. Marino, P. Tomei, ”Global estimation of unknown
frequencies,” [EEE Trans, Autom. Control, vol. 47, no. 8, pp.
1324-1328, Aug. 2002.

Frequency estimation

Consider the measurable signal
y(t) = Asin(wt + &), (1)

where A is the amplitude, w is the frequency, ¢ is the phase.

The goal is to obtain the frequency estimate &(¢) such that

flim lw —&(t}] = 0.
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Sinusoidal signal generator
Consider derivatives of the signal (1)
g(t) = wA cos(wt + ¢),

i(t) = —w? Asin(wt + ¢). (2)

Using (1) and (2) we can obtain lincar regression model

y(t) = y(t), (3)

where 8 = —w?.

1 1 y(t))

w
w

Gradient method

Consider the cost criterion
J(0) = 30 — 31117 = SOy(2) — D)2 = Lo (1),
which we minimize with respect to é(t) using the gradient method
0t) — —yvJ (D),
where v > (. In our case,
V@) = 2 = eyt = —utt) (i) — b))
Finally,

8(5) = () (i) — 8ty (1))
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Biased sinusoidal signal

Consider the measurable signal

y(t) = Ag + Asin(wt + @),

(4)

where Ay is the constant bias. Consider derivatives of the signal (4)

4(t) = wAcos(wt + ¢}, (5)
i(t) = —w?Asin(wt + ¢).
Y(t) = —w’ A cos(wt + ). (6)
Using (5) and (6) we can obtain linear regression model
Y (1) = 0y(2).
The adaptive law
6(6) = vi) (W) — di®)) (7)
Modified version
Let us consider additional variable
X(#) = 8(t) — 79(2)i(t), then (8)
6(1) = x (1) + ()i (h)- (9)
Differentiating equation (9) we obtain
0(t) = X(8) + 7 (1) + BT (@). (10)
On the other hand, from (7) we have
8(t) = vie) ((2) - B(1)3(t)) = (05 (1) — B (D). (11)

Combining (10) and (11) gives

0(t) = x(&) + vu()i(t),
x(t) = =0 () — v (¢).
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Without measuring derivatives

Let us consider linear filter

£(t)
—>

The signals £, £(2), £(t) arc measurable. Morcover,
£(t) = By + B sin(wt + ) + €(t), (12)
where ¢(t) is cxponentially decaying term. In this casc,

9(t) = x(&) | E@ER),
x(t) — = 0)EX () — vEX ().

Multi-Sinusoidal signal

Consider the measurable signal

.
y(t) — Ao+ > Assin(wit + ¢;). (13)

=1

Signal generator for & = 2

h 4
Y
4

1 1 1 1| y©®
e e ey s

— it

W

where ) = —(w? + w3), &
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Multi-Sinusoidal signal

The signal (13) can be generated by the following differential equation

p(r? —01)(p* — 6a) ... (p* — O)y(t) =0, (14)

where p = d/di is the differentiation operator, 8; = —w?

parameters, ¢ = 1, k. Equation (14) can be represented as

, are constant

PP Iy(t) = 01p* y(t) + ... + Gy (t), (15)
where 8; can be calculated by the following system

9_1 =0 +6,+---+ 6.
by = —0h6s — 0185 — - — BBy,

B = (—1)*+16,8,- - By

General linear filter

Introduce the linear filter

A
v(s)’

§(s) = Fisyy(s), F(s)= (16)

where Ag > U, v(s) = 8% | vgp_18%5 7L | o | s | 7 iIs & Hurwitz
polynomial.
2k
Ad

Multiplying (15) by

with (16) we obtain

v(s)

P tLe(8) = 61827 1E(8) + ... + OpsE(s).

32
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Regression model

After the inverse Laplace transformation for the filter (16) and the
input signal y(¢) we get the relation

() = QT (£)0 + e(),

where Q(t} is a regressor of functions £7)(t)

QT () = ¢

D) )],
© is a vector of unknown parameters depending on frequencies
(:)T = I:él gk_]_ B_k] .

Adaptive Frequency Estimation

The update law

(17)
where estimates 6; calculated using &; that are elements of a vector é:

O = T(t) + KQH)EPR (1),

(18)
T(#) = —KQBQT (68(t) — KM (1), (19)
where K = diag{k; > 0,7 = 1, k}, guarantees that the estimation error
@; = w; — w; exponentially converges to zero:

@i (t)] < pre™",

pL,B1 >0, Viz0

(20)
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Harmonics observer

For the variable £(t) we have

E(t) = Lo + £a(t) + &alt) +- - + £i(E). (21)

After differentiation (21) 2k times, we obtain two systems of k linear
equalions:

gM() = 51(‘t) +& () +-- + & (), ‘
) =6,6(t) | 0260 |- 1 I&(t),

5(%— [:[(t) — gic—lél @+ + 92_1‘5';0(13),

and
E2() =0.6(8) | 826(8) |- ) 8pbel(t),
£ (t) = 0341 (1) + 0262(t) +- - - + 026k (2), (22)

E2R) (1) = ohey (&) + O5Ea (1) +- - - + OEEL (D).

Harmonics observer

From (21) and {22) we get the realizable estimation scheme for

variables &g and £;(t)

i €:1(t) T ',?1 ék- “Llr (1)
&a(t) 0 - 6 W (8)
&ty | |8F - ] | %Ry |

and

ke
G=E1) D401
7—1
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Parameters estimation

The estimates of the amplitudes and phases

Aty =288 46y = (~pet) + dei(t)) mod 2

Fgs(t)
where
2 2
, N (t
%mw=.§ﬁw+(38),
q;&' (t) = (sign (éi(t))arccos (%) _U:]z'(t)t) mod 27,

Les(2) and ¢;(t) can be obtained from filter frequency response

Lei(t) = |F(jw)lyms, s Peilt) = a1g F(Jw)| e, -

Dynamic Regressor Extension and Mixing

Consider the regression model

W(t) = 6" o(t), (23)

wlere ¢(1) € R is the regressand, 8 € R™ is the coustanl veclor of

unknown parameters, ¢(t) € R" is the regressor.

Consider two linear operators

e The stable LTI filter. For example, we can choose exponentially
stable LTI filters

Al
Hi(p) = ——, 24
() = )
where p = d_di’ NER,,I=1,mn
e The delay operator
H()(8) = ()t —dy), (25)

where d; > 0 is a delay.
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Let us choose delay operator and define the filtered signals

or,1(t) = ¢t — dy), (26)
wy(t) = ¢(t — dp). (27)
Combine (26)-(27) and signals é(t), 1(t) as follows
KA L ()
sr=| P w0 e
7 (0 ()]

where ®(t) € R™*®, U(t) € RP*1,

Defining

{(t) = des {@(2}}, (29)
£(t) = adj{®(t)} ¥(¢), (30)

where det{®(¢)} is the determinant and adj{®(¢)} is the adjugate of
matrix ®(t). we obtain a set of n equations of the form

&(t) =¢@®), 1=T1,n. (31)

In the obtained first order regression models {31) we can identify
parameters #; separately.
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The standard gradient method can be used for identification of the
obtained models with scalar regressor and parameter

0u(1) = 7aC(0) (&8) - COBD) (32)
where 4 € E,.

From (31) and (32) we can write

B(1) = —1a 2B (2). (33)

Solving this differential equation we obtain

bt6) = 00)exp (= t G rir). (34)

If ¢(¢) is bounded and not square-integrable function, i.e.
¢t [ =, (35)
0
then (32) provides convergence of the estimation error to zero, i.e.
-] -o »
For exponential convergence, the following inequality should hold
t
/ 2 (r)dr > Dt, (37)
0

where D e R,
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Time-Delayed Control Systems

Stabilization problems of the time-delay systems

Anton Pyrkin

QOutline

Introduction

Tsypkin’s critcrion of stability

Smith predictor

State-feedback predictor

Output-feedback predictor
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Time-delay systems

Time-delay systems can be separated to three classes

plants with input dclay

— plants with state delay

plants with output delay

plants with several delays

The most complicated and popular in literature are systems with
input delay and with input and state delays.

Technical systems with time delays

Chemical reactor Combustion engine
Delay
Internal Lambda
combustion Exhaust gases sensor
engine
Lambda
regulator

Remote control

&
A s X

Transmitting station Receiving station
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Systems with delays and external distur-

bances

Towing of an underwater vehicle Extraction of nodules

Present-day view at the problem

External system

Control

Delay

s S Output
e B = variables

Plant Delay

:

%@\W Control system ‘—‘

= -
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(General problem formulation

AN

External
disturbance
& (9 9 o |\:‘/ b(p) e
M a(p)
Reference Controller Delay Plant Output
signal
Delay

Closed-loop system with delays

Closed-loop system with PID-controller

14

1.2

] @
s—1 os

Plant Cutput

1K)

i 02
Integrator he

Structural scheme of the system Transicnts for the output
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Closed-loop system with delay

1\ 16
Denvanve ke I 14
- 5 1 [ | 12
3 Lk % 5| 1 i
Ilctcrcncc -
sl 3\ | Plant Outpu: 08
i /k.- agl

1
s
NEETAto 04
Il\.ix L "
14 “ the
Delay % 2 3 19
Structural scheme of the system Transicnts for the output

Basic control approaches

e T'sypkin's critcrion of stability

¢ Smith predictor

e Predictor for unstable systems
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The first work devoted to the time-delayed
systems

@ Tsypkin Y.Z. Stability of systems with retarding ferd-back //
Avtomat. i Telemekh., 1946, V. 7, N. 2-3, P. 107-129.

This approach using Bode
magnitude and phase plots and
Nyquist stability criterion allows

to define the maximum delay for Frequency

Magnitude (dB)
)
| /
g
g

1 100 1 0000

which the closed-loop system keeps

stability.

Phase (Degrees)

1 1 1000 1000

Frequency

Maximum allowable delay in the closed loop

1 Ryt R(s) ~ P(s)

Reference Delay Controller  Plant Output
signal
LA Bode plot for R(s)P(s)
Transfer functi _4/\“’* g
of the dolsy S~
Wp(s) = e=Ps ! W

Phase margin

*
Dmax w

=
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Smith predictor

Smith predictor is a special structure of the controller proposed by
Otto Smith in 1957.

B Smith O.J.M., Closer control of loops with dead time // Chem.
Eng. Prog., 1959, N. 53, P. 217-219.

B Smith O.J.M., A controller to overcome dead time // ISA, 1959,
V. 6, P. 28-33.

The main goal of the Smith predictor is to predict which signal

will appear before it will happen.

Smith predictor

r O O e R(.s) Uu P(.s)e""U Yy

M(s) M(s)e*P

Control system supplied with Smith predictor

M (s) is a model of the plant
e~ %P is a transfer function of the delay
R(s) is a structure of the nominal controller

P(s)e™*P is a transfer function of the plant with the input delay
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Smith predictor

Assume that the model of the plan is ideal, i.e. M{s) = P(s). Then
the error between real output and output estimate will be zerc
(¢ = 0). Thus, we have

R PR
_ —sD — —sD
y=De (1+RM)T (1+RP€ )” @)

The term (1 f gp) is a transfer function of the closed-loop system

without delay.

It means that the delay does not exist in the feedback loop and does
not affect the stability and performance of the closed-loop system. In
other words controller does the job independently on the time delay.
The delay exist only in a numerator of the transfer function that
means the output after regulation is delayed.

Smith predictor

Coonsider the Smith predictor without assumption £ = 0. In this case
the model of the closed-loop system will be

y=Pe *PR(r—e— Mu),e=y— Me™*Py,
y = Pe %Py, (2)

hence

PR
Y= —sD e Pr. (3)
1+ RM + R(P — M)e—>
One can see that the error A — P converges to zero if the model is
precise, and the exponential term in denominator associated with the
delay disappears (in square brackets (3)).
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Modified Smith predictor

Using topological transformations one can get several equivalent
structures of Smith predictor.

T O C R(s) - o P(s)e P Y
£
Ms) T- e P
Modified Smith predictor
Y

4

Y

W{(p)e=?
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Modified Smith predictor

Predictable proportional-integral controller (PPI-controller) is a
modified Smith predictor which is widely utilized in automatic
control. Its structure presented on the figure helow

]

T € K “ i P[S)e_SD Y

€
1+sT

Remarks

Tsypkin's approach and Smith predictor are effective only for linear
stable systems with known parameters.

The closed-loop system is very sensitive to accuracy of model.
Parametric disturbances can be reason of an instability.
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Problem formulation

Consider & linear plant

z(t) = Az(t) + Bu(t — D), (1)
where z € R™ is a state vector, the pair (4, B} is completely
controllable, and control u(t) is delayed on D seconds.

The trivial controller for the system (4) may be constructed in the
form
u(t — D) = Kx(t), (5)

where the vector K guaranties that the matrix A + BK is Hurwitz.
Hence we have the nominal controller (ideal, although not realizable)

u(t) = Kz(t + D). (6)

Control law

However using the solution of (4) for z(¢)
t b
z(t) = e™=z(0) +/ eA=" Bu(r — D)dr (7)
0
we get
t Y
x(t+ D) = ePu(t) —|—[ AT By(T)dr, Wt >0, (8)
t—D

hence we have the state-feedback controller

ut) =K |Aat)+ [ A Ipunar|, w2 @

=0

which is realizable.

But this controller has an infinite-dimensional term with distributed
delay ff_D A7) By(r)dr.
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Closed-loop system

Delay has been eliminated in the model of the closed-loop system

#(¢) = (A + BK)x(t), Vt>D. (10)

Equation (10) holds only after D seconds. Before D seconds the state
of the plant corrcsponds to the following cxpression

1
o(t) — eFa(0) + / e~ By(r — D)dr, Vte[0,D). (11)
Jo

Original source

Control law (9) was firstly proposed in terms of finite-dimensional
systems (Ordinary Differential Equations)

B Kwon W.H., Pearson A.E., Feedback stabilization of linear
systems with delayed control // IEEE Transactions on Automatic

Control, 1980, V. 25, P. 266-269.

D Manitius A.Z., Olbrot A.W., Finite spectrum assignment for
systems with delays // IEEE Transactions on Automatic Control,
1979, V. 24, P. 541-553.

and reduced approach
D Arstein Z., Linear systems with delayed controls: A reduction //

IEEE Transactions on Automatic Control, 1982, V. 27, P.
869-879.

Such intuitively clear solution looks simple, however the proof of
stability of the closed-loop system is not obvious.
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Backstepping approach

Further we will consider the “backstpping” approach for time-delay
systems, which was proposed by Miroslav Krstic

B Kristic M., Delay compensation for nonlinear, adaptive, and PDE
systems. Birkhauser, 2009, 466 p.

The delay may be presented as partial differential equation (PDE) of

the first order

Ui(z,t) = U.(z,1t), (12)
U(D,t) = wult), (13)

where subscripts z and ¢ mean partial derivatives with respect to

corresponding arguments.

PDE model of the delay

Solution of (12), (13) is
U(z,t) = wu(t+2z-—D), (11)
where the output of the delay
U0,t) = u(t-D) (15)

describes the delayed control signal

u®) esP ut — D) (l) = Ax(l) + Bu(l — D) ﬁ-
U{D,t) U,
2 I |
D 0

Linear plant with the input delay
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Backstepping transformation

Consider the following transformation [1]

I’V(Z,t) = (j(z7 t) _/DA” Q‘(Z, C)(j(cr t)dg - ’)’(Z)Tx(t), (16)

which maps the system (4), (12}—(15) to internally stable system

2(t) = (A + BK)z(t) + BW(0. 1), (17)
Wiz, t) = W,(z, 1), (18)
W(D,t) =0. (19)

Control law

Compurtation of derivatives W;(z,¢) and W,{z,t), it is not difficult to
find g(z,¢) and y(z):

g(z.0) = KeA* OB, 4(2)T = Ke?~. (20)

Substitution g(z, {) and v(z} into (16) together with z = D yields the
control law

0
U(D, 1) = f KeAP=OBU(C, )¢ + KePa(n), )
¢

which equals to (9).
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Stability proof

Consider the Lyapunov candidate
~ D
WQ:HﬁWﬂﬂ+jfﬂ+@W@ﬁ%a (22)
0

where P = PT > 0 is a solution of the Lyapunov equation
P(A+BK)+{A—BK)Y'P=-Q (23)
for any arbitrary @+ QT > 0 and
v = Amaed PBBT P) [ XAnin (Q).
Then .
Vt) < -CV(#),

4 . )‘m'm(Q) 1
C _mm{2)\mm(P)’l+D}'

where

Therefore, the system (4), (9) is an exponentially stable.

Problem formulation

Consider a linear plant
2(t) = Ax(t) + Bu({t — D), y(t)=Czx(t), (24)

where x € R" is a state vector, y(¢} € R is a measurable output, and
control «(t) which is delayed on D seconds.

Tt is assumed that pair (A4, B) is completely controllable, and pair
(A, C) is completely observable.
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State observer

Consider the state observer
#(t) = Aa(t) + Bu(t — D) + L(y(t) — 9(t)}, (t) = Ca(t), (25)

where L makes the matrix (A — LC) Hurwitz.

For the error (¢} = x{t) — #(¢) and §(t) = y(t) — §(¢) we have
z(t) = (A— LO)E(t), §(t) = C(t), (26)

hence it is easy to show that Z(¢) exponentially converges to zero, i.e.

each term of this vector is bounded hy decaying exponent.

Backstepping transformation

Consider backstepping transformation like (16)

W(zt) = Uz, 1) — KeAa(t) — K / A8 BU(¢, t)dc

0
D
+K [ AP QLY (¢ 8)de, (27)
Y(Z!t) Zg}(t-i-Z—D), (28)
ft(zw t} = ?:z[za t)a (29)
Y(D,t) = (). (30)
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Control law

Choosing z = D and cquating W (D, t) to zero in (27) we get a
realizable conirol law

t |
u(t) = KeAPz(t) + K / A= Bu(7)dr, (31)
t—n

which uses estimates of the state Z(¢).
Substitute in (24) the transformation (27) with z = 0
D ~ -~
i(t) = Aw(l) + BKE() + K f eAP=OLY (¢ 1) + BW(0,1)
0
— (A4 BK)z(t) + BW(0,¢)
a2
— BK#(t) + BK / eMP-O LY (¢ t)d¢

0

= (A + BK)z(t) + BW(0,t) + Be(t). (32)

The closed-loop system

The model of the closed-loop system

#(t) = (A + BK)x(t) + BW(0,t) + Be(2), (33)
y(t) = Cx(t). (34)
Wg(Z’, t) = ﬁfz(z> t)) (35)
W(D,t) = 0. (36)

where 5
s(t) = —Ki({t) + K / e P-OLY (¢, t)d¢
a

is an exponentially decaying function due to exponential convergence
to zero of #(t) and, correspondingly, #(t).

Stability of the closed-loop system (33)-(36) may be shown with the
Lyapunov function (22) in the similar way.
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Conclusion

Predictor for mnstable systems is one of the basic and fundamental
solutions that allows to stabilize plants by state or output feedback.

Presented solution is suitable only for linear systems (and additional
calculations are necessary for a class of nonlinear systems). The plant
paramecters arc required with good accuracy.

Using this approach it is possible to solve more complicated problems
with external disturbances and parametric uncertainties of the plant
model.
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1. Introduction

Problems and motivation

mathematical models have limited accuracy over the whole

range of plants operating

Aircraft

DC motors .
DC motor dynamics




2019 © Dmitriy Gerasimov The modern theory of control systems
dngerasimov@itmo.ru, gerasimovdn@mail.ru Adaptive and robust control

Blood system Blood pressure dynamics with delay

Ke T‘“’(l +ae Tl“')

1+ 1s

()= [u()]

v — deviation of mean arterial pressure from normal
u — infusion rate of drug (nitroprusside)

Distillation column

Condenser

Distillation system dynamics

Column

[X"} = G(s)(I+ W(s)A)[u' } +G, () x, ]
L _

mg,=mg;+(1-K )m,

fi

In this context, the approaches of control theory that can
come up with the problems of plants uncertainties are of
special interest.

Can the control system choose the correct control to
improve the performance of the plant operating in presence
of uncertainties?

How to design an adaptive control?
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Definitions, clarifications:

I

Model with uncertainties that is the potential basis for
controller design belongs to some class of models and is
called nominal.

Characteristics of the nominal model are called nominal.

Uncertainties — unknown or not known precisely

characteristics, structure or parameters of the plant .

Uncertainties of the plant = uncertainties of the model.

Uncertainties
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Parametric uncertainties imply that the parameters
of the plant model are constant and unknown.

m

Spark ignition engines . Ji

BDC

Fuel evaporation process dynamics

. LK |
m, =——m, +——m,
/i ¥/ fi
I I,
mg, =mg; + (1- K_, )mﬁ

Signal uncertainties imply that the plant model
contains unknown functions of time.

DC motors

DC motor dynamics

1=—£1—k—5m+lU
L L L
_k_M_[__l-M“
o J
o=

m = R(temperature) = R(time)
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Functional uncertainties imply that plant model
contains unknown functions of state.

Tail-shaft dynamics equation
Jo=M-M,

M is the engine effective torque

M, is the viscous friction

M, =M,(®)=c, +c0+c,0

Structural uncertainties imply that the plant model
contains unknown structures.

P,
sensor l \

21

: SN ! o

o N
drive

Ny

u : ;

Manifold air pressure dynamics equation: P +kn (0)P = k,n,(P)o,(P)o,(a)
O,
Pressure sensor dynamics: P =—aP +bP .

| S
. %

a=—co+da’ =
v

DC

Throttle drive dynamics:
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Definitions:
Adaptive and robust control are the controls providing
desired performance of the plant operating in presence of
uncertainties
1. Adaptive control  implies the compensation of
uncertainties.

2. Robust control does not imply the compensation of

uncertainties, but using high gain control.

2. Lyapunov Functions Method. Short tutorial
Universal approach of stability analysis for autonomous plants
x=f(x), x(0), (2.1)

at equilibrium x",where x e R" is the state vector, f € R" is the
continuous nonlinear mapping.

Lyapunov functions V(x)

1. V(x) is monotonic ;

2. V(x)>0, if |x|=#0,
V(0)=0 ;

3. V(x)eC' (continuous and differentiable) .
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Time derivative of Lyapunov function in amount of (1):

" 6V(x)x___ aV(x)

V(x) grgd{V(x)} "f(x)"cosa

Ox ox

f(x) = grad {V (x)} /(x) =
V(x)

x(1)

solution x= f(x)

X,

Stability criterias:

1. If V(x)<0,then the equilibrium x"=0 is Lyapunov stable;
2. If p(x)<0 ,then the equilibrium x"=( is asymptotically
stable;
3. If V(x)<-BV(x), B>0 , then the equilibrium x =0 is
exponentially stable;
V(x)<-BV(x) = V(x)<exp(-B1)V(0)

x(t) 08
04
02
x o
0.2
04|
08/ -k" exp(—pr)

0 20 40 60 80 100 120
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Examples of Lyapunov functions:
1. Linear system
x=:Ax; x(0) (2.2)
where A is the time-invariant matrix.
Lyapunov function candidate
V(x)=x"Px, (2.3)
where p = p” + () is the time-invariant matrix.
V(ix)=x"Px+x"Pt=x"A"Px+x"PAx =
=x" (ATP+ PA).\’ =-x"0Ox<0
Conclusion: If there exists P = pP" » (0 such that
A"P+PA=-0, (2.4)

where O=Q" =0, system (2) is asymptotically stable.

2. Pendulum
X, =X,
(2.5)

. ; k
x, =—glsin(x)——x,
m - X

where g is the gravity acceleration,

[ is the length of rod, & 1is the friction
mg . _ [\],‘] =[0;0]

coefficient.
Lyapunov function candidate: sum of potential and kinetic energy

V(x)=mg(1-cos(x,))l + L?j:- (2.6)

Time derivative:
V(x)=mg sin(x, )x,/ + mx,x, = mg sin(x,)x,/ —mx, gl sin(x,) — mx;.
or
V(.\‘) = —mxf <0 (2.7)

Conclusion: pendulum is asymptotically stable at the equilibrium x~ =[0;0].
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3. Simple Example of Adaptive Controller Design

Motivation

Problem statement:

Plant:

X=0x+u, (3.1)

where x is the scalar state, u 1s the control,® is the known parameter.

Objective is to design a control providing the following limiting equality:

l_i»m x=0. (3.2)
Solution:
u=—0x—hx, (3.3)
where ) is the positive constant parameter.
u=—0x D @D = x=-ix = x(t) =exp(—At)x(0). (3.4)

Let us the design parameter is %=1 and plant parameter 0=35,
1€

control: u=-6x

system  x=-x Iis stable.

Now let us imagine, the plant parameter 6 unpredictably changes from 5
to 13: i

7

0 s

w
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Control : u =—6x

8 1 ]
| | s
7 o X=X
|
|
0 s |
X ==X 1
5
1t
% 1 2 5 6 7 8
2

————————— — ) — —

t

I
I
I
I
I
I
I
f
I
1
I
1
I
1
I
1
I
I
I
1
4

0 1 2 3 5 6 7 8
Classical control is not reliable and does not work properly in

presence of uncertainties

Problem statement of adaptive control:

Plant: (2}
X =0x+u,

where 0 is the unknown parameter.

Objective is to design a control providing the following limiting equality:

lim (x,, —x)=0, (3.6)

where x,, is the output of reference model
Xy =—Ax) +Ag, (3.7)

£ 1s the reference signal, & is the positive parameter responsible for
transient time.
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Solution:

1. Let the parameter 9 be known.

plant and reference model equations:
g=%, —x=(-Ax, +Ag)—(0x+u)
Let £¢£-Ae=-Ax,, +Ax = &(r) =exp(—At)g(0). Therefore

(—Ax,, +Ag)—(0x+u)=—Ax, +hx

U

Form the error signal € =x, —x and take its derivative in amount of

where §=0—0 is the parametric error.

u=-0x—Ax+Ag (3.8)
Solution:
2. Let the parameter 9 be unknown. Therefore the control
u=-0x—-Ax+Ag
is not implementable. Substitute estimate § for @ and obtain
implementable adjustable control:
u =—éx—7;x+)»g (3.10)
Replace (3.10) in the plant equation x=0x+u :
,t=9x—-é.\'——k\'+}s.g, (3.11)
Take the derivative of the error
E=x, —x=(-hx, +hg)- (Ox —Ox —Ax+ lg)
Signal Error Model £ ==\ — éx, (3.12)
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Solution:

A

3. Let us choose the algorithm generating estimate 9 :

0=0Q() (3.13)
where €)(7) is implementable (measurable) function.
Taking into account that §=0-0 and

0=—0

we get
Parametric Error Model

0=—-Q(r) (3.14)

How to choose the function (7)???

Solution:
4. Models
Signal Error Model p=—he= éx, (3.12)
Parametric Error Model 62—(2(?) (3.14)
Choose the Lyapunov function candidate

- l bl 1 <)

V(e,0)=—e +—0°, v>0 3.15
(,0) > > Y (3.15)

Y
and take its time derivative using (18) and (20):

V(e,0)=¢eé+ 156 =967 Gxe — léQ(r) -

Y Y
If Q@1)=-yxe then V(g,0)=-he’<0 k
0=—yxe (3.16),
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Summary
Adjustable controller:
u=—0x—Ax+ rg (3.10)
Adaptation algorithm:
é:—yxz (3.16)

with €=Xx,, —x and reference model

Xy =—AXx,, +Ag. (3.7)
PO

¢

Summary
Properties of the closed-loop system:
1. All signals in the system are bounded;
2. Control error &= x,, —x asymptotically tends to zero;
3. Parametric error §=0—@ in general case tends to a constant;
~ 1 b 1 ~2
V(e,0)=—e" +—0,
2 2y

V(e,0)=—2re’ <0

4. There is an optimal adaptation gain ¥ corresponding the fastest
parametrical convergence;
5. There can be parametric drift phenomena in presence of noise,
1.8, 1f
x=0x+u+3J,

where & is bounded disturbance, 0 —
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u=—-6x—-0x,

6= -2x&,

Xy =—06x,,

E=Xy, —X,

0.8
0.8
x(7)

0.4

0.2

20 30

Example: Classical stabilizing control for unstable plant x=5x+u
u=-6x
8:
.
0 6
5
t
40 10 20 30 40
2:
1.5
x(7)
0.5
t
q) 10 20 30 40
Example: Adaptive stabilizing control for unstable plant x=5x+u
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Example: Adaptive tracking control for unstable plant x=5x+u
u=-6x-0x+06g,
0=-2xg, e=x,-2x,
X, =—6x, +6g, g= sinf)t +3cost
o X Xy . 0
4
4
2
9 2
-2
t
% 2 4 6 8 1ot % 2 + 6 8 10
o0 U
0
-20
t
4% 2 4 6 8 10

4. Simple Example of Robust Controller Design
Problem statement of adaptive control:
Plant:

X=0x+u+9, |6|SS (4.1)
where 0 is the unknown parameter, 6(¢) is unpredictable bounded noise.

Objective is to design a control providing the following inequality:
|x,, (1) - x(l)l <A foranyt=T, (4.2)

where X, is the output of reference model

Xy =—hxy +Ag, (4.3)
g 1s the reference signal, % is the positive parameter responsible for
transient time.
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Solution #1

Adjustable controller:

Choose the Lyapunov function candidate
~ 1 bl
Ve, 0)=—¢"
) 2

and take its time derivative using (4.6):

7 . b 7 9 “\, B }\. 5 5 B -
V(e)=gé=—he” —Oxe—yx'e" —de= —,—8' - 58‘ —Oxe—yx'e"—d¢e =

yx’e’ —Oxe + —
45"

u=—-0x—)hx+Ahg (4.4)
Ada i orithm: — Nonlinear static feedback:
0 =—yxe (4.5)
with €=Xx,, —x and reference model
Xy =—Ax) +1g.
Substitution of (4.5) into (4.4) gives “high-gain” type controller:
u=yx’e—hx+Ag.
Then substitute this control into disturbed plant x =0x+u + 3.
x = 0x+vyx’e —hx +hg +3.
Solution #1
Again, take the derivative of the error E=X, —X
£=%, —x=(-hx, +hg)- (Gx +yx’e—Ax+Ag+ 5)
g =—he—Ox—yx’e—5 (4.6)
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Solution #1

92

4y

A=Ll324
2\

l o2 92
+_

A=—35>

2\ 4y

V(e)<-AV(e)+A

Solution #1

V(e)<-AV(g)+A

&)
06 A\
02|!| '

Exponential convergence of € to bounded set is proved

k-exp(—At)

=  V(@)< cxp(—kt)V(O)(l X }é) + %V(O)

-

y

/4
40 60 80 100 120
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Solution #1 Summary

Adjustable controller:

u=—0x—Ax+ rg (4.4)
Nonlinear static feedback :
0=—yxe (4.5)
with €=Xx,, —x and reference model
Xy =—Ax, +Ag. (4.3)
2

XxX=0x+u+9d

Solution #1 Summary
Properties of the closed-loop robust system:
1. All signals in the system are bounded;

2. Control error &= x,, —x exponentially tends to the neighborhood of

ZEero;

3. The radius of neighborhood can be arbitrary reduced by

A / or ¥ ///

V(e)<-AV(e)+A where A =i52 +2—_
Y
4. There is no compensation of uncertainty!

Even, if the plant is not disturbed (§ =6 =0 ), the error

e=x, —x does not go to zero!
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Example: Classical stabilizing control for unstable plant
u=-bx 0=5

IB =0,5sin(41)+0,75 cos(2{)|

x(1)

Example: Robust stabilizing control for unstable plant  [x=0x+u+9

u = —6x —0x, D=5

O=—yxe, e=x,-x, |6 =0,5sin(41)+ 0,75 cos(2{)|

Xy =—6xy,

1

05

v =200 x(1)
05

& 10 20 30 40
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Example: Robust tracking control for unstable plant
u =—6x—éx+6g, 0=5

0=-2x5, &= Xy =X, |8 =0,5sin(47) + 0,75 cos(21)|
X, =—6x, +6g, g=sin6t+3cost

Adaptive control provides the complete

compensation of uncertainties,

but can be not reliable under disturbance

condition é —> 00
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Robust control guarantee the strongest
exponential stability,

but does not compensate the

uncertainties, therefore ¢ 74 0

Adaptive control provides the complete

compensation of uncertainties,

but can be not reliable under disturbance
condition é —> 0

QP
’ trade off ?
s

Robust control guarantee the strongest

exponential stability,

but does not compensate the

uncertainties, therefore © 7; 0
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Solution #2

Adjustable controller:

u=—-0x—)hx+Ahg (4.8)
M: —> Robust modification of AA:
0 = —yxe — o0 (4.9)

where o is a positive feedback gain,
€=Xx,, —X, X, 1isthe output of reference model

Xy =—Ax) +Ag.
Then substitute control (31) into disturbed plant x =0x +u + 3.
X=0x—0x—Ax+ Ag + 0.

x=0x—Ax+Ag+3d. (0=0-0)

Solution #2

Again, form take the derivative of the error e=x, —x

£=1x, —x=(-Ax, + kg)—(éx—);x+}ug + 5)

Signal Error Model g=-Ae—0x-5 (4.10)

A

é:—yxa—cé — H=-§

L

Parametric Error Model 0= yxe + o0 (4.11)

Choose the Lyapunov function candidate

V(a,()):lel+L(~):, y>0 (4.12)
2 2y
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Solution #2

Take the time derivative of Lyapunov function using (4.10) and (4.11):

Signal Error Model E=—-he—0Ox—5

Parametric Error Modgl 0 =yxe +0c0

V(e,0)=¢eé+ l()() =—he’ —Oxe— l(39.(1)

Y 4
V(e,0)=gé+ léé = (—}.a‘:’ —0Oxe —88)+ lé(yxe - csé)
Y Y

V(e,0)=—he’ — e+ 966

V(e,()) =-\g’ — B¢

Solution #2

2

V(a,()):—%e

V(e,é):—%a-’—iél

2y
V(e,é):—%az—%él— = 5
. ~ )\. 2 O =, l 2 (¢) 2
V(e,0) <——e ——0"+—06"+—0°
2 2y 2\ 2y

V(s,é)s—&a: _Sgsl5, Oy
2" 2y 2 2y
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Solution #2

V(a,é)s—iaz—géz+ l 52+ 22
2 2y 2\ 2y

V(e,0)< —%83 -

Exponential convergence of € to bounded set is proved

e(?)
06" A
\ r-exp(—At
04| pL-A)
ot N\ Be SR
0 ;‘ \ WVLM
A e
v/ -~
04 [/ —r-exp(—At)
-0.6- 4
0 20 40 80 80 100 120

E-'

2y
TG 1 e ) G b
A=—208" +—0°
2\ 2y
V(e,0) < —kV(e,0)+A k:min{}.,g} (4.13)
¥
Solution #2
. < A) A
Vie)<—kV(e)+A == V(t)Scxp(—kt)V(O)(l—Z]+;V(O)
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Solution #2 Summary

Adjustable controller:

u=—-0x—-Ax+Ag (4.8)
Robust modification of adaptation algorithm:

0 = —yxe —c0 (4.9)
with e€=x, —x and reference model

\ Y P )"\.-”. T ).L‘\’ *6 (4'3)

Xx=0x+u+9d

Solution #2 Summary
Properties of the closed-loop robust system:
1. All signals in the system are bounded;

2. Control error &= x,, —x exponentially tends to the neighborhood of

ZEero;

3. The radius of neighborhood can be arbitrary reduced by

A / or Y /// or o 4

V(e)<—kV(e)+A where A= LS:‘ + 2

2A 2'}’

4. Algorithm provides the compensation of uncertainty.

If the plant is not disturbed (6 =6=0 ), the error

€=x,, —x cangotozero,if ¢=0.
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Example: Classical stabilizing control for unstable plant
u=-bx 0=5

IES =0,5sin(41)+0,75 cos(2{)|

x(1)

Example: Adaptive robust stabilizing control for the plant |[x=0x+u+0
u =—6x—0x, 0=5

~

0=—yxeg— 0, &= Xy =% |6 = 0,5sin(4¢) +0,75 cos(2{)|

Xy = _6-\‘).1

0.5

y=2 x(1) °
0.5

-1.5
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Example: Adaptive robust stabilizing control for the plant

‘u = —6x —0Ox, D=5

0 =-yxe— 6 E=X,, —X, |8 =0,5sin(47)+ 0,75 cos(21)|

Xy =—6x),

0.5

y =200 x(r) °
05

-1

A 10 20 30 40

Example: Adaptive robust tracking control for the plant

u =—6.r—éx+6g, 0=5

é =-2xe-0, &= Xy =%, 5 = 0,5sin(4¢) + 0,75 cos(2¢)|

X, =—6x, +6g, g=sin6t+3cost

10 20 30 40
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S. Generalized Algorithm of Adaptive and
Robust Controller Design

How to design an adaptive control?

S. Generalized Algorithm of Adaptive and
Robust Controller Design

1. Problem statement of adaptive control:

Plant:
x= f(0,x,u,0), x(0), (5.1

where 0 is the vector of unknown parameters (or functions),
f e R" 1s continuous nonlinear mapping, § ¢ p” NEH is the disturbance.

Objective is to design a control  providing the following inequality:
|xM (1) — x(t)l <A foranyt=T, (5.2)

where x,, is the output of reference model
Xy = AyXy +by g, (5.3)

g 1s the reference signal, A is the positive parameter.
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S. Generalized Algorithm of Adaptive and
Robust Controller Design

2. Nonadaptive controller design:
Let the plant parameters (functions) 0 be known.
Luggage of classical control theory

Nonadaptive control

: u=U(0,x,e,g), (5.4)

where e=x,, —x isthe control error, U is the nonlinear static or

dynamical scalar function.

S. Generalized Algorithm of Adaptive and
Robust Controller Design

3. Adjustable controller design

Parameters (functions) 0 are unknown.

Substitute estimates ¢ for 0 in control (5.4)

and obtain adjustable controller:

u= U(é,x, e,g) (5.5)

Substitute (38) into the plant x= f(0,x,u,d8) :
x=f(0,x,U(B,x,e,g),5)

Form the error e =x,, —x and take its derivative:
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S. Generalized Algorithm of Adaptive and
Robust Controller Design

Form the error ¢ =x, —x and take its derivative:

é=x, —x=(-Ax, +Ag)- f((—),x,U(é, x,£,£),0)

U

Signal Error Model e= E(e, é,t) (5.6)

where E 1s the nonlinear static vector function,

9 =0-0 isthe parametric error.

S. Generalized Algorithm of Adaptive and
Robust Controller Design

4. Adaptation algorithm design

Form the parametric error model

Parametric Error Model é=Q(€,7), (5.7)

where ) is the implementable (measurable) function to be determined.

Adaptation algorithm:

D
Il

é= —Q(e,t),

-0 (5.8)
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S. Generalized Algorithm of Adaptive and
Robust Controller Design

5. Determination of ()

Signal Error Model é= E(e,é,r) (5.6)

Parametric Error Model é=Q(C’,1), (5.7)

Choose a Lyapunov function candidate

V =V(e,0,1).

Take its derivative in amount of (5.6) and (5.7) ¥ (e, 0).

S. Generalized Algorithm of Adaptive and
Robust Controller Design

¢=E(e,0,1) 0=0(e.t),
V(e,0).
Condition
V(e,0)<0.
gives U

Adaptation algorithm: Q(er)

é:—Q(e,r) (5.8)
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S. Generalized Algorithm of Adaptive and
Robust Controller Design

Summary
Adjustable control
u=U(é,x,s,g) (5.5)
Adaptation algorithm
0=-Q(e,) (5.8)

S. Generalized Algorithm of Adaptive and
Robust Controller Design

There is no any universal approach of

Lyapunov function choice!
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S. Generalized Algorithm of Adaptive and
Robust Controller Design

There is no any universal approach of
Lyapunov function choice!

However, there are standard errors
models with preliminary selected
Lyapunov functions and designed

Adaptation Algorithms

6. Standard Error Models and
Adaptation Algorithms Design

6.1. Static Error Model

e(1) = 0" (Hw(1), (6.1)

where &(7) is the output, 6(1)=0-0(t)e ~" is the vector of parametric

errors, ®(t)e~ " is the vector of measurable functions (regressor).

Remark 6.1. The model is widely used in the problems of identification
(see example below).

y =78 (62)

with a positive gain v .

Time derivative:

V=




2019 © Dmitriy Gerasimov

dngerasimov(@itmo.ru, gerasimovdn@mail.ru Adaptive and robust control

6.1. Static Error Model

. | | 1~ 5
V=-—0"0=—-0"0=-—-0"yoe=—¢> <0
Y Y )
Summary and Discussion
Error Model e=0"o,
Adaptation Algorithm é = yoE
v : 1 "'7""
Lyapunov function Vo= 2—9 0>0
Y . What it means?
Its time derivative V=-"<0
6.1. Static Error Model
L _ v(n=0"(n0()/2y
4 € — 0 asymptotically fast
3-\ ~12
2\ : "9” is monotonically
1 Te— decreasing function
4
00 2 B 6 8 10

2. Example 6.1
For a given error model &=0,0, +0,w, there are following scenarios:

a) o =1 0,=2and 8,52, 0,>-1 How many options for

b) o, :], ®, =2 and 91 ‘-')4, 6: - -2 COI]\,CI"QCIICC?
C) o, =sint, o, =2sint and é, - 2, él — -1
d) o, =sint, ®, =2sin2t and 6, >7?, 6, >?

90
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a)
b)
c)
d)
€)

6.1. Static Error Model
Example 6.2

For a given error model ¢ =00, + 0,0, + 0,0, there are following scenarios:

®, =sinf, ®, =2sint, ®, =3sint and 0, ,, —>?

®, =sint, o, =2sint, o, =3sin2¢ and 9 e 't

®, =sint, o, =2sin3t, o, =3sin2¢ and 0,,, —>"?
—sm( ) —2§1n(t+*t) ®, =3sin( / 2) and é,_:j —?
5 4

o, =sin(2t), ©, =2sin(t+n), @, =3sin(z+71/2) and 6,,, >?

a)
b)
c)
d)
e)

6.1. Static Error Model
Example 6.2

For a given error model € =00, + 0,0, + 0,0, there are following scenarios:

®, =sint, o, =2sinf, o, =3sint and O, ,, —> not ness. to zero

®, =sint, ®, =2sint, ®, =3sin2t and é,_m — not ness. to zero

®, =sint, o, =2sin3t, o, =3sin2¢ and él._,_s —0

o, =sin(t), ©, =2sin(r+n), o, =3sin(7+n/2) and é,_:_s — not n. to zero

®, =sin(2t), , =2sin(t+n), ©, =3sin(¢+7/2) and 6,,, >0

Vector we ™" has to contain at least m | 2 different harmonics

to provide identification properties
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6.1. Static Error Model

Summary
Properties of the closed-loop robust system:
1. If o isbounded, all signals in the system are bounded;
Error ¢ approaches zero asymptotically fast;

Function ”9” is monotonically nonincreasing;

Bowo

: ”éH approaches zero asymptotically fast, if © contains at least m/2

harmonics and consists of linearly independent elements;
This property can be reformulated in terms of Persistent Excitation

Condition: i

I o(t)o’ (t1)dt > ol (6.3)

4

for some positive o, 7',

6.1. Static Error Model
Example 6.3. The problem of identification reduced to Static Error Model

Problem statement

Let a plant be described by
V+ay+a,y=bu (6.4)

with unknown parameters a,, a,, b, and measurable input # and output V .

The objective is to design such estimates dy a0, that obey equalities

lim(a, - d, ) =lim(g, - @)= lim(5, ~b,)=0. (6.5)

t—0 t—w [—x
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6.1. Static Error Model

1. Apply transfer function
1

Solution

1

H(s)= B

with Hurwitz polynomial K(s)=s" + k,s +k, to the plant (6.4) assuming
initial conditions y(0), ¥(0) equaled to zero:

V+ay+a,y=bu

s*+ ks +k,

0=col(6,,0,, 6,),

s s | |
K(S)[)]+ 1 K( ) }]+ 0 K(S)[}]— 0 K(S) ]
6.1. Static Error Model
Solution
s ¥ Ky | 1
) P = b )
K(s)l) [+a K(s) [y]+a K(s) []=4 K(s) [#]
S | 1
By k N=bi—=—1
y+(a 1)K(S)[y]+(“o O)K(S)[}] " K(s) [u]
s 1 1
y=(k-a) KZS) [V] +(ky—ay) ) [y]+ ' KG) [u]
\ )L J |\ J | J
| | | Y
0, o, 0, o, 0,
Parameterized plant y= 0w (6.6)

o =col(v,, ®,, 0,)
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6.1. Static Error Model
Solution

2. Design of error

2
e=y-0'o

where @ is the estimate of © . ‘ll\ =

Pi=

e=0"w

1s parametric error vector.

U

=YOE

Error model

0=0-0

3. Adaptation algorithm design.

D>

Adaptation algorithm

(6.7)

6.1. Static Error Model

Solution Summary

Error

E£E=

=J’—(k|_&1)

Adaptation Algorithms

0=

YOE
! ~

_YK@)
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6.1. Static Error Model

0 = col(k, - G,,k, — Gy, b,)

General Scheme

u

—T—P VHay+a,y=Db [——

®

A 4 A
0 1 (OR
s belf— = % :
s ®

6.1. Static Error Model

Simulation results

Adaptation gain y=1

u(t)=10sin ¢

Plant y+2y+y=3u
Filters polynomial K(s)= s’ +5s+6

0=col(3, 5, 3)

0 Joco)]
5- ; 8
4| A
> |
2 X
iy 2\
0(‘) J.'.\Ai‘d 40 60 80 00 % 20

40 60 80 100
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6.1. Static Error Model

Simulation results

Plant y+2y+y=3u
Filters polynomial K(s)= s*+55+6
y=1

Adaptation gain

u(t)=10sin t +20cos2¢

£(0) |6
6 8
4 6"
i
2 “ 4 '~|
0 I/\\/h""--»"— 2 ‘\
|
L —
2 20 40 60 80 100 % 20 40 60 80
t {

100

Adaptation algorithm

6.1. Static Error Model

ML.LT. rule as an alternative methodology
to Lyapunov functions

Error model

&(f) = 07 (N o(1),

Lyapunov function

M.IT. rule
Function Performance index
_— 1.5
V=078 J(E©)==¢
2y ‘ 2
V =-g2 0=y grad J(g)
0

\/

0= YOE
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6.2. Dynamic error model with measurable state
é(1) = Ae(t) + b0 (Hw(?), (6.9)
e(t) = Ce(t)

where e~ is the state ¢ is the output, <~ is the vector of

parametric errors, me ~ " is the vector of measurable functions (regressor).

Remark 6.2. The model is widely used in the problems of state adaptive
control (see example below).

V =leTPe+Léré (6.10)
2 2y
with a positive gain y and positively defined symmetric matrix P = P" = 0

defined later.

6.2. Dynamic error model with measurable state

Time derivative:

Pat%ips il pR Lt = l(Ae+bé’m)TPe+leTP(Ae+béT ) 1omd=
2 2 v 2 2 Y

Lo g pes Lo Pae+ b0 wPe- L1670 = L (A’P+PA)e+éTmb’Pe—lé’é

3 2 v 2 Y

Since matrix A is Hurwitz, it is related to the matrix P
via Lyapunov equation A" P+ PA=-Q withQ=0" =0

e —

V——-2—e Qe+9rmbTPe —9 9
Adaptation algor ithm?
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6.2. Dynamic error model with measurable state
1
Y

V=—%eTQe+éT0)bTPe— 070

If 0=yob Pe ,

V'=—%erQe<0 (6.11)

6.2. Dynamic error model with measurable state

Summary and Discussion

Error Model é=Ae+bd' o
Adaptation Algorithm é= yob' Pe
-

» 4 l T l 'T“

Lyapunov function V= Ee Pe + 2—9 0
Y ’ . ‘
1 ~What it means?

Its time derivative V= -EerQe <0
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6.2. Dynamic error model with measurable state

Summary
Properties of the closed-loop robust system:
1. If o isbounded, all signals in the system are bounded;
Error |¢]| approaches zero asymptotically fast;

Function "9“ is monotonically nonincreasing;

Bowo

: ”éH approaches zero asymptotically fast, if © contains at least m/2

harmonics and consists of linearly independent elements;
This property can be reformulated in terms of Persistent Excitation

Condition: i

j o(t)o’ (t)dt> ol

4

for some positive o, 7',

6.2. Dynamic error model with measurable state
Example 6.4. The problem of state adaptive control

Problem statement

Let a plant be described by

= + u (6.12)
X —a, —a;|| X b,

.\.‘ "‘1 X /)
with unknown parameters @, @, , known b, and measurable state

input # and output V.
The objective is to design a control # such that

1im||xM —x“ =0 (6.13)

—x
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6.2. Dynamic error model with measurable state

X,, is the state of reference model

X 0 1 3 0
X2 Ay Ty X2 bM 0
‘_Y_’ L Y J \_'_} \_'_)

Xy A‘\/ X bu

M

with parameters a,,,, a,,,, b,,, responsible for transient performance of

the closed-loop system and reference signal £ .

Main idea of solution is to reduce the problem to the

error model. 1
Then to get the adaptation algorithm. iNSiGHJ =
9 N

P

6.2. Dynamic error model with measurable state

Solution
1. Let the parameters @, @, be known.

Form the error signal e=x, —x and take its derivative in amount of
plant and reference model equations:

e=x,, —x=4,x, +b,g— Ax—bu

Let ¢ 4,e (e(t)=exp(4,,1)e(0)— 0 exponentially fast).

Then
Ay x, +b,,g—Ax—bu B Ay e

"%w +by,,g — Ax—bu 0 u —Aux

bu = (A.u —A)x+b,‘,g
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6.2. Dynamic error model with measurable state

Solution
bu =(4,, —A)x+bug

(L. H St
| U
= (ay iy )%, + (@ — @y, ) %, +byyog |

[)0 \_y__;
0,

Nonadaptive control u= 5 [9 x+b‘,0g]
0

(6.15)

6.2. Dynamic error model with measurable state

Solution

2. Let the parameters «,, @, be unknown. Control

l .7
u=—|0x+5b,
b, I: M08 :l
is not implementable. Substitute estimate O for O and obtain

implementable adjustable control:

1 ~
Adjustable control u= [—[Brx 2 X b/uog}
)

0

Replace (6.16) in the plant equation x = Ax + bu :

. 1 rar
x=4 x+bg[6’x+b_\,og]

(6.16)
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6.2. Dynamic error model with measurable state
Solution
Evaluate time derivative of error:

: 1 ra
Xy —X=A,x, +b,g—Ax— b)—[@rx + bmg] LA

U 0

1 Far
=4, e /+h4” o [)E[Gl,r+%]
+

€
e,

-

0 1

—dy

I

6.2. Dynamic error model with measurable state

{

Solution

o |
—Ayo |l 6 (ao_auo)'*'(

with parametric error 0 =0—6.

(6.17)
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6.2. Dynamic error model with measurable state

Solution
Error model e=A, e+ k0" x
Adaptation Algorithm é = ykaPe (6.18)

where Y is a positive gain, P =P’ >0 is the solution of Lyapunov

equation

Al P+PA, =—-Q (6.19)

with preliminary selected O = 0 =1,

6.2. Dynamic error model with measurable state

Solution Summary

1 ran
Adjustable control u= —|:91 X+ b/uog:| (6.16)
b,
Adaptation Algorithm é =7 xk' Pe (6.18)
Error e=Xx,—Xx
Lyapunov equation ALP+ PA,, = -0 (6.19)
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6.2. Dynamic error model with measurable state

General Scheme

u X
’:‘ » Xx=Ax+bu pP———94>

&= x = Ay xy A /"..rf\"

6.2. Dynamic error model with measurable state

Simulation results

Plant (unstable) [ x

Reference model

Adaptation gain

y =100
Matrix P - 1.1167 0.0833
“10.0833 0.1167

R(-'fL’l ence

g(t)=sindt+2

104
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6.2. Dynamic error model with measurable state
Simulation results
X5 Xpr1 X35 Xp2
25 = . 4.
15 4§ =
\ \ N\ 0 /[
1 ““ OJ /' \ ’/'/ \\‘ /
0.5 J v \_./ \/”’ \\\//
/ 3
% 2 4 6 8 10 20 2 4 6 8 10
t g & t
8,,0,
o...‘l‘ =
-5 =
10 |
% 2 4 6 8 10
4

6.2. Dynamic error model with measurable state

Robust modifications of adaptation algorithm

Modification

0= yob' Pe

with nonlinear feedback

Yx=Ax+bu P>

Homework |~ [€ ﬁ
Prove the ’ ;
properties | %% o ‘(_j’é

&= x,, = Ay x, +b,g|
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6.2. Dynamic error model with measurable state

Robust modifications of adaptation algorithm

6 — Modification 0 =00+ yob" Pe

u X
w ’:’ b x=Ax+bu [PF————4>

HI@<L<d®

x,, +b, gl

o

6.2. Dynamic error model with measurable state

Robust modifications of adaptation algorithm

o — Modification é= -o‘é-i- y(,)bTPg
3.5
X=Ax+bu pP———4>
Homework |x [€ #
Prove the A % x|
. 0 | e
properties - (—<]e x
A Xt
(e}
g B~
83!k, = A, x,, +b,g|
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6.3. Dynamic error model with measurable output

(regressor).

presented in the “Input-Output” form

£(t) = W(s)[éT(t)m(t)]

with transfer function W (s)=C(Is— A)'b.

é(t) = Ae(t) + b0 (H)o(1), (6.20a)
e(t)=Ce(t)
where e e =" is the unmeasurable state ¢ is the output, 6~ is the

vector of parametric errors, me ™" is the vector of measurable functions

Remark 6.3. Since vector is not measurable, the model (6.20a) can be

(6.20b)

6.3. Dynamic error model with measurable output

Remark 6.4. The model is widely used in the problems of output

adaptive control (see example below).

The problem is to design an adaptation

algorithm/algorithms based on (6.20)
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6.3. Dynamic error model with measurable output

Solution #1

Can we just apply adaptation algorithm

0 = yoe
used for static error model?

IF YES, WHEN???

6.3. Dynamic error model with measurable output

Solution #1

= Ade+bh0" o,
€= Ce

"e" unmeasurable

=yob' Pe/

If p"p=c , adaptation algorithm becomes implementable, since

0=ywb' Pe=yos (6.21)
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6.3. Dynamic error model with measurable output
Solution #1
Lemma (Yakubovich-Kalman-Popov):
Matrix p=p"~( obeys Lyapunov equation
A"P+PA=-Q
and equation
b'P=C
simultaniously, iff transfer function
W(s)=C(Is—A)"'b.
is Strictly Positive Real (SPR).

6.3. Dynamic error model with measurable output
Solution #1
Definition 6.1. Transfer function W (s)=C(Is—A4)'b is SPRif

1. It is stable, i.e. polynomial of its denominator is Hurwitz (has all the
roots in the left half plane of root locus);

2. Nyiqust plot is placed in the right half plane of the diagram.

Re{W(jw)}>0, Ywel0, ). 4 S
3. The limit equality hold 2
lim w? Re{W (jw)} >0 Im {I¥ (jw)} O N/
W D) /,« |
W =00
Y 2 0 2 4
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systems

6.3. Dynamic error model with measurable output
Example 6.5. SPR transfer function of first order block

K
Ts +1

with some positive constant parameters K and T .

Wi(s)=

Verification
1. Frequency transfer function

K __ K(-Dw+l) K . KIw
Tiw+1 - (7]'w+ 1)(—Tjw+1) T T2 41 —J T2w? +1

W (jw) =

3. The second condition:

2. The first condition: Ts +1=0 = s, =—1/T = W(s) is Hurwitz 384

. K )
Re{W(jw)}=———>0, Ywe[0, x).
T w +1 1
6.3. Dynamic error model with measurable output
4. The third condition:
o Kw? K &)
limw” Re{W(jw); =lim ————=—>0. o &
W { / } woe T +1 T , &
18
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4. The third condition:

lim w” Re{W (jw)} = lim A

W—C W—>0 T‘z\,vz + 1

2

6.3. Dynamic error model with measurable output

:£>0.

T:

property of the first order block,

i.e. relative degree less than 2 (0 or 1)

SPR transfer function is a function with

transfer functions
@
1 é i 67—(!)
0 = pr—l x [—
s

6.3. Dynamic error model with measurable output

W{(s)

L

Remark 6.5. One-syllable words about adaptation algorithm and SPR

mwe

Error model

&(t) = I’f"’(b‘)[ér(l)(})(l)]

Adaptation algorithm é(t) = —é([) =—yw(t)e(t)
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6.3. Dynamic error model with measurable output

Solution #1

Summary and Discussion

Error Model €= W(s)[érco],

~

Adaptation Algorithm 0 = yome,

where W(s) 1s an SPR transfer function.

SPR condition is quite restrictive and can

narrow practical meaning of the problem

6.3. Dynamic error model with measurable output
Solution #2 Augmented error algorithm
Consider error model
£= W(s)[érco]
and introduce augmentation signal
E=e—0"W(s)[]+W(s)] 00| (622)

Substitution of error model into (6.22) gives static error model !!!

£=0"W(s)[0] (623

Adaptation algorithm (see section 6.1. Static error model)

b YW (s)[o]e. (6.24)
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6.3. Dynamic error model with measurable output

Solution #2 Augmented error algorithm

Summary and Discussion

Evror Modéd =W (s)[@’m],
Augmented error E=¢g— élW(b)[(’J] + W(S)[éro)],
Adaptation Algorithm é = VW(S) [0)] £,

Proved by the Swapping lemma:
W(s)[érco] ='W (s)[0] - W(.(s)[W,,(s)[mT]é]

with W, (s)=C(Is- 4) ', W,(s)=(Is—A) 'p  are the transfer matrices.

6.3. Dynamic error model with measurable output
Example 6.6. The problem of output adaptive control

Problem statement

Let a plant be described by
y+ay+a,y=bu (6.25)

with unknown parameters a,.a, , known b, and unmeasurable state y ,

known input « and output y .

The objective is to design a control «  such that
1im||yM —y|| =10, (6.26)
—

where Y is the output of reference model

Vu t G Vy +ay0Ys =byo8 (6.27)

with reference signal g .
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6.3. Dynamic error model with measurable output
Solution
1. Obstacle of unmeasurable state.
Apply first order (n-7th) filter

1
s+k

< e 20

to the plant equation:

5 : 1
S+k[y+a,y+a0y]=b0S+k[u]
¥ "Y‘U Lo ]
— e lJ]+a = lu]
=(k—al)y+(a,k—k“—ao)s+k[ ']+b0 s+k[u]

6.3. Dynamic error model with measurable output

Solution

. 5 1 |
y= (k —a, ))/ + (a,k -k~ - a, )m[)/] +b0 m[u]
| Y J\_TJ | y | & Y J L'_} Y )
0, o 0, w, 0, o,

1 2 -

y=0"@®

The derivative » is still not accessible, however

presentable in the useful form of linear regression
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6.3. Dynamic error model with measurable output
Solution

2. Obstacle of unknown parameters.

Main idea of solution is to reduce the problem to the
error model. \
. /
Then to get the adaptation algorithm. {NSiGHJ —
N o

b

6.3. Dynamic error model with measurable output
Solution

2. Obstacle of unknown parameters.
Evaluate the second time derivative of error € =y, —y in view of
plant y+a,y+a,y =byu

and reference model Vy, + Yy + @yoVy =by08

E= Yy — V== Vy —UyoYy b8 +a,y+a,y—byu

U

E="2 [—CIM,}-’ — @y by g +ay+a,y _bo"]
8"+ ay,s+ay,

1
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6.3. Dynamic error model with measurable output
Solution

| ) )
€=— [—a:\lly —ayy+by g +ay+a,y —bou]
S+ aMlS + aMO
\ )

' U

(al _am))”*'(ao _a..\vm)y'*'blwog _bo“]

Ve e=W, (S)[(al ’a.‘t-n)}."'"(ao "a,wo)y'*'bjwog _bou]

e=W, (s)[GTw +by08 —bou]

6.3. Dynamic error model with measurable output

Solution

=W, (s)[ 0"0+b,,g —byu |

g)

0 =col(k —a,+a,—a,,, a,k-k’-a,, b(,)

1 1
where ®=col| v, —|y|,
(y s+k[y] s+k

1ra.
Adjustable control u= —[61 o+b, Og] (6.28)
0

Error model =W, (S)I:éTw:I wwm ' (6.29)
F 4 2 : ‘\ ;

~ ~

with parametric errors 0 =0—0.
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6.3. Dynamic error model with measurable output

Solution

e=W,(s) [ér(‘):|

where ‘U'

Error E=Yy—Y
1
s+k

Bl)

Regressor with filters ©=col| y,
s+k

Augmented error E=¢g— OTVVM (S)[(;)] +W,, (‘9)[67’(0:" (6.30)
Adaptation Algorithm é = yW” (s)[(,)]é_ (6.31)
6.3. Dynamic error model with measurable output
Solution Summary
1 ¥
Adjustable control u= —|:6 o+b, 0g:| (6.28)
b,
Augmented error E=¢c— éTW:W (S)[O)] +W,, (S)|:él.(0:|, (6.30)
Adaptation Algorithm é = yW” (5)[(,)]@_ (6.31)
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6.3. Dynamic error model with measurable output

General Scheme

y+ay+a,y=bu =

= (—Q(=
g ' Yii :

= :
e ] Vi + @y Vo +y0Yy =048

6.3. Dynamic error model with measurable output

Simulation results

P Unknown parameters
ant
y+ay+a,y=u a, =1, a,=2

Reference model

Yy +5yy +6y,, =68

Adaptation gain

vy =1000
Reference transfer function (with unity denominator)
Wy(s)= a;
‘ s +55+6
Reference g(t)y=sindt+2
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Regressor

6.3. Dynamic error model with measurable output

1 1
ow=col| y, 1, u
( s+8[ ] s+8[ ]
e o [ P AT 1 1 N7
Augmented error g=g—0 = [(0] +— |:9 (0],
$°+55+6 s“+5s+6
Error E=Yy—Y

Simulation results

6.3. Dynamic error model with measurable output

&=V =Y
0.2
0, ‘)‘M\'}}'\',J"f .‘YL VMRS A AArrrrenmsane
02
"
-o.eO' 20 40 60

Simulation results

0,,0,,0
0
e \
S N
-10
-15
80 100 0 20 40 p 60 80 100
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Digital twins

Cyber-physical systems
Digital twins

Alexey Margun
alexeimargun@gmail.com

Digital twins

Digital Twin is a software analogue of a physical
device that simulates internal processes, technical
characteristics and behavior of a real object under
the influence of the environment.

Digtal Twn
,‘K.(. S

* Online copy of a real technical system (digital
shadow)

* Offline modeling of technical systems
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Digital twins

Problems:

* Unknown parameters

* Parameters changing

* Absence of sensors

* External noises and disturbances

Possible solutions:
* |dentification of unknown parameters
* Observers instead of sensors

Input-output model

X =
x,=U yM y

Tx,(t) +x,(t) = kx,(t) .

x,(t) =k(1—e YT)x, J3(®) = u(®)
Laplace transformation (p = %): % = Pag % = %.
Plant model:

a(p)y(t) = b(p)u(t),

a(f’) = aof?" *+ alp"_1 + -+ a,_1p + a, is a characteristic
polynomia

b(p) = bop™ + byp™ 1 + -+ + byy_1D + by,
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Input-output model
y(t) =W(plu(), W(p) = (p) is a transfer function

x=U xlaw u=M ¥

yt) =

k 1
To+ 7 y@t) = Fu(f)

k
TSR u(t)—>

i
v*

— (&)

State space model

All linear differential equations ca be written as
J‘fl = 1% + 12X = are o} A1nXn + blu,
x‘z = r1Xq + ar2X> + o4 TonXn -+ bzu,

Xp = Ap1X1 + QpaXs + 0+ Qppxy + Drit,
y(t) = 121 (£) + cox2(8) + - + cpxp (2).

In matrix representation:

x = Ax + Bu,
y=Cx
X1 a1 - Qun b1
x=|-|,A=] - ,B=1.. ,C=[C1 Cn]
Xn An1 Gnn bn
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State space model. Example

Dynamic equations:

F—= N
s=v x N
mpv=F —ks—hv "R
State space model: S0 sy
x = Ax + Bu,
y=Cx

S
Let us choose state vectoras x = |v|

0 1

0
4= _pm —nym| B =|ipml-c=11 0
t

X(t) = Xpree + Xforcea = €419 + f eAt-DBu(t)dr
0

State space model. Change of
coordinates

Consider new state vector:
x* = Px
P is a transformation matrix, det P # 0.
Inverse transformation:
x =P 1x*

Model in new coordinates:

Sk . ARk *

=B . pap-1 gt = pB,c* = cP1

y ' =Cx

Characteristic polynomial and poles of the system don’t changes.
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State space model

Modeling scheme

Transformation to input-output form:
W(p) =C(pl - A)B,

1 ¢ O
I=0 .. 0
0 0 1
Characteristic polynomial:
det(p/ —A) =0

State space model

Transformation to state space model:
_ byp™l4dby,_ ptby
wip) = P Pt ldekby 1 ptby
Canaonical controlled form:

i'z = X3
Xp = —QpXy — Qn_y Xy = — X, +U
0 10 .. 0 0 by,
0 01 .. 0 0 I
A = |O IT I| = Bt =... .(:‘T =| ..
a 000 .. 1 0 b,
—0n — Qn-1-.-— & 1 b,

Transformation matrix: 2 = U*U~1 , U, U* are controllability matrices of
canonical and original model
U = [B| AB|...|A""1B]
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State space model

Transformation to state space model:
— _Pap" Tty ptby
wip)= PrAa PRl by by ¥ |
Canaonical observed form:

Xy = —pXy + bpu
Xy =X — Qyq Xp + byt
Xy = Xp_q — Q1 Xy + bu
Y=Xp
0 0.. 0 —a, b,
07| 1 0.0 —a,, - 0
A= .. I a| = - BV = ,C’T = ...
H| 0 0 .0 —a; b, )
¢ 0 .. 1 —aq by 1

Transformation matrix: 2 = (Q*)~1Q, Q, Q" are observability matrices of

canonical and original model
QT = [C] CA|...|CA™1]

Identification. Scalar example

Identification is a set of methods for constructing mathematical
models of a dynamic systems from observational data.

Consider plant:
y(t) = 8*u(t)
u(t) is a scalar input,
y(t) is a scalar output,
8" is an unknown parameter.
The obvious solution :
t
0= y(t)
u(t)
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Identification. Scalar example

Consider plant:
y(t) = 6 u(t)
u(t) is a scalar input,
y(t) is a scalar output,
6* is an unknown parameter.
The obvious solution :

/
3
=
o~
Nt
A

\
\\. I I //
\

\ %
=
Vi

Doesn’t work if u = 0.
Hardly calculated if u — 0.
High influence of noises.

Online estimation

Let @ is an estimate of 8*.

Parallel model:
y(t) = 6u(t)
Error:
e=y—9y=y—06u
Consider functional:

2 ' 2
](9)=%=%

Goal: minimize J(0)
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The modern theory of control systems

Online estimation

Let denote: 2 S
af(x) = _
Vf(x) = 070 is a gradient of f(x). i
axn

Lemma. If ] € C* and is convex on R™ than 8* is a global minimum
if
Vj@e*) =0

Therefore, we need to solve equation VJ(8*) = 0 with respect to
the 8*

Gradient search. Discrete

The search for the minimum is in the direction of reducing the
function d;, = —V]J(6y)

Identification algorithm:
Or+1 = Ok + Aiedy = 0 — 4V (6r),
k=1071,2.
Ay is a step size
0y is an estimate of & on k-th step.
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Gradient search. Discrete

Example:
y = (6 —5)°
dy
30 = 2(6 —5)

Initial value 8 = 0.

Gradient search. Continuous

Rewrite algorithm as:
Gry1— 8
S K = _pye)

Ay
If step is infinite small: lim a8k _ g
Ak—>0 Ak
Algorithm takes the form: .
g = —yVJ(8)

y > 0 is a coefficient that regulates convergence speed

For scalar case
6 =—yV](@)=y(y—0uwu=yeud(0) =8,
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Gradient search. Continuous

Consider estimation error:
6=0*-186

Error transient:

= t .

8(t) = e VoW @drg @)
Ifu=0oru=et, §(t)will not converges to zero.

2__1 4 :

Y=y 0 (t) asymptotically converges to zero.
o(t) exponentially converges to zero if persistent excitation

condition holds:
t+To

j u?(1)dt = ayTy, YVt = 0

t
where ag, Ty > 0

Gradient search. Example

Consider the systemy = 6u,0 =5

Identification algorithm: 8 = —yVJ(8) = y(y — Bu)u = yeu
9(0) = 90, Y = 2

Ll x || 4 l_,/ o), |

Il}(l)) % 05 1 1.5 2 25 t
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Gradient search. Normalization

For system y(t) = 8*u(t) with unbounded y and u problem
o (y—euw)?

mjnJ = mjn=——
can become hard for computing.
Solution is a normalization

y() = 8 u(t),

F(t) = 2 A(t) = = m? = 2
) =280 = —m? =1+u
Gradient search:
g = yeu,y > 0.
In origin coordinates:
- e
~m?

Gradient search. Two unknown

Consider system
x = —ax + bu, x(0) = x,,
x=0T¢,8=[a b]T, =[x u]
where a > 0 and b are unknown constants to be identified.
Parallel model:
¥=-a%+ Bﬁ,f({}) =%
Error:
e=x—2%
Functional:
2

j®==
6 = yVJ(8),& = —ysex, b = yyeu
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Gradient search. Two unknown

If x is unmeasured.

Rewrite system:

x=—apx+ (ap—a)x+bu mn x = L

[(a;, — a)x + bu]

ptam
., > 0is chosen by developer.
x=0"¢,
0" = [b a]T¢[1u1 ]T
= ’ e ’ = 7] X
i Pt Dt an
Error:
e=x—2%
Serial-parallel model:
£=—an®+ (ay—a)x+bunmz = — [(am — @)x + bu|
ptam
eZ
0 =[a b]"

0 =yVj(0),d = —y,ex,b = y,eu

Gradient search. Two unknown

System:x = —ax + bu. }
—____‘———________ - u M~ X X
il i ri>——Li =
Parallel model: £ = —a® + bu. <a}
— e ', !
Identification algorithm: Lo ) 2 )
q‘, = —Y1€x, s B '.)',/ y'%
b =y,eu ——
e e
p O
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Gradient search. Two unknown

u =sin5t = : u=1(t)
Yap =i ,,f{l‘{ Yi2=5
: !
/ b
Y12=5 . : Bensiii wym

Gradient search. Linear dynamic
system

Linear dynamic system:
x=A x+B u
A ER™ B eERMxeR"

Error:
e=x—2%
Functional:
_eTe
I==

Parallel model:
¥=A £+B uxeRr®
A=yexT B =y,eu”
or serial-parallel model
x=Apx+ (A —A,n)x+B u A, € RB*"
¥=ApR+(A —-Ap)2+B u
A=y.exT B =y,eu”
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System parametrization
Consider plant:

y(n) + an_iy(n_l} + -+ Aoy = bn_lu(n-l) + bn_zu(n'z) + - F bou

Rewrite all parameters as vector
= [b -1 bn—Z! LLLP] bo, Qn—1s A2y =y aO]T

Rewrite input/output signals and their derivatives:
Y = [u(ﬂ.—l)’ u(‘n-Z)’ e U, _y(n—l). _)’(n_z); ramy _y]T

= [a;—l (p)u: _a;—l (p)y]TJ a; (p) = [pi: pi-lv =y 1]

Qo

Therefore, we can rewrite system equation:
y) = g*Ty

System parametrization

If derivatives y(™ = G*TY are unmeasured

Apply stable filter — for both parts of equation, A(p) is a Hurwitz polynomial:

()

z=0T¢,
n 1(p) “5—1(13)
y = [A(p) “T A

A) =p" + A 1p™ 1+ + 2

All signals of filtered model are measured.
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System parametrization

Consider A(p) as A(p) = p™* + ATa,,_1(p), A = [A"71, ..., 4]

In this case:
P AD M@ @)
Ap)” A T A
y= z+/1Ta’X(;(f)y
z= O*Td) = GIT¢1 + 95T¢2' GIT = [bn—ll "-rbO]'GET = [an—li ---;ao];
= “n—l(p)u b= _“n—l(p)
TA TR Ap)

y T ;7 1 +,1.9£T¢2 - AT,
y=20; ¢, 6; =[6:",05T,—27]

State observers

Observer is an algorithm that allows to estimate the unmeasurable
variables of the state vector.
Consider linear dynamic model:
x = Ax + Bu,
yi= Ll
Parameters of system are known. Vector X is unmeasured.
If xg is known, than algorithm
X = A% + Bu,2(0) = x,
provide X(t) = x(t)vt = 0.
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State observers

If x¢ is unknown and matrix A is stable we can use observer:
X = A% + Bu,2(0) = %,
Consider observation error:
X=x—2%
Its dynamics satisfy equation:
X = A%, %(0) = x(0) — £(0)
Solution of error dynamic equation:
%(t) = e4t%(0)
Because of A is stable X exponentially converges to zero

Luenberger observer

If x¢ is unknown and matrix A is unstable or we need increase
speed of convergence:

X=AR+Bu+ Ky —9),2(0) = %,,

P=0T%

where K is chosen by developer.
Dynamics of estimation error:

¥=(A—-KC"%, %(0) = x(0) — £(0)
So;ution of error dynamics equation:

%(t) = ea-KCNtz(0)

By tuning K we ensure the stability of the error model and adjust
its transient (overshoot, transient time, etc.)
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Luenberger observer. Example

System:
. _[—4 1 1 _ 14
x=|_, 0];n:+ [B]u,x(O) = [0’5
y=[1 0]x.
Luenberger observer
A —4' 1 1 kl _
2= 0]£+[3]u+[k2](y )
y=[1 0]z

Luenberger observer. Example

penate o = A~ KeT = T3 o]~ [l o= [T o]
— 2 TR

Let we need speed of convergence faster than e ~5¢,

In this case real part of 4 eigenvalues should be less than —5.
Let ’11 = —6,).2 = —8.

Therefore:
det(pl —Ay) =p?*+ (4+k)dp+4+k,=(p+6)(p+8)
We can find:
ki =10k, = 44

136



2019 © Alexey Margun The modern theory of control systems

aamargun@itmo.ru, alexeimargun@gmail.com Digital twins

Luenberger observer. Example

System
(H———o-{—&1—8
u B C y

A ]
Q 2

K

0
+B> ﬂé e Ham .?l ]
[ o
A Observer

Adaptive Luenberger observer

State vector is unmeasured.

System parameters are unknown.

Solution: simultaneously use the observer and the parameter
estimation algorithm.

Luenberger | .
u 1] T
System observer [ *
Parameter [
estimation

(aps bp)
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Adaptive Luenberger observer

In state space form we need to estimate n? + 2n parameters.
In input output form we need to estimaten +m + 1 < 2n
parameters.

Obtain transfer function:

bp_1p™ ! + ..+ byp+by

pn + an_lpn—l + e 4 ag
Rewrite system in canonical observable form:

CT(pl —A)™1B =

In-q
Xg=|—ap i - |xqt+byu,y=[10..0]x,

0
ap = [@n-1, @n—2, .., ao]", b, = [bn—1, bn—2, .., bo]”

Adaptive Luenberger observer

Observer:
2= A%+ bu+K(y—9),2(0) = 2,
§=[10..0]%,
: In—l
A=|-a, : « | K=a"—a,
: 0
a” is chosen such that
o
A* = —a* ¢ cae
0

is stable, i.e. roots of det(pl — A™) = 0 have negative real part.
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Digital twins

It is necessary for development of digital twin:

*Build mathematical model of system

*Estimate unknown parameters with identification algorithm
*Build observer for state vector estimation

*Run obtained model in real time with the same input signal as a
real system
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Nonlinear control systems

Nonlinear Control
Systems

Zimenko Konstantin

Nonlinear versus linear systems

Linear systems Nonlinear systems

¢ Huge body of work in analysis and control
of linear systems

e Most models currently available are linear
(but most real systems are nonlinear...)

¢ Dynamics of linear systems are not rich
enough to describe many commonly
observed phenomena

Nonlinear systems can (sometime) be approximated by linear systems.
Nonlinear systems can (sometime) be “transformed” into linear systems.2
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The modern theory of control systems

State-space model

State equation

= f(t,z.u)

Output equation

y = h(t,z,u)

r1 u1 fi(t,x. u)
".:'2“ |VIIQ“ [fg(f..r. u)“
r=1| .1, u= ) . flt.x.u) = )
\\J'.HJ \\u;nJ \J'n (I...r. u )J

where = € R™ is the state variable, u € R™ is the input signal, and y € R? the output

signal. The symbol & = ((11_: denotes the derivative of = with respect to time t.

Nonlinear systems: Example

Pendulum equation (equation of motion in the tangential direction)
mlf = —mgsin 6 — klé.

!
\ 8
mg
State equations (x; = 0,x, = 0)
T = T3,
Tp = —%sinxl - ,—,kﬁ:z:g

Equilibrium points (nm;0), n =0, 1 , £2, ...
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Nonlinear systems: Example

State equations (frictional resistance is neglected)
&) = T2,

dg = —%sinxl

Equilibrium points (nm;0), n =0, 1 , £2, ...

State equations (with friction and applied torque)

& = Ty,
iy = —3sinz, - 2+ =7
where T is the torque.

Equilibrium points (arcsin(7/mgl);0)

Nonlinear systems: Example

Robust oscillation r
T = g, .
By = -z +e(l-1})zs \
Van der Pol oscillator A\ 4
LI =V

OV =—1—1Ix(V)

\ |+
o/l
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2.5 T T

Nonlinear systems: Example

Van der Pol oscillator: phase portrait

1.5}

0.5F

/

i

/
////////////f‘

I B A B
)l
/

i S

* Finite escape time

* Multiple isolated equilibria

* Limit cycles

the same frequency)
* Chaos

* Multiple modes of behavior

Nonlinear phenomena

(the state of unstable linear system goes to infinity as t — o)

* Nonasimptotic stability (e.g. finite-time stability)
(linear systems — infinite time of convergence)

(linear systems — only one isolated equilibrium point)
(linear systems — system oscilates iff there is a pair of eigenvalues

on the imaginary axis, which is a nonrobust condition)

* Subharmonic, harmonic, or almost-periodic oscillations
(stable linear system under periodic input produces an output of

(More complicated steady-state behavior)
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Relay
Y M Ty
-a a _-a-c E
W = 5 ca x
i L.
Relay with ~ Three-position
hysteresis relay

Common nonlinearities

s ® 0a X
-M
Dead zone  Relay with dead
zone

Backslash Quantization

take one of the three forms

with k& being either 0 or 1.

Qualitative behavior of linear systems

Linear second order system

i = Az, » € R?, A ¢ R?*2
Apply a similarity transformation M to A:

M~YAM = J. M € R2%2

where .J is the real Jordan form of A, which depending on the eigenvalues of A may
A1 0
0  Aof’

Present a change of coordinates

:= M1z
i =M1z

2

I\' X —)’
Al 3 «

10
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The modern theory of control systems

N1/

Qualitative behavior of linear systems

Z

/1IN

“3

(@

. LI
o

7/
&= N7

Stable node (4; ; < 0) Center (41, = *jf) Saddle point (1, < 0 < A,)

"

Stable focus (A1, = a *j,a < 0) Stable focus (4;, =a *jpB,a > 0)

A

7
(&~

11

£ = 6[_h($l) ~ Zg)
1
Lo = E[_xl — Rzg -+ ul

Multiple equilibrium points

Tunnel-diode circuil

A\

“0.4 - L L [} 1
~0.4 =02 ] 02 04 06 0B 1 1.2 1.4 1.6

Phase portrait

12
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Multiple equilibrium points

Pendulum

frictionless pivot

amplitude |6
. \massless rod

bob's™ ~ . _
trajectory

o " assive bob
equilibrium
position

Phase portrait of the pendulum equation

13

Qualitative behavior near equilibrium

Consider autonomous system
i:l = f](th?),
&2 = fa(z1,22)
where f,(x;, x,), f>(x;, x, ) are continuously differeniable.
Let p = (p;,p,) 1s the equilibrium point. Expanding the right-
hand side into its Taylor series about the point p, obtain
&1 = fi(p1,p2) + ann(z1 — p1) + arz(z2 — p2) + HOT,
T2 = fa(p1,p2) + a21(z1 — p1) + az(z2 — p2) + HOT,
where HOT denotes high order terms and

N 0fi(z1,z2) — Ofi(z1,22)
n=—g a2 =
z)=p1,22=P2 Z1=p1,22=p2
0fa(zy,x2) 0 fa(z1,x2)
ag = ———— y 022 = ———
oy dzo
I =m,r2=p2 I1=p1,X2=p2

Since p = (p,,p,) 1s an equilibrium point

Ji(p1,p2) = fa(p1,p2) =0
14
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Define

and rewrite the state equation as

Qualitative behavior near equilibrium

n=x—p, H Y= —pP2

1 = &1 = any + azy2 + HOT
Yo = &2 = agy) + ageye + HOT

HOT is negligible in a small neighborhood of equilibrium point:

Y =21 = any + a2y
Y2 = T = a21y1 + a22y2

Rewriting in a vector form, obtain

0 1
4 = [—10 —1]’

01
4z = [10 -1]‘

is a saddle point

y=Ay
where
of1 Oh
A= |G o2| _ d0zy Oz _ of
ap a afs 0f2 or|,,
0xy Ox2]|,_,
15
Example 1
Pendulum equation
&y = T3,
T9 = —10sinz) — @9.
Equilibrium points (0;0) u (m;0)
Jacobian
of _ 1
dr  |—10cosz; -1

Jacobian evaluated at the equilibrium point

Al,z = _0.5 j'_]3/12

11'2 = —37, 2.7

Equilibrium point (0;0) is a stable focus, equilibrium point (r;0)

16
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Example 2

Consider the system

&) = —xp — puzy(2? + 23)
&y = z) — pza(z] + 73)
Jacobian at (0;0) has eigenvalues %j.

Transition to polar coordinates:
Ty =T1c0s8 U T =718Inf
The system in polar coordinates
F=—pr®n =1

For > 0 the equilibrium point (0;0) is a stable focus, for £ <0
is a unstable focus.

17

Lyapunov function

Consider the system
i= f(x),
where f: D — R" is locally Lipschitz
Let p = 0 is equilibrium point
and D < R" is an open set, which
contains p. Let V. D - R is a

continuously differentiable
function such, that

V(0)=0and V(x)> 0 for D\{0}

If V(x)<OforxeD,then p=0
is stable.

If V(x)<0forxe D\{0}, then p =0 is asymptotically stable.
18
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Lyapunov function

Consider the system
i= f(x).£(0)=0.
Expanding the right-hand side into its Taylor series

x=f(0)+ QL x+g(x)= Ax+g(x),
: OXlx=0
wnere i
=] .
Ox x=0

Choose the candidate Lyapunov function in the form
V(x)=x'Px, P>0
Then
V(x)= i Px+xT Pi= leAT # gT(.r)]Px + .\'TP[A\' & q(r)] =x! (ATP + PA)Y + 2xTPg (x)=
= —,\‘TQ.\' + 2xTPg (x),
where Q>0 such, that
ATp+pPA= -0 Lyapunov equation
19

Lyapunov function
Lt e)<v
where y > 0.
Since

2

xTQx 2 min (Q}xTx = Amin (Q]x
(Q) 1s the smallest eigenvalue of the matrix Q, then
V(x)< i (Qf” + 24| Pllxf* = hmin (Q) 24|}

Lyapunov function derivative is negative if

}'min (Q)
2#]

2

where A

min

Amin(Q)-2Y|P|> 0= y<

20
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Consider the system
& = ax®
Linearization:
a
A= 3_1‘ = 3az?|,_, =0
T |z=0

Choose the Lyapunov function
V(x)= x°.
Then
V(x)=2ax".
The equilibrium point is:
1) stable, ifa=0;
2) asymptotically stable, if a < 0;

3) unstable, if a > 0.
21

Stabilization: steady-state control

Consider the system
= f(z,u)
with desired equilibrium point @ = g
Steady-State Problem: Find steady-state control ug s.t.

0= f(wsss uss)

Ty = T — Lgs, Us = U — Ugs
. def
s = f(xss + x5, uss +us) = fs(xs, us)
fﬁ(ov 0) =0

us = vy(xs) = u=us+y(x— xs5) 22
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State feedback stabilization

Nonlinear system

= f(ax,u) [£(0,0) = 0]
u = ~y(x) [7(0) = 0]

Problem: stabilize the system at the origin

where f and y are locally Lipschitz functions

23

Stabilization: linearization approach

r = Axz + Bu
0 0
A= —f(zcu) ;. B = —f(zc,u)
ox x=0,u=0 du x=0,u=0
Closed-loop system:
= f(x,—Kx)
o o
r = [—f(a:, —Kzx) + —f(a: —Kx) (—K)] x
ox ou =0
= (A —- BK)x

(A - BK) is Hurwitz = the origin is an exponentially

stable equilibrium point ”

151



2019 © Konstantin Zimenko

konstantin.zimenko@itmo.ru, kostyazimenko@gmail.com Nonlinear control systems

The modern theory of control systems

Example: pendulum equation

§ = —asin® — bo + T
Stabilize the pendulum at @ = §

0 = —asind + Ty

0 1
A - =
[ —acos(xy +90) —b ]r 0 [ —acosd

x] =60 — 9, m2=é9 u="T — T
T = a2
2o = —alsin(xy + 6) — sind] — baxs + cu

0
A — BK =
—(acosd + cky) —(b+ cko)

acosd b

ki > — , ko> ——

c c

asin o a sin 0
c

|

— k1(0 — 0) — ko0

26
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Feedback linearization

Consider the nonlinear system
= f(x)+ G(x)u

f(O) — 0’ x € R“’, = Rm,

Suppose there is a change of variables z = T'(x), defined
forall z € D C R™, that transforms the system into the
controller form

zZ= Az + Bvy(z)[u — a(x)]

where (A, B) is controllable and ~(x) is nonsingular for all
xr €D

u=oa(zx)+~y (z)v = 2= Az+ Bv
27

Feedback linearization
v=—Kz
Design K such that (A — BK) is Hurwitz

\ 4

u=a(x) -~ (2)KT(z)
Closed-loop system in the xz-coordinates:
i = f(z) + G(z) [a(z) — v (z) KT (x)]

Nonlinear - Linear
System System
Control Input

Transformation .
Linear

Controller 28
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Feedback linearization

Closed-loop system:
u=a(z) — 4 () KT (z)
z=(A—BK)z+ Bj(z)

d=~lad—a+~y KT -5 1KT]
where &, 7, T are nominal models of «, yandT.
(V(z) =2"Pz, P(A—BK)+(A— BK)'P=—1I\
If [|0(2)|| < Ek||z]| for all z, where

1
0<k <
2[|PB|

then the origin is globally exponentially stable
29

Example: pendulum equation
0 = —asin® — bl + T

. a
xt1=0—-90, x0=06, u=T—-—T, =T — —sind

c
:ijl = I2
&9 = —alsin(x; + ) —sind] — bz + cu
1
u = —{a[sin(xy + 6) — sind| — k1x1 — kox2}
c
A — BK = 0 L is Hurwitz
—k1 —(k2+0b)

30
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Example: pendulum equation

1
T = u+ ¢ sind = — [asin(xq 4+ 0) — kjxy — koxa]
c c

Let @ and ¢ be nominal models of @ and ¢

1
T = —[asin(x1 + ) — k11 — kaxa]
é

= (A — BK)x + Bd(x)

ac — ac c—=¢
0(x) = (—A> sin(x1 + 01) — <—é> (k121 + koxa)

C

31

Example: pendulum equation

C — C

ac — ac\ C
5(:13) — (T) Slll(ﬂ?l —+ 51) — (T) (k1$1 + k:g:lJQ)

[0(x)| < kllz|| +

ac — ac c—cC ac — ac
— - +|— ‘ k? + k3, &= | sin 01 |
¢ ¢
p— P11 P12 . PB= P12
P12 P22 P22
1
k <
2 2
2\/ P12 + P32
sind1 =0 = =0 37
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Backstepping

n = f(m)+agmn)é§
£ = u, NER" &, UER

Stabilize the origin using state feedback

View ¢ as “virtual” control input to
n=Ffm) +a9n)§
Suppose there is £ = ¢(n) that stabilizes the origin of
n=rfmn) +agm)en)
A%

5%ﬂm+QMWMHS—WWW VneD
n
33
Backstepping
z=§— o(n)
n = [f(n)+gm)on)] +ag(n)z
. o
z = u—gﬂﬂm+gmﬁ
n
w="2217(n) + g(m)e] + v
n
n = [f(n)+agm)e@n)] +ag(n)z
34
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Backstepping

vV
= —[f(m) +g9(n)o(n)] + —79(71)z + zv

oV
< =Wm) + -9(n)z+ zv
on

Ve(n,€) = V(n) + 32

aV
an an

oV
—9qg(n) —kz, k>0
an

v = —
Ve < —W(n) — kz*

35

=21

Z9

Zh—1

21

Backstepping

fo(x) + go(x) 21
fi(x,z1) + g1(x, 21) 22
f'Z(wv 21, Z2) -+ 92('139 Z1 22)Z3

fre—1(xyz1yeeey2p—1) FGr—1(y 2150 ooy Z—1) 2k
fre(xyz1,eooyzk) Fgr(@y 21,000y 21U

gi(x,z1,...,2;)) #0 forl1 << k
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Example
:i'l:a:%—a:‘%—l—;cg, o = u
. 2 3
Tl = x] — T + 9
_ _ 2 . 3
r2 = ¢(€B],) = —Tr] — T = T1=—T1— T
V(z) =14a? = V=-al-zl, Va1 €R

zg = x2 — P(x1) =J¢2+£E1+£13$

. 3
ry = —x1 —x]+ 22

29 = u+ (14+2x1)(—x1 — ZB% + z2)

Example
Ve(z) = 323 + 323
‘./'C = :131(—2121—12:;‘{‘22)
+ z2fu + (1 + 221)(—21 — 2f + 22)]
‘./c — _m?_wii

+ zo[z1 + (1 + 2z1) (=21 — 2§ + 22) + ]

uw=—x1 — (14 2x1)(—x —LU? + z9) — 22
Ve = —af — 2] — 25
Ve = —af — 2] — (z2 + 21 + 27)?
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The modern theory of control systems

Sliding-mode control

S(eo,...er_]):o \

PLANT ,/
u order:n_t ) ,

k. \\

)
o
=,
<
o
=2
<
o
m
1%
2,
3
o
-+
o
)

S(e)<0
= u=-u

39

max

Sliding-mode control

Sliding Manifold (Surface):
s=ajx1 +xo =0

s(t)) =0 = 1= —a1xy

a >0 = flim x1(t) =0

1 =x2 2= h(x)+g(x)u, g(x)>go>0

40
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Sliding-mode control

$=a1®1 + 2 = a1x2 + h(x) + g(x)u

Suppose
/
o7z + M) < o(x)
g(x)
V =12

2
V = 88 = slaiza+h(x)]+g(z)su < g(z)|s|e(x)+g(z)su
B(x) > o(x) + Bo, Bo >0
s>0, uw=-—p3(x)
V < g()[s|e(z) — g(z)B(x)|s|
V < g(z)|s|e(z) — g(x)(e(x) + Bo)|s| = —9(33)/304|f|

Sliding-mode control
s <0, u=p3(=)
V < g(z)|s|e(x) + g(x)su = g(z)|s|e(x) — g(x)B(x)|s]
V < g(z)|s|e(z) — g(z)(e(z) + Bo)|s| = —g(x)Bos]|

sgn(s) = { _1’ z z 8 s=0
u = —fB(x) sgn(s) | %, \y
V < —g(z)Bols| < —goBols| { '\ ; |
V < —goBoV2V \ \ |
42
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The modern theory of control systems

Sliding-mode control: chattering

43

T . S
Sliding manifold u = —f3(x) sat (€>
Y, if ly| <1
sat(y) = : _
sgn(y), if ly| > 1
sgn(y) 4 sat (£)
1 | —,
] € 1
—1 SR ) |

Homogeneity of nonlinear systems

Homogeneity: analysis and
control design for
dynamical systems

Zimenko Konstantin
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Homogeneity and heterogeneity

https:/ /en.wikipedia.org/wiki/Homogeneity and heterogeneity:
Homogeneity and heterogeneity are concepts often used in the sciences and
statistics relating to the uniformity in a substance or organism. A material
or image that is homogeneous is uniform in composition or character; one
that is heterogeneous is distinctly nonuniform in one of these qualities.

Beauty of homogeneity

e We are living in a heterogeneous world.
@ Homogeneous object/system is an idealization.
e Studying of idealized case in order to deal with the general one.

Homogeneity in mathematics is a kind of symmetry.
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History of the subject

The homogeneity is a property of dynamical systems: state rescaling does
not change the system behavior (Euler; Zubov, 1958; Rothschild and Stein,
1976; Hermes, 1986).

Applications:

@ stability analysis (Andrieu, Praly, Astolfi, 2008; Bacciotti and Rosier, 2001;
Hermes, 1991a; 1991b; Rosier, 1992);

@ systems approximation (Hermes, 1991a);

@ stabilization (Bhat and Bernstein, 2005; Griine, 2000; Kawski, 1991; Moulay and
Perruquetti, 2006; Sepulchre and Aeyels, 1996);

@ observation (Andrieu, Praly, Astolfi, 2008).

Extensions:
@ coordinate-free homogeneity (Khomenuk, 1961; Kawski, 1995);
@ homogeneity in the bi-limit (Andrieu, Praly, Astolfi, 2008);
@ local homogeneity (Efimov and Perruquetti, 2010);

@ time-delay systems (Efimov and Perruquetti, 2011; Efimov et al., 2014; 2015),
differential inclusions (Filippov, 1988; Bernuau et al., 2013).

Mathematical definition of homogeneity

Definition For a function f : R” — R, if for any (positive) constant A
and all x € R”
f(Ax) = \"f(x),

then the function f is called (positively) homogeneous with degree v.

Theorem (Euler’s theorem on homogeneous functions)
Let f : R” — R be a C' homogeneous function of degree 1/, then

dij(XX)x = vf(x).
4 /~ \
24 //'/
2 '//
//
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Examples of homogeneous functions

e A polynomial function of degree v = 2:
f(x) =x2 4+ x1x0 + x5, F(Ax) = X2x2 + AN2xpx0 + A2x2 = N2 f(x).
df (x)
dx
e Functions of degree v = 0: f(x)=1
f(x) = sign(x? — x3). f(\x) = sign(\°xZ — \>x3) = sign(x? — x3) = f(x);
Ax1 + Axo X1 + X2

. f(Ax) = = = f(x).
X1 — X2 (Ax) AX] — AX2 X1 — X2 (x)

x = (2x1 + x2)x1 + (2% + x1)x2 = 2(xZ + x1x0 + x3) = 2f(x).

X1 —X2

1
e A combination of degree » = 0.5: f(x) = sin (M) (X2 + xix2 + x3)

Homogeneity for dynamical systems

x =f(x), x e R", f(0)=0. (1)
Definition For a function f : R” — R”, if for any A > 0 and all x € R”
f(Ax) = XL (x).

then the function f is called homogeneous with degree v.

@ Linear systems with degree v = 0:
f(x) = Ax. f(Ax) = AAx = M(x).

@ Nonlinear hydraulic three tank system with » = —0.5:

= - a%;; [hy — h3J°'5 - %Ql. [s]™ = |s|“sign(s).

a20
S

a32
[hy — h3 %5 — ~ [h - ha |05 .

a32 0.5 0.5 !
= — [h3 — h - h + = s
S [h3 — h2 ] [h2] SQz

a13
S
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Stability definitions
Denote solution to (1) with initial condition xo € R"” as X(t,x), 0 € Q C R".

Definition 1 At equilibrium x = 0 the system (1) is said to be

(a)  Lyapunov stable if ¥xo € Q the solution X(t.xp) is defined Vt > 0, and
Ve>030>0st. Vx € Q: |[xof <6 = || X(t,x)| <eVt>D0;

(b)  asymptotically stable if it is Lyapunov stable and Vs > 0 and Ve > 0

AT (k.€) > 0s.t. Vxo € Q: ||xo|| <k = || X(t.x0)|| < eVt > T(k,e);

(c) finite-time stable if it is Lyapunov stable and finite-time converging from Q:
Vxo € Q 30 < To(xp) < +00 s.t. X(t.x0) =0Vt > To(x);

(d)  fixed-time stable if it is finite-time stable and sup, .o To(x0) < +oc.

The set Q is called the domain of stability/attraction.

If @ = R", then these properties are called global.

) T
1

S[TTTTITTTTITTITITTA

Rate of convergence and homogeneous systems

x=-a[x|", xeR, a>0, a>0.

@ The system is Lyapunov stable: V(x) = 0.5x? and V = —a|x|*™! < 0.
@ The system is homogeneous of degree v = o — 1.

@ finite-time stability for v < 0 (o € [0.1))

: _ Ixl™"
Solutions for x(0) = xp and 3 = a(1l — a): with To(x0) = 25—,

@ exponential (asymptotic) stability for
“xo|™” — Btsign(xg) o <1 v=0(a=1),
X(t. —Je atx, a=1: @ fixed-time stable with respect to unit ball
(£ x0) for v >0 (a > 1) :

X0 a>1
{/1—|xo |V Bt
1 —|xo| ™" . 1
Ti(xo) = —————. lim  Ti(x)= —.
|B] Xo—++00 [B]
100
10 \\\\ T ! . » ! !
o.mé\» e ] 10 4
1x107°F < E N . |
F ] B \
1x10™°F B ] N
w10~ ME =] ] 01 —— ]
-11: 1 1 i 0.01 1 1
1x10
0 10 20 30 30 0 10 20 30
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Scaling of trajectories

If X(t,xo) is a solution of (1) with initial condition xp € R”, and (1) is
homogeneous of degree 1/, then Y (t.yo) = AX(\"t, A"Lyp) for any A >0

is solution of (1) for initial condition yp = Axp:

d d
—Y(t. = A—X(\t. !
th(t ) th( t. A" yo)

d

/\I/+1
d\"t

X(N\t. X\ 1y)

= MTH (XA ) = FOX(A"t. A7 y0))

= f(Y(t. %))

“Homogeneity” of solutions:

IJENENEENEEEE)
) T .

STTTTITTITTITTITTTA

X(t. /\Xo) = /\X(/\"t. Xo).

Local =Global

Denote y € S = {x € R" : ||x|| = 1}, then

Vx eR"3y e S: x=Ay, A= |x].

@ Behavior of all trajectories initiated on a sphere = Behavior in R”.

@ Local stability = Global stability.
@ Attractivity = Stability.
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Lyapunov functions

Let (1) be homogeneous of degree v, asymptotically stable and have a
homogeneous Lyapunov function V of degree y:

FOAX) = A (x), V(Ax) = MV(x).

@ Ja Lyapunov function <= 3 a homogeneous Lyapunov function.

@ The Lyapunov function is positive definite:

—inf V(y), & = sup V(y), V(x) = ||x]"
YES Y€S

V(y),

a >0, ¢ >0= alx|" < V(x) < cfx|"

@ Let sup,cs 4, V(y)f(y) = —a. a> 0, then for any x € R" exists y € S such
that x = /\y wnth A= |[x||:
5 V() = S VONFOY) = X4 SV ()f(y) < —alel* < = ZvH ).
ox (&)

Role of homogeneity

Homogeneity is an algebraic property = It can be easily checked.
Linear systems € Homogeneous systems € Nonlinear systems:

| Linear systems

| Homogeneous systems |

Nonlinear systems

|

Scalability of trajectories

Scalability of trajectories

?

Local = Global

Local = Global

Local # Global

Attractivity = Stability

Attractivity = Stability

Attractivity = Stability

Quadratic LF

Homogeneous LF

Exponential convergence

Degree dependent

0-GAS = ISS

0-GAS = ISS via degree

0-GAS = ISS

Robustness to delay

Robustness to delay

?

aih kK

Conventional (Euler) = Weighted = Local = Geometric/Coordinate-free
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Weighted homogeneity

x = f(x), x € R".

e For any r; > 0, i = 1, n define vector of weights r = [r...r] .
@ For any r and A > 0 define dilation matrix A, = diag{\"}"_,.

@ A homogeneous norm can be defined for any r:
n 1/p
X[, = (Z X,'|""> p >0 = |Ax|, = Alx|,.
i=1
For x € R", its Euclidean norm |x| is related with |x|,:
a,(Ixlr) < [x| < 7 (|xlr). ;.57 € Kos.

@ The homogeneous sphere S, = {x € R" : |x|, = 1}.

Weighted homogeneity

Definition 2
Function g : R" — R is called r-homogeneous if

3d >0 : g(Ax)=Xg(x) ¥xeR"VA>D0.
The function f : R" — R" is called r-homogeneous if

3d > — min 1 : f(Ax) = AN F(x) ¥x € R" VA > 0.

1<i<n

d is called degree of homogeneity.

Homogeneous function: Homogeneous system:
x,2 t x; T . 3 T T
gl x5)=——2— r=[21",d=2; f(x.%) =[x —x -x]", r=03[, d=0.
[ |+]x, |
2(A,x) = g(Ax,Ax) = A%g(x;,X,). f(A.x) = f(Ax, A x,) = A f(x).
NG =37

/ A 5 S 1x[=7.5
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Weighted homogeneity

Local attractivity
= o
Global asymptotic stability

e

Homogeneous Lyapunov function

Proposition 1 Let (2) be a r-homogeneous system with degree d and
x(t) be a trajectory with initial condition xo. The curve t +— A,x(A\9t) is a
trajectory of the system with initial condition A,xg for all A > 0:

% (A x(N9t)) = XA F(x(N9t)) = F(Ax(\9t)).

Homogeneity & Heterogeneity

@ Homogeneous systems have global behaviors

e no limit cycles
e no isolated equilibria

@ Homogeneous systems have many useful properties

e analysis
e synthesis

@ How to apply the theory of homogeneous systems in a heterogeneous world?
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Local homogeneity

Definition 3 Function g : R" — R is called (r,)o.go)-homogeneous (go : R" — R)
if
do >0 ¢ lim A %g(Ax)=go(x) Vx€S,.
A=+ Ao

Function f : R" — R" is called (r,)\o,fo )-homogeneous (fo : R" — R") if

Jdo > — min r; ¢ lim ATPATM(Ax) = fo(x) Vx € S,.
1<i<n A— Ao

@ Bi-limit homogeneity in (Andrieu, Praly, Astolfi, 2008) for Ao € {0, +oc} (the limit
has to be uniform on §,).

@ The approximating functions go. fo for 0 < Ao < +00 can be chosen homogeneous:
go(x) = x[F A0 ®g(Arolx).  fo(x) = Ix[TAg PATGF(AroAx).  (3)
Aro = diag{A\§ }'=1. A< = diag{|x|7 }-;.

3

@ Linearization # Local homogeneity: f(x) = —x® + x°

= fo(x) = —x>.

Stability analysis

Relations between x = f(x) and x = fy(x) (Zubov, 1958; Rosier, 1992;
Andrieu, Praly, Astolfi, 2008):

e fyis GAS for \g = 0 = f is LAS at the origin;

@ fyis GAS for \g = +00 = f is Lagrange stable.

-X +xlx; —xf +2x,2 —2x|2x2
f(x,x)= 5 2.3 )
B Bt Rt T Rt Lo Rl
M=0,n=11",d=0 A, =+o, 1, =[11]", d, =4
- 45
f, R o 1 f , — X% 1
l(xl xz) [_x2+x|] Z(XI xZ) |:_x; _xfxg
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Functions of classes K, X..and KL

@ A CO function o : R. — R. belongs to the

class K if «(0) = 0 and it is strictly NS
increasing: i+ /7 I
o a(s) = as® for a >0, 0/ / 1
e afs) = arctan(s), —
o a(s) = 135 -t
@ The function a : R. — R. belongs to the z: /"/:
class K if @ € K and it is increasing to oo: wf -
o a(s) =as” fora>0and~y >0, :Z'__,‘:/:I/f—r ——

o a(s) =In(1+s).

o A C° function 3: Ry x Ry — Ry is of class KL, if 3(-.t) € K for
any t € R, and j3(s.-) is strictly decreasing to 0 for any fixed s € R.:

o 3(s.t)=ae "sforr>0anda>0,

o A(s.t) = ,\,/%forb>0,a>0andu>l.

ISS property

x(t) = f(x(t).d(t)), t >0, (4)
where x(t) € R" is the state, d(t) € R™ is the external input, d € L.

Definition 4 The system (6) is called input-to-state practically stable (ISpS), if
Vd e L and Vxo €e R”" 3 3 € KL, v € K and ¢ > 0 such that

IX(t. %0, d)|| < B([[xl|. t) +~(lld|lp.ey) + ¢ ¥Vt =0.
The system is called /SS if ¢ = 0.

Definition 5  The system (6) is called integral ISS (155), if ¥d € L and ¥xo € R”
JaeKs, €K and 3 € KL such that

a(IX(t.x0.d)])) < B(Ixoll. £) + /F(nd(s)n)ds vt > 0.

0
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ISS property

T /7N /7N
'/ P 7\\,\\ // 73\
T\ Y, \,‘ R //}
| | ‘\..
d=0 T d#0
Definition 6 A C* function V : R” — R. is called -Lyapunov function if

(i) 3o, 02 € K s.t. Vx € R™:
ax([x]) < V(x) < az2(|x]);
(if) o, a3 € K« and a constant ¢ > 0 s.t. Vx € R” and Vd € R™:
— V(x)f(x,d) < —as(|x]) + o(|d]) + c.

It is called 1SS-Lyapunov function if ¢ = 0.
It is called iISS-Lyapunov function if ¢ = 0 and a3 is a positive definite function.

ISS/ilSS for homogeneous systems

Define f(x.d) = [f(x.d)T 0,7 € R"*™, where 0,, is a zero vector.

Theorem 2 Let f be homogeneous with the weights r = [ry... .. ra) >0,
r=[F..... fm] > 0 with a degree v > — miny<j<n rj, i.e. f(Arx,Azd) = X"Af(x, d).
Let (6) be for d = 0, then the system (6) is

ISS if Fenin > 0, where Fmin = Mini<j<m Fj;

1SS if Foyin = 0 and v < 0.

Corollary 1 Let f, : R” — R" be r-homogeneous with a degree » and
If f(x.d) = fo(x) + d, then (6) is ISS for v > —rmin, and 1SS for v = —rmin.

If f(x.d) = fo(x + d), then (6) is always ISS.
Example: r=[13],¥=[22], v =2

. 3 1/3
X1 = —X; + X' Td,

. 5/3 , .3
X2 = =X +x1da.
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ISS/ilSS for homogeneous systems

Analysis of 1SS /ilISS/I5pS <= Find an ISS/ilISS/1SpS LF for x = f(x. d).

Analysis of 1SS/ilSS via homogeneity
>

Algebraic operations + a LF for x = f(x.0).

Analysis of /S5pS via homogeneity
=
Algebraic operations + a LF for x = f,(x.0).

il

S —

Time delay systems arise in:
@ Chemical processing (transportation delays)
@ Remote control (delays from communication links)
@ Economics (delayed effects of economic polices)

°:
BUT delays may induce: Poor performances; Instability; Difficulties in
control design.
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Homogeneity & delays

Denote by C"[a, b], 0 < a < b < +00 the Banach space of continuous
functions ¢ : [a, b] — R" with the uniform norm |[¢[| = sup,< <} [0(C)|.

Autonomous functional differential equation of retarded type:

dx(t)/dt = f(x), t >0, (5)

@ x € R" and x; € C"[—7,0] is the state function;
® xi(s) =x(t+s), -7 <s<0;
o f: C"[—7,0] — R"is locally Lipschitz continuous, f(0) = 0.

Homogeneity & delays

Lemma 1 Let f(x;) = F[x(t),x(t — )] in(5)be r-homogeneous with
degree d > 0 (d < 0) and GAS for 7 = 0, then Vp 30 < 79 < +00 such
that (2) is LAS in B (GAS with respect to B]) Vp 30 < 7 < 7.

A = A P A

N T#0,d<0 \ 70 > i T#0,d>0
\\ ’ /‘
. ' N b
) — “A
A —>
o A S /
/

Theorem 3 Let the system (1) be (r,+00,fy)-homogeneous with dy < 0,
fo(xt) = Fo[x(t),x(t — 7)] and the origin for the approximating system (3)
be GAS for 7 = 0. Then (1) has bounded trajectories /OD.
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Homogeneity & delays

Consider the following system
X1 = Xa — h|xy|“sign(xy),
X = —h|x[2*Lsign(xy).

where 1 >0, h >0, a € (% 1). The system is homogeneous for
r=[1,a]" with degree = a — 1 < 0.
The state x; is available with delay 0 < 7 < 79 < +00.

The results of simulation fora« = 0.7, h =1, b = 2:

4 4

S~ —o2 | Y] T—— 7=0.39] |

Homogeneity & delays

Liquid flows between the tanks with delays 7; € (0, Tmax), i = 1.2,
0 < Tmax < 19 < +00:

. T

x(t) = =22 [x(t) — x3(t —71)]%% + L (2),
%(t) = 22 [x3(t — ) — x(t)|%° — 22 [x(t) | + L un(t),
sa(t) = 28 [xa(t—71)—x3(t))° = 2 [x3(t) —xalt —72)]°°.

For u; = const, uy = const the system is (r, +0c, fy)-homogeneous with
dp = —0.5. Then by Theorem 1 the system has bounded trajectories /OD.

175



2019 © Konstantin Zimenko The modern theory of control systems
konstantin.zimenko@itmo.ru, kostyazimenko@gmail.com Nonlinear control systems

Homogeneity & delays

Control design example

Consider the following system:
x(t) = Ax(t) + bu(t) + d(t, x). (3)

where x € R" is the state vector, v € R is the control input,
d(t,x): R"1 — R" describes the system uncertainties and disturbances,

010 --- 0 0
001 --- 0 .
=\1. . . and b=
000 --- 0 1
I =Da)x

o Introduce homogenenous ILF

Q(V.x) :=x"D(V " )PD(V ")x —1. (4)

D where P = PT ¢ R™": P >0, D()\) is

the dilation .matrix of the form D(\) =
diag{\1H("=Dr3n  for 0 < pu < 1.

o))

176



The modern theory of control systems
Nonlinear control systems

2019 © Konstantin Zimenko

konstantin.zimenko@itmo.ru, kostyazimenko@gmail.com

Control design example

Theorem 4The system x = Ax + bu + d(t, x) is finite-time robustly stable

if:
1) for p € (0,1], v, 3,v.c € Ry: o > 3 the following system of

inequalities is feasible

AX + XAT + by + yThT +aX + 31, <0,
—vX < XH,+H,X <0, X>0

2) the control has the form
u(V.x) = VEHkD(V1)x,

where V € Ry : Q(V,x) =0 and Q(V,x) presented by (4) with P = X1;
3) the disturbance function d(t, x) satisfies the following inequality

dT(t,x)D*(V1d(t,x) < B2V 2",

Control design example

Corollary 2
If d =0 then the system (12), (17) is r-homogeneous of degree —p with r = (14 (k — 1), 1 +
(ke —2)p, ..., 1). The Implicit Lyapunov Function V() is r-homogeneous of degree 1.

Proof
Obviously, we have Q(V. D,()\)s) = Q(A~'V.s).i.e. V(D,(\)s) = AV (s). Now, we derive

(D, (\)s) = V(D (N)s)KD,.(V-YD,(\)s))D,(\)s
= AN VIO KD, (AW s)) D, (N)s = M Ha(x)
and AD,(\)s + Ba(D,(\)s) = A"#D,.(\)(As + Bi(s)).

Homogeneity imply:
@ robustness abilities to external perturbations, e.g. Input-to-State
Stability;
@ robustness abilities to time-delays;
o it allows to reject some non-Lipschitz disturbances in the case of
non-zero homogeneity degree;
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Control design example

Finite-time control (;z = 1)
Disturbances: dj = d» =0, d3 = signx.

50 T T T T T T

Control design example

@ Fixed-time convergence can be achieved by changing the homogeneity
degree in hybrid control algorithm
Q1(V.s):=s"D,, (V-1 )PD,, (V7)s —1,
Qa(V.s) = sTD,,(V-1)PD,, (V-1)s — 1.
D.(\) = {/\|+(n—i)/l }:1:] and D,(\) = {/\|+(i_1),,}

n
i=1

VD, (V1) x  for t < T, = fixed-time attr. of the ball.
u = > » . o o
t > T, = finite-time stab. of the origin

VI-#kD, (V1) x  for

100 T T B
10 R ]

. 4 ]
o1 e . -
0.01 L L 30

0 10 20 0
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Control design example

e Fixed-time convergence can be achieved by changing the homogeneity
degree in hybrid control algorithm
Q1(V.s) = sTD,.“(\'_l)PD,.H (V-1s -1,
Q2(V,s):=s'D, (V-YHYPD, (V-1)s -1,
D,(\) = {A\F0=Dr1" and D,(A) = {AFE-Dv T
[ VMKkDy (V') x for x' Px >1=> fixed-time attr. of the ball,

v | V2 HkDy (V1) x for x" Px < 1= finite-time stab. of the origin

w
=3

Conclusions

e Verification of homogeneity: algebraic operations,

@ An “intermediate’ class of systems between linear and non-linear:
local = global.

@ Local homogeneity: stability/instability in large <= analysis at the
origin of a simplified system.

@ Robustness: I1SpS, ISS and ilSS <= GAS + degree constraints.

@ Robustness to delays.

@ Control design with time constraints
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Thank you for your attention to homogeneity:

180



2019 © Anton Zhilenkov The modern theory of control systems

aazhilenkov@itmo.ru, zhilenkovanton@gmail.com Fault-Tolerant control

Fault-Tolerant control
Robust Detection of Actuator Faults in Nonlinear Systems

Robust Detection of
Actuator Faults in
Nonlinear Systems

Anton Zhilenkov

Qutline

* Introduction
* Fault Diagnosis Methodologies

* Robust Observer-Based Fault Diagnosis: An
Overview

* Detection and Isolation of Actuator Faults

181



2019 © Anton Zhilenkov The modern theory of control systems

aazhilenkov@itmo.ru, zhilenkovanton@gmail.com Fault-Tolerant control

Introduction

*» A fault can be defined as an unexpected deviation
of at least one characteristic property, called the
feature of the system, from the normal condition
which tends to degrade the overall performance of
a system and leads to undesirable but still tolerable
behavior of the system.

Common types of faults:

» Actuator faults, such as damage in the bearings, deficiencies in force and
momentum, defects in the gears, aging effects, and stuck faults. Actuators
are used to ﬁenerate the desired inputs to control the process to behave
normally. When actuator faults occur, the faulty actuators are no longer
able to generate the desired control inputs.

» Sensor faults, such as scaling errors, drifts, dead 2ones, short cuts, and
contact failures. Sensors are used to provide measurements that are
needed for monitoring the system an computinF the desired inputs.
When sensor faults occur, the faulty sensors are no longer able to provide
accurate measurements which are needed to generate the control inputs.

¢ Abnormal parameter variations in the system. When some components
of the plant are faulty, the original process is changed into a different
process so that the controller designed for the original process is no longer
able to achieve the expected system performance.

¢ Construction defects such as cracks, ruptures, fractures, leaks, and loose
parts etc.

» External obstacles such as collisions and clogging of outflows.
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Common types of faults:

* We will focus on the type of faults which can be
modelled as additive changes appearing in
actuators or sensors.

* A faulty system with actuator and sensor faults is
depicted in fig. 1.1.

Faults Faults
References Inputs Outputs
—» Actuators [————»| Process » Sensors
f
Mgasuremams

Fig. 1.1 A faulty system which is subject to actuator faults and sensor
faults

Fault Diagnosis Methodologies

* Knowledge-based Fault Detection and Isolation
(FDI) methods

* Signal-based FDI methods
* Model-based FDI methods

We will focus on model-based fault diagnosis
methods. More specifically, observer-based fault
diagnosis methods will be the main concern.
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FDI methods

Model-based FDI methods comprise two principal
steps:

* residual generation,
* residual evaluation.

Corresponding to different residual generation
techniques, model-based FDI methods can be
divided into three groups:

(1) Parity-equation approach
(2) Parameter-estimation approach
(3) Observer-based approach

Robust Observer-Based Fault
Diagnhosis: An Overview

* A major downside of the model-based fault
diagnosis methods is that they require an accurate
mathematical model of the considered system.

* The system parameters often vary during the
process, that can cause a misleading alarm and
therefore make the model-based fault diagnosis
system ineffective.

* A robust fault diagnosis system should have the
ability to be sensitive to fault signals but insensitive
to other signals.
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Robust Observer-Based Fault
Diagnosis: An Overview

* Some of robust observer-based fault diagnosis

methods:

1. Beard—Jones fault detection filter (BJFDF)-based
fault diagnosis.

2.Unknown-input  observer (UlO)-based fault
diagnosis.
3. Adaptive observer (AO)-based fault diagnosis.

4.Sliding-mode  observer {SMO)-based fault
diagnosis.

Role of an observer in a control

Command Disturbance Response
+ 1 P N }} | l
—DQ-D Clontr A B Plant Sensor
— aws conversion |
------ X -~
#® _Break connection of measured Measured Feedback
feedback in traditional system
Knowledge
of Plant/Sensor
Observed
Feedback
Observer -
Measured
Feedback

185



2019 © Anton Zhilenkov The modern theory of control systems

aazhilenkov@itmo.ru, zhilenkovanton@gmail.com Fault-Tolerant control

Detection of Actuator Faults

* Problem formulation
* The general form of the Luenberger observer
* Robust observer-based FD system

* Simulation Results

Problem Formulation

Consider a nonlinear system described by

{fc(t) = Ax()+ f(x,0)+ Bu(t)+ Df, (t)+ EAw(2),
¥{(t) = Cx(2),

where x € R" - vector of state variables;

u € R™ - vector of inputs; y € RP - vector of outputs;
f, € R"- vector of unknown actuator faults;

Ap € R" - lumped uncertainties and disturbances;
f{x, t) - known nonlinear continuous term.

AER™ Be R™m Ce RPN, DeER™ and £ € R™ are
knolan constant matrices with C and £ both being of full
rank.

.1
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Problem Formulation

Note that
A nonlinear system of the form
x(t)=Q{x u, t)
can be expressed as
X (t)=Ax (t) +f(x t)

if Q(x, u, t) is continuously differentiable with respect
to x.

Problem Formulation

Remark 1.1

It is assumed in this example that the fault
distribution matrix D is known.

We assume that the actuator faults could occur in
each input channel, and therefore we have

D=8
and
f, E RN,
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Problem Formulation

* Assumption 1.1
rank(CE) = rank(E).

* Assumption 1.2 For every complex number s with
nonnegative real part

I—A E
rank|” =n+rank(E)
cC 0

Problem Formulation

» Assumption 1.3 The nonlinear continuous term
fix,t) is assumed to be known and Lipschitz about
the state x uniformly, i.e.,

fe t)-f& Q|| <Ll x-%]], V& X €

where £ is the known Lipschitz constant.
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Problem Formulation

» Assumption 1.4 The actuator fault vector f, and
uncertainty vector Ay satisfies the following
constraint:

el < pyand || Ay || <& (1.4)

where p, and ¢ are two known positive constants.

Problem Formulation

* Lemma 1.1 Under Assumption 1.1, there exist state and
output transformations:

=Ty = Z _Sy= kil
S P (el (1.5)

such that in the new coordinate, the system matrices

become,
A B
TAT = s L TB=|""|,
A, 4, B,

3

E 0
TE=|"'|, SCT™' = ¢
0 0 C,

where E; and C, are invertible.

(1.6)
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Problem Formulation

* After introducing the state and output transformations
(1.5), system (1.1) is expressed as,

2=TAT 2+ I (T 20)+ TR+ L)+ TEAY | o
y=CT 'z

Using the relations in (1.6}, system (1.8) is converted into
two subsystems as

{Z'l = Az + Az, + (T 'z,0)+ B(u+ f,)+ EAy (1.9)

w, =Cz,
2, = Az + Az, + [,(T7'2,0)+ By (u+ f,) (1.10)
w, =C,z,

where fi(T''z, ) = Tf(T"z 1) and fy(T'z, 1) = TATz o).

Problem Formulation

Lemma 1.2 The pair (A, C,) is detectable if and only if
Assumption 1.2 holds.

It follows from Lemma 1.2 that there exists a matrix
Le Rn-rXp1) such that A, - LC, is stable, and thus for
any Q, > 0, the Lyapunov equation,

(Ag- LC)TP, + Py (Ay- LG) = -Q,, (1.11)

has a unique solution P, > 0.

190



2019 © Anton Zhilenkov The modern theory of control systems

aazhilenkov@itmo.ru, zhilenkovanton@gmail.com Fault-Tolerant control

Problem Formulation

Remark 1.2 It is seen from Lemma 1.1 that the
satisfaction of Assumption 1.1 ensures the existence of
coordinate transformations T and S, such that in the new
coordinate, the subsystem-1, formulated in (1.9), is prone
to both actuator faults and system uncertainties, while
the subsystem-2, formulated in {1.10}, is only prone to
actuator faults but free from system uncertainties.

It follows from Assumption 1.2 that the pair JAMC‘;) is
detectable, which provides the necessary condition for
the existence of an observer for system {1.10).

Assumption 1.3 states that the nonlinear systems
considered is Lipschitz. Many practical systems satisfy the
Lipschtiz condition, at least locally. For example,
trigonometric  nonlinearities occurrin in  robotic
apglications and the nonlinearities which are square or
cubic in nature, can be assumed to be Lipschitz.

21

Full-Order State Observer

5(t) = AR(2)+ Bu(t)+ L(p(1) - Ci(t)),

System Model
d » X=Ax+8u = » C —th-
! i

: [
1 Control Law Observer + :
: S v=y-Cx .
- -K 2 izAz+Bus Ly = ) |
! ‘ ¥
l '
| * C :
I Compensator I

W N W N W M M M W M M M S P M M S N § M M M W R M M S R § M M S § P e mme -
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Full-Order State Observer

Let the observer state estimation error be defined as
follows

e(t) = x() — iy,
then

é(r)=i(1)-x(t)=

=| Ax()+ Bu(t) + (AR(t)+ Bu(t)+ L(y() - C£(1))) | =
Ax(t)+ Bu(t) +( A2(2) + Bu(t) + L (Cx(t) - C¥(1))) | =
( )x(t) (A LC)x(r) (A—LC)e(t).

Il
(—

23

What Is a Luenberger Observer?

An observer is a mathematical structure that
combines sensor output and plant excitation signals
with models of the plant and sensor. An observer
provides feedback signals that are superior to the
sensor output alone.

We'll use the Luenberger observer, which combines
five elements:

* a sensor output, Y{s},

* a power converter output (plant excitation), P {s),
» a model (estimation) of the plant, Gpg(S},

» a model of the sensor, Gs;.{s},

* a Pl or PID observer compensator, G_,(S).

pL|
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The general form of the Luenberger observer
P —_J[:—p G C&) Gls § Yf) f:)i::;{
cls) : »S) ctial s(8) : ouipat
Pf‘an.t : Plant siare Sensor E
excitation ) '
3 Physical system .
Eofs) +
G +— )
cofs) Observer -
Observer Wil
compensator
E Cofs) s
P Gz ) [ oporvea 7| Csenl®) [T Observed
:  Yols) sensor
» Plant ke Sensor ! output
! Modeled system ;
25

Typical Luenberger Observer Error Trajectory

for second order system 1e>
ei(t) = x () —x,(1) 1
ez(f) = xz(t) —.fz(l) Initial error

AN .

Asymptaotic crror

4
o
—
—
(&)

15 -1 \-05

26
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Luenberger Observer

For Subsystem {1.10), a Luenberger observerwith the
following form is designed:

2, = A2, + AC W+ f{T7'2,6)+ Bu+ L(w, —W,)
W, =C,2, (1.14)

where L € RivXpn js the gain of a traditional
Luenberger observer.

Luenberger Observer

If the state estimation errors are defined as
e;=z;—2; and e, =z, — 2,,
then the state estimation error dynamics, before the
occurrence of actuator faults, can be obtained as
é =2 -2
=Az + Az, + (T 7'z,t)+ Bu+ EAy
-Az + 4,2, —f](T‘IE,t)—Blu
— (A, - A)YCT (W, = W) = v, = (1.15)
=A'e +Ae, +[ [T 'z,0)— f,(T'2,]+ EAy —v, =
=Ae +Ae, + AN, + EAy —v,

28
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Luenberger Observer
&, =2,-%, =
=Az + Az, + (T '2,0)— 4,2, - A,C7'w - £,(T"'2,1)
—L{w,—w,) =
=(A-LC)e, +[£,(T'z,0)— £,(T7'5,0)] =
=(A4-LC,)e, +Af,

(1.16)

where

Afy = [Tz, ) —f(T', ) and Af, = fo(T"'z, ) — f(T'%, 1),

23

Theorem 1.1 Given System (1.1) with Assumptions
2.1-2.4. When the system is free of actuator faults,
the error dynamics (1.15) and (1.16) are
asymptotically stable, if there exist matrices

A"S<0,L, P;=P1T> OandP2=P2T>0
and positive scalars o, and a, such that
I, +-BR R4,

o
A= : , <0 (1.17)
ATR I,+—PRP+d,,
a

2

where H:r :A!STPJ+ P;A;‘g,
I, = (4,~ LC)TP,  P,(4,~ LC)),
a = a; Lo ||T[Fa 2| T|2.
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* Let the actuator fault occurs at time instant 72
Then the error dynamics (2.15) and (2.16) become

6, =Ale + A, +(f,(T7'2,0- f(T'2,D)+ EAy + B f, -,

(1.37)

&, =(4,— LC,)e, +{ /,(T"'z,5) - £,(T"'£,1))+ B, f,
(1.38)

31

» Actuator FD scheme: Actuator faults can be
detected if the residual ||e,;|| exceeds a
predefined threshold ¢. Otherwise the system is
healthy within the considered time. The detection
time t {t tf) is defined as the first time instant such
that | |e,;| | is observed greater than ¢.

* Remark 1.4 It follows from Lemma 1.3 that e, will
approach to zero when System (2.1) is healthy. This
implies that a small threshold ¢ can be selected.
The value of ¢ does not significantly affect the
performance of the proposed FD scheme.

32
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Simulation Results

In this section, the effectiveness of the proposed
schemes in detecting and isolating actuator faults
has been demonstrated by an example of a modified
seventh-order aircraft model.

33

Simulation Results 3 i

aircraft model

The states are defined as

x:= @ — bank angle(rad)
X.=r — yaw rate(rad/s) 0
x:= p — roll rate(rad/s) G
x:= 0 — sideslip angle(rad)

xs= x:— washout f'ilter state
x.= o,— rudder de f lection(rad)
x-= 0.~ aileon de f lection(rad)
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Simulation Results

The inputs are

u= 0.— rudder command(rad)
.= 0.— aileon command(rad)

and outputs are

yi= r.— roll acceleration(rad/s) .~ i
T e
V2= p.— yaw acceleration(rad/s) o
y:= @ — bank angle(rad) ‘e,

= x:— washout f'ilter state

(t) = Ax(0) + f(x,)+ Bu(t)+ D, () + EAw (),

(1.1)
y(r)=Cx(I),
The system is in the form of {1.1) with
[0 0 1 6 0 0 0 ] 0 0]
0 054 -004 154 0 —074 —0032 0 0
0 0249 -1 =52 0 0337 -LI2 0 0
A=/00386 -0.99%6 0 =2117 0  0.02 0 B=|0 0
0 05 0 0 =4 0 0 0 0
0 0 0 0 0 =20000 0 20 0
] 0 0 6 0 0 =25 | L0 23]
[0 0154 -0.04 154 ¢ -0.744 -0.032
o0 0200 1 52 0 0337 i ]
it e 0 o0 6 o 0 E=[1 10010 0
0 o 0 0 1 0 o
Ffx.y=[sinx, sinx, ¢ 0 sinx, ¢ 0] Ay =2sint

1
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The actuator fault £, = col (f,,, f.,2) is applied to the system and

defined as
f = 0 , t<10s
o 10.05exp(0.01) , t>10s
p 0 , t<20s
=7 10.07exp(0.03) , +220s
The nonsingular transformation matrices 7 and § are selected
as
(0844 0.156 0.0405 -1.5598 0 0.7535 0.0324]
= b e g 1 0 -08333 0
0 0 ! 0 0 0 0 -14359¢ 1 04701 0
f= 0 0 0 Lo 0 Tl 10128 0 01560 0
-1 [0} 0 0 1 0 ¢ ’ ’
o o o o o0 1 o 10128 0 -0.8440 1
Lo o 0 0 0 0 1|

The system matrices under the new coordinate become

(14794 | 13088 07373 56393 0 -163183 —0.9083]
0054 | 013 10338 12998 0 06280 —0027
0249 | 02102 -10101 —48116 0 01494 11281
TAT" =| 09574 ; 08466 00388 —36104 0 07414 00310
~35 | 104 -08583 -54503 —4 26372 01134
0 ! 0 0 0 0 -20 0
0 1 0 0 o o0 o 25 |
(09873 0 0 0 0 —0000L O
. 0 104700 09426 —74(12 0 14053 —1.0741
=l | -0.156 —0.0405 1.5598 0 —0.7535 -0.0324
0 0156 —00405 15598 1 —07535 —0.0324
[15.07 0.81] (17
0 0 0
0 0 0
8= 0 0 TE=|0
0 0 0
20 0 0
Lo 25 o)

38

199



2019 © Anton Zhilenkov The modern theory of control systems

aazhilenkov@itmo.ru, zhilenkovanton@gmail.com Fault-Tolerant control

Imposing the stability constraint to the transformed
system and formulating the problem in an LMI
framework gives the values of the parameters of the
proposed observers.

Parameters are obtained as
P =0.0048, Af =-25.8618, a, =0.0021, y =2.0190x10™"

[ 0.3072 0.0109 -0.0689 -0.2578 0.0144 0.0058]
0.0109 0.2432 0.0527 0.0969 0.0506 0.0342
-0.0689 0.0527 0.4599 0.1648 -0.0253 0.0254
-0.2578 0.0969 0.1648 0.4662 -0.0008 0.0002
0.0144 0.0506 -0.0253 -0.0008 0.1079 0.0545

| 0.0058 0.0342 0.0254 0.0002 0.0545 0.0039

33

[ 2.3497 6.3662  1.6347 |
-3.1985 -13.8943 -1.7068
-3.8256 -11.5108 -1.5464
3.6515  10.8768 —1.9943
58.2398  282.3094 -3.8605

| -57.1666 -394.4680 8.0411 |

-0.8797 —4.4882 -0.0156
-0.7677 -3.2451 0.0039

It is worth noting that the parameters obtained from LMI may
differ from that shown here. This is expected because these
are obtained by solving LMIs which does not give unique
solutions.
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FD MATLAB model
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Fault signals f,
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Isolation of f2,
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Conclusions

Woe propose a scheme to robustly detect and isolate
incipient actuator faults for uncertain Lipschitz
nonlinear systems.

The proposed FDI scheme essentially transforms the
original system into two subsystems where
subsystem-1 includes both actuator faults and
system uncertainties while subsystem-2 has actuator
faults but without uncertainties.

Actuator faults can be detected by applying a
Luenberger observer for subsystem-2, and isolated
using a bank of SMOs for both subsystems based on
the modified dedicated observer scheme.

Conclusions

The most distinct feature of the proposed FDI scheme is
that, by imposing a coordinate transformation to the
original system, the effects of system uncertainties to the
residual of subsystem-2 are completely decoupled, which
makes the scheme sensitive to incipient faults while still
robust to modelling uncertainty.

Thus, early detection can be achieved and a false alarm
caused by modeling uncertainties can be totally avoided.

The sufficient conditions of stability of the proposed
observers have been studied and represented in the form
of LMI.

Its effectiveness has been demonstrated considering the
example of a modified aircraft model.

48
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Robust Detection of Sensor Faults in Nonlinear Systems

Robust Detection
of Sensor Faults in
Nonlinear Systems

Anton Zhilenkov

Outline

* Introduction
* Problem Formulation
* Sensor Fault Detection Scheme

* Modeling Results with an example of a single-link
robotic arm with a revolute elastic joint
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Introduction

* With the development of modern technology,
autonomous systems are more and more
dependent on sensors which often carry the most
important information in automated/feedback
control systems.

* Faults occurring in sensors may lead to poor
regulation or tracking performance, or even affect
the stability of the control system.

Introduction

* Therefore, the study of sensor FDI is becoming
increasingly important. Compared with the study of
actuator FD, the research on sensor FD is less
studied in this realm.

* We will extend the method proposed for actuator
FD to sensor FD.
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* We will focus on the type of faults which can be
modelled as additive changes appearing in sensors.

* A faulty system with actuator and sensor faults is
depicted in fig. 2.1.

Faults Faults
References Inputs Outputs
—» Actuators —————»| Process » Sensors
Measuremens

Fig. 2.1 A faulty system which is subject to actuator faults and sensor
faults

Role of an observer in a control

Command Disturbance Response
+ 1 P N }} | l
—DQ-D Clomro | Oover Plant Sensor
— aws conversion |
------ X -~
#® _Break connection of measured Measured Feedback
feedback in traditional system
Knowledge
of Plant/Sensor
Observed
Feedback
Observer -
Measured
Feedback
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Problem Formulation

* It is assumed only sensor faults occur in the system. In
]'Ehis case, the considered system has the following
orm:

{x(r) = Ax(t) + f(x,) + Bu(t) + EAy(?)
¥t) = Cx(t) + Df (7),

where x € R" - vector of state variables;

u € R™ - vector of inputs; y € RP - vector of outputs;
£ € R3- vector of unknown sensor faults;

A € R' - system uncertainties;

f{x, t) - known nonlinear continuous term.

A€ER™ Be R™™, Ce R, DER™ and £ € R™ are
known constant matrices with C, D and £ being of full
rank, (p2q+r).

2.1)

Problem Formulation

* Assumption 2.1
rank(CE) = rank(E).

» Assumption 2.2 For every complex number s with
nonnegative real part

-4 E
rank|” =n+rank(E)
¢ 0
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Problem Formulation

» Assumption 2.3 The nonlinear continuous term
f(x,t) is assumed to be known and Lipschitz about
the state x uniformly, i.e.,

1/ )-fEDN<Lx-%]I, Vh £ ER

where £ is the known Lipschitz constant.

Problem Formulation

» Assumption 2.4 The actuator fault vector f, and
uncertainty vector Ay satisfies the following
constraint:

A< peand || Ay || <& (2.4)

where p, and ¢ are two known positive constants.
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Problem Formulation

* Lemma 2.1 Under Assumption 2.1, there exist state and
output transformations:

z=Tx=[zl} w=Sy=|iwl}
z, | W, (2.5)
such that in the new coordinate, the system matrices
become,
TAT = {A' & } TB = [B‘ }
3 4 B, (2.6)

E, L [co 0
TE=|"|, SCT™' = , SD=
0 0 C, D,

where (| is invertible.

Problem Formulation

* After introducing the state and output transformations
Tand S, system (2.1) is converted into the following two

systems
{z’l = Az, + Az, + f(T"'2,0)+ Bu+EAy (2.6)
w, =C,z,
{z,_ = Az + Az, + f{T'z,0)+ Bu @2.7)
w, =C,z,+ D, f;

where fi(T"z, ) = Tf(T"'z, ) and f(T'z, ) = TAT 'z, o).
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Problem Formulation

Lemma 2.2 The pair (A, C,) is detectable if and only if
Assumption 2.2 holds.

In order to apply the method developed in actuator
FD lecture, we define a new state

z,=[ wy(r)de
so that

z,(t)=C,z, + D, f, (2.8)

Problem Formulation

Equations {2.7) and {2.8) can be combined to form an
augmented system of ordern+ p — 2r as

HEER N

Z, C, 0|z 0

{fz(T“lz,t)]_{Bz]u_{ 0 }f;, (2.9)
0 o |“"| b,
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Problem Formulation

System (2.9) can then be rewritten in a more
compact form as

zy= Az, + Az + f,(T"'z,6)+Bu+D,f, 010
W3 = COZO’ "
4 - A
Where ZO =|: 2} c™ ’H‘P_Zf" A3 — |: 3:| c™ (n+p—2r)xr’
23 0

wy,e T, 4= A0
’ ’ C, 0

Bo — BZ e~ (n+p—2r)><m, Do — 0 c™ {n+p-2r)xg
0 D,

>

:| e~ (n+p—2r)¢(n+p-2r)

Problem Formulation

2= Ayzy + Az, + [,(T'2,0)+ By + D, f, (2.10)
w; =C,z,,
where
07 LH(T 7 'z,0)
—_ Z
C=|, |e e, faznn=| S
Ip_r 0
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Problem Formulation

Accordingly, System (2.6) can be rewritten as

{ t=Az + Az, + f(T'z,6)+ Bu+ EAy

w, =Cz,
[ T
[ }
Erx(p—r]

(2.11)

where

i
I

|

Sensor FD Scheme
For Subsystem {2.11), Sliding Mode Observer has the

form as
2= Az + /_122“0 +f;(T_lZA,3)+Blu +(4, - Als)cl_l(wl —W)+
w, = C2, (2.17)

FX

where 4 € 7" is a stable matrix which needs to be
determined.

zisdefinedas z:= col(Cl_lwlfz)
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Sensor FD Scheme

The discontinuous output error injection term v, is
defined by

~ kl R(Cl:iwl_%l) If Cl-lwl £0
w= "E(Cl W=z )" (2.18)
0 otherwise,

where & = ||E1||c_f+?71 and 7#, is a positive scalar
which needs to be determined.

Luenberger Observer

For Subsystem (2.10), we design the following
Luenberger observer:

{ £ = A+ ACT W, + FAT7'2,6) + By + Ly (w, — ;)

w; =2z,

(2.19)
where [ g~ P2 js the gain of the

Luenberger observer
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Luenberger Observer

If the state estimation errors are defined as
e; =Z1_21 and 82 =Zz—ZA2,

then the state estimation error dynamics, before the
occurrence of sensor faults, can be obtained as

6, =Ale + Ade,+(f(T 'z,0)- T '2,0)+ EAy —v,
(2.20)

é = (4y— LCyle, + (S, (T '2,t) - f,(T'2,0). (221)

21

Luenberger Observer

* We now present Theorem 2.1 which establishes
sufficient conditions for the existence of the
proposed observers (2.17)-({2.19) and outlines a
constructive design procedure.

22
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Theorem 2.1 Given System (2.1) with Assumptions
2.1-2.4. When the system is free of sensor faults, the
error dynamics {2.20) and (2.21) are asymptotically
stable, if there exist matrices

A1S< 0, Lo, P12P1T> OandP0=P0T>0
and positive scalars a; and a, such that

,+—PP PA,
o

A= B : , <0 (2.22)
AP MO,+—PP-+al

n+p—=2r
where I7, = A TP+ P, A,
IT, = (A= LyCp)T Py Py (Ag— LyCy),
o= x g |7 e, x A TP

23

Remark 2.2 The problem of finding matrices to satisfy
inequality (3.22} can be transformed into the
following LM! feasibility problem using Schur

complement
X+XT P P4, 0 |
B -a,l 0 0
_ <0
AR 0  AR+RA-C)Y -Y,C,+al P
0 0 B —a,l |

pL|
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» Sensor FD scheme: Actuator faults can be detected
if the residual ||e,;|| exceeds a predefined
threshold ¢c. Otherwise the system is healthy within
the considered time. The detection time tyt;,t] is
defined as the first time instant such that | |e ;|| is
observed greater than .

Simulation Results

* In this section, the effectiveness of the proposed
schemes in detecting and isolating actuator faults
has been demonstrated considering an example of
a single-link robotic arm with a revolute elastic
joint.

The dynamics is described by

Jig, + Fig, + k(q, —q,) + mgising, =0

. . (2.51)
by + G, —k(g,—q,)=u

26
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* Space shuttle remote manipulation system

* Truck mounted concrete boom pump

218



2019 © Anton Zhilenkov The modern theory of control systems

aazhilenkov@itmo.ru, zhilenkovanton@gmail.com Fault-Tolerant control

* Kuka DLR Light weight robot

undeformed link

deformed link

» Representation of an arbitrary point on a flexible link
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Y

* : Flexible joint j assembly

31

» Spatial RRR flexible manipulator

32
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Simulation Results

The dynamics is described by
Jig, + Fig, + k(q, —q,) + mglsing, =0

.. . (2.51)
oty + F g, — k(g —q,)=u

where g, and g, denote the link position and the
rotor position, respectively;

u is the torgue delivered by the motor;
m is the linkmass, [ is the center of mass,
1. is the link inertia, J, is the motor rotor inertia,

33

Simulation Results
The dynamics is described by

Jig, + Fig, + k(g9,—q,) + mglsing, =0
J iy + Fody —k(q - g,) =1 (231)

F., is the viscous friction coefficient,
F, is the viscous friction coefficient,

k is the elastic constant, and g is the gravity constant.

34
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Simulation Results

In the simulation, the values of these parameters are
chosen as

m=4,/=05,4,=1,1,=2,
F.=1,F=05k=2

and g =9.8

(all in Sl units).

Choosing x; = g, X; = 'q1, X3 = G5, X4 = ‘g, and assuming
that the link position, the link velocity and the rotor
position can be measured, the dynamics {2.51) can be
represented in the following state-space form as

1[0 1 0 0]rx] [0 1701 17
X, 3 __-;? ” A3 + & sin x, n 0 1 A
= : +
1o 0o o 1x]|o o [“Tlo|™"
A _f 0 # _Ji"'__x4_ 0 . _i_ 0
- [ x, ]
1 0 0 0 1 0
y={0 0 1 0 i2+2 0lf. (2.52)
00 0 1|7 |01
X )

36
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Simulation Results

Case-1 In this case the sensor faults are given as

fo= 0 i <18s
' 10.05exp(0.01¢),£ > 18s
f.. =0,V

37

Detection of the occurrence of sensor faults

0.16 - ;
residual lle I
0.14 | = — = threshold for fault detection |
012} -
0.1

Magnitude

fault detected

15 20 25 30
Time (s)
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Simulation Results

Case-2 In this case the sensor faults are given as

fo= 0 ,<18s
7 10.05exp(0.01¢), ¢ > 185
0 <255

7221 0,07 exp(0.031), > 255

33

Detection of the occurrence of sensor faults

0.16

residual lle_ |l
w3

[
0.14 | = — — threshold for fault detection

0.12 |
0.1

0.08 i

Magnitude

0.06
0.04 - fault detected

0.02 -~

|

Time (s)
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Conclusions

In this lecture, a new sensor FD scheme is presented.
The proposed FD scheme essentially transforms the
original system into two subsystems where
subsystem-1 includes system uncertainties, but is
free from sensor faults and subsystem-2 has sensor
faults but without uncertainties. Using the integral
observer-based approach, sensor faults in
subsystem-2 are transformed into actuator faults and
detected by designing a Luenberger observer for this
subsystem.

11

Conclusions

Its effectiveness has been demonstrated considering
the example of a single-link robotic arm with a
revolute elastic joint.

Simulation results confirm that the proposed method
can effectively detect and isolate incipient sensor
faults in the presence of system

42
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Modeling of systems and complexes

Modeling and control of robotic systems
Kinematics of industrial robots

Kinematics of Industrial Robots

Dr. Oleg Borisov

Basic Concepts and Definitions: Joints and General-
ized Coordinates

Kinematic Chain
The kinematic chain is used to describe the geometry of the robot

manipulator. Ot represents a graphic representation of the se-

quence of manipulator links connected by joints.
There are two elementary types of 1-DOF joints

e revolte (joint coordinate is angular)

e prismatic (joint coordinat is linear)

Both joint coordinates are so-called generalized coordinates

#;, if the link 7 is revolute,
¢ = (1)

d;, if the link 7 is prisnatic.

Configuration

A set of all the generalized coordinates of the manipulator, which

uniquely determines it in the space, is called configuration.
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Basic Concepts and Definitions: FK and IK

There are two fundamental tasks of the kinematics analysis

e forward kinematics

e inverse kinematics

Forward kinematics

The forward kinematics (FK) is to calculate the coordinates of the
tool frame (its position and orientation) given the configuration of
the robot.

Inverse kinematics
The inverse kinematics (IK) is to calculate the configuration of
the robot given the coordinates of the tool frame (its position and

orientation).

Forward Kinematics: Algorithm

G>—— > —(—=<

Kinematic chain of 6-DOF robot

1. Assigning frames to the links.
2. Determining Denavit-Hartenberg parameters
3. Forming homogeneous transformation matrices

4. Parametrization of rotation matrix
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Forward Kinematics: Assigning Frames
Choice of z;-axes
Choose the axis z; so that it coincides with the axis of rotation
or translational motion of the subsequent joint 7 4+ 1 depending on
its type. This means that the relative location of adjacent links
(coordinate systems) will be determined precisely by the variable
around (or along) this axis.

Choice of z;-axes
Choose the axis x;, i = {1,2...,n — 1} so that the following two

conditions are satisfied.

e The axis x; is perpendicular to the axis z;_.
e The axis x; intersects the axis z;_1.

Choice of y;-axes

Choose the axis y; so that the frame given by the unit vectors
Z;, Ui, z; is right-handed, i.e. in the direction given by the vector
product:

o

Yi =

y
X
8

(2)

Forward Kinematics: Assigning Frames

24

Choicc of z;-axcs

3
e -
1 2,23
Z1 29
20
Tp

Choice of x;-axes
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Forward Kinematics: Assigning Frames

Choice of y;-axes

Yz Xy L4y Ty J:Cn
To, 23 @ Y4 Z? G} f/ Z?

%5195 Yo

Choice of n-axes

Forward Kinematics: DH parameters

The Denavit-Hartenberg convention altows 1o reduce the number of
coordinates that uniquely determine the body (its frame) in the
space, from six to four, known as the Denavite-Harteberg parameiers
listed below.

e a; is the distance along the axis x; from z;_1 to z;
e «; is the angle around the axis x; from z;_; to z;
e d; is the distance along the axis z;_1 from 2;_ to x;

e 0, is the angle around the axis z;_y from z;_, to z;
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Forward Kinematics: DH parameters

Determining the parameters a;

Determining the parameters «;

Forward Kinematics: DH parameters

[ d4 e dg

sy

Determining the parameters d;

T4,Ts J\-’ﬂﬁ

e

Determining the parameters é;
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Forward Kinematics: DH parameters

Link, ¢ | ¢; | «; | d; 8;
1 0 5 | di &
2 as 0 0 92
3 0 ¥ 0 [0:+%
4 0| -5 | ds B4
S 0 N 0 o
6 0| U0 |ds s

DH parameters of the 6-DOF robot

Forward Kinematics: HT Matrix

Consider to sets of coordinates k” and k™ of the same point in the space

expressed with respect to two frames ooxoyozo and 0,2nYnzn, respectively:
0 _ mOpn .
k” =T,k", (3)

where T} is the transformation carrying information about relative position
and orientation of one frame with respect to another one.

Homogeneous Transformation Matrixe

The matrix T,? defining the relation between frames ooxoyozo and 0nTnYn zn

is called a homogeneous transformation (HT) matriz and has the form

Ng Sz Az Pz

0 — Ny Sy Ay Pyl _ n?v Sg ag p?, R(T)I pg (4)
" n: Sz az Pz 0 0 0 1 0 1]’
0 0 1

where the vectors nl, s% and a? express directions of x,, y, and z,

with respect to ooZoyozo, R? € SO(3) is the rotation matrix of the
frame o0,T,ynz, with respect to oozoyozo, p(,)1 € R? is the vector of

linear displacement of the origin of 0,2, Yyn 2, With respect to opzoyozo.
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Forward Kinematics: Properties of HT Matrix

1. The rotation by zero angle is determined by the identity natrix

Rp_y = -1 (5)

O O =
o= e =
B - T )

2. Rotation in thc ncegative dirccsion is determined by
R_3=R3z'=Rj. (6)
3. There arc three basic rotation matrices around z, ¥ and 2 axcs

given as

1 0 0 cosB 0 sinf casB —sinf 0O
Hyp= |0 cosf —sinf|, Hys= 0 1 0 |, H; 3= |sinff cosff O
0 sinfg cos 3 —sinfA 0 cosf 0 0 1

where & is some angle.

Forward Kinematics: Properties of HT Matrix

4. Serial rotations around several current axes are determined by
multiplying on the right. For example, the transformation
parametrized by FEuler angles ¢, # and % is given as

Rzyz = Rz,(ﬁRy

CaCaly — 843y
= SHCPCy -+ Ca 8y

—389Cy:

S 0 o { b f] g —Nd 0

0 1 0 Sy C¢ 0] =
—s5¢ 0 g 0 0 1

—CHpCASy — S¢Cyy  ChSa

—84008y + CsCy S6S0 | (7)
378 Co

where ¢z =cos 3, sg =sin g, = {0,0,¢}.
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Forward Kinematics: Properties of HT Matrix

Using the DH convention form the homogeneous transformation matrices
for each link as follows

B.o, O|[I pa|[I po| [Rew, ©
Ti = TooTyo.TvaTre. = i g i el —
i z,8; 4z didx.a;dro [ 0 1 {0 1 0 1 0 1
cg; —99,Ca: 39, Sax; aic.gi-
84, Ch. Cey: —Cy, Sy, @iSp
— 12 T 3 12 k3 t 8
0 Sai CQ'A di ! ( )
Q 0 0 1 i

where 7 1s the link number, B; o, and H; ., are the basic rotation matrices,

pd4; and p,, are vectors with nonzero components p. = d; and p. = a;

(cos0; —sin0; 0 1 g 0
R.e¢, = |sind;  cos8; 0|, Rea;= |0 cosas —siney|,
i 0 0 1 _0 sinee;  €cos oy
K [a;
pa; = |0, Pa; = [0]. (9)
4, | 0

Forward Kinematics: Parametrization of Rotation
Matrices

There different ways to parametrize rotation matrices

e Buler angles
¢ Roll-Pitch-Yaw angles

e Axis-Angle Representation

All of them are intended to reduce amount of parameters from 9 to 3.
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Forward Kinematics: Euler Angles

The matrix of ZY Z-transformation is given as

(711 (g) m2(q) 7malg)
R(q) = |raa(a) ra2(q) ras()| =
_7'31(4) rapla)  7ss(q)

CopCely — 88y  —ColpSy — 8¢pCy  CHSe
= |[84CuCy T CpSyp —S5aCeSy + CaCy  Sese| . (10)
—8¢Cy S¢Sy Co

Consider three cased depending on the entry r33(q)

S

First Case

If r33(¢) # £1 then sinf(q¢) # 0. Use the Pythagorean trigonometric

identity
sin? 8(q) + cos® 9(q) = 1, (11)
sin(#(g)) = £/1 —cos?8(g) = £\/1 —raz(g) . (12)

from which it follows that #(q} can bc calculated as
¢#(g) = atan2 (i \/1 — T§3(Q),7’33(Q}) : (13)

Note that the remaining expressions to calculate ¢(g) and (g)
depend on the choice of the sign in front of the root in (13)

#(q) = atan2(xrzs(q),xr13(9)}, (14)
¥lg) = atan2(Ersa(g), Fra(a). (15)
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Second Case

as a result

R)(q)

computed

If r35(¢) = 1 then cos#(q) = 1, sind(q) = 0, from which #(g) = 0 and

SpCyp | CoBy
i 0
Copty  —Sptyp
Sp+y  Coty
00
T11(g) T12(9)
ro1(g) 722(q)
0 0

This case leads to uncertainty, since only the sum ¢(gq) + ¥(g) can be

#(g) + ¥(g) = atan2 (r21(q), r11(q)) -

_(f¢(t,¢, — .Sq',b‘¢. —(qu,b‘,,p — .Sq')(fw

S(f, Sapy | Cr,') Cofy
0

- O
Il

(16)

(17)

Third Case

as a result

R (q)

can be computed

If r33(¢) = —1 then cos8(g) = —1, sin#(g) = 0, from which 8(g) = =,

—C¢C¢, - 84,31‘,{_.

-7‘11((!) r12(q)
721(q) 722(q)

0 0

‘I'his casc leads to unccrtainty, since only the diffcrence ¢(g)

Plg) — ¥(g) = atan2 (—ri2(q), —r11(g)).

—S8pCyp + CySy
I 0
—Co—y  —Sgp—vy
S¢—v Cop—i
0 0

C¢3w - 8¢,Cu', 0

S¢S¢ + C¢.C¢, O -
0 -1

0

0 =

-1
0
0. (18)
—1

¥(g)
(19)
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Inverse Kinematics

Initial data for IK are

e three linear coordinates (components of the vector p2)
e three angular coordinates (e.g. Euler angles ¢, ¢ and %)

e DH parameters

The geometric (analytical) method of solving IK is to find explicit
expressions using the apparatus of trigonometric functions, taking
into account the kinematic scheme of the manipulator.

Consider kinematic decoupling approach applied to standard 6-DOF
robot with spherical wrist. It is comprised of two subtasks

e position 1K (to compute ¢;, g2 and g3)

¢ orientation IK (to compute ¢4, ¢5 and ¢4}

Inverse Kinematics: Position 1K

Spherical wrist
A spherical wrist is a kinematic scheme of the last three rotational

joints such that their axes of rotation intersect at the same point.
The subtask is

e to determine relations between the given point of the end-effector

and the point of three axes intersection

e to derive expressions for q;, g2 and g3 given the point of three

axes intersection
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Inverse Kinematics: Position IK

G>—( 0

Kinematic decoupling

Using the sum of the vectors

0
pe =pi +dsR] |0], (20)
1
express coordinates of the point as
0 z
py=pg—deR [0 = [4]] - (21)
1 zg

Inverse Kinematics: Position IK

Vector ¢

The first generalized coordinate can be computed as

6, = atan2(y2, 29) (22)

or
01 — atan2(13, z%) + 7. (23)
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Inverse Kinematics: Position IK

Use the following notations

o = YT+ e @
b = (sz—dl), (25)
¢ = D R (26)

Vectors ¢ and &

Inverse Kinematics: Position IK
Using the Pythagorean theorem write

)/) a® = b + ¢, (27)

é Using the law of cosines write
a® = a5+ ds — 2azdscos(n — 63) =
A = a3+ d; + 2a2d4 cos . {28)
-
* My Combining the both expressions write
/ W+ e? = a3 + d5 + 2aads cos s, (29)
A .
i Y
Vi from which express cosfs
an 3
72,43 62 -+ C2 - a% - dﬁ PP
- s = 30
: " cos 03 and, {30)
@ As a result the generalized coordinate €3 can
%o
E) > be computed as
Vectors ¢ and & Az = atan2 (i V1= cos? s, cos 93) . (31)
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Inverse Kinematics: Position IK

Consider difference between to angles

e angle a formed by a and ¢

e angle 4 formed by a and ay
Express the generalized coordinate 65 as

92 = — ;3. (32)

Taking into account trigonometric expressions

tana = \ (33)

d4sin 93 .
tanf = s + dy cos 93 ’ (34)

rewrite (32) as

62 = atan2(b, c) — atan2(dy sin 83, ag + dy cos b3). (35)

Inverse Kinematics: Orientation IK

Express the rotation matrix RS as
RS = R3RY, (36)
where R is given, R} can be calculated solving FK. Express R as

— T -
R = (R3)™ RS = (RY)" RY. (37)

Consider ZY Z-transformation given by the FEuler angles as

T iz T3
Re= Roys = RogRyoRog = |1 roo 723 - (38)

731 732 733

‘I'he remaining three generalized coordinatces can be computed as

04 = ¢ = atan2 (:t?”zﬁ, :l:'s”|3_) s (39)
s = §=atan2 (:t\/l — 134, 7‘33) , (40)
06 = ’!,l’ = atan2 (::l:’f'ggz :F’I"31) . (41)

239



2019 © Oleg Borisov Modeling of systems and complexes

borisov@itmo.ru, oleg.borisow@gmail.com Modeling and control of robotic systems

Inverse Kinematics: Summary

1. Solve forward kinematics

b

Calculate the coordinates of the intersection between the rotation
axcs given the coordinated of the tool

Solve position IK and get 41, & and 93
Calciulale Rg from forward kinemalics

Calculate matrix RZ

A o

Solve orientation IK and get 64, 05 and 8¢ as the Euler angles

forming the matrix Ry

Dynamics of industrial robots

Dynamics of Industrial Robots

Dr. Oleg Borisov
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Dynamical Model of Revolute Joint: Two
Components

The electrical component of the model describes a circuit with the
inductance, resistance and motor as

Li(t) + Ri(t) = u(t) — Kow(t) = u(t) — K.0(t), (1)

where L, R, i(t), u(t) are the inductance, resistance, current and
voltage of the armature, respectively, K, is the back emf constant,
w(t), 8(t) are the angular velocity and position of the rotor,
respectively.

The mechanical component of the model describes a gear train with
the gear ratio 7 connected with the motor as

JO(t) + K (1) = K,i(t) — (1), (2)

where J is the sumn of the actuator and gear moments of inertia, Ky is
the friction constant, KX, is the torque constant, p,(t) = %,u;(t), Hi(t)
is the load torque, j is the gear ratio.

Dynamical Model of Revolute Joint: Trans-
fer Functions

Apply the Laplace transform and rewrite the model (1) and (2) as

(Ls+ R)I(s) = Ul(s)— K:s0(s), (3)
(J,‘s‘ -+ Kf)ﬁ@(S) = K#I(.H) — fwll:,s':). (4)

Taking into account (3) and (4) let us write the transfer function from
the input U(s) to the output ©(s) with M;(s) =0

() _ K,

- = - . 5
U(s) s((Ls+ R)(Js+ Ky} + K K,) (5)
The transfer function from A;(s) to ©(s) with U(s) =0 is
B(s) Ls+ R ,
= (6)

Mi(s) ~  s((Ls+ R)(Js+ K;)+K.K,)
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Dynamical Model of Revolute Joint: Sim-
plification
Now divide numerator and denominator of the transfer functions (5)
and (6) by R
. K“
B(s) — R (7)
U(s) s((%s+1) (Js+ Ky) + Kjfu)
o g
My(s) s((%s+l) (Js+Kf)+—K€;’“)
Since the time constant of the electrical component is reasonably
much smaller than the time constant of the mechanical one
L__J )
R Kf’
rewrite transfer functions (7) and (8)
K,
O(s) ~ A 6(3). =3 - . (10)
Uls) s (Js + Ky + h—,f“) Mi(s) g (Js + Ky + K—gﬁ)

Dynamical Model of Revolute Joint: The
Resultant Model

Define new notations for these transfer functions

O(s) N 1
Mu(s) ~ s+ K) an
O(s) 1 (12)

M(s) — s(Js+K)

where M, (s) = Z2U(s), K = K; + 2fe.
Combining transfer functions (11) and (12) we gel

1

Ols) = s(Js+ K)

(Mu(s) = Mi(s)) = P(s) (Mu(s) — Mi(s)) . (13)
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Scheme

M, [s]

Dynamical Model of Revolute Joint: Initial

Ul(s)

I(s) —Mu(s) ™,

Le+R

> Ja | K

K, -

Initial scheme of the revolute joint model

plified Scheme

Dynamical Model of Revolute Joint: Sim-

96s)

M(s)
+
M, (s) .
T+ .s(.]s+ F()

Simplified scheme of the revolute joint model
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Dynamical Model of the Robot: Euler-
Lagrange Equation

Dynamics of mechanical systems can be described by the

Fluler-Lagrange equalion as

d {38L oL

where L is the Lagrangian, ¢;, ¢; are the generalized coordinates and
velocities, u; are the generalized torques applied to the joints.

The Laugragian L can be computed as
L=K-P, (15)

where K and L are the full kinetic and potential energies of the
system, respectively.

Dynamical Model of the Robot: Kinetic En-
ergy

The kinetic energy of the link is comprised of the linear and angular

components
1 1
K, = Emilw 24 Qw?f?wi, (16)
where m; is the mass of the link, v; is the linear velocity of the center
of mass, w; is thc angular velocity of the framce assigned with the link,
1D is the inertia tensor with respect to the base frame.

Express the linear and angular velocities using the Jacobian matrix

Vi = Jﬂi(@)‘js (17)
wi = Ju, (g)4. (18)
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Dynamical Model of the Robot: Kinetic En-
ergy

Express the inertia tensor as
I° = R,IRT, (19)

where K; is the rotation matrix between the base and link frames, { is the
211 f12 13
inertia tensor with respect to the link frame given as I = |7, iyy 23
i31 132 133
where the elements are defined as

7?11:///(3/2 + 2)plx, y, 2)dedydz,  i10=in :—/]j xyp(e, y, 2)drdydz,

7'.12:///(1:2 + 2 plz, y, 2)dedydz, i13:-i31:—/// zzp(z, y, z)dedydz,

i13:/‘/‘/(1{)_ +y?),0(1’, Y, z)d:ﬂdydz, i23:i32:_/// yzp(x.‘yaz)d’xdydz?

where p(z, y, 2) is the funcition of mass density.

Rewrite the kinetic energy as

Ki = g I Jud + 340 RART Jung (20)

Dynamical Model of the Robot: Full Energy

The full kinetic energy of the robot can he computed as

n

o1, 1 .
K =oq" ) (mid) o+ JILRIRT o) d = 50 A@g (2D)

i=1
The potential energy of the each link is computed as
P,; = mz'ngi, (22)

whre m; is the mass of the link, g is the vector defining the direction
of the gravitation with respect to the base trame, p; is the
radius-vector to the center of mass of the link expressed with respect
to the base frame.

The full potential energy of the robot can be computed as

P =Y migTp:. (23)
=1
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Dynamical Model of the Robot: Model of
Multilink System

Substitute the kinetic and potential energies to the Lengrangian
1 » 123
L= §Q’TA(Q)¢ - Z; mig” pi. (24)
Substitute the Langrangian to the Euler-Langrange equation
Alg)d + Clg, 4)d + Glg) = u. (25)

where A(g) € R™*™ is the symmetrical matrix of inertia,
C(g,¢) € R**! is the matrix of Coriolis forces, G(g) € R**! is the
vector of gravitational forces.

Dynamical Model of the Robot: Actuator
Dynamics Revised

Writce the dvnamical modcl of the actuator dvnamics as follows

Jib:(t) + Fi#i(t) = K; -

where F; = Ky, K; = K, v; = R, “;Et) =1i(f), i ={1,2,...n} is the
number of the link.

Take into account gear box

8;
P = = 27
== (27)
Rewrite the actuator dynamics as
P 2 o W(E) :
75 Jii (t) + 57 Figs (t) = 1:K; . M (t), (28)

2

where u; = py for the link <.
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Dynamical Model of the Robot: Actuator
Dynamics Augmentation

Add the actuator dynamical model to the model of the mechanical system
and get

T(q)i+ Clg,d)d + Fg+ G(q) = u, (29)

where the matrix I'{g) is of the form

K|
T(g) =Alg) +7 = Alg) + . ) . . (3
0 0 0 4§

where the friction vector and vector of control inputs are given respectively

as
a2 jrE 28 (1)
.2 . OFR
i o J2 KR (1)
, o , (31)
2t inKn ‘50 (t)

Example of Two-Link Planar Manipulator:
Jacobian matrices

122
29 C

%

&

Kinematic chain of two-link robot

Write relations between linear end-effector velocities and generalized ones
using the notion of the Jacobian matrix as follows

v = Jy14, ve= Jy24, (32)
where
—a1sing; 0 —a18ing; — ezsin(gr + ¢2) —cusin(g + g2)
Jvg — | ercosgr 0, Jua — | a1cosqr + cacos(qr + g2) c2 cos{g1 + g2)
0 0 0 Q
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Example of Two-Link Planar Manipulator:
Kinetic Energy

‘I'he kinctic cnergy is comprised of translational and rotational
comnponents. Let us address themn separately. The translational

component caused by the linear velocity can be computed as

™ 'b'f 1 Tl‘i.g‘l]él 79

Ko = — 2= = 0.5¢" m1Jg 1 Je 14 +0.5¢ mady 5 Ju 0q

1st link 9nd link

(33)
The rotational component caused by the angular velocity can be

computed as
. 1 0f., ) 1 1],
Kee=05¢"1 [0 0] g+0.5¢7 7T, |:1 ].] g (34)
1st link 9nd link

Example of Two-Link Planar Manipulator:
Inertia Matrix

The inertia malrix A(y) becomes of the form

. L+, 1I
Alg) = mlJ«E:l Ju1 + szZ:ng,z + [ ! 2]

12 iz

A1 A1z
A21 Aoz

micl 4+ mola? + €2 + 2a103 + 20102 cosga)+ I + I ma(c? + aieg cos g2+ Iz
mz(cg +aiczco8q2) + Iz moch + Iz
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Example of Two-Link Planar Manipulator:
Matrix of Coriolis Forces

Each element of the matrix of Coriolis forces C(g) can be calculated
using the equation

aA&, O 8)\1'3') ,
0.5 - ; 35
Z (8% d¢;  Oge d (35)

=1
The matrix of Coriolis forces C(g) becomes of the form

—Mod1Cy sin 2.2 —Mal1C3 sin 2 .2 + ¢ .
Cg) = [ oz it )} (36)
maa1cy Singady 0

Example of Two-Link Planar Manipulator:
Vector of Gravitational Forces

Each element of the vertor of gravitalional forees G(g) can be
calculated using the equation

oP
; = 37
%= 3 (37)
The vector of gravitational forces G(¢) becomes of the form
mycy + maoay jgcos gy + macag cos(gr + qz) .
Gg) = [( Vgcosa ( (39)
1169 cOS(g1 + g2)
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Example of Two-Link Planar Manipulator:
Resultant Model

The resultant model of the two-link robot is

Arrdr + Azds + endr + c1z2gz + (macr + mzar)gcos ¢ + mycygcos{gr + gz2) =
A21G. — Azz2§z + c21§1 + macz cos{q) + g2} = p2

Summary

¢ Dynamical models of industrial robots allow to describe and take
into account (designing a control law) physical processes specific
to them

e The simplified model of the revolute joint can be represented by
the transfer function of the relative degree 2

e The dynamical model of the industrial robot can be derived using
the Euler-Lagrange approach
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Motion planning for industrial robots

Motion Planning for Industrial Robots

Dr. Oleg Borisov

Basic Concepts and Definitions: Configuration Space

Configuration

A configuration q is a set of all intermediate generalized coordinates
(joint variables).

Configuration space

Configirations space Q is a set of all possible configurations ¢

Q = {q}. (1)
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Basic Concepts and Definitions: Workspace

Workspace
Workspace VW is a set of points, which belong to the robot itself
and the reachable environment including all the obstacles

R(Q)CW, OCW, (2)

where R(q) is space occupied by the robot and O is space occupied
by the obstacles.

In case of a planar manipulator which movements are constrained by

the plane

W C R?, (3)
its workspace has two-dimensional.

In case of a spatial manipulator, which is able to move along three

orthogonal axes

W C R3, (4)

its workspace is three-dimensional.

Basic Concepts and Definitions: Collision-Free Space

Collision-Free Space
Space corresponding to collision of the robot with some obstacle

is defined as follows
0, = {g€ QR(g) N O # 0}, (5)
from which collision-free space can be expressed as

Q():Q\Qx- (6)
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Basic Concepts and Definitions: Path and Trajectory

Path Planning
Path planning is a process of searching a cosecutive set of config-
urations within collision-free space connecting the initial configu-

ration with the given final one.

Trajectory Planning
Trajectory planning is a process of time parametrization of the
path, i.e. computation of reference functions of time for general-

ized coordinates, velocities and accelerations.

Path Planning: Exact Cell Decomposition Approach

Exact Cell Decomposition

The idea of exact cell decomposition is to divide whole free con-
figuration space on triangle or trapezoid cells and to construct a
graph. Its nodes are represented by centers of the cells and its
links are common sides between adjacent cells.

In case of exact cell decomposition there are two types of cells

e white cells correspond to the collision-free space
e black cells correspond to the collision space
Then given initial and final configurations, search of consecutive

transition from one white cell to another one is carrying out to
connect these two configurations and avoid all the black cells.
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Path Planning: Exact Cell Decomposition Approach

e 9 o e " Qon a0
.

Steps of Exact Cell Decomposition Approach

Path Planning: Approximate Cell Decomposition
Approach
Approximate Cell Decomposition
Difference of the approximate cell decomposition with respect to
its “exact” version is that instead of the whole configuration space
its subset is divided on cells. So, the remaining space could include
also slight parts of collision-free space, which is caused by complex
shape of the collision space.

In case of approximate cell decomposition there are two types of cells

e white cells correspond to the collision-free space
e black cells correspond to the collision space

e gray cells correspond to the both spaces

While searching a path could pass both white and gray cells. If it
touches grays cells, additional cell decomposition should be carried
out until the path connecting initial and final configurations goes

through white cells only.
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Path Planning: Approximate Cell Decomposition
Approach

Approximate Cell Decomposition

Path Planning: Potential Field Approach

Potential Field Approach

he robot is considered as a material point moving in a configuration
space under influence of a potential field function P(q). It has
attraction component P,(q) assigned with the final configuration

and repulsive component P,(q) assigned with the collision space

P(q) = Pu(q) + Pr(q). (7)
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Path Planning: Potential Field Approach

Set, the global minimum of the function P(q) as the attraction
component P,(g)

1
P.(g) = §kallq—qd||2, (8)

where ¢. qq are the current and desired configurations, respectively, &k,
is the scaling factor.

The repulsive component P, (g) ensures singularity of the function
P(g¢) when the material point is approaching the collision space

2
17, {1 _ L . _
Pg)={ 2* (6{q> 50) if  é(q) < du, (©)
0 if &(g) > do,

where k,. is the scaling factor, 4(¢g) is the shortest distance from the
current configuration to the collision space, ¢ is the minimmun value.

Path Planning: Potential Field Approach

The gradient descent algorithm can be used to plan a path

gi+1 = ¢; — 1V P(g5), (10)
, . , T
where VP(q) = [% 3—£ .o C;—P] , ¥4 is a iterative step, which can
be either fixed, fractioned, or calculated in the direction of the fastest
descent as
7 = argmin; P(g; — YV P(g;)). (11)

The main disadvantage of the potential field approach is possibility to
stuack at the local minimum instead of the global one. So called
random motion approach is used to avoid this issue.
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Path Planning: Potential Field Approach

Steps of Potential Field Approach

Path Planning: Probabilistic Roadmap Approach

Probabilistic Roadmap Approach
Probabilistic roadmap approach is useful for fast path generation.
It is based on the usage of random samples from the configuration

space.

1. Several nodes (samples) are chosen randomly from the
configuration space. Each node is assigned with a particular
configuration.

2. Adjacent nodes are being connected between each other within
the specified norm in the configuration space.

3. The fisrt two steps are repeated to cover sufficiently large area
between the initial and final configurations.

4. A cosequtive set of samples are chosen to connect the initial and
final configurations.
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Path Planning: Probabilistic Roadmap Approach

-

Soé

Steps of Probabilistic Roadmap Approach

Trajectory Planning: Spline Functions Approach

Spline Functions Approach
The idea of this approach is to interpolate generalized coordinates, ve-
locities and accelerations between the reference points using the poly-

nomials of the form

gi(t) = anit' +ai—1:t"™ 4o+ ag,it® + ax,it + a0, (12)
Gi(t) = 1(1‘1_,-1“’_I + (1 — 1)(1‘1_1_,‘7‘.'_2 + -+ 2a0:t+ari, (13)

Git) = W(l—-1Dart"™ 2+ (1 -1)(1 —2ar—1:t"2 + - - - + 2a2,4,(14)

where the degree [ and coefficients a;;, j = {1,2,...,l} are calculated
depending on the constraints and continuity requirements on the tra-

jectory.

Divide the whole trakectory on several elementary subtrajectories.
Compute relative time functions 7; for each subtrjactory.

Apply constraints and continuity requirements on the trajectory.

Lol

Determine the highst polynomial degree for each subtrajectory.

5. Solve matrix equation to compute coefficients of all the polynomials.
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requirements.

¥(t)
()

gi(to)
gi(t1)

Trajectory Planning: Single Subtrajectory Case

Only initial and final configurations are given. No intermediate

Consider the following constraints for each link of the robot

= o, Gilto) =, G(to) =, (15)
= ¥, qt)=v1, Git)=o. (16)

Choose the polynomial to interpolate intermediate values of the
generalized coordinates

B(t) = ast® + aat? + ast® + ast® + a1t + ap. (17)

Calculate the first and second derivatives of this polynomial to
interpolate values of generalized velocities and accelerations

v(t) = Bast* + 4aqt® + 3ast® + 2ast + aq, (18)
alt) = 20ast> + 12a48° + 6ast + 2az. (19)

4

o
20
g
o

™M

&)

.

Qo
71
vy

(84]

—

e

o

Yo

Trajectory Planning: Single Subtrajectory Case

Write the system of equations taking into account the imposed constraits
and continuity requirements as follows

asty + aatd + asty + a2th + arto + ao,
Sasth + dasty + 3asty + 2azto + al,
200.5tg + 12(1..»11‘,(2) + Gasto + 2aq,

Rewrite this system in matrix form as

20
ast] + asti + ast] + azti + a1ty + ao, (20)
Sast] + daat] + 3astt + 2ast1 + an,
20asty + 12a4t] + 6asty + 2az.
12 b 2 2 to 1] [as|
5t 483 385 2o 1 0| |as
_ 2065 1248 6ty 2 0 0 as| (o1)

tf o8 1 ot 1] |a
561 4¢7 347 26, 1 0f |a

206 12¢7 66 2 0 0] |ao
Ny - " o N - .I
T <

from which the vector of unknown ceefficients can be easily expressed as
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Trajectory Planning: Multiple Subtrajectory Case

Consider a trajectory comprised of three subtrajectories as follows
¢ Leaving (a)
e Transition (b)

e Approach (¢)

Trajectory comprised of three segments

Trajectory Planning: Multiple Subtrajectory Case
Consider the following constraints for each link of the robot
gi(to) = Yo, qti)=v1, @t} =192, qlis)=7s, (23)
g:(tn) = wo, Gilte) =00, @ilta) =wvs, §i{ts) = as. (24)

Use the relative time functions for each subtrajectory

t—tg t— 1 t—1y .
= , = —) — \ 2
t1 — 1o o ta — 11 T t3 —t2’ (O]

where to, £1, t2, t3 are the given time moments of passing all the reference

Ta

configurations.
Impose continuity requirements to get a smooth trajectory
va(l) = 0(0), aafl) =a(0), w(l)=v.(0}, au(l}=o0e(0). (26}

Taking into account the relative time functions rewrite constraints on the
trajectory

’19(1,(0) b '!9(]; '!9(,(0) d 191 ] 19((0) = 192:' (27)
Jall) = Y1, Dp(l) =92, V(1) =5, (28)

and continuity requirementsas follows
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Trajectory Planning: Multiple Subtrajectory Case

Choose the polynomial to interpolate intermediate values of the generalized
coordinates within each subtrajectory

Yola) = fMTf + 6373 + azrf + a17a + @0, (30}
Bo(me) = bsTi +bamil +buTe + bo, (31)
PelTe) = cuti +caTe +TE + 1T + o, (32)

Calculate the first derivative of these polynomials to interpolate values of
generalized velocities

'19”,(70,) = Uu(‘ru) = 4&473 + 30-31.3 + 20'27.11 + a1 P (33}
Bo(mp) = vp(mp) = 3ba7i + 2bamy + by, (34}
Bolre) =velme) = dcars + 3csms + 202Te + €1, (33}

Calculate the second derivative of these polynomials to interpolate values of
generalized accelerations

é(t(ﬂz} = Cla(Tu} = 12(141?}2 + b6asT. + 2(12, (36)
d(n) = aw(n) = 6bsm + 2hs, (37)
gc(Tc} = ac{‘rc} = 12041’5 -+ 6(331} + 2(:2, (38}

Trajectory Planning: Multiple Subtrajectory Case

Write the system of equations taking into account the imposed
constraits and continuity requirements as follows

p

Yo = ag,
Vp = 41,
dp = 2&2,
P = as+az+azx+ a + ao,
1 = bo,
0 = dag+ 3ag+ 2ay + aq — by,
) 0 = 12a4 + 6ag + 2a> — 252: (39)
2 = bz +ba+b + by,
v = cps
0 = 3ba+2ba+b—c,
0 = 6by+ 2by — 2¢0,
Y3 = cg+e3+c2+e1+ o,
vy = deg 4+ 3¢+ 2¢0 + ¢4,
[ a3 = 12¢4 4+ 63 + 2¢9.
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Trajectory Planning: Multiple Subtrajectory Case
Rewrite this system in matrix form as

0] 0000100 00000 0 0] [aa

Vg 0001000 00000 0 0] |as

g 0020000 00000 0 0] |az

O 1111100 00000 0 0| |a

h 0000000 01000 0 0] |ao

0 4321000 -10000 0O O] Ibs

0Ol _11262000-2 00000 0 0] |be (40)

dol T ]000001 1 1 1000 00| |k

¥y 0000000 00000 O 1| |b

0 000003 2 10000 =10]| |

0 000006 2 0 000-=220 0| |e3

I3 0000000 00111 1 1| fe

V3 0000000 0043 2 1 0| |«

¥ (000000 0 00126 2 0 0] Loy

Nem—— - N

4 T S
from which the vector of unknown coefficients can be easily expressed
as

¢=T"'g (41)

Arc Approximation Algorithm of Spatial Movements

Research Objective

This study focuses on spatial motion planning algorithms, which
allows to characterize sophisticated reference paths in 3D space
and simplify the way how they can be given. The key point used
in this study is approximation of a sequence of points by a sequence

of arcs within a specified d-region.

In industry such algorithm can be applied for such tasks as surface
finishing, engraving and welding. The last operation represents the

main interest of this research.
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Problem

Objective
The purpose is automated code
generating to move the end-
effector along some counters
specified by the input bitmap im-
age or 3D model.
After extracting coordinates of initial
points sequence they already can be
programmed using trivial
point-to-point motion, but it might
lead to some issues.

e significant input data (robot
controller overload)

Mitsubishi RV-3SDB
e decrease of the motion velocity

(reconfiguration at each
reference point)

Arc Approximation Algorithm

Basic Idea
This approach is based on the feasibility of the standard software to

move the end-effector along an arc, specified with only three points.
This basic motion provided by the internal software is more natural then
complex combinations of multiple linear point-to-point movements. As
a result, the robot reconfigures only three times at the reference points
forming this arc. Such solution allows to reduce the code size and

increase the velocity.
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Planar Planning

Consider three reference points

M= [ﬂ:l] " Py = ['Tz] 3 3 = [:ES] . (42}
i Y2 Y3

All intermediate points between p1, p2 and p3 should belong to a
corresponding arc within some &, ~region.

Congider two lines p,—pe and pa—ps3. In order to find coordinates of the arc

x(f .
center ¢ = consider three cases.
Ye

Case 1

If zo = x3 and 21 # x2 then

Yo + Y- Ye — (Y1 + V- T + ¢
Bty g (1 ./z)+ 1 2.

2 2 2

Ye

where k is the slope of the line (z1;y1)—(z2;y2) given by k) = %fle’-";
Case 2
If 21 = 22 and 29 # x3 then

oyt Yo — (y2 +y3) 4 T2t s

Te = —k2

Ye

g 2 2

where ks is the slope of the line (z2;y2)—(z3;y3) given by ko = 'I’:—:II’—?—;
Case 3
If all z-coordinates are distinct, then

. _ kiko(yr —y3) + ka(xy + x2) — k1 (22 + x3) (43)

e 2(k2 — k1) .

T = .l']’+.ro ) .
Ye = - ‘ 2 + 7 -.+.y2 s (‘14)
k1 2

where k1 and k2 are given above.
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T4

] to the arc formed by p1, p2
Ya

Calculate distance from a forth point ps = l

and p3 as follows

dared/ Toe— 0+ (o) 7] (43)

where r = /{z, — %)% + (yL — ¥.)? is the radius of the arc.

As a result we get a sequence of arcs each specified by three consecutive
points. Such point list can be used together with the operator MVR P1 P2
P3, which allows to move along an arc specified by three reference points.

Spatial Planning

Consider three points that do not lie on the same line. Coordinates of
vectors specified in the Cartesian space are defined ag

xf x9 x4
0 ) 0 _ 0 0 0 14
pi=|¥|. p2=|y3|, pP3i= |u3]|- (46}
29 22 22

Consider two coordinate systems denoted as zoyozoon and x4 21 01. Derive

a normal to the plane o,y 01 through a cross product

Ty
n=|ny| = (pg —P?) X (Pg - P?) . (47}

(233

Then calculate a unit vector

2z
n
“= &y = - (48)
Vi +ng +ni
Zz

265



2019 © Oleg Borisov Modeling of systems and complexes

borisov@itmo.ru, oleg.borisow@gmail.com Modeling and control of robotic systems

Compute the rotational transformation as RS = R Ry 5, where the angles o and
A can be calculated as follows

Zy Za
)
-2 ~2 2 2
\/‘“3} + “y \/Zx + Z,y

Substitute o and 4 into the rotation matrices around z— and y-axes

a = atan22

, 3 =atan22 ( 22 + z{;’, zz) )

cosa —sing 0 cos3 0 sinf
RY=|sina cosa O 0 1 0o |. (49)
0 0 1] [—sin3 0 cosS

Calculate coordinates of the reference points with respect to the local coordinate
system using the rotation matrix

pl = Ryp!, pi=Ryph, p3= Ropl, (50)
where Ré = [R[E]T.

Denote coordinates as follows

h x5 i
1 _ L 1 _ L 1 _ L (51)
2= 1% Po= |Ua|, P3= |U3
23 25 z5
g
In order to find coordinates of the arc center ¢! = |y! | consider three cases.
z
Case 1
If :135 = .'17; and :zr} #* :17._12 then
1 Y3+l 1 ye — (yi +v3) , =1 +3
Yo = —, . =—k ;
2 2 2
|
where ki is the slope of the line (;1:%:;1/]1) (:1.:5; yé) given by k1 = %_—Zﬁ—
Case 2
If ;v% — .1:..5 and ;zr% # ;1:_.1s then
L — T +y5 S T ) y}_.—(y.;+y§) +;U.‘12+q.:13
Ye = —2 » Le = 2 2 2 )
11
where ko is the slope of the line (;1',,5: y%)—(:r:l;: yé) given by ko = 'lif_—':i-
xi—xy
Case 3
If all z-coordinates are distinct, then
A kik2(yl — yd) + ka2(z] + 2d) — k1(ad + 23) (52)
= Q(Atg == /\1) ’ -
1 1
1 xy+x-
g T Tt vitw (53)
= k1 2 ’

where k1 and k2 are given above.
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The third z-coordinate can be derived trivially as

Ze =2 =2 =2 (54}

Express coordinates of the center with respect to the base coordinate system

N
& = [4¢| =Rl (55)
)
“e
The equation of a plane is given as
Ng® + Ny + N2 +no = Q, (56}
where ng = — (1,23 + nyy3 + n223).
ko
Distances from a forth point ps = |y} | respectively to the plane dpiane and
0
24

to the arc formed by p1, p2 and p3 can be computed as

a 0 o}

Nady + Nyyl +1x2l + N -

dptane = I 4 Zy'ﬁl 5 42 0|1 (5‘}
V n:c + n‘-y + nz

Qure = \/(:v‘c'—x2)2+(y@—y2)2+(z2—z2)?—r ; (58}

where r = \/(a§ — 29)? + (39 — ¥2)? + (2? — 22)? is the radius of the arc.

Then all points should be processed and checked on belonging them to a
particular plane and arc within the specified d,10ne- and §u,-Tegions,
respectively. As a result of this procedure, a sequence of three-points-sets
each specifying a particular arc should be obtained.
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Experimental Approval

Experimental Approval

Experimental Results: Planar Planning

A hypotrochoid drawn by the robot on a flat surface
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Experimental Results: Planar Planning

A portrait of Alexander Pushkin drawn by the robot on a flat surface

Experimental Results: Spatial Planning

A hypotrochoid drawn by the robot on the a curved (cylindrical) surface
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Experimental Results: Spatial Planning

1000

E
E 5004

04
-200

y, mm 200 200

A portrait of Alexander Pushkin drawn by the robot on a curved
(cylindrical) surface

Summary

¢ Reference motion can be programmed manually using a teach pendant
or automatically using some path planning algorithm

e Once a path is generated, its intermediate positions, velocities and
accelerations should be interpolated

e Advanced algorithms for spatial movement planning can be designed
for industrial applications

e The next step is control design to make the robot to track the
reference trajectory
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Control design for industrial robots

Control Design for Industrial Robots

Dr. Oleg Borisov

PD Controller

Consider the control plant specified by the transfer finction. We
introduce a proportional-differential (PD) controller with a transfer

funetion

R(8) = kp + kgs. (n

We calculate the transfer function of a closed-loop system

W) — _ROPG)
L+ R(s)P(s) 1+ Lathas

Js2+Ks
Js? + (K +kg)s+ k&,
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PD Controller scheme

Figure 1: Simulation scheme of & closed-loop system with PD controller

Further, with known parameters of the object J & K, based on the
roots of the charactcristic polynomial of the transfer function

Js* + (K + kq)s + k, , it is possible to calculate such coefficients of
the PD controller &, & k4 to ensure the required quality indicators of

the closed system.

PID Controller

Consider the controt planl given by Lhe transfer funclion. We
introduce a proportional-integral-differential (PID) controller with a
transfer function

1
R(s) =k, + kz; + kgs. (3)

Witl structural fransformalions we express 1he aulpul variable

_R$P(3)
1+ R(s)P(s)

P(s)

O(s) 1+ R(s)P(s)

0" (s) + M(s). 4)

We calculate the transfer function of a closed-loop system

1 kas® +hpstk;
W(s) = R(s)P(s) e B
T 14+ R(s)P(s) 1y Fasirkeetk

Ja3 | Ks2
Js? + (K + ka)s? + kps+ ki
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PID Controller scheme

4

Figure 2: Simulation scheme of a closed-loop system with a P1D controller

Further, with known parameters of the object J & K, based on ilie
roots of the characteristic polynomial of the transfer function

J5% + (K + kq)s* + kps + k;, it is possible to caleulate such coefficients
of the PID regulator k,, k; & kg in order to ensure the required
quality indicators of the closed system.

Robust control

Tel us wrile down the consequiive compensalor in the form of a,

transfer function

R(s) = kyyor~! 32; , (6)

where p — relative degree of the plant, k & o > k£ — tuning

parameters of the controller, &3}  an arbitrary Hurwitz polynomial
of degree p — 1, ¥(s) — Hurwitz polynomial of the form

H) = 7 4 0ypmas P 4t 0 et 0P g ()
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Robust control in closed-loop system

Consider the control object specified by the transfer function. Its
relative degree is p = 2, so, chosen a(s) = s+ 1 & 9 = 1, rewrite the
regulator (6) like

_ kos+ ko

RJ
(s) s+o

(&)

Transfer function of a closed-loop system is

o) kos+ko
Wis) = —wsill) TR _
L+ REPE) 1+ oriietrs

kos+ ko

- (s + o) (Js? + Ks) + kos + ko’ ©)

Robust control scheme

Figure 3: Simulation scheme of a closed-loop system with a consecutive

compensator

The characteristic polynomial of the transfer function (9) contains
unknown paramelers of the plat, but due Lo the rohustness of 1he
regulator (8), for sufficiently large coefficients k & o exponential
stability is attained.
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Robust control extended

Adding the integral componcnt we rewrite the regulator (6)

1 3(s)

= | P_
R(s) = kyo (s)’

(10)

where £(s} — Hurwitz polynomial of degree p.

Having chosen 3(s) = s*> + s+ 1 & ~¢ = 1 rewrite the regulator (10)
like

kos? + kos + ko
s2 | o8 '

R(s) = (11)

Transfer function of a closed-loop system

kosithostke
R(s)P(s) (Ftos)(Js?1Ks)

I+ R(s)P(s) 1+ phasstasthe

kos? + kas + ko

- (s2 ) os)}(Js% | Ks) | kos? | kos | ke (12)

Wis)

Robust control extended scheme

(s

Figure 4: Simulation scheme for a closed-loop system with a consecutive
compensator with integral loop

The increased order of astaticism of a system with a transfer function
(12) makes it possible to compensate the effect of gravitational forces.
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Anti-Windup Control
Saturated input

Uy, if u(t) 2 Uy,
w(ty =satu(t) = ¢ u(f), if wp < w(t) < uy, (13)
w, i u(t) <y,

where u; & uy — upper and lower limits of the input signal.

Let us write down the control law of the PID controller (3) like
. gt .
() = ky®) + kL + hapie), (14

where p = & — differentiation operator, §(t) = g* — g(t) — error.

Following the amivindap correction method we add Lo (14) an

additional contour

u(t) = kpq(t) + kzw

+ kdpé(t)! (15)

where k, > 0 — gain, i(f) = #(t) — u(t) — difference signal between

saturated and source control.

Anti-Windup Control scheme

Y

Figure 5: Simulation scheme of a closed-loop system with a P1D controller

and anti-windup correction

The control law (15) helps to avoid the effect of integral saturation in
conditions of limited input.
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Anti-Windup Robust Control

Tel us wrile down ithe control law of a consequiive compensalor with

an integrated circuit (10} like

ut) = #22), (16)

£t) = o(TE) + dnog(t). (17)

gty = RrTEw), (18)

where §(¢) — error signal estimation §(¢), matrices and vectors T, d, h

in form

[0 1 0 ] [0] [1]
0 0 1 0 0 0
=Y 71 Y2 o Yp-1l 1) 0]

Anti-Windup Robust Control
Transform the control law (16}, with integrator

ﬁtp

u(t) = K22 (n—k(mm+- )aﬁ=kﬂmﬂJ+k i), (20

where B(p) = —’B'Ip;')_a".

Following the anti-windup correction method we add to the (20) an
additional contour

) = KB @) + £ (50) + haa®)). (21)

where k, > 0 — gain, u(f} = @(t) — u(t) — difference signal between
saturated and source control.

Having chosen 8(p) = p?> + p+ 1 & 40 = 1, rewrite the regulator (21)
like 1
u(t) = kpq(t) + kq(t) + ff}—)(ﬁ(t) + kyG(t)). (22)
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Anti-Windup Robust Control

Figure 6: Simulation scheme of a closed-loop system with a consecutive

compensator and anti-windup correction

The regulator (22) allows to solve the stabilization problem with the
increased order of astaticism in comparison with the regulator (6) and
with compensation of the integral saturation effect by means of
anti-windup.

Tracking control

Let’s express the output signal ©(s):

aron B(s)P(s) + F(s)P(s)
O) = = REHPE)

@’F(S) + %1‘41(3). (23)

We choose the transfer function of direct coupling in the form:

F(s) = % (24)

then the expression (23) takes the form:

P(s)

6(s) = () + + 1T R P
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Tracking control scheme

—————» F(s)

0*(s) Os)
o

> H(s)

Figure 7: Simulation scheme for closed-loop tracking system

Direct link allows the system to monitor any given trajectory,
provided that the system is completely stable. The steady-state error
in this casc will be duc only to the influcnce of an cxternal
perturbation Mj(s).

Multivariable control

Consider the dynamic model of a robotic system
g)i+ Cla,d)d + Glg) = (26)
Stabilization of desired ¢* will be performed with PD controller.

First, for simplicity, we neglect the effect of gravity, assuming that
G(g) = 0. In view of this model (26} looks like

[(q}d + C(g,9)¢ = u. (27)
We choose the vector of control actions u like
u = K,(q* — q(t)) — Kag(t) = Kpd(t) + Ka(t), (28)

where G(t) = ¢* — q(#) — ervor between the specified configuration
and the current one, K, & K, looks like

kpi O ... 0 kit 0 ... 0
0 kyo ... O ) 0 kap ... O

K, = , . Ke=| . : 0 (29)
0 0 0 kpm 0 0 0 kin
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Multivariable control

Substituting the control law (28) to the plant (27} we obtain a model
of a closed system

T(g)d + Clg, d)d = Kpd(t) + Kai(t). (30)

To analyze the stability of a closed-loop system (30) we consider the
candidatc Lyapunov function in quadratic form

| I Loy - :
V(t) = qu K,q+ §q’Tq- (31)

Taking the time derivative of (31) we get
V() = —¢"Kag <0, (32)

this together with the Lassalle theorem shows the asymptotic stability
of a closed system (30).

Multivariable control

When ¥V = 0 from (32) we can conclude that the generalized velocities
and accelerations are zero ¢(¢) = 0 & ¢(t) = 0. Taking this into
account we rewrite the equation of a closed system for ¢ — oo

0 = Kpq(t), (33)
from which it follows that §(t) = ¢* — g(f) = 0 with ¢ — o0.

The influence of gravity G(g) # 0 leads to the appearance of a steady
error. The PD controller in this case does not provide asymptotic
stability. The equation (33) looks like

G(g) = Kp4(?)- (34)
To eliminate the established error we supplement the law of control
u — Kpq(t) + Kaq(t) + Gla), (35)

which makes it possible to provide asymptotic stability with the
influence of gravity.
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Dynamic of robotic systems

Dynamics of Robotic Systems
Euler-Lagrange Method and Special Cases

Sergey Kolyubin

Qutline

* Motivation
* Encrgy-bascd Approach - Euler-Lagrange Mcthod

* Energy calculation
* Motion equation

» Special Cases
* Drive dynamics
* Flexible joints modceling

* Motion Equation in Opcrational Space
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Why Do We Need to Know Dynamics?

simulation

defining dynamic constraints

* mechanical design optimization

trajectory planners and controllers synthesis

Tasks

» Forward Dynamics: given desitred trajectory (coordinates, velocities, acceleration)
find generalized forces/ torques

* Inverse Dynamics: given generalized forces/torques, find generated motion
(trajectory)
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Tasks

¢ Forward Dynamics: given desired trajectory (coordinates, velocities, acceleration)
find generalized forces/torques

* Inverse Dynamics: given generalized forces/torques, find generated motion
(trajectory)

Practical tasks

¢ f/t calculation - find external (control design)
and internal (find reaction forces in kinematic
pairs)

¢ performance indicators - find possible cycle
time given dynamic constraints

¢ (serial) manipulators balancing - unload drives
in statics

¢ (parallel) manipulators dynamic balancing -
minimize distortions during the motion by

stoe of KUKA KR-270 T™ robot

placing counter-weights

Tasks

» Forward Dynamics: given desited trajectory (coordinates, velocities, acceleration)
find generalized forces/torques

* Inverse Dynamics: given generalized forces/torques, find generated motion
(trajectory)
Theozetical sub-tasks

s trajectories calculation

* motion stability analysis

calculating time response

identifying critical motion modes
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Methods Comparison

* E-L - kinetic and potential energy
¢ multibody dynamics as a whole
» exclude reaction forces between links
* symbolic form
¢ better for analysis
* N-E - forces/torques balance
» separate equation for each hody
» explicit relations for reaction forces
* numeric recursion form
¢ better for synthesis and real-time applications

By excluding reaction forces and substituting these relations we can derive E-L
equations from N-F equations

B-L General Framework

1. select generalized coordinates g, 42, ... 4

2. derive relations for kinetic X and potential P energy as functions of generalized
coordinates and its derivatives

3. calculate system Lagrangian £

4. derive motion equation

d aL al
=1, k=1,2,... 1
dtoge oy ¥ " @

K

7y is a generalized force/torque
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Full Kinetic Energy

Konig theorem
Full energy consist of an energy assoc. with

body CoM motion and relative body motion
around it CoM

L1 1
K = im|v|2 + EcuTIw

where m is a body mass, v and w are linear and
rotational velocities vectors, Z is an inertia

tensor

Figure 1: ©DeLuca

All values in the same CF

Formula for rotational velocity
w + S(w) = R(H)RT (1),

where R is a rotation matrix from body frame to inertial frame

Kinetic Energy of n-links Robot
Sum of kinetic energy of linear and rotational motions

. 2 E
K=1mp|* + 0w Iw

CoM velocities

* v, = f. and w are functions of generalized coordinates g and velocities 4
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Kinetic Energy of n-links Robot

Sum of kinetic energy of linear and rotational motions

. 2 E
K= 1mlv|*+ %wTIw

CoM velocities
* v, = . and w are functions of generalized coordinates g and velocities 4

Relations can be computed via Jacobian assoc. with links CoMs

Ui = ]i‘, (‘I)‘?z w; = lu', (q)q

Kinetic Energy of n-links Robot

Sum of kinetic energy of linear and rotational motions

. 2 E
K=3imlvo|* + 0" Iw

CoM velocities
* v, = f. and w are functions of generalized coordinates g and velocities 4

Relations can be computed via Jacobian assoc. with links CoMs

U(‘,i = 11‘,‘(‘])‘?/ (U,‘ T Iu', (‘])‘]

Robot kinetic energy

N=%t7’ Ym0, (4) o, (9) + Jeo; (9) " Ri (@) IR (9) " Ty (9) | 4
11
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Recurrent Velocities Formulas

* rotation (angular) velocities

L NT. . T
w; = (RZ—' (qs,') wig +(1=w)gizi:] = (R:'—1(‘fi)) wi™ {2)
where R}_] {g;) is & rolalion malrix [or neighbor CFs O;_1x;_1y;_1z;_1 and
Ojxiy:zi
o= 0, for rotational joint,
) L, for prismatic joint,

z; 1 =[001 ]T is a vector of z axis coord. if D-H convention used, aJ:.'_l isa
rotational velocity of i-th link with respect to CF O;_1xi_14i-12i-1
¢ linear velocities
Ugi = Vi + Wi X ¥oy, (3

where r

v = (Rf-_l(‘?i)) [1-‘1'—1 + Oz Hwl T x ”i‘:},,-_ 4)
denotes linear velocity of a CF origin O;, 7; is a CoM vector for i-th link with
respect to O;, r;_} ; are coordinates of radius-vectors from O;_1 to O; with respect
to CF Qi1 xi-1¥i-12i-1-

Potential Energy of n-links Robot

Potential energy of i-th link
. T
Pi=mig rei
where 7. ; is a CoM coordinates vector
2 i
! ()

1 =% Hy(g1) ' Ha(q2) - - - Hi(q)

Tei
1

Robot potential energy

n n
) ) .,.
20— z = E mig rei
i=1 i=1

For a serial kinematic chain
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Motion Equation

¢ Kinetic energy

K = ~q Zm Jo, ()" Jo, (9) + Jo, (9)"Ri(q) IRi (9)" J; (9) | ¢
= zq "M(q)d = 3 Znu, 9)dkdj
k,j
* for conservative generalized forces §, = ) Tk

e system Lagrangian £ = K — P

r)l] k

doL oL

dt o Oqk
dak-P) K-P)

dt alh- aqk =%
d ok AK-7P)
_—— e ———— Tk
dt dgy ok

Motion Equation (contd.)

Equation structure

daK K -P)

EaTn‘TZTk’ ki=1sasmh
1st term
5),8 Jd
0 = 3 |2 [ 4"M(q q} Z'"A/‘h
and
doKk d|[& . v d 13
ET“ = [gm,\.jq,} = glllkfllf en ,_):; af [’”ki(‘])J qj

I 1i ql

non 31“A om i i %%
- Zm,\,q, + = ZZ( aq) ¢ k >t]itli
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Motion Equation (contd.)

2nd term
I(K -P)
()qk

T N .
le [—qM(q)q - P] = Eq {aqu(q)} q v P
1 n on am” a
—P
IZ‘{,Z: G 9idj — el

Motion Equation (contd.)

2nd term
(K —-7P) ) 1.9 .0,
SN EY L = - 6 | —M .
O i [ iMa)i - } 24 {9% (q)} 17 %
i': i omjj )
= = 4i4;i — =—
, 1= aqk 1 7" 8qk
Resulting relations
noon al”[\, a’”ki o
Z ’”A;‘?; T Zl Z aq a‘]/ qiqj
] i=
1"'aml,” 90 .,
~5 Z; Ba, it T]kp =T
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Motion Equation (contd.)

2nd term
(K —-P) d

1.
o B a‘h [ Ma)d - P] a Eq{

)

MM(G)] q—

i

2L omg;

- 2 Z Z oG 9id; —

2p
/ li= aqk

Resulting relations

n n

):mk, q)q,+2): cik(@gidj + 8@ =%, k=1,...,n
j= j=Yi=

where ¢;jr = cjix is a Christoffel symbol and

om ont:  Ontj; d
cije(q) = ( & - ”>’ 8(0) = 5P

aqi 99; Iqy

is a potential energy gradient

Motion Equation (contd.)

2nd term
oL -P) 9 [1, . | _1.[0 9.
9k o [qu(q)q P] R {aqu(q)] 9k
1 n o on am”‘ ) a '
T

Resulting relations
kal q)q, - Z 2‘%(‘7 )4iqj + elg)=m, k=1,...,n
= j=li=

in a vectorial form

M(q)i+C(q,4)§+G(q) =T
with Coriolis and centrifugal forces C(q), cxj = ¥ ¢ijk(9)4i-
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Accounting for Gear and Motor Dynamics

Assumptions

» drive is fixed to the link preceding the link it is moving

* motor and joint axis are coinciding

General considerations

» drive mass should be added to link mass

* drive rotor inertia should be taking into account when computing total kinetic
energy

* gear ration should be taken into account when computing velocities and forces

Motor Placement

motor 1

joint 2

" -
(world frame), link 1

motor 2 joint N Oni = N 6
(base) Jontl =
Q= nrl Tmi
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Pendulum with Gear

viscous friction
n=1

transmission
1 (with reduction gear)

I; = link moment of inertia w.r.t. its CoM

m — link mass

d — distance from axis of rotation to link CoM
6 - link rotation velocity (after gear)

6, = nf — motor rotation velocity (before gear)
n — gear ratio

I,y — drive moment of inertia w.r.t its axis of rotation

Kinetic Energy

Pendulum kinetic energy
Lo, 2) g2
K = > (I,de )9 -

Drive kinetic energy

i Lo
}i,,,, = Elmeﬁ,/

Total kinetic energy

KA G, %192,

where | = I; + md? + n%l,, is a total moment of
inertia w.r.t. axis of rotation
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Potential Energy and Lagrangian

Total potential energy
P = Py — mgod cos 6.

—dcosf
System Lagrangian

L= %192 + mgod cos 6 — Py.

pr = lsin 0

Motion Equation

From the link side

I6 + mgodsing = 7,

From the motor side
(- m . By k_n . ! (-
n—29m + ;80‘151“ o m (n_2 +kfm | O + 5 ©08 ?Fx.
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Friction Forces

General considerations
* is a dissipative force
* localized in joints
* static modcl capturcs major influcnce for relatively fast motion

T — 1Ty — kb — nk gy + PaFx — 07 — (kg + nzk_fm)b:' +Icos BF,,

where T, is drive torque before gear, kg, and k¢, are viscons friction coefficients

* dynamic models are more accurate, but usually hard to identify

Flexible-Joints Robots

Flexible joints
Motor (input) and link (output) are connected by a flexible
, b (deformable) element

P e ] haft
Sy ong sha

@’)‘ * harmonic drive gearbox
* belts

Useful flexibility

1. physically (VSA, SEA)

2. on a software level

Wave generator Flexspline Circular spline

* safe pHRI

Figure 3: Harmonic drive * explosive motions

294



2019 © Sergey Kolyubin

s.kolyubin@itmo.ru

Dynamic of robotic systems

Modeling of systems and complexes

1.
2.
3.
4.

Modeling Flexible Joints

Assumptions

flexibility is localized in joint
small deformations for linear spring model
symmetric drive shafts with CoM on the axis of rotation

drive is located before the link it is actuating

Modeling Flexible Joints

introduce 2n generalized coordinates ¢ € R” for links and 6 € R" for drives
(0; = 8, /r:, 7; is a gear ratio)

add drive kinetic energy

1 1 5
Kmi = 2zmér2ni = 2Im'129f

n

. 1, ;

Km = Z’Cmi = EGTMme
=1

M, is a diagonal drive inertia matrix

add potential energy of a deformed spring

1 \
pﬂ' = EK;(Q; — 9,')|2

"
pe = chi =

i=1

(g—6)TK(g -8

R =

K is a matrix of joint stiffness coefficients

295



2019 © Sergey Kolyubin Modeling of systems and complexes

s.kolyubin@itmo.ru Dynamic of robotic systems

Modeling Flexible Joints

Motion equation

M(9)j—c(g.9) +Glg) +K(g - 8) -0,
M8+K@—3)=T1

Operational Space Formulation

¢ Configuration space ¢ Operational space

M(q)i+c(q.9) +8(q) =T Ai,+pn+p=F
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Operational Space Formulation

¢ Configuration space * Opcrational space

M(g}j+e(q.f)+gl@ =1 Af,+p+p=F
* projecting joint forces/torques to end-effector forces
T= I;r E

* kinematic relations
fe = Jof = %o = Jefe + jeqe
% = M7 (JTE = (e(2,4) + 3(0))) + Jede =

£+ .M Yelg,9)+8(9)) — fege = 1M IE

* operational-space model

-1 .
A=(MTT) T u= ARMTe(q g = Alge = ALMTg(9)
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Trajectory control algorithms
Trajectory control algorithms based on stabilization of sets

Trajectory control algorithms based on
stabilisation of sets

Aleksandr Y. Krasnov

Examples of problems

Autonomous vehicles control
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Examples of problems

Collision avoidance:

Obstacle

Robot
4:2 ;

*e
+®

. .... “ans® :.
@) @) o)
...lll""
X

Examples of problems

Following the moving target:

Z \
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Examples of problems

Control of underwater biomimetic
robots (Robotic Fish)

Problem: robot can not stop after reaching a goal.
Possible solution: continue motion along closed curve around the the
goal

Possible solutions: Tracking approaches

o Virtual Target Tracking:
s Backstepping based
Agviar, A.P.; Hespanhe, J.0°., Kokotoviz, IV, "Math-following for nemwmiddimum phose systems
vemoves perjormance imitations,” Automatic Caniral, IEEE Trensaciions on , voL.50, no.2,
np. 234,259, Feb, 2005
o LOS(Line-of-Sight) methods
M. EBreivik and T.[. Fossenr Principles of Guidanze Based Paih Followsing én 2D end 3D Proceedimgs of

she IEBDE Cenfersnce on Decision and Contiol, Seville, Spam, 2007 ,pp. 657-634

N
Qﬂl acEplater )

St wagpednt. b
.//

Norih

Faat
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Possible solutions: Set stabilization ap-
proaches

e Sliding mode
Askrefivon. H., Musks, K. R., McNinch, L. C., and Solten, R., “Sliding Model Tracking C'ontrol of Surface

Veseels,” IZEE Transzacticns on Industrial Electronics S8 on Sliding Mcds Conirol in Industrial dpplications,

2008

e Passification

M. Ei-Hawwary, M. Maggiore, Case Studies on Passivity-Based Stabvlization of Closed Sets, nternationa!
Journal of Conirol, 2011
& Feedback linearization:

¢ Methods of transversal linearization
Nielsen, O.; Finford, O.; Maggiore, M., " Path follanuing vsing transuerse ferdback Eneavizofion:
Application to & maglew vositioning system,” Americon Contro!l Tonference, 2009

s Vector Field Path Following
Nelson, D.R.; Burver, D B.; McLain, T.W.; Bewrd, R W., " Vecior ficld puth following Jor sinall
unnerned air vehicles,” American Controel Conference, 2005

o Coordination control by Iliya V. Miroshnik

Description of the desired trajectory

Three ways to describe straight line:

¢ BExplicit description
_ar—c
V=T
o [mplicit description
ax+by+c=0

e Parametric description
=24+ fi

Y= +gt
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Main ideas of methods based on the stabi-
lization of sets

Implicit representation of curve

Dependence on the current position in the space

Invariance of desired path(an attractor in the output space)

Potentially higher accuracy of motion
150

100 (% %

-100

Sujit, P.B.; Saripalli, S.; Sousa, J.B., "An evaluation of UAV path following algorithms,” Control Conference (ECC),
2013

Nelson, D.R.; Barber, D.B.; McLain, T.W.; Beard, R.W., "Vector field path following for small unmanned air

Formal statement of control problem

e Geometric sub-task:

dist (p— f(pa)) — 0,

where f(py) - a desired path of motion, pg - spatial coordinates of
space, p - current position of a plant.

e Kinematic sub-task - maintenance of desired velocity of motion

along the path:

lim AV = lim (V — V*) = 0,
=0

=m0

where V' - current velocity of motion, V* - desired velocity.
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Motion on the plane

Dynamic model of robot
motion:

1
Uy = Yyt + gFm (1)

Y
0, = —Upw + iF (2)
Y fedd m Yy
) 1
w = jch, (3)
where v, and v, are linear
velocities,
F, and F), are control
forces,
w is the angular velocity, 0

m is the mass of the plant,
J is the moment of inertia,
M. is the control torque.

Motion on the plane

Relation of linear velocities in the fixed and absolute frames:

z Vg
i ay |

— T%(a)

—singa coso

(4)

where 77 (a) = |: cosa sna ] is the rotational matrix of C-fixed

frame.

Linear accelerations in absclute frame

[%IZLT”(@ s
i m

by
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Motion on the plane

The desired path is an implicitly described smooth segment of curve
S:

plz,y) =0, (6)
and relevant local coordinate s (path length) is defined as
s = y(z,y) (7)

Selection of functions (6) and (7) is mostly limited by regularity
condition implying that Jacobian matrix

oy o
T(z,y) = {f_ﬁﬁ 3@] (8)
Sx Ay

is not degenerate for any (x,y) belonging to curve 9, i.e,
detT(z,y) #0

For regular geometrical objects there exists normalized description
with orthogonal Jacobian matrix:
cosa™(s) sina®*(s)

| € SO(2)

T(z,y) = T(a*(s)) = —sina*(s) cosa*(s)

where T'(a*(s)) is the rotational matrix of moving Frenet frame, a*(s)
is s-dependent target angle determining the current orientation of
Frenet frame.

Frenet matrix satisfies to the differential equation

T*(a") = 3(s) ET" ("), 9)

0 1
where £ = \» 1 0] and £(s) is the path curvaturc.

From (9) also follows

a* — 3E(s). (10)
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Angular orientation

Robot angular oricntation with respect to curve § is defined as
a = a"(s) + Aa, (11)

where Aa = const is the desired robot orientation with respect to the
path.

In matrix notation, (11) takes the form

T(a) — T(Aa)T(a®). (12)

Introducing errors and problem statement

Violation of condition (6) is characterised by orthogonal deviation
e = ¢, y) (13)
Violation of condition (10) is characterised by angular deviation
d—a—-a' + Ac. (14)

Therefore, the path following control problem consists in
determination of inputs F,, F,, and M in closed loop, which provides:

¢ stabilization of robot motion with respect to curve 5;
e stabilization of robot angular orientation with respect to curve $;

¢ maintenance of the desired longitudinal motion by asymptotic
zeroing of velocity error

AV, = V" — 5. (15)
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Coordinate transformation

Perform the fransformalion of Lhe sysiem maodel (1 )-('3) io the
task-based form with outputs s, e and §. To do so, differentiate (7),
(13) and (14) with respect to time:

Frﬁmwk
é ¥

b= —£(s)$+w. (17)

- T(a)

ﬂ, (16)

Y

Find the inverse transformation:

-reof)

w=24 | &(s)s.

Control design

Once more differentiate (16) and (17) with account for (5), (9) and
(12):

8 s 1 .

$)SET = —T"(A ”*‘ 18
L}+aqs | = T [ (18)
S+E&(s)8+&(s)s = jM (19)

Now consider virtual task-based controls:

s l T F; ;

!ue] = mT (A} F, (20)

1 3
1y = }]W — &(5)us (21)
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Control design

Substitute (20) and (21) to (18) and (19):

lj +£(s)SET H = !ﬂ , (22)
b+ £(s)é + £2(s)se = ug. (23)

Rewrite equations (22) and (23) with account for (15) for determining
the velocity error dynamics:

AV + £(5)%€ = —us,

E 4 E(5)4% = e,
5+ £(5)8 + £2(s)s6 = ug.

Control design

Now sclect the controllers:

us = —E(5)3¢ + ko AV, (24)
te = £(5)8*  keté  knpe, (25)
us =&(s) | E(s)éé  ksd  ksod, (26)

where kg, kq1, koo, k51, ks arc positive constants.

Finaly we determine actual control actions F;, Fy, and M and obtain

el | —E(s)sé + B,AV _
[F ] = mT(Aa) l £()2 — k16— kae] ; (27)

9

M = J(€(s)us + £(5)5 + €2(5)3¢ — k516 — ksad). (28)

307



2019 © Alexander Krasnov Modeling of systems and complexes
aykrasnov@itmo.ru, krasnov.aleksander@gmail.com Trajectory control algorithms

Example. Straight line segment

The normalized equation of the Y,
straight line

©o(g) = —sina™z +cosa™y + po =0,

Y(g) = cosa’x +sina*y + v,

where a* 1s the line inclination,
o = const, Yy = const.
Orthogonal Jacobian matrix takes the

form
* M *
Y(q) = !CO.SQ | el e 50(2).
—sina* cosao
Obviously, the path curvature is zero. 0 X

Example. Simulation of the motion along
the straight line.

Y, m

e(H), m

10 715
8 -
6 L 1.0
4 v

7 05F
2r /,", \

"/ ] S ]
0 5 10 0 5 10
X, m 18
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Example. An arc of a circle

The normalized equation of the arc of Y,
the circle

#(@) = 535 (R?~(5=20V~(y=10)*) =0,

(¥ — )
(z —zg)’

Orthogonal Jacobian matrix takes the

¥(q) = Rarctan

form

_L-(-w) (z-=z0)| _
T@) =45 (i —10) —(y—10) < 50O(2).

The path curvature is £(s) = & 0 | X

Example. Simulation of the motion along
the arc of a circle.

Y. m e(f), m
10 0.2
8 | 0.1F
0 -
o —0.1 {
S

4} —0.2}
N —0.3

—04F

-l 1 1 1 _0.5 | 1 1
0 2 4 6 8 10 0 20 40 60 ts
X, m
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Dynamic model

mg = F, (29)
S Y,
g = Rpla)v, (30)

B (o) = [ cosa sma] a1
—sina  cosa
&= w, (32)
T
where ¢ = [:z: y] € H? ig vector

of the Cartesian coordinates,

o
F = [F$ Fy] € R? is vector of
the control forces,

Modeling of systems and complexes

o 1§ the orientation angle,
w is the angular velocity.

Motion on the plane

The desired path is an implicitly described smooth segment of curve
S:
elg) =0, (33)

and relevant local coordinate s (path length) is defined as
s = v(q) (34)

Selection of functions (33) and (34) is mostly limited by regularity
condition implying that Jacobian matrix

dviey  Ov(g) ]

F) e}
T(q) = {awfq) dels)
Ow Jy

is not degenerate for any (x,y) belonging to curve 9, i.e,
detT(x,y) #0
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Control design

Design of the velocity (inner) loop. Consider Lyapunov [Function:
1, _r..
V1=§(a—v) (g —2), (36)
where ¢ - a vector of desired velocities.

Find the derivation of the Lyapunov function Vi:

Vi= (697G~ 9) = (4 -7 (o~ 5). (37)

Control design

Define the control signal as:

1 .
—F =% ky(4-1), (38)

m

where k; is a positive constant. Then the derivation of the Lyapunov

function 14 is
Vi = —ky(¢— ) (4 -7) €0, (39)

which means asymptotic stability of the point ¢ — v = 0.
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Now we can rewrite original system in reduced form:

=1

g =
Let’s construct the control ¥ in th following form:
U=1u. + Us,

where u, is the term, which provides stabilization with respect to the
desired path and u. provides desired velocity along the path.

Reduced system

Perform the transformation of the system model (29)-(32) to the

Lask-based Torm with oulputs s and e, using Jacobian malrix (35):

[ . ] = T(g)d = T()RY (). (40)
We can choose the control signal ug in the form
I _1 er

Now design stabilization control .. Consider Lyvapunov Function:

ke
Vo = 24 (a), (42)
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Modeling of systems and complexes

Reduced system

Find the derivation of the Lyapunov function V5.

Va = ke@(@)V(q) = (keip(0)V 0(q)) e +

+(k0(q)Ve(g) T 1g) L(r;] = (kep(D)Ve(@)) e

As vou can see, the second half of the expression is identically zero
due to orthogonality. Now select u, as

.0,
Ue = —kesot_q}%wtq). (13)

where k. is positive constant.
Then the derivation of the Lyapunov function V5 is

Vo= —u? <0

It proves the asymptotic stability of the initial system at the point
e(g) = 0.

Example. Simulation of the motion along
the straight line.

313



2019 © Alexander Krasnov

aykrasnov@itmo.ru, krasnov.aleksander@gmail.com

Modeling of systems and complexes
Trajectory control algorithms

Example.
the arc of a circle.

Simulation of the motion along

2D moving frame

Dynamic model of the plant:

& w

U . T N |
A! .| =R (a) YA
Rey=| 7@ O

U 1

m 0 O
A= 0 m 0|,

o 0 J

(44) . %

¥ rla) x

tla) >

,C ' 'VO S
(45) g,
q :;f&,')?f-, \
rf aa)':_ )
q, G a,
0
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External moving object

Dynamic model of the external moving object:

o = o — Q.

3

4y = onqr + T(Qo) (q - q.o\ )

7

dr:&)—&)o,

G = (Wo)gr | 2w Bl (o) (4 do) |
1 P
+ ;1(%)1 ()£,

dr - 3M4

fo = Vo, (46)
T (o) = woET(at,), (47)
Desired trajectory in relative coordinates
»lg:) =0, (48)
Local coordinate
s = ¥(gr), (49)
Relative coordinates
Position, velocity and acceleration of the plant in moving frame:
4r = T((l’o)(q - QO)) (50)

(54)

(35)
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Task-oriented coordinates

Consider orthogonal deviation

e(ar) = olgr), (56)

and local coordinate s

s =¥(q) (37)
Choosing of functions (56) and (57) based on regularity condition
which implies that Jacoby matrix

(58)

_ alé’/laqr

is nondegenerate for all ¢,, belongs to curve S, i.e. detT(g,) # 0.

Trajectory control synthesis

Imply the transformation of model (44)-(45) to the task-oriented

coordinates:
[ * | =T (T7 (n)vs + woBar — T(cro)vs) (59)
: \

§ = —56(8) + w — wo. (60)

Choose local controllers as
ity = KAV — 3E(5)é — 2w, é, (61)
Ue = kere+ ke + $2E(8)é + 2w,8, (62)

.2

s = ks1d+ kspd+ és +5¢(s). (63)

Final control laws

F = mT()TT (a¥) ([ Zs ] — (:wo)ZT(cr*)qr) , (64)

€

M = Jus. (65)
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Collision avoidance strategies

Some collision avoidance strategies

e Bypass

e Detour

Equidistant border around the obstacle

@*g) =z +y* - R* =0, (66)

Trajectory control in presence of moving ex-
ternal object.

Figure 1: The results of modeling

the motion relative to a moving

. Figure 2: The results of modeling
external object. 8 S g

the detour of a moving obstacle.
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Spatial motion

Dynamic model:

Zx @
i=v, (67) P2y ,
X
: 1
v = —F,, (68)
m
R(a) = S(w)R(e), (69)
Jw+w x Jw= M, (70)
0 W3 —Ww9
Sw)=| —w3 0 w1
Wo —Ww1 0

Rotational matrix

The rotation matrix R(a) can be represented through Euler angles as

R(a) = R3(¥)R2(0)R1(¢), (71)

where

1 0 0
Ri(é)= |0 cos¢ sin ¢

0 sing cos¢

[ cosf 0 sinf
Ry(9) = 0 1 0
—sinf 0 cos#

cos ¢ —siny 0

Rs(y) = [sinyy cosyy O
0 0 1
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Desired path

The desired path .S describes as an intersection of two implicit
surfaces:

e1(2,y,2) = 0Nga(z,y,2) = 0. (72)
Tangential velocity along the curve § is defined as

. Vi1 x Vi
s = Y, 73
Vor X Vel (73)

where X is the vector product and ||| is the vector norm.

Jacoblan matrix:
Vi1 xVeo

||V<mv><Vt.02||
T(@p,2) =| [vol (74)

2

_Y¥z
INEZ1

Introducing errors and problem statement

Violation of condition (72) is characterised by orthogonal deviations
e1 = (7, y, 2). (75)

ez = pa(a,y, 7). (76)

Therelore, the path foltowing control problem consists in
determination of inputs F, = {F_T F, Fz] and M, in closed loop,

which provides:

e stabilization of robot motion with respect to curve S;

¢ maintenance of the desired longitudinal motion by asymptotic
zeroing of velocity error

AV, =V — 5 (77)

¢ stabilization of robot angular orientation with respect to curve S.
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Translation motion control

Perform the transformation of the system model (67)-(70) to the
task-based form with outputs s, e; and e5. To do so, differentiate
(73), (75) and (76) with respect to time:

[6:1] = Y(z,y, 2)v. (78)

Once more differentiate (78) with account for (68):

s F,
é1| — Yz oy 2)v+ T(z. y,Z};c- (79)
€2

Translation motion control

Consider the virtual (task-based) controls:

o
T(@,y2)v+ Y@ y.2)— = [ua (80)
Ue2
Substitute (80) to (79) and obtain
8 Uy
el = |Uer| - (81)
62 Ue2
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Translation motion control

Now select the controllers:

Uy = K AS, (32)
Ue1 = —H 1161 — Kyere, (83)
U = _-!{1526.2 - K26262! (84)

where K, K1, Koo1, K2, Koeo are positive constants.

Finaly we determine actual control action F, and obtain

s
Fe =mT(2,y, 2)_1( uer | — T(z,y, 2)v). (85)

Ue2

Rotation motion control

T
Introduce vector of angular errors § — [64) o 64;,] € I3 and the
angular deviation matrix

R(8) = R(a)RT (a")RT(A), (86)

where R(a*) € SO(3) is the matrix of angular orientation of the
body-fixed frame along the curve 5, R(A) € SO(3) is the matrix of
the desired angular orientation. Define the angular error function as

er = 5(R(D) - ROV, (87)

where V it the transformation SO(3) — R3.
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Rotation motion control

Define the angular speed error e,,. Differentiate (86) with account for
(69) and obtain the equation

%R(5) = S(6)R(8) = e, R(6), (88)

S R(5) = S()R() - R(e)R (0")S@IR (@A), (89)

Use the property of skew symmetric matrix RS(w)RT = §(Rw) and
obtain final expression

%R(d) = (S{w) — S(R(e)R” (o )w*)) R(6), (90)

and
ew =w — R(a}RT (o Y™, (91)

Rotation motion control

Differentiating (91) with account for (69)
. L,
€ = j[M' —w X Jw) + ag, (92)

where ag = —S(w)R(a)RT (a)w* + R(a)RT (o )&*. Rosulting

attitude controller has form
M, =wxJw—Jag— Kge, — K _e,.. (93)

where Kp, K ,, are positive constants.
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Numerical example

m=1,J=1.

Kaep = 10, K = 20, K,, = 50.

T
orientation is oy = [3 9 1] .

Desired speed along the path 5 =1.

Consider the plant as a rigid body described hy model (67)-(70) with

T
Tnitial position of the plant is z = [-10 5 10} and initial

Parameters of the controller are K101 = 1, K301 = 10, K13 = 1,

Numerical example

Motion along desived path:

o1(z,,2) =0222 + 3> —R* =0 N @olr,y,2) =2 +0053°% -5 =0
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Trajectory control algorithms

Numerical example

ey(t)

(210}

10 8
0 t.time
2 4 6 8 10 6
-10 ?
-20
4
-30
-40 2
-50
41
- 60 20 40 60 80
Position error e; = ¢y (z,y, 2) Position error e; = po(x,y, 2)
.
Numerical example
. 7r(l)
As(t) lf(f
1.5
0.8
1.0 0.6
0.4
0.5 0.2
0.0 — L1
2 0 60 80 100 120
0.0 x 2 p 3 ttime =02
~ ) ¢ —04

Speed error AV = §* — §

Angular error e,
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Moving frame description

Model of the plant motion:
t
i(t) =g — f(—)ﬁ(f).
m
M.(t) = Jw(t) + w(t) x Jw(t).
Description of the moving frame:
.‘i',’ = R']'((l‘*)l',‘.
Q" = Wi,

Rr(a*) = RpS(w;).

(94)

(95)

Moving frame description

Relative position:

r = Ri(a")(@ — =),

Relative velocity:

= R} (a*)& — S(w;)r,

Relative acceleration:

7= Ry (a*)# — 28(w;)7 — 5% (wy)r.

(100)

(101)

(102)
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Control design

Design of the velocity (inner) loop. Counsider Lyapunoy Function:
1 : ,
Vi = S(Fx = 0)7(Fe = 0) + kaln(2 — (R™R)T(R" Rrna)),  (103)

where 7 - a vector of desired velocities, 7iy - a vector of desired
oricntation and k; - a positive constant.

Find the derivation of the Lyapunov function V7:
f

Vi=(—a) (R} — ER;ﬁ — 28(w;)i — 8% (wy)r — @)

S(RTRrn .
+4 7 ((p —wy — QRTRT’FM) , (104)
|72
. TATaT T -
where vT = FE"ZL(_R{ R'-‘IL)’I_L):IS:( g-{.- RI;;,:;‘? and |a| is the euclidean norm of
vector a.

Control design

Define the substitution of variables if following form:

5 = RIg — 28(w;) — S*(wi)r — 5,6 = 187,

m
where f; = |0| and 7g = %.
Select control signals f and w = w; in the form
f=fu (Rra)'na) k,(F @) Rph, (105)
S(R"Rrng) — . . ,
wa = w; + %R Rrig) + 0 — Ky, (106)
Fid

where £, k- are positive constants and o is

( fa(2— (R"n)"(R" Rrng))
o =
mkyg

(+ — @) S(R;n)Ry R) - (107)
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Then the derivation of the Lyapunov function V] is
Vi = ko ((F — )T RFA)? — kyy Ty <0, (108)

which means asymptotic stability of the point » — & = 0, 7 — fig4.
Now we can rewrite original system in reduced form:

T = 1.
Let’s construct the control @ in th following form:
%= e + Ug,

where 1, is the term, which provides stabilization with respect to the
desired path and u, provides desired velocity along the path.

Reduced system

Perform the transformation of the system model (100)-(102) to the
task-based form with outputs s, e; and eq, using Jacobian matrix (74):

P
é] = T(T)T

€2

We can choose the control signal ug in the form
ue="Y"1ry| 0 (109)

Now design stabilization control u,.. Consider Lvapunov Function:

k ko o . )
Ve = St (r) + 5 (), (110)
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Reduced system

Find the derivation of the Lyapunov function V5.

Va = (kg1 (r) Vg1 (r) + kapa(r)Viga(r)) T =
(k161 (r) Ve (r) + ka2 (r)Vea(r)) Tue +
v

+(k1p1 (M) Vo (r) + kapa(r) Ve (r)) ' T 1)

0 =
0
(kLp1(m)Vep1(T) + kowa(r) Vg ('r))Tus.

As vou can see, the second half of the expression is identically zero
due to orthogonality. Now select u. as

e = — (k1o (r)Vei(r) + k2g2(r)Vea(r)), (111)

where &£, and k- are positive constants.

Resulting control

Resulting control:

M, = wxJw+ Jog+k,J(w—wy),
S (RT Rph :
wg = wr+ (|——|Tnd)RTRTﬁd to—ky,
g
A2 — (RTAT(RT Ry
O'T — fd ( ( n) ( Tnd)) (T’—U)TS(R;?I)RIR
mkd
o RETTST (R Reng

(2 — (RT'FL)T(RTRT’ﬁd)) ‘

6§ = Rpg-—2S(wp)r — S*wr)r — 4,
L4
fa = 14], na =

f = fa (Rp7) ig) — ko(# — @) T R

328



Modeling of systems and complexes
Trajectory control algorithms

2019 © Alexander Krasnov

aykrasnov@itmo.ru, krasnov.aleksander@gmail.com

Example
Ay 20
0
-20 —
0r i -
\ SN
g
20 N \\ \\
R, K
o \
) 35 S
0 = = —.
-20
0
Ry 20
p1(r) =r2+7r2—-400=0N@a(r) =7, +1, —10=10
The desired speed along the given path s* = 30.
Example
;1020 .0 X
- T, B0 g0 X
Ty e 100
1100
1 1100
‘: .
10
! 0
Moaoving frame spatial motion Plant spatial motion
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Example

-&30Z
Projection of the plant motion on - <
XY plane Projection of the plant motion on
Y Z plane
Example

e

500 -

e1r = ¢1(7) e
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Vsit
50 - 8t
0.20 -
« 0.25
a0l B.2u
0.5
200 ]
007
10 N
D.OS_—
% 5 10 15 20 HHime EW - > 3 -  time
The velocity along the path Angular error
V*(t) = 30 e, =1—(R"2)T(RT Ryfig)

Omnidirectional mobile robot “Robotino”
by Festo Didactics

Geometric dimensions:

e Diameter: 370 mm
e Height: 210 mm
e Weight: 11 kg

331



2019 © Alexander Krasnov Modeling of systems and complexes
aykrasnov@itmo.ru, krasnov.aleksander@gmail.com Trajectory control algorithms

Omni wheels “Robotino”

Local Navigation “Northstar”
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Mathematical model

Y4

x X
@ —sin % coS % L Voo
8 | = -1 L Vay
8 siny cosy L Q

Motion along a straight line

I
along a line:

XsinA+ycosA=0

A =0deg
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Motion along a straight line

Y, mm

® 1 L L )
1200 -1000  -800 -600 -400 0 200 400 600 800

200
X, mm

¢(z,y) = —sinax + cosay = 0,

Motion along the circle

Motion along the

XA2 +yA2 -RA2=0

R =500 mm

334



2019 © Alexander Krasnov Modeling of systems and complexes
aykrasnov@itmo.ru, krasnov.aleksander@gmail.com Trajectory control algorithms

Motion along the circle

o(z,y) =z* +y? —2500 =10

Motion along the sinusoid
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Motion along the sinusoid

mm

400, ; L
-1500 -1000 -500 0 500 1000

¢(z,y) = —300sin 0.0052 +y =0

Motion along a complex curve

Composit curve:

Straight lines + circles
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Motion along a complex curve

Avoiding moving obstacle
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Avoiding moving obstacle

Coordinated motion of two robots
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Coordinated motion of two robots

Modeling and structural properties of wheeled mobile robots

Modeling and structural properties of wheeled
mobile robots

Aleksandr Y. Krasnov
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Wheeled mobile robots

Four state space models

The posture kinematic model

The configuration kinematic model

The configuration dynamic model

The posture dynamic model
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Modeling of systems and complexes

Robot description

The robot posture

E= |y (1)

Oricntation of the basc frame with
respect to the moving frame

cos? sind 0
R(W) = |—sind cosd 0|, (2)
0 0 1

steering wheel.

Figure 1: Fixed wheel or steering wheel.

Constraint on the wheel plane

Constraint orthogonal to the wheel plane

i
. B
/ smrtiisistadiisiiisicd
Y ! P Lalraeaminlaatiiaanivay
m / -

[—Sin(a + A) cos(a + fA) Zcosﬁ] R(DE + ¢ =0;

Constrains on different wheels. Fixed or
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Constrains on different wheels. Castor

wheel.
A “ R
d RS :%:;:;: A :@
l A
o >
P X,

Figure 2: Castor wheel.
Constraint on the wheel plane

[—sin(af + 3) cos(a+ ) lcosﬂ] R(®)E + 7 = 0 (5)

Constraint orthogonal to the wheel plane

Constrains on different wheels. Swedish
wheel.

Figure 3: Swedish wheel.

The motion constraint

—sin(a+ 34+ v) cos(o+5+7) leos(f+ "})] R(9)¢ +reosyg = 0.

(7)
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Restrictions on robot mobility

The configuration of the robot is fully described by the following
coordinate vectors:

T
e posture coordinates £(t) = [J:(t) y(t) ﬁ(t)] for the position in
the plane;

T
e orientation coordinates £(t) = {[J’T(t) BT [t}] for the
orientation angles of the steering and castor wheels, respectlvelv,

e rotation coordinates p(t) = [pf(t) ws(t)  el(t) <p3fw(t)] for
the rotation angles of the wheels about their horizontal axle of

rotation.
J1(Bs, Be)R(W)E + Jap = 0, (8)
7 ]Eg ) Ciy 0
where J1 (55, o) = J‘S( L;j L C1(Bs, 80) = |Cra(B)| . Ca= | 0 |
f;]_ ’ ¢ C'lc(ﬁc} CZ(’,

Restrictions on robot mobility

Consider the first (N; + N,) non-slipping constrains from (9) and
written explicitly as

C1y RO =0, (10)
CIS(IBS}R(ﬂ)s =0 (11)
These constraints imply that the vector R(¥)¢ & R(C;(8,)), where
Ciy
Cr(A:) = , 12
1 ( ) C]s (ﬂs ] ( )
Obviously, it is rank(C7(53:)) < 3. If rank(C}(5:)) = 3, then
R(9)¢ = 0 and any motion in the plane is impossible.
Define the degree of mobility 4, of a mobile robot as
b = dim(R(CE(,))) = 3 — rank(C} (A.)). (13)
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Restrictions on robot mobility

If rank(C1s) = 2 the only possible motion is a rotation of the rohot
about a fixed ICR. Obviously, this limitation is not acceptable in
practice and thus we assume thal ronk(Clg) < 1. Moreover, we

assume that a mobile robot is non-degenerate if
rank(C1r) < 1lrank(CT(8s)) = rank(Crs) + rank(Ci(8:)) < 2.
This assumption is equivalent to the following conditions:

e if the robot has more than one fixed wheel (¥; > 1), then they
are all on a single common axle;

e the centres of the steering wheels do not helong to this common
axle of the fixed wheels;

e the number rank(C;(3;)) < 2 is the number of steering wheels
that can be oriented independently in order to steer the robot.

Define the degree of steerability §, of a mobile robot as

by = rank{C1:(8s)). (14)

Restrictions on robot mobility

It follows that only 5 non-singular structures are of practical interest,
which can be inferred by the following conditions.

e 'I'hc dcgree of mobility 4., satisfics the incquality
1< 6, <3. (15)
e The degree of steerability §, satisfies the inequality
0<4, £2. (16)
e The lollowing inequality is satisfied:
2< 0, +0, < 3. (17)

Table 1: Degrees of mobhility and steerability for possible wheeled mohile
robots.
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Types of possible wheeled mobile robots
o Type (3,0) robot. In this case it is

b = dim(R(CH(Bs))) =3 8, =0.

Type (2,0) robot. In this case it is
O = dim(R(CT(55))) = dimn(R(Cy)) =2 4, =0

Type (2, 1) robot. In this case it is

Om = dim(N(CT] (8s))) = dim(R(C1:(8s))) =3 d, = 1.

Type (1, 1) robot. In this case it is

on = dim(R(CI(B:)) =1 & =1

Type (1,2) robot. In this case it is

0m = &im(R(C1 (55))) = dim(R(C1s(Bs))) =1 4, = 2.

Type 3,0 robot with swedish wheels

The constrains have from (8)

where
—3/2 1/2 L
J1 = disw = 0 -1 L
Vv3/2 1/2 L ;
SWEDISH i
r 00 WHEELS :
J2 =0 » O 1 Y
b m
0 0 r * >

Table 2: Characteristic constants of

type 3,0 robot with swedish wheels. X
m
Whecls o 8 v 1 Y
Lsw #/3 |0 0| L
25w T 0 0| L
3sw Snf3 (0 0L
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Type 3,0 robot with castor wheels
The constrains have from (8) and (9) where
—sinB,  cosBa  Leosfan r 0 0
J1 = ch(ﬁc) = Sinﬁcﬁ _505602 LCOSﬂcQ :J2 =10 r 0.
cosBy3  sinBes Leosfes 0 0 r
COS,BCI Sin,Bcl d+ Lsinﬁcl d 0 0
CL=Cle(fe) = |—cosBp —sinB. d+ Lsinfey| ,Cae= |0 d 0
sinfl.s  —cosfles  d+ Lsinfig 0 0 d
Table 3: Claracleristic coustants of \
type 3,0 robot with castor wheels. WREELS ™
L ¥Ym
Wheels | a | 8|1 P >
le 0 - | L
2c m - | L Xom
3¢ |3r2|-|L v
Type 2,0 robot
The constrains have from (8) and (9) where
. 0 1 L r 0 0]
J1=[J (1[; J: 0 ~1 L |, k=0 r 0
Lo\ Med c0sBe3  stnBes  Lcosfes 00 r
1 0 0 . 0
Cy = CC?;; )]= -1 0 0 ,cz=lco = [0
Lele sinfles —cosfls  d+ Lsinfleg 2] d
FIXED
WHEELS
Table 4: Cliaracleristic coustants of -y T
type 2,0 robot. Ll ; v
Wheels o ﬂ { @,—_ﬂ—"' - P -
L 0 0L CASTOR @
2f m 0L WHEEL
3¢ |[3r/2|-|L ¥ v
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Type 2,1 robot

Table 5: Characteristic constants of
type 2, 1 robot.

Wheels [ a | 8 {
Ls o | - 0
2¢ /2 | - | LV2
3¢ T - | Lv2

The constrains have from (8) and (9) where

T1s(Ba1) —sinfBs1  cosfs; 0 » 0 Ol
= lJ' (1:3 r 3;3 )] = |—cosBes —sinfBey V2Lcosfe |, J2= [0 r
1clPc2s Pe3 sinBes  cosBes  V2LcosBe 0 0
OosﬂSl ‘Sinﬂsl 0 0 0-
= [C 0;5(39’13) )] = | —sinB2 cosBca d+ ﬁLSiﬂBcg Oy = [CO ] s ol
1c(Pe2. Pe3 —c088e:3  —8infles  d+ /2Lsinbes 2¢ 0 dl

CASTOR

STEERING
WHEELS

WHEEL

Type 1,1 robot

[0
Jig
Ji= =
! [J13(1653):| 0

The constrains have from (8) and (9) where

-1
cosBs3  sinBes  Lcosfss

1 L
L

type 1,1 robot.

_[ ey ]
“i= {Cls(ﬁcs)_

1
-1

stnfgs

Table 6: Cliaracleristic constants of

Wheels oY Bl1
1f 0 0| L
2f m 0L
3s 3r/2 | - | L

0 0
0 0 ,Cy=0.
—cosf3ss  Lsinfisg
FIXED
WHEELS
: -
- Fn
5 >
STEERING® F
WHEEL
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Type 1,2 robot
The constrains have from (8) and (9) where
ey A —sinf8a  cosBs1 LeosBsy r 0 0
_ Jls(ﬁslaﬁsz) _ . ° g _
J1 = T0.(Ba) = | sinfyy —cosBy LeosBys| ,Jo= 10 r 0
[ lelred cosBcs  sinfes  Lcosfe 0 0 r
P cosFs1 stnds1 Lsings 0
Ci1= Llé(ﬂzg '5;2}] = |—cosflea —sinfs LsinBea ,(a = CU = |0
L . $inS.s —c088.3 d+ Lsinp.s 2¢ d
STEERING
Table 7: Characteristic constants of WHEELS
type 1, 2 robot. i1 %
aY i Ym)
Wheels o 811 w/ P
ls 0 - | L CASTOR
2g - _ L WHEEL ¥
3¢ | 3m/2 |- | L

Posture kinematic model

Whatcver the type of mobile robot, the velocity E (¢} is rcstricted to
belong to a distribution A, defined as

£(t) € Ac = span{col(R* (9)E(8,))}V1,
where columns of matrix 2(5;) form a basis of R(C}(8;)), i.e.
R(C} (,)) = span{col(S(8.).

This is equivalent to the following statement: for all #, there exists a
time-varying vector 7(t) such that

& = RT(9)2(B)n. (18)

The dimension of the vector 7(t) is the degree of mobility (13) of the
robot.
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Posture kinematic model

If robot has no steering wheels (8, = 0), the matrix I is constant and
the expression (18) reduces to

= RT(¥)Zn. (19)

In the opposite case (§; > 1}, the matrix X explicitly depends on the
orientation coordinates 3, and the expression (18) can be augmented
as follows:

£ — RT(9)S(B:)n. (20)
,B-s - C (21)

The kinematic state space model is in fact only a subsystem of
general dynamic model that will be discussed further.

(Generic models of wheeled robots

e Type (3,0) robot. The matrix ¥ can always be chosen as a
(3 x 3) identity matrix, so the equation (19) reduces to

T costy —sind O |m
U 527119 003'19 O [n] - (22)
d 1] |ms
0 0
e Typc (2,0) robot. The matrix X is sclected as X = |1 0] , so
0 1
the equation (19) reduces to
& —sind O
gl = coss 0 H. (23)
¥ o 1| L™
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Generic models of wheeled robots

e Type (2,1} robot. Thc matrix X(4;) is sclected as

S’&'nﬂsl 0
E(ﬁa) - 003/33]. 0 )
0 1

so the equations (20) and (21) reduces to

¥ —sin(9+ fB52) 0

. 7
| = | cos(@+Ba) 0 [21] ; (24)
9 0 1| L7

Bss =1 (25)

(Generic models of wheeled robots

e Type (1,1} robot. Thc matrix X(4;) is sclected as

0
E(ﬂa): LSinﬁ.ﬁ )
co8{343

so the equations (20) and (21) reduces to

g —Lsindsinfys
y| = | Leos¥sinfss | m, (26)
"9 003;353

Bss = 1. (27)
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Generic models of wheeled robots

e Type (1,2) robot. The matrix 3(3,) is selected as

—2Lsinf, sinfyg
Z(IBS} = LS’WL(B«;] [ BSZ) s
stn(fs2 — Bs1)

so the equations (20) and (21) reduces to

z —L(sinfs1sin(v + Bs2) + sinfBssin(d + F4))
3%: = | L(sinBs1c08(9 + Bs2) + sinBscos(¥ + 551)) | m, (28)
¥ s5in(Bs2 — Ps1)
ﬂsl - Cl- (29)
B2 = Ca. (30)

Mobility, steerability and manoeuvrability

Rewrite the posture kinematic model in the compact form
z2 = B(z)u, (31)
where cither (d5)
z=¢, B(2)=RT()E, u=7

or (8s > 1}

[

Consider degree of manoeuvrability

0 I

RT(9)2(8) 01 . H
] C '

dar = 0, + 0.

The ideal situation is that of omnidirectional mobile robots where
5m == éM == 3-
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Irreducibility

A well-known consequence of Frobenius theorem is that the system is
reducible only if dim(A) < dim(z), where A is the involutive closure
of the following distribution A, expressed in local coordinates as
A(z) = span{col(B(z))}.

For the posture kinematic model (31) of a wheeled mobile robot, the
input matrix B(z) has full rank, ie,

rank(B(z)) = &, +3d, Vz,

and the involutive distribution A(z) has constant maximal dimension,
le.
dim(A(z)) =3+ 6, Vz.

As a consequence, the posture kinematic model (31) of a wheeled
mobile robot is irreducible. This is a coordinate-free property.

Controllability

The controllability rank of the linear approximation of the posture
kincmatic modcl (31) around an cquilibrium configuration

= _ =" Al T .
z_[g 3_] is G + 0.

This property follows from the fact that the linear approximation
around (Z = 0,% = 0) can be written as

d

gt (z Z)= B(Z)u.

It follows that the controllability matrix reduces to B(z} whose rank
is &y + &5 for all z as was shown before.

This implies that the posture kinematic model (31) of a wheeled
mobile robot is controllable (completely controllable for type (3,0)
robots).
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Stabilizability

For omnidirectional robots feedback control
u(z) = B 1(2)A(z — 2%,

with A an arbitrary Hurwitz matrix is clearly a linearizing smooth
feedback control law that drives robot exponentially to z*. Indeed,
the closed loop is described by the freely assignable lincar dynamics

d ¥y - ¥
a(é—Z)—A(/. ,.).

Hence, omnidirectional mobile robots are full state feedback
linearizable.

[or restricted mobility robots the posture kinematic model (31) is not
stabilizable by a continuous static time-invariant state feedback u(z).
but is stabilizable by a continuous time-varying static state feedback
u(z,1).

Configuration kinematic model

From (8) and (9) it follows directly that
f}c = _027;1016(.6-0)3(19)6: (32)

b= —Jy ' (Be, B R(D)E. (33)

By combining with the posture kinematic model (20), equations (32)
and (33) become

Bc = D(ﬁc)z(ﬁs)na (34)
¢ = E(fs, 82)E(86)m, (35)
where D(8,) = —C5.'Chc(f.) and E(3s, 8:) = —J5 11 (Be, Be).
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Configuration kinematic model

Define the configuration kinematic model as

g = S(g)u, (36)
where
3 RY(EBB:) 0
183 ‘ 0 I '!’,‘
= Sig) = = .
== pisgss)  of H
¥ E(8s,:)X(8s) 0

Configuration kinematic model

Reducibility of (36) is directly related to the dimension of the
involutive closure of the distribution A;(g) = span{col(S(g)}}. It
follows immediately that

O + Ne = dim(Aq) < dim(inv(A1)) < dim(g) =3+ N + N+ N..
Define the degree of nonholonomy M of a mobile robot as
M = dim(inv(A1)) — (8 + Ns). (37)

The configuration kinematic model (36) of all types of wheeled mobile
robot is nonholonomic, i.e. M > 0, but 1s reducible, 1.e.
dim(g) > dim(inv(A1)).
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Configuration kinematic model for type
(3,0) robot

For this robot 4,,, = 3 and the configuration coordinates are

g= [m y ¥ o1 f,os]T.

The configuration model is characterised by

[ cost? —sind 0
sind cos?? 0
0 0 1
5(9) = V3/2r  —=1/2r —L/r
0 1/r Ljr
_—v’g,/Q'r —1/2r —L/7]

It is easy to check that dim(A,) = 3 and dim(inv(A1)) = 5. The
structure of the configuration model implies that

. , ) 3L .
P1+¢2 tos=——7.

Configuration kinematic model for type
(2,0) robot

For this robot é,,, = 2 and the conﬁguration coordinates are

q= [:B ¥y 7 B oo e ws]r-

The configuration model is characterised by

[ —sind 0 |
cost 0
0 1
S(Q) = écogﬁcii _%(d + L'S'infgcfi)
—1/r —L/jr
1/r -Ljr
—Lsing,: —LensA.
| T F )ed = COS,dcd

It can be checked that dim(A) =2 and dim(inv(A;)) = 6. From the
the configuration model it is

. . 2L,
@1+ @2 = —71?.
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Model derivation
Using the Lagrange formulation, the dynamics of wheeled mobile

robots is described by the following (3 + N. + N + N, ) Lagrange's
equations:

T T
: (DT) B (8_) = RT(’ﬂ)JlT(ﬁsaBc))\"‘RT('l?)Oir(ﬂs,Bcj'u’ (38)

dt \ g¢ o€
d /a1 sorN\T .
w(n) ~() ~twrn o
d rar\* sor\*
iilas) ~(5;) =rem (40)
d far\*t jfary' _ i
w\ag,) ~\om) 7™ .

where 7" represents the kinetic energy and A, p are the Lagrange
multipliers associated with the constraints (8) and (9) respectively.

Model derivation
By multiplying (38), (39) and (40) by T (8,)R(¥), X7 (8:) D(8,) and
ST(B,)E(Bs, B.) respectively and summing them up one can obtain

ST (B)R(O)[Te + D(Bc)T) 5. + E(Bs, BTy =
=ET(8:) (DT (Bo)e | BT (Bs, Be)To)s (42)

[,1 I]ﬁs = Ts (43)

d ror\" ror\”
'le:&(%) ~(30)

The kinetic energy of wheeled mobile robots can be expressed as

where

follows:

T = T RT (W) (M (B)R(EF2V (Be) Bet2W B )BT Lfet o T Lo+ 8T Iefe.

356



2019 © Alexander Krasnov Modeling of systems and complexes
aykrasnov@itmo.ru, krasnov.aleksander@gmail.com Trajectory control algorithms

Configuration dynamic model

The configuration dynamic model of wheeled mobile robots in the
state space takes on the following general form:

£ = R (NT(Ba)n, (44)
BS = C) (45)
Bc = D(ﬁc)z(ﬁa)"ﬁ (46)

Hi(Bs. Be)i + ET(B)V(BC + frlBs, Bes, () =
= ST (B HDT (Be)re + ET (Bs, Be)To), (47)
VI(BIZ(8e)i) + 1L + J2(Bs, By, C) = 75, (48)
& = BE(B., B.)X(B. )7, (49)

where H1(B.,8:) — ET (B M (B:) + DT(B)VT (Be) + V(Bo) D(Be) +
DT(Be) e D(Be) + ET(Bs, Be)de £5(Bs, Be))X{Bs).

Actuator configuration

All steering wheels must be provided with an actuator for their
orientation, and to ensure a full robot mobility N, additional
actuators for cither the rotation of somc wheels or the oricntation of

Te
T

where P is an ((N. | N) X Ny,) clementary matrix which sclects the

some castor wheels.

— P, (50)

components of 7, and 7, that are effectively used as control inputs.

Using (30) we can recognize that (47) becomes

II (Bs, Bo)n + ET(BS)V(BC){- + f1(Bs, Bei 1, ¢) = B(8Bs, Be) P, (51)

where B(fs,3.) = £T(8,) {DT(@) ET(8,, ﬁc)] .

The actuator configuration is such that the matrix B(3:, 5.} P has full
rank for all (8,, 3.) € RVs+tNe.
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Actuator configuration for type (3,0) robot

In case of swedish wheels the matrix B is constant and nonsingular,
so the only admissible configuration is to equip each wheel with an
actuator.

Tii case of caslor wheets (hie malrix B(f8,) is

B(5.) = =7 [D7(8) E7(5.)]
with
cosl,) €083 stn 3

rTpT (B.) = —= sinf.q —84nSc0 —c08Pc3 ,
d ) Lsinfley d | LsinfB.o d | Lsinfe

—sinfly sinfn  cosflg
ETET(Bc] = T cosffn  —cosB2  sinfcs
Leosfl,y,  Leasfes LeosOs

Actuator configuration for type (2,0) robot

For this robot the matrix B(3,) is

1 1 1 .
=cosf, - = —=ginf,
B(;{}c‘;) — d ‘B 3 r r

—5(03 + Lsinf.3) — L

- —%6051363 -

il e

Several configurations with 2 actuators is admissible: 2 rotation

0 0
. 1 0
actuators on wheels | and 2 with £ = 0 1l 1 actuator for the
0 0
orientation of wheel 3 and 1 actuator for the rotation of wheel 2 (or 3),
1 ¢
. i , 0 . .
provided that d > L with P = 0 0 : 2 actuators (orientation and
g 0

rotation) on castor wheel 3, pravided that d < 7. with P =

O OO -
_ o O O
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Actuator configuration for type (2,1) robot

For this robot we first need an orientation actuator for the steering
wheel. The matrix B(f;, ;) is then

B(8,,6.) = 7 (8,) [DT(8:)  ET (B, 5c)]

with
—sinfly1 cosPyy 0
ET ‘s — S’ln. 51 5 ‘
") [ nfa cosha O
1 —sginfB. —co8B.:3
DT (B.) = 3 cnsfeo —sinfes ,
d+V2LsinB; 4+ V2Lsinfes

cosf3s1 —35inBen —cosf3.3
ET(),J)S} ﬁc) - _; Sinﬁsl COSBCQ —S’iﬂﬁc3

0 d + \/ﬁLSinﬁcg d + \/ﬁLSfﬂ.ﬁcg

Actuator configuration for type (2,1) robot

Hence two admissible actuator configurations arc obtained by using a
second actuator for the rotation of the steering wheel (number 1) and
a third actuator for the oricntation of cither whecl 2 or wheel 3. The
two corresponding matrices P are:

v
I
I=N=R==

o O O = O
Y
l
o000 ~
oor oo
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Actuator configuration for type (1,1) robot

For this robot we first need an orientation actuator for the steering

wheel. The matrix B(f,) reduces to the vector

L
B= - {sinﬁsg +cosfsz  —sinBea + cosfss 1J :

Since 6,, = 1 a second actuator should be provided for the rotalion of

the third wheel. The matrix P is then
0

P=10
1

Actuator configuration for type (1,2) robot

For this robot we first need 2 orientation actuators for 2 steering
wheels. The matrix B(f;, 5¢) is then

B(B:, 8:) = BT (8) [ DT(B) BT (B, fe)
with

2T(8.) = [—2Lsiwﬁsl.~;7ﬁﬂ,ﬁ'&g Lsin(Bs1 + Ps2)  sin{Bea — ,’331)] ,

—Lsinfa
DT(8.) = 2cos33 ,
—1(d + Lsinfes)

_Sinegal SénﬁsZ COSﬁC;;
ET(Bs,8.) = - cosflar  —cosfes  sinfes
Leosflsy  LeosB,  Leosfes
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Actuator configuration for type (1,2) robot

Since d,, = 1, it would be sufficient to have one column of B(g;, 8;)
being nonzero for all possible configurations. Ilowever, there is no
such a column. It is therefore necessary to use 2 additional actuators,
for instance for the rotation of wheels 1 and 2 giving the matrix I° as

DO = O
o = 2D O

Posture dynamic model

The configuration dynamic model in compact form

g = S(g)u, (52)
H(B)i+ f(B,u) = F(8)m, (33)
N
o=, 7 s 2]
F(5) = lB e 5) {;] 7 = [Tj] .
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Posture dynamic model

The configuration dynamic model (52}-(53) is feedback equivalent (by
a smooth static time-invariant state feedback) to the following system:

q = S(g)u, (54)
%=, (35)

where v represents a set of §,, auxiliary control inputs.

The following smooth static time-invariant state feedback is well
defined everywhere in the state space, ie.

0 = F1(S)(H(8)a — f(B,w)), (56)

where FT denotes an arbitrary left inverse of F(8, u).

Posture dynamic model

We restrict our attention to the following posture dynamic model:
z — B(z)u, (37)
U= v, (58)
T T
where z = [QT )83] and u = [?;T (T] .

The coordinates 3. and ¢ have apparently disappeared but it is
important to notice that they are in fact hidden in the feedback (56).

The posture dvnamic model is generic and irreducible, and
small-time-Iocally-controllable; further, for restricted mobility robots,
it 13 not stabilizable by a continuous static time-invariant state
feedback, but is stabilizable by a time-varying static state feedback.
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Digital control systems
Digital and microcontroller devices

Digital and
Microcontroller Devices

Vlasov Sergei

Robots, what is it?
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Robots, what is it?

Hardware

-

Structure of robot

Control Drive systems Sensors Interfaces Supply
= Power switch < Omnidrive =< Bumper = WLAN - Batteries
= Control unit - Motors - Distance sensors = 1/O-Interfaces - Power supply unit
< Embedded PC - Incremental encoder | & Gyroscope - Motor/encoder - Charging electronics
= Microcontroller - Gear units - Camera - USB - Pedestal
-> Reset button < Wheels - Opto-electronic - PCI Express

sensors

- Inductive sensors - Ethemet

< VGA

364




2019 © Sergei Vlasov Digital control systems

smvlasov@itmo.ru, vlasov.serge. m@gmail.com Digital and microcontroller devices

Structure of robot

r

Sensors

Distance I Incremental

Gyroscope Camera
Sensors | encoders

Control |
unit

Motors »1 Motors
drivers

Batteries >

Power supply

* Primary Batteries

* Secondary Batteries
o Lithium (Li-ion, Li-pol)
o Nickel Cadmium (Ni-Cd)
o Nickel-Metal Hydride (Ni-MH)
o Lead-Acid

Schematic symbols
Single cell Multi-cell

a4 AlE
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Power supply

Terminology

Capacity - Batteries have different ratings for the amount of power a
given battery can store. When a battery is fully charged, the capacity is
the amount of power it contains. Batteries of the same type will often
be rated by the amount of current they can output over time. For
example, there are 1000mAh (milli-Amp Hour) and 2000mAh batteries.

Nominal Cell Voltage - The average voltage a cell outputs when charged.
The nominal voltage of a battery depends on the chemical reaction
behind it. A lead-acid car battery will output 12V. A lithium coin cell
battery will output 3V.

The key word here is "nominal", the actual measured voltage on a
battery will decrease as it discharges. A fully charged LiPo battery will
prozd;l\c/e about 4.23V, while when discharged its voltage may be closer
to 2.7V.

Shape - Batteries come in many sizes and shapes. The term ‘AA’
references a specific shape and style of a cell. There are a large variety.

Power supply

| Common batteries, their chemistry, and their nominal voltage |

Battery Shape Chemistry Nominal Voltage Rechargeable?
AA,AAA, G, andD lkalineorZinc- o No

carbon
oV Alkaline or Zinc- 9V No

carbon
Coin Cell Lithium 3V No
Silver Flat Pack Lthlum Polymer 3.7V Yes

(LiPo)

(  ©Ni-Cd AA 700mAh 1.2V.©

e laiey (G NiMH or NiCd 1.2V Yes j
(Rechargeable)
Car Battery Six-cell lead acid 12.6V Yes
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Motion — motors

DC Motors e Brushed DC Motor

— Brushless DC Motor (BLDC)

e Stepper (STP)

AC Motors —_— Induction Motor (IM)

— Synchronous Motor (PM)

Brushed DC electric motor

Rotor
Coil Commutator

Fixed brushes supply electric energy to the
rotating commutator. As the commutator %
rotates, it continually flips the direction of the D
current into the coils, reversing the coil

polarities so that the coils maintain rightward L4
rotation. The commutator rotates because it is

attached to the rotor on which the coils are

mounted.

A A
A A

Stator

Schematic symbols
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Brushless DC electric motor

Since the rotor is a permanent magnet, it

needs no current, eliminating the need for
brushes and commutator. Current to the fixed Rotor Stator
coils is controlled from the outside.

Schematic for delta and wye winding styles.
(This image does not illustrate the motor's
inductive and generator-like properties)

Stator

Stepper motor

A stepper motor, also known as step motor or
stepping motor, is a brushless DC electric
motor that divides a full rotation into a
number of equal steps. The motor's position
can then be commanded to move and hold at
one of these steps without any position sensor
for feedback (an open-loop controller), as long
as the motor is carefully sized to the
application in respect to torque and speed.

Schematic symbols
Stepper motor

O

BlI |BZ
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Controlling Brushed DC Motors

Rotation in different directions

Controlling Brushed DC Motors
Control speed by PWM (Pulse-Wide Modulation)

0,
&5 0% Duty Cycle

ov
25% Duty Cycle

5V j— h= & = =

Average

o j . Output
50% Duty Cycle Voltage
5v |

ov e
75% Duty Cycle

5V

ov L L - L -

100% Duty Cycle

5V

ov
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Controlling Brushless
DC Motors

s Sw3 SWS

T

+
i

—AgE <R A <HE

b

v

Thres-phase
BLDC motor

u

Controlling Brushless
DC Motors

Sensored vs. sensorless

* Two technologies offer a solution for positional
feedback. The first and most common uses three
Hall-effect sensors embedded in the stator and
arranged at equal intervals, typically 60° or 120°. A
second, ‘sensorless’ control technology comes into

its own for BLDC motors that require minimal

electrical connections.
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Controlling Brushless DC Motors
with sensors

Inverter

—: S~ | N
—_ ‘ (i, i)
UNNTSAL /)

| (S

Microprocessor/dedicated logic circuit Hall element

N [ Position information
: | Hall elements (3)

Controlling Brushless DC Motors
with sensors

u
., B S Wy
- v v
e ~ ~
vt w
w E 2 v swa_ swe swe
.
m 4
gEe——— . Ty el T R g
Hall sensor value: abce001 Hall sensor value: abce011 | | | L ’

| ' ' 1t 0 e 11 vyl

oy R S
R T S

v l \d ' ' ] E T %" B I 27 ¥ 3 ¢ 1
w1 SW3 Sws -, swi\swa\sws, by
& y ¢ a —— i i = i i i [—1— Hgh
M P M U= 3 = ¥ 1 ! g BRI f= =1 = Float
vl v [ —r— —p—fefeaie LOY
R T S o I ] () N,
- B " LR 1 = ; roh

.

- ?

K}

v

ny
&

swa | swe. v I 4 — Fost
S o -

w2 swa
H Vo L —t
............. Low
| ' 1 =
w [ W e B 1 [ ' r—T Float
Hall sensor value: abce101 Hallsensorvalue:abcs010 T 0 Low
.....

Hall Sensor! 64" 1011100,110,010,011,001; 101,100, 110,010,011, 001;
i Eeciricalcyde I Electrical cycle i
v
One mechanical rotaton

u
‘ v . A
o, | W W sws o, | BW1| W sws
v " v
~ 5 L)
vl vl
swa | swa| s w 3 e v oz W swe
.
=,

»
Hall sensor value: abc=100 Hall sensor value: abcs110
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Controlling Brushless Sensorless
DC Motors

Application Schematic

| 1 {3 scL PGND [B‘;]»ﬁ
[ Signal condiboning |o—{ soA oR [}—9o0 =
ANO orface —{%Z] F6 SPEED [T3}-9<
Mcrocontrofier
e Bx‘LE-«F
[ anw
- A "\

Tae Tee
De. i Des BLDC Motor
ea
—_—t v N
Voc == i Vs — e: ec
I Ve I_.
Ta- Ts Te. :
Da- De Dc
< é I I_
777 : § C A
e B T
Control Circuitry

Sensors

* Distance
* Position
* Velocity
* Temperature
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Distance sensors

Microcontroller

e Ultrasonic

Time to fly
measurement

Microcontroller

Bodl
1 1
Time to fly
measurement

Ultrasonic
sensor

BN
v ¢ UL _;.__-,,1'—;"

k-1 O Detected

L object
Measured distance

Ultrasonic

sensor

'\[:ﬁ'fw.@

Received wave
Detected
object

Measured distance

Distance sensors

* Infrared

U
A

e Laser

CMOS

Detector
N
Ilens Lens/ /
/

£y

PSD
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Position/Velocity sensors

* MEMS (Micro Electro Mechanical Systems)
o Accelerometer
o Gyroscope
o Magnetometer

* Encoder
* Potentiometer

MEMS sensors

MEMS Accelerometer

* Accelerometer

* Gyroscope
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Encoders

* Mechanical
* Optical

® |[ncremental
= Absolute

Yool o v

YoufD) esnchannci v

Potentiometer

wiper

resistive strip

GND Output +Vee

Resistance

>
Knob position
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Microcontrollers

A micro-controller can be comparable to a little
stand alone computer; it is an extremely
powerful device, which is able of executing a
series of pre-programmed tasks and interacting
with extra hardware devices. Being packed in a
tiny integrated circuit (IC) whose size and weight
is regularly negligible, it is becoming the perfect
controller for as robots or any machines required
some type of intelligent automation. A single
microcontroller can be enough to manage a small
mobile robot, an automatic washer machine or a
security system. Several microcontrollers contains
a memory to store the program to be executed,
and a lot of input/output lines that can be a used
to act jointly with other devices, like reading the
state of a sensor or controlling a motor.

Microcontroller’s architecture

Von Neumann vs. Harvard architecture

Data bus —

Data
dre —. Memory

Control bus __ e=—b T

Harvard architecture

Code Data
Memory Memory
Databus |} ll tt
CPU Address bus t

Control bus t

@ Von Neumann architecture
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Microcontrol

8051

ers

AVR

ARM

8-bit for standard core

8/16/32-bit

8/32-bit

32-bit mostly also available in
64-bit

Communication Protocols

UART, USART,SPI,12C

PIC, UART, USART, LIN, CAN,
Ethernet, SPI, 125

UART, USART, SPI, 12C, (special
purpose AVR support CAN, USB,
Ethernet)

UART, USART, LIN, 12C, SPI,
CAN, USB, Ethernet, I12S, DSP,
SAl (serial audio interface), IrDA

Speed 12 Clock/instruction cycle 4 Clock/instruction cycle 1 clock/ instruction cycle 1 clock/ instruction cycle
Memory ROM, SRAM, FLASH SRAM, FLASH Flash, SRAM, EEPROM Flash, SDRAM, EEPROM
CLsc Some feature of RISC RISC RISC
Memory Architecture Von Neumann architecture Harvard architecture Modified Modified Harvard architecture
Power Consumption Average Low Low Low
Families 8051 variants PIC16,PIC17, PIC18, PIC24, Tiny, Atmega, Xmega, special | \ep1 4 < 6,7 and series
PIC32 purpose AVR
Vast Very Good Very Good Vast
NXP, Atmel, Silicon Labs, Dallas, |, .. . Apple, Nvidia, Qualcomm,
Cyprus, Infineon, etc. Microchip Average Atmel Samsung Electronics, and Tl etc.
Very Low Average Average Low
High speed operation
Other Feature Known for its Standard Cheap Cheap, effective Vast

Popular Microcontrollers

AT89C51, P89v51, etc.

PIC18fXX8, PIC16f88X,
PIC32MXX

Atmega8, 16, 32, Arduino
Community

LPC2148, ARM Cortex-MO to
ARM Cortex-M7, etc.

AVR Architecture

3-wire In/Out

4-wire In/Out

~  Serial \
AT Peripheral
‘ Interface _
(— Program
Counter
Instruction 32 General
Register — A
Control ‘ Registers
Lines
AIES =
Instruction PO
Decoder v
cou| [K=A shi
» i 4 P
Watchdog /0 Timer/ phOenlx.net
Temer Ports atapts Counters
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ARM — STM32 Architecture

STM32 Value line 64K-128KBytes block diagram

.
; 64KkB - 128kB Power Supply
« Core and operating conditions Flash Memory L ;
ARM® Cortex™-M3 1 25 24 Mtz POR/PDR/PVD
DMIPS/MHz up to 24 MHz 8kB SRAM
20Vto36Vrange T |
-40to +105 °C g 20B Backup Data §

1 x Systick Timeri
«  Rich connectivity bk e

.

ESrChame ) Clock Control | RTCIAWY

8 communications peripherals

+ Advancedanalog
12-bit1 2 ps conversion time ADC

Dual channel 12-bit DAC _ T
1x 16bit PWM | oo 024 ;
Synchronized AC Timer x 16-bit Timer - 1 x CEC
« Enhanced control Up to 16 Ext. ITs 2xWatchdog |
16-bit motor control timer

)
) ) (independent & window) |
6x 16-bit PWM timers 3751  WOs :
)

2-channel 12-bit DAC ]

oals e S 1 x 12-bit ADC

* LQFP48,LQFP/BGAG64,LQFP10Q [FERFETEAE 1 el LI

rdirDa . : 1
' Control Temperature Sensor I

HHEBE
AVAVAY4

TR
(\_(\AA

zY;

!

i
O

A

1131331313131

H

@ B B N N N NN N

| Cortex-M4
g
Qe

R B R B B B B B B

| R R B AR B BB BB B
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STM32F4xxx Structure

STM Adaptive Real Time Memory

Flash
memory

S — |

128-bit wide
embedded Flash memory

Core ART Accelerator
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STM Bus matrix

Bus masters

100 Mbiv's 430 Mbas
12,5 Mbyte/s |60 Mbyte/s

Instructions
Data
System
DMA_MEM!
DMA_P1
DMA_MEM2
DMA_P2

Bus slawes

7-layer 32-bit multi-AMB bus matrix

672 Mbyte/s

672 Mbyte/s |

e
h

Power supply scheme

BAT,

Backup circuitry
VBAT = S ower (OSC32K,RTC,
1.65t0 3.6V (t'switch Wakeup logic
Backup registers,
- backup RAM)
UT %’
10 H
GPios [ K e i
'g Logic !
<2 !
VCAP_1 : Kernel logic
2x22pF VCAP_%‘ﬁ i (CPU, digital | :
& RAM) H
VDD VDD i
1/2/..14/115 Voltage
15 x 100 nF vss | regutator :
+1x47pF : 172/..14/15 i
BYPASS_REG Flashmemory| ;
Reset
PDR_ON controller
VDD
VDDA
VREF t
VREF+
T e K
100 n 100 nF VREF- ADC RCs
+1pF +1puF PLL...
VSSA
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External clocking and reset circuit

Resonator with
integrated capacitors

,J-, OSC_N

. fHSE
m
Bias =
controlled
gain
STM32F
4
VHSEH
v,
VHSEL H H ' ! H ; Extemal )
0 (N W T T T WHSE) ¢ reset circult
HSE tie sl tiusE) 1 SLtwHsE) L WHSE) 77T NRsTR | RPU Internal Reset
-« THSE > ) l - n E] . >>— Fiter |———>
. h I_ =01 F
EEr et I N | @" v STMa2F
oo STM32F
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Actuators and mobile robots control
Mathematical model of DC motor

Control and modeling of mobile robots
Mathematical model of DC motor

Alexander A. Kapitonov

Constructon of DC motor

1 2 )

Figure 1. DC motor assembled. . _
Figure 2. DC motor disassembled:

1 — cap, 2 — rotor, 3 — stator.
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Constructon of DC motor

Figure 3. NXT motor disassembled: 1 — DC motor 2 — it’s shaft, 3 —
reducer, 4 — NXT motor external shaft; (chip with encoder isn’t shown).

Mathematical model

{ Mo — Mgy = Jd;,. M
U=RI+E;+LI,
M, = knl, (2)
E; =kew, (3)
{ kI — Megs = Jw, @
Figure 4. Physical scheme of DC U=RI+kew+ LI,

motor.

where M., — motor torque; M.,; — torque of external forces; J —
total moment of inertia of the rotor and reducer’s gears; w — rotor
speed; U — motor supply voltage; R, L — resistance and an
inductance of rotor’s wires; I — the current flowing through the
latter; E; — EMF which appeared in rotor’s wires due to its rotation
in magnetic field of stator’s magnets; k,,, k. — torque and back EMF

motor constants.
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Mathematical model

If L ~0H, then

r—ip- ke 5
=“rY"R®R¥ )
therefore
1 . ke )
km E(J - Ew - 11”Ie:ct = Jw, (6)
hence
JR 1 U R M i
Tk T TR T Rk, e @)
. ]. Tm
me+w=k_eU_7ﬁ”fe:cty (8)
JR
where T, = P is a motor mechanical constant.

Mathematical model

Also we can gel differential equalion which conlains 7, nol w:

1. differentiating {5):
=ty L 9
TR ke ©)

2, putting {9} to the first equation from (4):

1. R.
k‘mf — Moy = J(Z[j - EI (10)

3. transforming (10):

JRi I o U 1\4 11

koke T T Tk T Ry et (11)
) T .. 1

Tmf-i‘f— §U+ EMeat- (12)
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Mathematical model

For a sitnation when

U = const,
(13)
Mepi =0N-m,
and
#{0) =0,
w(0)=0s,"

where 6 — angle of rotor’s rotation (0 = w), next cxpressions for w(t)
and 8(t) can be obtained from (8):

. L
w(t) =wns| 1 — exp(T—) , (15)
t
A(t) = wpiet — WntsTm + WnisTm exp(T—), (16)

where w,,;, = U/k. — no-load speed of the rotor.

Mathematical model

w A o8

arctan wy;

>

0 T, t 0 7 t

Figure 5. Graphs of w(t) and 6(t) from (15) and (16) in case wnis > 0.
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Description of experiment

>

o4 B
9i+1 ————————— A VA
H(I(ti—{—l) _________ \
91' “““ < :
GG(t,-) ————— '+ :
1

A

0 t; tip t

Figure 6. Approximation curve.

Least squares method:

find values for w,,;s and T,,, such
that the sum S:

N
S=3(6u(t;) - 0,)° (17)
j=1

would have a minimal possible

value.

There

N — number of pairs (t;, 6;)
which were recorded during the
experiment,

0,(t;) — value of (16) when t = t;.

Modeling scheme of DC motor in Scilab

Control and modeling of mobile robots
Modeling scheme of DC motor in Scilah

Alexander A. Kapitonov
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Scilab

Scilab is free and open source software for numerical computation
providing a powerful computing environment for engineering and

scientific applications!

Sci[ey!

Figure 1. Scilab logo.

At this course we will use Scilab’s:

e Xcos — hybrid dynamic systems modeler and simulator:

e some mathematical algorithms.

1Logo and some text on this slide were taken from www.scilab.org.

System modeling

Figure 2 demonstrates example of modeling scheme for device which
is desribed by this system of equations:

& = Ax + Bu,
y = Cz + Du, (1)
u=K(zq— )+ Lz,.

S , [To workspace

outp [2048]

Figure 2. Example of modeling scheme.
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System modeling

Const value generator Proportional gain

e o e

A— X — const B_K- A

Integrator
| By

B:/Adt-i—Bg

Figure 3. Some standard blocks.

System modeling

{aov—s aor—w+
> D > D

B »—> o o

D=A+B DeA_R
A —
(B X D)
o>

D=A+B+C D=A+B+C

Figure 4. Summator block.
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System modeling

To workspace
A struct [1024]

Figure 5. Some service blocks.

This subscheme saves values of A and appropriate moments of time

into two matrices: A_struct.values and A_struct.time.

Svst deli

L{T - B(t) + B(1)} = £{K - A®)},

(3)
TN K P s
A Tasx1) - T-s-B(s) =~ Bls)= K- As), (4
Figure 6. Transfer function Bis) _ K (5)
block. A(s) Ts+1’ ‘

where L{ } — Laplace transform.

Cor> o - »_..H_@

/] ~ N

- it >
- e

Figure 7. An equivalent sheme.
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Modeling scheme of DC motor

Model of DC motor is described by two diffential equations:

1T
T +w=—U——

M,
Ive J cxts

(6)

T.i+1 T"‘U 1M
md + =R +a oDt

therefore its modeling scheme is equal to one which is demonstrated
by figure 8.

Modeling scheme of DC motor

w [
s To workspace
theta [1024]

Tm/.J
Tm+s+1

Tm/R * s
Tm+*s+1

1/Km
Tm*s+1

Figure 8. Modeling scheme of DC motor.
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Control of DC motor using PID controller

Control and modeling of mobile robots
Control of DC motor using PID regulator

Alexander A. Kapitonov

inputs

Some basics of control theory

In a control thcory all systems arc considered as a single object or a
“"box” which has sore number of input and output signals.

outputs

—»

4’

—

System’s "box"

—

4’

-

theory.
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Figure 1. One of a possible representation of every system in a control

input signals — some impacts which change system state

output signals — some physical quantities which describe system
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Some basics of control theory
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Figure 2. Structure of the model of a DC motor.

Some basics of control theory

Some important. delinitions:

Control is a process of changing in a desired way valucs of some

output signals using somne input signals.

Controller is a special device and/or algorithm which creates
required input signals.

Methods of control:

e forward

e using feedback
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Some basics of control theory

Forward control — a method of control when a controller doesn’t use
information about values of system’s output signals.

outputs

System’s "box"

Figure 3. Scheme of forward control.
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Some basics of control theory

Control with feedback — a method of control when a controller use
information about values of system’s output signals.

outputs

wishes

™ Controller

System’s "box"

P

|

-

It

Figure 4. Scheme of control with feedback.
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PID controller

PID controller is an algorithm of fecdback control which calculate

value for input signal in accordance to the formulas:

e(t) = za(t) — x(t), 1)
u=Kp-e—l—Kz--fedt+Kdé, (2)
where x — controllable output signal; z; — desired value of signal:

e — error of control; w — used system’s input signal; K, K;, Ky —
constant coefficients of PID controller.

PID controller

T4 e . U x
I H; System

— L e K

Figure 5. Scheme of PID controller sctructure.
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PID controller

P controlller or a proportional piece of PID which is calculated as
u=K,- e, (3)

does the main part of a controller’s job;

I controlller or a piece of PID with integral which is calculated as
u=K; -/edt, (4)

prevents crrors (makes ¢ is being cqual to 0);

D controlller or a piece of PID with derivative which is calculated

as w=IKy-¢, (5)

dampens oscillations.

PID controller
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Figure 6. System with P, PI and PID controller respectively.
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PID controller

Methods of tuning controller’s coeflicients:

o calculations using mathematical model of a controllable object;
¢ setting with according to one of a special algorithm;

e fully manual setting,

Ziegler—Nichols method

Algorithm of Luning values for coeflicients of PTD coniroller:

1. make K; amd Ky is being equal 1o 0;

2. increase value of K, until z(¢) starts making undamped
oscillations; remember this value of K, as K, and a period of the

oscillations as 1;,;
3. calculate coefficients of PID controller using these formulas:

2K, K,T,
K= L= (6)

K,=06K, K=
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Ziegler—Nichols method

This method’s strengths:

e it is quite simple.

This method’s weaknesses:

e it doesn’t work for all systems;

¢ it docsn’t give the best value of cocfficients.

Numerical methods

Figure 7. Geometry meaning of integrals.
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Numerical methods
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Figure 8. One of numerical methods for calculating value of integral.

t n

/f dt ~ Z filti —ti—1), m<n, mneZ (8)
. i=m-+1

Numerical methods

Figure 9. Numerical methods for derivative calculating.
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A controller for to-point motion for a mobile robot with differential drive type

Control and modeling of mobile robots
A controller for to-point motion for a mobile robot with
differential drive type

Alexander A. Kapitonov

Robots’ drive types

Drive type Controllable velocities
Car-like type Vs w(vy)
Differential Vgy W
Omnidirectional Vg, Vy, W

Figure 1. Examples of "robots” with different drive types: a—car-like,
b—differential, c—omnidirectional
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General view of the robot

Figure 2. General view of a considered robot.

Structure of the control system

1 task 1 control state I output
| I . | |
Lg wi | ] Te | [
. 1 Control object Ye | | .
_Ys 1 ontroller 1“2 ') (Lego car) Yo - :
|

e

Figure 3. Structure of the control system.

T4, Yy — coordinates of goal point;
wy, wy — angular velocities of robot’s wheels;

Tos Yon W coordinates and rotation angle of the robot.

400




2019 © Alexander Kapitonov Digital control systems

kapitonov.aleksandr@itmo.ru Actuators and mobile robots control

Mathematical model of the robot

y A goal Kinematic model:
Ze = |U] cos
Yo = |U] sine (1)
‘l;,‘ =Ww
where
w1 + wWe
71 = R- 22 (2)
K ( ) (3)
w=—"-(w —wsy), :
B 1 2

Figure 4. Useful drawing. where R wheel radius.

Mathematical model of the robot

goal
Some important variables:

p= {;zty —&s Y5 ;l/(}. (4)

yg — Ye

0 = arcta , 5
arctan r— (5)
a=0-—1, (6)
|“_“"n| = |F| (7)

Figure 5. Useful drawing.
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Mathematical model of the robot

! N N
|| — \/(xg — ) + (yy — Y} (8)

d| 7| 1
dt 2\/(“’9 - 3"(;}2 + (yg - 3}0)2

((1’9 - ff’c)z + (yg — yC)z), =

1 1
:_I(_-;'{i'c Yo} {zg — e yg_yc}:_m'l" = —|t]cosa (9)
d=0-1 (10)

Mathematical model of the robot

I 4
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Mathematical model of the robot

Robot’s mathematical model:

dal
?=—|v|cosa 7l
R or &= f(x), where z = p (13)
da  |7]sina o
at |p]

Let’s use for it this control law:

|| = tymae - tanh |p] - cosa

tanh |§] (14)
———-sina - cosa
171

where v, and K, are constant positive coefficients.

w = Ko+ Unag -

Mathematical model of the robot

Some theoretical information:

¢ Stability is an ability of a controlled system to run to particular
state and stay in it.

e D'or checking system for stability Lyapunov functions are used.

e If time derivative of Lyapunov functions for considered system is
always negative, the system is stable.
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Mathematical model of the robot

Possible Lyapunov funclion (or our system:
.1 1

Viz)= |5 2 16

(@)= 11" 1 ja (18)

Its derivative:

av _ d|p]|
dt - dt

_ da o |7] sin &
71+ o= —lollplcosatal —x——w| (16

or after using equations (14) for control law:

av

= ~Vmas - |A] - tanh 7 - cos’a— K, 0? < 0. (17)

Due to V is always negative the system is stable.

Mathematical model of the robot

Note that:

¢ angular speeds of robot’s wheels can be found using these

formulas:
(2ol + B Q- Bw). (18)
w = — - (2|v wl, Wy = —  (2|U| — Dw}.
'= R ) 2= R

¢ in the steady state angular speeds of robot’s motors are
proportional to voltages which are applied to them; so we will
make the latters are being proportional to values obtained from
equations (18}.
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Sources for pictures

e glide 2:

e https://en.wikipedia.org/wiki/Car
e https://www.parallax.com/product/boe-bot-robot

e http://www.makeblock.com/mecanum-wheel-robot-kit
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