I/İTMO

Бобцов А.А., О.А. Козачёк, Н.А. Николаев

СИНТЕЗ НАБЛЮДАТЕЛЕЙ НА ОСНОВЕ ОЦЕНКИ ПАРАМЕТРОВ. ЛАБОРАТОРНЫЙ ПРАКТИКУМ

Санкт-Петербург 2024

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

университет итмо

А.А. Бобцов, О.А. Козачёк, Н.А. Николаев

СИНТЕЗ НАБЛЮДАТЕЛЕЙ НА ОСНОВЕ ОЦЕНКИ ПАРАМЕТРОВ. ЛАБОРАТОРНЫЙ ПРАКТИКУМ

учебное пособие

РЕКОМЕНДОВАНО К ИСПОЛЬЗОВАНИЮ В УНИВЕРСИТЕТЕ ИТМО

по направлениям подготовки 27.04.03 «Системный анализ и управление» и 27.04.03 «Управление в технических системах» в качестве учебного пособия для реализации основных профессиональных образовательных программ высшего образования магистратуры

Санкт-Петербург 2024 А.А. Бобцов, О.А. Козачёк, Н.А. Николаев. Синтез наблюдателей на основе оценки параметров. Лабораторный практикум — Санкт-Петербург: Университет ИТМО, 2024. — 37 с.

Рецензент: Пыркин А.А, д.т.н, профессор, факультет Систем управления и робототехники, Университет ИТМО, Санкт-Петербург, Россия.

В пособии представлен один из новейших методов синтеза наблюдателей переменных состояния нелинейных систем, основаннный на оценке параметров (GPEBO). Метод предусматривает преобразование исходной нелинейной динамической модели к стандартной линейной регрессии. Для лучшего понимания процедуры синтеза наблюдателей предлагается рассмотреть три примера реальных систем и промоделировать процессы, происходящие в них.

ИТМО (Санкт-Петербург) — национальный исследовательский университет, научно-образовательная корпорация. Альма-матер победителей международных соревнований по программированию. Приоритетные направления: ІТ и искусственный интеллект, фотоника, робототехника, квантовые коммуникации, трансляционная медицина, Life Sciences, Art& Science, Science Communication. Лидер федеральной программы «Приоритет-2030», в рамках которой реализовывается программа «Университет открытого кода». С 2022 ИТМО работает в рамках новой модели развития — научно-образовательной корпорации. В ее основе академическая свобода, поддержка начинаний студентов и сотрудников, распределенная система управления, приверженность открытому коду, бизнес-подходы к организации работы. Образование в университете основано на выборе индивидуальной траектории для каждого студента.

ИТМО пять лет подряд — в сотне лучших в области Automation & Control (кибернетика) Шанхайского рейтинга. По версии SuperJob занимает первое место в Петербурге и второе в России по уровню зарплат выпускников в сфере IT. Университет в топе международных рейтингов среди российских вузов. Входит в топ-5 российских университетов по качеству приема на бюджетные места. Рекордсмен по поступлению олимпиадников в Петербурге. С 2019 года ИТМО самостоятельно присуждает ученые степени кандидата и доктора наук.

> © Университет ИТМО, 2024 © А.А. Бобцов, О.А. Козачёк, Н.А. Николаев, 2024

СОДЕРЖАНИЕ

Введ	цение .					
1	GPEBO - общие сведения					
	1.1	Постановка задачи				
	1.2	GPEBO – основная идея метода				
		1.2.1	GPEBO с асимптотической			
			сходимостью			
		1.2.2	GPEBO со сходимостью за конечное			
			время 9			
2	Лабораторная		работа №1. Оценка переменных			
	состояния энергетических систем					
	2.1	Динамическая модель многомашинных				
		энергетических систем				
	2.2	GPEBO-	–наблюдатель для многомашинной			
	энергосистемы					
	2.3	Рабочее	задание 15			
	2.4	Содержа	ание отчета			
3	Лабор	аторная	работа №2. GPEBO в задаче			
	наблю	дения	переменных состояния химико-			
	биологического реактора		реактора			
	3.1	Динами	ческая модель химико-биологического			
		реактора				
	3.2	GPEBO	–наблюдатель для химико-			
		биологи	ческого реактора			
	3.3	Рабочее	задание			
	3.4	Содержа	ание отчета			
4	Лабораторная работа №3. GPEBO в задаче					
	оценивания вектора состояния импульсного					
	преобразователя					
	4.1	Динами	ческая модель импульсного			
		преобра	зователя			
	4.2	GPEBO	–наблюдатель для импульсного			
		преобраз	зователя			
	4.3	Рабочее	задание			
	4.4	Содержа	ание отчета			
Спи	сок лит	ературы				

Введение

Целью данного пособия является ознакомление студентов и аспирантов (изучающих дисциплины, связанные с основами и современными решениями в области систем автоматического управления и робототехники) с одним из последних методов синтеза наблюдателей переменных состояния. Данный метод носит название Generalized Parameter Estimation-based Observers (сокращенно GPEBO) или на русском языке "обобщенный наблюдатель, основанный на оценке параметров". Данный метод представляет собой объединение задач синтеза наблюдателей переменных состояния и идентификации неизвестных параметров. Метод предусматривает восстановление неизмеряемых переменных состояния объекта управления за счет решения задачи идентификации параметров (в основной версии метода восстанавливаются неизвестные начальные vсловия вектора переменных состояния объекта управления).

В целом важно отметить, что управление по выходу (то есть без измерения вектора переменных состояния) является классической задачей теории автоматического управления и ей посвящена обширная литература (см., например, [1-3]). В современной научной литературе представлены разные методы для решения этой проблемы, но большинство из них предусматривают синтез устройств оценки или наблюдателей переменных состояния [4-8]. Классическим и широко используемым на практике методом синтеза наблюдателей является «наблюдатель Люенбергера». В случае наличия шумов измерений классический наблюдатель Люенбергера преобразуется в наблюдатель, построенный на базе использования фильтра Калмана [9, 10]. Следует отметить, что в случае, когда параметры объекта частично или полностью неопределенны используются, так называемые адаптивные наблюдатели [11-17]. Разработка адаптивных наблюдателей непрерывных переменных состояния для систем является важным аспектом в области управления и автоматизации процессов. Такие наблюдатели позволяют получать информацию о состоянии системы, ее параметрах и характеристиках, что предоставляет возможность синтезировать необходимое управление и обеспечивать более эффективную работу системы.

Рассматриваемый в пособии метод GPEBO может быть применен для нелинейных объектов, содержащих в своей структуре неизвестные параметры и запаздывания в каналах измерений выходного сигнала. Следует отметить, что описание множества электромеханических систем, управление которыми формируется на основе измеренных данных, может быть приведено к виду математической модели класса систем, для которых предложен алгоритм синтеза наблюдателей на базе GPEBO. Среди таких моделей можно встретить:

- системы магнитной левитации [18],
- синхронные двигатели с постоянными магнитами [19],
- разнообразные электрические преобразователи, например, конвертер Чука [20].

В пособии будет представлена базовая версия метода GPEBO (то есть допускается, что все параметры системы управления известны и отсутствуют внешние возмущения или шумы измерения). На трех различных примерах будут показаны механизмы преобразования от общей нелинейной модели к специальному виду, для которого метод GPEBO может быть применен. Для этих трех примеров будут предложены лабораторные работы с использованием компьютерного моделирования в программной среде Matlab Simulink.

1 GPEBO – общие сведения

1.1 Постановка задачи

Рассматривается динамическая система вида

$$\dot{x} = f(x,u), \ y = h(x,u),$$
 (1.1)

где $x \in \mathbb{R}^n$ — вектор состояния системы, $u \in \mathbb{R}^m$ — сигнал управления и $y \in \mathbb{R}^p$ — измеряемые выходные сигналы. Будем допускать, что все используемые отображения $f : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n, h : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^p$ являются гладкими функциями.

Требуется разработать динамическую систему вида

$$\dot{\chi} = F(\chi, y, u), \ \hat{x} = H(\chi, y, u),$$
(1.2)

где $\chi \in \mathbb{R}^{n_{\chi}}$ такая, что *для всех* начальных условий $x(0) \in \mathbb{R}^{n}, \chi(0) \in \mathbb{R}^{n_{\chi}},$

$$\lim_{t \to \infty} |\hat{x}(t) - x(t)| = 0,$$
(1.3)

где | · | — Евклидова норма.

Также интересным является случай, когда обеспечивается сходимость за конечное время, то есть существует момент времени $t_c \in [0,\infty)$ такой, что

$$\hat{x}(t) = x(t), \,\forall t \ge t_c.$$
(1.4)

Следуя стандартной практике теории оценивания [21], предполагается, что сигнал управления *u* такой, что траектории вектора состояния динамической системы (1.1) ограничены.

1.2 GPEBO – основная идея метода

В работе [22] предложен обобщенный подход к синтезу наблюдателей, основанный на оценке параметров (GPEBO - Generalized Parameter Estimation-based Observers). В [22] был развит результат [23] и предложен подход к синтезу наблюдателей, основанный на оценке параметров (PEBO - Parameter Estimationbased Observers). Первым важным отличием подхода GPEBO от PEBO является смягчение предположения о возможности преобразования исходной модели динамической системы в некоторую каскадную форму. В рамках метода GPEBO модель (1.1) может быть преобразована в афинную по состоянию систему вида

$$\dot{x} = \Lambda(u, y)x + B(u, y),$$

где $\Lambda : \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}^{n \times n}$.

Основная идея GPEBO заключается в формировании "копии" исходной системы с помощью другой динамической системы

$$\dot{\xi} = \Lambda(u,y)\xi + B(u,y)$$

и оценивании неизвестного вектора начальных условий $x_0 = x(t_0)$.

Для вывода основного результата рассмотрим сигнал ошибки вида

$$e = x - \xi, \tag{1.5}$$

динамика которого описывается в виде линейной системы с переменными параметрами

$$\dot{e} = A(t)e, \tag{1.6}$$

где $A(t) := \Lambda(u(t), y(t)).$

Как показано во многих учебниках по теории линейных систем, свойство линейных нестационарных систем состоит в том, что все решения (1.6) могут быть выражены в виде линейных комбинаций столбцов ее фундаментальной матрицы, которая является решением дифференциального уравнения

$$\dot{\Phi}_A = A(t)\Phi_A, \, \Phi_A(0) = \Phi_A^0 \in \mathbb{R}^{n \times n},$$

с матрицей Φ^0_A полного ранга (смотри, например, [24, свойство 4.4]).

Тогда для сигнала ошибки (1.5) имеем:

$$e(t) = \Phi_A(t) [\Phi_A^0]^{-1} e(0).$$

Подобно подходу РЕВО, в GPEBO мы рассматриваем начальные условия e(0) как неизвестные параметры $\theta := e(0)$,

которые необходимо *оценить*. Учитывая (1.5), оценка состояний генерируется в виде

$$\hat{x} = \xi + \Phi_A \hat{\theta}, \tag{1.7}$$

где $\Phi^0_A = I_n$, с I_n единичной матрицей размерности $n \times n$.

В отличие от PEBO, использование фундаментальной матрицы является ключевым шагом подхода GPEBO.

1.2.1 GPEBO с асимптотической сходимостью

Рассмотрим процедуру синтеза наблюдателя переменных состояния модели (1.1), обеспечивающего выполнение условия (1.3). Сформулируем следующее утверждение.

Утверждение 1 Рассмотрим систему (1.1). Предположим, что существуют отображения

$$\begin{split} \phi : \mathbb{R}^n \to \mathbb{R}^n, \, \phi^{\mathsf{L}} : \mathbb{R}^n \times \mathbb{R}^p \to \mathbb{R}^n, \, B : \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}^n, \\ \Lambda : \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}^{n \times n}, \, L : \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}^{n \times n}, \\ C : \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}^n, \end{split}$$

удовлетворяющие следующим условиям:

где

(i) Дифференциальное уравнение в частных производных GPEBO

$$\nabla \phi^{\top}(x) f(x,u) = \Lambda(u,h(x,u))\phi(x) + B(u,h(x,u)), \qquad (1.8)$$
$$\nabla := (\frac{\partial}{\partial x})^{\top}.$$

(ii) Существует $\phi^{\tt L}$ — "левая обратная" для $\phi,$ удовлетворяющая условию

$$\phi^{\mathsf{L}}(\phi(x), h(x, u)) = x.$$
 (1.9)

(iii) Выполнено алгебраическое ограничение

$$L(u,h(x,u))\phi(x) = C(u,h(x,u)).$$
(1.10)

(iv) Для заданного *u*, все решения линейной нестационарной системы

$$\dot{z} = \Lambda(u(t), y(t))z,$$

с сигналом у, генерируемым (1.1), ограничены.

Пусть динамика GPEBO наблюдателя описывается уравнениями

$$\dot{\xi} = \Lambda(u, y)\xi + B(u, y), \qquad (1.11a)$$

$$\dot{\Phi}_{\Lambda} = \Lambda(u, y) \Phi_{\Lambda}, \ \Phi_{\Lambda}(0) = I_n,$$
 (1.11b)

$$\dot{Y} = -\lambda Y + \lambda \Psi^{\top} [C(u,y) - L(u,y)\xi], \qquad (1.11c)$$

$$\dot{\Omega} = -\lambda\Omega + \lambda\Phi_{\Lambda}\Phi_{\Lambda}^{\top}, \qquad (1.11d)$$

$$\hat{\theta} = -\gamma \Delta (\Delta \hat{\theta} - \mathcal{Y}),$$
 (1.11e)

с $\lambda > 0$ и $\gamma > 0$, где

$$\Psi := L(u, y)\Phi_{\Lambda}, \tag{1.12a}$$

$$\mathcal{Y} := \operatorname{adj}\{\Omega\}Y,\tag{1.12b}$$

$$\Delta := \det\{\Omega\}. \tag{1.12c}$$

Тогда оценка состояния, расчитываемая в соответствии с уравнением

$$\hat{x} = \phi^{\mathsf{L}}(\xi + \Phi\hat{\theta}, y), \qquad (1.13)$$

обеспечивает выполнение цели (1.3) с ограниченностью всех сигналов при условии

$$\Delta \notin \mathcal{L}_2. \tag{1.14}$$

1.2.2 GPEBO со сходимостью за конечное время

Другой вариант обобщенного наблюдателя на основе оценки параметров с обеспечением сходимости за конечное время (FTC - Finite-Time Convergence) приведен в Утверждении 2. Чтобы упростить его представление, необходимо рассмотреть следующее допущение (достаточное условие возбуждения [25]).¹

¹Это условие может быть определено для начального момента времени $t_0 > 0$ и интегрированием до $t_0 + t_c$. Поскольку везде фиксируется начальное время равным нулю, более целесообразно оставить его таким.

Допущение 1 Зафиксируем константу $\mu \in (0,1)$. Пусть существует момент времени $t_c > 0$ такой, что

$$\int_{0}^{t_c} \Delta^2(\tau) d\tau \ge -\frac{1}{\gamma} \ln(1-\mu).$$
(1.15)

Утверждение 2 Рассмотрим систему (1.1), удовлетворяющую условиям (i)-(iii) Утверждения 1. Зафиксируем $\gamma > 0$ и $\mu \in (0,1)$. Тогда наблюдатель состояния, определяемый динамической системой (1.11а)-(1.12с) и уравнением

$$\hat{x} = \phi^{\rm L} \Big(\xi + \Phi_{\Lambda} \frac{1}{1 - w_c} [\hat{\theta} - w_c \hat{\theta}(0)], y \Big), \tag{1.16}$$

где

$$\dot{w} = -\gamma \Delta^2 w, \ w(0) = 1,$$
 (1.17)

и w_c определяется в соответствии с

$$w_c = \left\{ \begin{array}{ll} w & \text{при} \quad w < 1-\mu \\ 1-\mu & \text{при} \quad w \ge 1-\mu, \end{array} \right.,$$

обеспечивает выполнение цели (1.4) с ограниченностью всех сигналов, обеспеченной Δ , удовлетворяющей Допущению 1.

2 Лабораторная работа №1. Оценка переменных состояния энергетических систем

Цель работы

- Ознакомиться с модельным представлением электрогенераторов.
- Ознакомиться с возможностями использования технологии GPEBO в задаче оценки переменных состояния в энергетических системах.
- Осуществить построение модели двумашинной энергетической системы и наблюдателя частоты вращения, а также напряжения генераторов в программной среде Matlab Simulink. Провести исследование полученной системы.

2.1 Динамическая модель многомашинных энергетических систем

Динамическая модель *i*—ого генератора *n* соединенных машин может быть описана с использованием классической модели третьего порядка [26, 27]

$$\dot{\delta}_{i} = \omega_{i},
M_{i}\dot{\omega}_{i} = -D_{mi}\omega_{i} + \omega_{0}(P_{mi} - P_{ei}),
\tau_{i}\dot{E}_{i} = -E_{i} - (x_{di} - x'_{di})I_{di} + E_{fi} + \nu_{i},
i \in \bar{n} := \{1, ..., n\},$$
(2.1)

где переменными состояния являются угол поворота ротора $\delta_i \in \mathbb{R}$ рад, частота вращения $\omega_i \in \mathbb{R}$ рад/с и квадратурное внутреннее напряжение генератора $E_i \in \mathbb{R}_+$; I_{di} — ток оси d, P_{ei} — электромагнитная мощность; E_{fi} и ν_i соответственно являются постоянной составляющей напряжения, подаваемой на обмотку возбуждения, и входным управляющим напряжением. D_{mi} , M_i , P_{mi} , τ_i , ω_0 , x_{di} и x'_{di} положительные параметры. Активная P_{ei} и реактивная Q_{ei} мощности определяются выражениями вида

$$P_{ei} = E_i I_{qi}, \ Q_{ei} = E_i I_{di},$$
 (2.2)

где I_{qi} — ток по оси q .

Эти токи устанавливают соединения между машинами и задаются уравнениями вида

$$I_{qi} = G_{mii}E_i + \sum_{j=1, j \neq i}^{n} E_j Y_{ij} \sin(\delta_{ij} + \alpha_{ij}),$$

$$I_{di} = -B_{mii}E_i - \sum_{j=1, j \neq i}^{n} E_j Y_{ij} \cos(\delta_{ij} + \alpha_{ij}),$$
(2.3)

где $\delta_{ij} := \delta_i - \delta_j$ и постоянные $Y_{ij} = Y_{ji}$ и $\alpha_{ij} = \alpha_{ji}$ являются величиной проводимости и углом проводимости соединительных узлов линии электропередачи *i* и *j*, соответственно. Также G_{mii} — проводимость шунта и B_{mii} — восприимчимость шунта в узле *i*.

Объединяя результаты (2.1), (2.2) и (2.3) в хорошо известную компактную форму, получаем

$$\dot{\delta}_{i} = \omega_{i},$$

$$\dot{\omega}_{i} = -D_{i}\omega_{i} + P_{i} - d_{i}E_{i} \Big[G_{mii}E_{i} - \sum_{j=1, j\neq i}^{n} E_{j}Y_{ij}\sin(\delta_{ij} + \alpha_{ij}) \Big],$$

$$\dot{E}_{i} = -a_{i}E_{i} + b_{i}\sum_{j=1, j\neq i}^{n} E_{j}Y_{ij}\cos(\delta_{ij} + \alpha_{ij}) + u_{i},$$

(2.4)

где имеем новый сигнал управления вида

$$u_i := \frac{1}{\tau_i} (E_{f_i} + \nu_i)$$

и положительные константы

$$D_i := \frac{D_{mi}}{M_i}, P_i := d_i P_{mi}, d_i := \frac{\omega_0}{M_i}$$
$$a_i := \frac{1}{\tau_i} [1 - (x_{di} - x'_{di}) B_{mii}], b_i := \frac{1}{\tau_i} (x_{di} - x'_{di}).$$

Чтобы сформулировать проблемы наблюдения, предположим, что все параметры известны, и сделаем следующие допущения о доступных измерениях.

Допущение 2 Сигналы u_i , δ_i , P_{ei} и Q_{ei} всех генерирующих единиц *измеримы*.

2.2 GPEBO-наблюдатель для многомашинной энергосистемы

Используя (2.2) и (2.3), динамику частоты вращения ротора (2.4) можно переписать как

$$\dot{\omega}_i = -D_i\omega_i + P_i - d_i P_{ei}.$$

Учитывая, что P_{ei} измеряется, P_i , D_i и d_i — известные положительные постоянные, конструкция наблюдателя для этой системы тривиальна. Например, наблюдатель вида

$$\dot{\xi}_{\omega_i} = -D_i\hat{\omega}_i + P_i - d_i P_{ei} - k_{\omega i}\hat{\omega}_i
\hat{\omega}_i = \xi_{\omega_i} + k_{\omega i}\delta_i, \, k_{\omega i} > 0,$$
(2.5)

дает асимптотически устойчивую динамику ошибок вида

$$\dot{\tilde{\omega}}_i = -(D_i + k_{\omega i})\tilde{\omega}_i.$$

Поэтому мы сосредоточимся на оценке напряжений E_i . Их динамика может быть записана как

$$\dot{E} = \Lambda(\delta)E + u, \tag{2.6}$$

где $E := \operatorname{col}(E_1, \ldots, E_n), \, \delta := \operatorname{col}(\delta_1, \ldots, \delta_n),$ и матрица

$$\Lambda(\delta) := (\Lambda_1(\delta) \ \Lambda_2(\delta) \ \dots \ \Lambda_n(\delta)), \tag{2.7}$$

где

$$\begin{split} \Lambda_{1}(\delta) &:= \begin{bmatrix} -a_{1} \\ b_{2}Y_{21}\cos(\delta_{21} + \alpha_{21}) \\ b_{n}Y_{n1}\cos(\delta_{n1} + \alpha_{n1}) \end{bmatrix}, \\ \Lambda_{2}(\delta) &:= \begin{bmatrix} b_{1}Y_{12}\cos(\delta_{12} + \alpha_{12}) \\ -a_{2} \\ b_{n}Y_{n2}\cos(\delta_{n2} + \alpha_{n2}) \end{bmatrix}, \\ \Lambda_{n}(\delta) &:= \begin{bmatrix} b_{1}Y_{1n}\cos(\delta_{1n} + \alpha_{1n}) \\ b_{2}Y_{2n}\cos(\delta_{2n} + \alpha_{2n}) \\ -a_{n} \end{bmatrix} \end{split}$$

и сигнал *б измеряется*. Остальные отображения (i) и (ii) Утверждения 1 задаются как $\phi = E$ и B = u.

Следующая лемма определяет отображения L и C, которые удовлетворяют (1.10).

Лемма 1 Существует *измеряемая* матрица $L(P_e,Q_e,\delta) \in \mathbb{R}^{n \times n}$ такая, что

$$LE = 0. (2.8)$$

Следовательно, выбирая C = 0, уравнение (1.10) выполнено.

Доказательство Из (2.2) имеем

$$P_e I_d - Q_e I_q = 0. (2.9)$$

Уравнения (2.3) линейно зависят от Е, и их можно переписать в компактной форме

$$I_q = S(\delta)E, I_d = T(\delta)E, \qquad (2.10)$$

для некоторых подходящим образом определенных $n \times n$ матриц $S(\delta), T(\delta)$. Доказательство завершается заменой (2.10) в (2.9) и определением

$$L(P_e, Q_e, \delta) := \begin{bmatrix} P_{e1}T_1^{\top}(\delta) - Q_{e1}S_1^{\top}(\delta) \\ \vdots \\ P_{en}T_n^{\top}(\delta) - Q_{en}S_n^{\top}(\delta) \end{bmatrix},$$

где $T_i^{\top}(\delta), S_i^{\top}(\delta)$ строки матриц $T(\delta)$ и $S(\delta)$, соответственно. Эта лемма завершает проверку всех условий Утверждения 1.

2.3 Рабочее задание

Для моделирования рассматривается система из двух машин [28]. Динамика системы приводит к модели шестого порядка

$$\begin{cases} \dot{\delta}_{1} = \omega_{1}, \\ \dot{\omega}_{1} = -D_{1}\omega_{1} + P_{1} - G_{11}E_{1}^{2} - Y_{12}E_{1}E_{2}\sin(\delta_{12} + \alpha_{12}), \\ \dot{E}_{1} = -a_{1}E_{1} + b_{1}E_{2}\cos(\delta_{12} + \alpha_{12}) + E_{f_{1}} + \nu_{1}, \\ \dot{\delta}_{2} = \omega_{2}, \\ \dot{\omega}_{2} = -D_{2}\omega_{2} + P_{2} - G_{22}E_{2}^{2} + Y_{21}E_{1}E_{2}\sin(\delta_{12} + \alpha_{12}), \\ \dot{E}_{2} = -a_{2}E_{2} + b_{2}E_{1}\cos(\delta_{21} + \alpha_{21}) + E_{f_{2}} + \nu_{2}, \end{cases}$$

$$(2.11)$$

со следующими уравнениями для токов:

$$\begin{split} I_{q1} &= G_{11}E_1 + E_2Y_{12}\sin(\delta_{12}+\alpha_{12}),\\ I_{d1} &= -B_{11}E_1 - E_2Y_{12}\cos(\delta_{12}+\alpha_{12}),\\ I_{q2} &= G_{22}E_2 + E_1Y_{21}\sin(\delta_{21}+\alpha_{21}),\\ I_{d2} &= -B_{22}E_2 - E_1Y_{21}\cos(\delta_{21}+\alpha_{21}). \end{split}$$

В этом случае имеем

$$A(t) = \begin{bmatrix} -a_1 & b_1 \cos(\delta_{12}(t) + \alpha_{12}) \\ b_2 \cos(\delta_{21}(t) + \alpha_{21}) & -a_2 \end{bmatrix},$$

$$S(\delta) = \begin{bmatrix} G_{11} & Y_{12} \sin(\delta_{12} + \alpha_{12}) \\ Y_{21} \sin(\delta_{21} + \alpha_{21}) & G_{22} \end{bmatrix},$$

$$T(\delta) = \begin{bmatrix} -B_{11} & -Y_{12} \cos(\delta_{12} + \alpha_{12}) \\ -Y_{21} \cos(\delta_{21} + \alpha_{21}) & -B_{22} \end{bmatrix}.$$

Для разработки наблюдателя рассмотрим фильтр

$$F(p) = \begin{bmatrix} 1 & 0\\ \frac{k}{\mathbf{p}+k} & 0 \end{bmatrix},$$

где $\mathbf{p} := \frac{d}{dt}$ — оператор дифференцирования и число k > 0.

Параметры динамической модели (2.11) приведены в Таблице 2.1 ([22,28]).

Лабораторная работа выполняется в программной среде Matlab Simulink.

В ходе выполнения лабораторной работы необходимо:

- Построить математическую модель энергетической системы, состоящей из двух генераторов (исходные данные приведены в Таблице 2.1).
- Построить асимптотический наблюдатель частоты вращения генераторов.
- Построить асимптотический наблюдатель напряжения генераторов.
- Построить наблюдатель напряжения генераторов, обеспечивающий сходимость оценок за конечное время.
- Провести исследование наблюдателя напряжения при использовании в его модели истиного значения частоты вращения и оценки частоты вращения, а также сравнить полученные результаты.
- Провести исследование влияния параметров наблюдателя на результаты оценки

2.4 Содержание отчета

- Титульный лист
- Цель работы
- Необходимые теоретические сведения
- Результаты моделирования
- Выводы по работе

Параметр	Начальное значение	После изменения нагрузки
Y_{12}	0.1032	0.1032
Y_{21}	0.1032	0.1032
b_1	0.0223	0.02236
b_2	0.0265	0.0265
D_1	1	1
D_2	0.2	0.2
ν_1	1	1
ν_2	1	1
B_{11}	-0.4373	-0.5685
B_{22}	-0.4294	-0.5582
G_{11}	0.0966	0.1256
G_{22}	0.0926	0.1204
a_1	0.2614	0.2898
a_2	0.2532	0.2864
P_1	28.22	28.22

Таблица 2.1. Параметры системы

3 Лабораторная работа №2. GPEBO в задаче наблюдения переменных состояния химикобиологического реактора

Цель работы

- Ознакомиться с модельным представлением химикобиологических реакторов.
- Ознакомиться с возможностями использования технологии GPEBO в задаче оценки состояния химико-билогического реактора.
- Построить модель реактора анаэробного сбраживания и наблюдатель состояния в программной среде Matlab Simulink и проанализировать полученную систему.

3.1 Динамическая модель химикобиологического реактора

Рассматривается реакционная система, динамическая модель которой задается следующим образом: [29, Секция 1.5]

$$\dot{c} = -uc + Kr(c) + \chi,$$

$$y = \begin{bmatrix} I_p & \vdots & 0_{p \times d} \end{bmatrix} c,$$
(3.1)

где $c \in \mathbb{R}^n_+, \chi \in \mathbb{R}^n_+, u \in \mathbb{R}_+, y \in \mathbb{R}^p, r : \mathbb{R}^n \to \mathbb{R}^q_+, d := n - p, q < n.$ Предполагается, что y, u, χ и K известны.

Запишем вектор c как c = col(y,x) и перепишем уравнение (3.1) следующим образом:

$$\dot{y} = -uy + K_y r(y, x) + \chi_y,$$

$$\dot{x} = -ux + K_x r(y, x) + \chi_x.$$
(3.2)

Предполагается, что существует *больше* измерений, чем скоростей реакций, то есть $p \ge q$ и rank $\{K_u\} = q^2$.

Так как вектор y является измеряемым, задача наблюдения состояния системы сводится к оценке вектора x.

3.2 GPEBO-наблюдатель для химикобиологического реактора

Следующая лемма определяет отображения ϕ , Λ и B, требующиеся для выполнения условий (i) и (ii) Утверждения 1.

Лемма 2 Рассмотрим систему (3.2). Отображения

$$\begin{split} \phi &:= x - K_x K_y^{\dagger} y, \\ \Lambda &:= -u, \\ B &:= -K_x K_y^{\dagger} \chi_y + \chi_x, \end{split} \tag{3.3}$$

где

$$K_y^{\dagger} := (K_y^{\top} K_y)^{-1} K_y^{\top}$$

удовлетворяют уравнению в частных производных (1.8). То есть:

$$\dot{\phi} = \Lambda \phi + B. \tag{3.4}$$

²Смотрите [30] для ослабления этого предположения.

Доказательство Из (3.2) и (3.3) получаем

$$\dot{\phi} = -ux + K_x r(y,x) + \chi_x$$
$$- K_x K_y^{\dagger} [-uy + K_y r(y,x) + \chi_y]$$
$$= -u\phi + \chi_x - K_x K_y^{\dagger} \chi_y.$$

Лемма доказана.

Обращаем внимание, что из (1.11а), (1.11b) и (3.4) можно установить соотношение

$$\phi = \xi + \Phi_{\Lambda}\theta, \tag{3.5}$$

для некоторых $\theta \in \mathbb{R}^d$. Чтобы получить уравнение регрессора, которое представляет собой линейную зависимость между измеряемыми сигналами и θ , предполагаем выполнение (iii) Утверждения 1. То есть предположим, что существуют измеримые отображения C и L такие, что алгебраическое ограничение (1.10) выполняется, то есть $L\phi = C$. К сожалению, в данном примере выполнить это условие не удается. Однако мы все еще можем получить требуемую линейную регрессию, необходимую для оценки параметра, как показано в лемме ниже.

Лемма 3 Предположим, что вектор скорости r(y,x) зависит *линейно* от неизмеримых составляющих вектора состояния x, то есть имеет вид

$$r(y,x) = R(y)x, \tag{3.6}$$

где $R: \mathbb{R}^p \to \mathbb{R}^{q \times d}$ известная матрица.³

Существуют измеряемые сигналы $\mathcal{Y} \in \mathbb{R}^d$ и $\Delta \in \mathbb{R}$ такие, что

$$\mathcal{Y} = \Delta \theta. \tag{3.7}$$

Доказательство Определим частную координату $y^{\dagger} = K_y^{\dagger} y \, u$, используя (3.2), (3.3) и (3.5), запишем её динамику в следующем виде:

$$\dot{y}^{\dagger} = -uy^{\dagger} + R(y)x + K_{y}^{\dagger}\chi_{y}$$

$$= -uy^{\dagger} + K_{y}^{\dagger}\chi_{y} + R(y)(\phi + K_{x}y^{\dagger})$$

$$= -uy^{\dagger} + K_{y}^{\dagger}\chi_{y} + R(y)(\xi + \Phi_{\Lambda}\theta + K_{x}y^{\dagger})$$

$$= \Psi\theta + \chi_{l}, \qquad (3.8)$$

³См. [30] для случая нелинейной зависимости x.

где

$$\chi_l := -uy^{\dagger} + K_y^{\dagger}\chi_y + R(y)(\xi + K_x y^{\dagger}),$$

$$\Psi := R(y)\Phi_{\Lambda}.$$

Применяя к (3.8) фильтр $\frac{\lambda}{\mathbf{p}+\lambda}$, где $\lambda > 0$ — свободный настраиваемый параметр, и перегруппировав члены, получаем линейное регрессионное уравнение ⁴

$$Y = \Psi_f \theta, \tag{3.9}$$

где сигналы

$$\Psi_f := \frac{\lambda}{\mathbf{p} + \lambda} [\Psi], \ Y := \frac{\lambda \mathbf{p}}{\mathbf{p} + \lambda} [y^{\dagger}] - \frac{\lambda}{\mathbf{p} + \lambda} [\chi_l].$$
(3.10)

Умножая (3.9) на $adj\{\Psi_f^{\top}\Psi_f\}\Psi_f^{\top}$, получаем тождество (3.7), где

$$\mathcal{Y} := adj\{\Psi_f^\top \Psi_f\}\Psi_f^\top Y, \ \Delta := \det\{\Psi_f^\top \Psi_f\}.$$
(3.11)

Лемма доказана.

3.3 Рабочее задание

Необходимо проиллюстрировать работу наблюдателя на примере модели реактора анаэробного сбраживания, описанного в [31]. Динамика системы, описанная в [31], может быть переписана в виде (3.2), (3.6) с выбором n = 4, q = 2, p = 2 и следующими параметрами системы:

$$K_{y} = \begin{bmatrix} -k_{3} & 0\\ k_{4} & -k_{1} \end{bmatrix}, K_{x} = I_{2},$$
$$R(y) = \begin{bmatrix} \mu_{1}(y_{1}) & 0\\ 0 & \mu_{2}(y_{2}) \end{bmatrix}, \chi_{y} = \begin{bmatrix} us_{1,0}\\ us_{2,0} \end{bmatrix}, \chi_{x} = 0,$$

где y_1, x_1, y_2 и x_2 представляют собой концентрацию органического вещества (Γ/π), концентрацию ацидогенных бактерий (Γ/π),

⁴Как обычно в адаптивном управлении, мы пренебрегаем экспоненциально затухающим членом в (3.9) это связано с начальными условиями фильтров.

концентрацию летучих жирных кислот (ммоль) и концентрацию метаногенных бактерий (г/л), соответственно, u — скорость разбавления. Положительные постоянные $s_{1,0}$ и $s_{2,0}$ обозначают концентрацию субстрата в корме, а k_1 , k_3 и k_4 — положительные коэффициенты.

Заданы два темпа роста μ_1 и μ_2 :

$$\begin{bmatrix} \mu_1(y_1) \\ \mu_2(y_2) \end{bmatrix} = \begin{bmatrix} \frac{\mu_{m,1}y_1}{K_{S,1}+y_1} \\ \frac{\mu_{m,2}y_2}{K_{S,2}+y_2+K_Iy_2^2} \end{bmatrix},$$

где $\mu_{m,1}, \mu_{m,2}, K_{S,1}, K_{S,2}$ и K_I — положительные коэффициенты.

Заметим, что K_y является квадратной матрицей полного ранга, следовательно,

$$y^{\dagger} = K_y^{-1}y = -\begin{bmatrix} \frac{y_1}{k_3}\\ \frac{y_2}{k_1} + \frac{k_4y_1}{k_1k_3} \end{bmatrix}.$$

Параметры динамической модели (3.2) приведены в Таблице 3.1.

Начальные условия для анаэробного метантенка: $x_1(0) = 0.1$, $y_1(0) = 0.05$, $x_2(0) = 0.5$ и $y_2(0) = 4$.

Лабораторная работа выполняется в программной среде Matlab Simulink.

В ходе выполнения лабораторной работы необходимо:

- Построить математическую модель реактора анаэробного сбраживания (исходные данные приветены в Таблице 3.1).
- Построить асимптотический наблюдатель вектора состояния *x*.
- Построить наблюдатель вектора состояния *x*, обеспечивающий сходимость оценок за конечное время.
- Исследовать влияние параметров наблюдателя на результаты оценки.

3.4 Содержание отчета

- Титульный лист
- Цель работы

- Необходимые теоретические сведения
- Результаты моделирования
- Выводы по работе

Параметр	Значение
k_1	268
k_3	42.14
k_4	116.5
α	1
$\mu_{m,1}$	1.2
$K_{S,1}$	8.85
$\mu_{m,2}$	0.74
$K_{S,2}$	23.2
K _I	0.0039
$S_{1,0}$	1
$S_{2,0}$	1
u	0.1

Таблица 3.1. Параметры системы

4 Лабораторная работа №3. GPEBO в задаче оценивания вектора состояния импульсного преобразователя

Цель работы

- Ознакомиться с модельным представлением импульсного преобразователя мощности.
- Ознакомиться с возможностями использования технологии GPEBO в задаче оценивания состояния импульсных преобразователей.
- Построить модель конвертора Чука и наблюдателя состояния в программной среде Matlab Simulink и проанализировать полученную систему.

4.1 Динамическая модель импульсного преобразователя

Рассматривается импульсный преобразователь, коммутируемый внешним источником, описываемый в порт-гамильтоновой форме вида [32, 33]

$$\dot{x} = \left(J_0 + \sum_{i=1}^m J_i u_i - R\right) \nabla H(x) + \left(G_0 + \sum_{i=1}^m G_i u_i\right) E, \quad (4.1)$$

где вектор $x(t) \in \mathbb{R}^n$, состоящий из потока индуктивностей и зарядов конденсаторов, является вектором состояния, который предполагается неизвестным, $u(t) \in \mathbb{R}^m$ — управляющее воздействие (коэффициент заполнения), $E \in \mathbb{R}^n$ является вектором постоянных внешних источников, $J_i = -J_i^\top \in \mathbb{R}^{n \times n}, i \in \bar{m} := \{0, \cdots, m\}$ являются матрицами взаимосвязей, $R = R^\top > 0$ обозначает матрицу рассеяния, $H : \mathbb{R}^n \to \mathbb{R}_+$ — общая накопленная энергия, и $G_i \in \mathbb{R}^{n \times n}, i \in \bar{m}$, являются входными матрицами. Предполагая, что конденсаторы и катушки индуктивности — линейные, получаем

$$H(x) = \frac{1}{2}x^{\top}Qx,$$

где $Q \in \mathbb{R}^{n \times n}$, Q > 0 — диагональная матрица. Следует отметить, что модель (4.1) описывает поведение большинства силовых преобразователей, используемых на практике [34–37].

Ставится задача разработать *наблюдатель состояния*, обеспечивающий глобальную сходимость оценок, которые могут в дальнейшем использоваться в задачах управления импульсными преобразователями.

Допускается существование матрицы полного ранга $C \in \mathbb{R}^{p \times n}, p < n$ такой, что вектор

$$y_m = Cx, \tag{4.2}$$

доступен для измерений.

Как правило, этим сигналом будет напряжение, подаваемое на преобразователь, входной ток и/или напряжение, подаваемое на нагрузку [34].

Замечание 1 Следуя стандартной практике в теории оценивания [38], предполагается, что управление *и* такое, что все траектории системы (4.1) ограничены.

4.2 GPEBO-наблюдатель для импульсного преобразователя

Рассмотрим применение FTC (сходимость за конечное время) GPEBO+DREM (DREM Dynamic Regressor Extension and Mixing — динамическое расширение регрессора и смешивание [39]) для восстановления вектора состояния системы (4.1) с измеряемым выходом (4.2).

Определим матрицу

$$\Lambda(u) := \left(J_0 + \sum_{i=1}^m J_i u_i - R\right) Q \tag{4.3}$$

и сделаем следующее достаточное условие возбуждения.

Зафиксируем малую постоянную $\mu \in (0,1)$ и положительное число γ . Существует момент времени $t_c \in (0,\infty)$ такой, что

$$\int_{0}^{t_c} \Delta^2(\tau) d\tau \ge -\frac{1}{\gamma} \ln(1-\mu).$$
(4.4)

Утверждение 3 Рассмотрим систему (4.1) с измеряемыми выходами (4.2). Определим динамику GPEBO следующим образом

$$\dot{\xi} = \Lambda(u)\xi + \left(G_0 + \sum_{i=1}^m G_i u_i\right)E,\tag{4.5a}$$

$$\dot{\Phi} = \Lambda(u)\Phi, \,\Phi(0) = I_n, \tag{4.5b}$$

$$\dot{Y} = -\lambda Y + \lambda \Phi^{\top} C^{\top} (C\xi - y_m), \qquad (4.5c)$$

$$\dot{\Omega} = -\lambda\Omega + \lambda\Phi^{\top}C^{\top}C\Phi, \qquad (4.5d)$$

$$\dot{\omega} = -\gamma \Delta^2 \omega, \, \omega(0) = 1,$$
(4.5e)

$$\dot{\hat{\theta}} = \gamma \Delta (\mathcal{Y} - \Delta \hat{\theta}),$$
 (4.5f)

где $\lambda > 0, \gamma > 0$ — настраиваемые параметры и

$$\mathcal{Y} = a dj \{\Omega\} Y, \, \Delta = \det\{\Omega\}, \tag{4.6}$$

где $adj\{\cdot\}$ — присоединенная матрица. Тогда оценка состояния

$$\hat{x} = \xi + \Phi \hat{\theta}_{\text{FTC}},\tag{4.7}$$

где вектор

$$\hat{\theta}_{\text{FTC}} := \frac{1}{1 - \omega_c} \left[\hat{\theta} - \omega_c \hat{\theta}(0) \right]$$
(4.8)

и ω_c опеределяется следующей функцией:

$$\omega_c = \begin{cases} \omega & npu \ \omega \leq 1 - \mu, \\ 1 - \mu & npu \ \omega > 1 - \mu. \end{cases}$$

Наблюдатель (4.5a)—(4.5f) гарантирует, что при всех начальных условиях ($\xi(0), Y(0), \Omega(0), \hat{\theta}(0)$) $\in \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^{n \times n} \times \mathbb{R}^n$ имеем

$$\hat{x}(t) = x(t), \quad \forall t > t_c, \tag{4.9}$$

при условии, что все сигналы ограничены и Δ удовлетворяет (4.4).

Доказательство Определим сигнал $e := x - \xi$. Из (4.1) и (4.5a) получим

$$\dot{e} = A(t)e,$$

 $r\partial e A(t) := \Lambda(u(t)).$

Переходная матрица этой системы удовлетворяет уравнению (1.11b) [24], соответственно

$$e := \Phi \theta$$

где начальное условие $e(0) =: \theta$ рассматривается как неизвестный постоянный вектор. Используя определение е, получаем

$$x = \xi + \Phi\theta. \tag{4.10}$$

Задача состоит в том, чтобы оценить параметр θ для восстановления состояния x с использованием (4.10). С этой целью используем выходные измерения (4.2) и получаем

$$y_m = Cx = C\xi + C\Phi\theta,$$

что можно записать как линейное регрессионное уравнение

$$y_m - C\xi = C\Phi\theta. \tag{4.11}$$

Следуя процедуре DREM [39], выполним следующие операции:

$$\Phi^{\top}C^{\top}(y_m - C\xi) = \Phi^{\top}C^{\top}C\Phi\theta \qquad (\Leftarrow \ \Phi^{\top}C^{\top} \times (4.11))$$
$$\frac{\lambda}{\mathbf{p} + \lambda}[\Phi^{\top}C^{\top}(y_m - C\xi)] = \frac{\lambda}{\mathbf{p} + \lambda}[\Phi^{\top}C^{\top}C\Phi]\theta \qquad (\Leftarrow \ \frac{\lambda}{\mathbf{p} + \lambda}[\cdot])$$
$$Y = \Omega\theta \qquad (\Leftrightarrow \ (4.5c), (4.5d))$$
$$adj\{\Omega\}Y = adj\{\Omega\}\Omega\theta \qquad (\Leftarrow \ adj\{\Omega\} \times)$$
$$\mathcal{Y} = \Delta\theta \qquad (\Leftrightarrow \ (4.6)).$$

где $\mathbf{p} := \frac{d}{dt}$, и чтобы получить последнее тождество, используем тот факт, что для любой (возможно, единственной) $n \times n$ матрицы M имеем $adj\{M\}M = det\{M\}I_n$. Заменив последнее уравнение в (4.5f), получаем динамику ошибки

$$\dot{\tilde{\theta}} = -\gamma \Delta^2 \tilde{\theta}, \tag{4.12}$$

 $\operatorname{r} \partial e \ \tilde{\theta} := \hat{\theta} - \theta.$

Так как Δ — скаляр, решение последнего уравнения задается формулой

$$\tilde{\theta} = e^{-\gamma \int_0^t \Delta^2(s) ds} \tilde{\theta}(0), \, \forall t \ge 0.$$
(4.13)

Теперь обратим внимание, что решение (4.5e) имеет вид

$$w(t) = e^{-\gamma \int_0^t \Delta^2(s) ds}$$

Ключевое наблюдение заключается в том, что, используя приведенное выше уравнение (4.13), можно получить

$$[1 - w(t)]\theta = \hat{\theta}(t) - w(t)\hat{\theta}(0).$$
(4.14)

Наконец, обратим внимание, что w является невозрастающей функцией, и, в предположении об интервальном возбуждении (см. Утверждение 1), имеем

$$w_c(t) = w(t) < 1, \, \forall t \ge t_c.$$

Отметим, что

$$\frac{1}{1-\omega_c(t)}\left[\hat{\theta}(t)-\omega_c(t)\hat{\theta}(0)\right]=\theta,\,\forall t\geq t_c,$$

что, с учетом (4.7) и (4.10), обусловливает (4.9) и доказывает сходимость оценки состояния.

Перейдем к доказательству того, что все сигналы GPEBO ограничены. Во-первых, обратим внимание, что модель (4.5a) является копией динамики конвертера (4.1). Поэтому, аналогично x в системе (4.1), ξ ограничено. Чтобы доказать ограниченность Φ , рассмотрим квадратичную функцию $U(\Phi) = \frac{1}{2}tr\{\Phi^{\top}Q\Phi\}$, производная которой по траекториям (4.5b) есть

$$\dot{U} = \sum_{i=1}^{n} \Phi_{i}^{\top} Q \Lambda(u) \Phi_{i}$$
$$= \sum_{i=1}^{n} \Phi_{i}^{\top} Q R Q \Phi_{i} \leq -cU, \qquad (4.15)$$

где $tr\{\cdot\}$ обозначает след матрицы, $\Phi_i \in \mathbb{R}^n$ является *i*-ым столбцом матрицы Φ и с > 0. Теперь из (4.5d) можно видеть, что ограниченность Φ подразумевает ограниченность Ω . Наконец, тот факт, что Y является ограниченным, следует из $Y = \Omega \theta$. На этом доказательство завершается.

Замечание 2 В промежутке времени $[0,t_c]$ оцененный параметр (4.8) принимает форму

$$\hat{\theta}_{\text{FTC}} := \frac{1}{\mu} \left[\hat{\theta} - (1-\mu)\hat{\theta}(0) \right].$$

Следовательно, если брать постоянную μ близкой к нулю, то получаем высокий коэффициент усиления. С другой стороны, поскольку правая сторона (4.4) становится меньше, это "уменьшает" величину t_c . Решение этого компромисса еще более осложняется фактом наличия адаптационного параметра γ . К сожалению, это делает этап настройки оценщика довольно сложным.

4.3 Рабочее задание

Необходимо проиллюстрировать работу наблюдателя на примере модели конвертора Чука, которая, в соответствии с [40, 41]⁵, представима в виде

$$L_{1}\dot{i}_{1} = -r_{1}i_{1} - (1-u)v_{2} + E,$$

$$C_{1}\dot{v}_{2} = (1-u)i_{1} + ui_{3},$$

$$L_{2}\dot{i}_{3} = -r_{2}i_{3} - uv_{2} - v_{4},$$

$$C_{2}\dot{v}_{4} = i_{3} - \frac{v_{4}}{r_{L}},$$
(4.16)

где (i_1, v_2, i_3, v_4) — вектор состояния и $u \in (0,1)$ является коэффициентом заполнения транзисторного переключателя с обозначением сигналов и элементов на рисунке 4.1. Модель может

⁵Обратите внимание, что, следуя стандартной практике, мы рассматриваем "идеальны" конденсатор C_1 , т.е. без какой-либо утечки.

Рисунок 4.1. Электрическая схема преобразователя Чука

быть переписана в виде (4.1) с $x = (L_1i_1, C_1v_2, L_2i_3, C_2v_4), m = 1$ и матрицами

$$J_0 = \begin{bmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{bmatrix}, J_1 = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, G_0 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix},$$
$$G_1 = 0, R = \operatorname{diag} \Big\{ r_1, 0, r_3, r_4 \Big\}, Q = \operatorname{diag} \Big\{ \frac{1}{L_1}, \frac{1}{C_1}, \frac{1}{L_2}, \frac{1}{C_2} \Big\},$$

где $r_4 := \frac{1}{r_L}$. Задача решается в предположении, что только x_4 доступен для измерения, то есть в (4.2) $C = \begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix}$.

Учитывая приведенные выше определения, наблюдатель из Утверждения 2 может быть спроектирован с матрицей

$$\Lambda(u) = \begin{bmatrix} -\frac{r_1}{L_1} & -\frac{1-u}{L_1} & 0 & 0\\ \frac{1-u}{C_1} & 0 & \frac{u}{C_1} & 0\\ 0 & -\frac{u}{L_2} & -\frac{r_3}{L_2} & -\frac{1}{L_2}\\ 0 & 0 & \frac{1}{C_2} & 0 \end{bmatrix}$$

Параметры динамической модели модели (4.16) приведены в Таблице 4.1.

Параметр	Значение
E	12
x_4	-20
r_1	1.7
r_3	1.7
r_L	20
L_1	10
L_2	10
C_1	22
C_2	22.9

Таблица 4.1. Параметры системы

Начальные условия системы задаются произвольно.

Лабораторная работа выполняется в программной среде Matlab Simulink.

В ходе выполнения лабораторной работы необходимо:

- Построить математическую модель конвертора Чука (исходные данные приведены в Таблице 4.1) с произвольными начальными условиями.
- Построить наблюдатель вектора состояния x, обеспечивающий сходимость оценок за конечное время.
- Исследовать влияние параметров наблюдателя на результаты оценки.

4.4 Содержание отчета

- Титульный лист
- Цель работы
- Необходимые теоретические сведения
- Результаты моделирования
- Выводы по работе

СПИСОК ЛИТЕРАТУРЫ

- Мирошник И.В., Никифоров В.О., Фрадков А.Л. Нелинейное и адаптивное управление сложными динамическими системами. — 2000.
- [2] Isidori Alberto, Byrnes Christopher I. Output regulation of nonlinear systems // IEEE transactions on Automatic Control. – 1990. – Vol. 35, no. 2. – P. 131–140.
- [3] Marino Riccardo. Nonlinear control design: Geometric // Adaptive and robust. - 1995.
- [4] Zemouche Ali, Boutayeb Mohamed. On LMI conditions to design observers for Lipschitz nonlinear systems // Automatica. — 2013. — Vol. 49, no. 2. — P. 585–591.
- [5] Khalil Hassan K. Control of Nonlinear Systems // Prentice Hall, New York, NY.
- [6] Observer design for a class of nonlinear ODE–PDE cascade systems / Ahmed-Ali Tarek, Giri Fouad, Krstic Miroslav, and Lamnabhi-Lagarrigue Françoise // Systems & Control Letters. — 2015. — Vol. 83. — P. 19–27.
- [7] Besançon Gildas. Nonlinear observers and applications. Springer, 2007. — Vol. 363.
- [8] Mazenc Frédéric, Bernard Olivier. Interval observers for linear time-invariant systems with disturbances // Automatica. — 2011. — Vol. 47, no. 1. — P. 140–147.
- [10] Lewis Frank L, Xie Lihua, Popa Dan. Optimal and robust estimation: with an introduction to stochastic control theory. – CRC press, 2017.

- [11] Marino R, Santosuosso Giovanni L, Tomei Patrizio. Robust adaptive observers for nonlinear systems with bounded disturbances // IEEE Transactions on automatic control. — 2001. — Vol. 46, no. 6. — P. 967–972.
- [12] Bastin Georges, Gevers Michel R. Stable adaptive observers for nonlinear time-varying systems // IEEE Transactions on automatic control. - 1988. - Vol. 33, no. 7. - P. 650-658.
- [13] Besançon Gildas. Remarks on nonlinear adaptive observer design // Systems & control letters. - 2000. - Vol. 41, no. 4. -P. 271-280.
- [14] Besancon Gildas, de León-Morales Jesus, Huerta-Guevara Oscar. On adaptive observers for state affine systems // International journal of Control. - 2006. - Vol. 79, no. 06. - P. 581-591.
- [15] Design of an Adaptive Obsever for a Class of Nonlinear Systems / Park Yong-Un, Shim Hyungbo, Son Young I, and Seo Jin H // International Journal of Control, Automation, and Systems. — 2003. — Vol. 1, no. 1. — P. 28–34.
- [16] Adaptive state observer for Lipschitz nonlinear systems / Ekramian Mohsen, Sheikholeslam Farid, Hosseinnia Saeed, and Yazdanpanah Mohammad Javad // Systems & Control Letters. — 2013. — Vol. 62, no. 4. — P. 319–323.
- [17] Zhang Qinghua. Adaptive observer for multiple-input-multipleoutput (MIMO) linear time-varying systems // IEEE transactions on automatic control. - 2002. - Vol. 47, no. 3. - P. 525-529.
- [18] State Observer with Relaxed Excitation Conditions with Application to MagLev System / Vorobev Vladimir, Vedyakov Alexey, Bespalov Vladimir, Pyrkin Anton, Bobtsov Alexey, and Ortega Romeo // 2021 29th Mediterranean Conference on Control and Automation (MED) / IEEE. - 2021. - P. 1185-1190.
- [19] An Extension of Adaptive State Observers Using Dynamic Regressor Extension and Mixing With Relaxed Excitation Conditions / Vorobev Vladimir, Bespalov Vladimir, Vedyakov Alexey, Cherginets Dmitry, and Pyrkin Anton // IFAC-PapersOnLine. — 2022. — Vol. 55, no. 12. — P. 330–335.

- [20] A globally stable practically implementable PI passivity-based controller for switched power converters / Bobtsov Alexey, Ortega Romeo, Nikolaev Nikolay, and He Wei // International Journal of Adaptive Control and Signal Processing. — 2021. — Vol. 35, no. 11. — P. 2155–2174.
- [21] Bernard Pauline. Observer design for nonlinear systems. Springer, 2019. — Vol. 479.
- [22] Generalized parameter estimation-based observers: Application to power systems and chemical-biological reactors / Ortega Romeo, Bobtsov Alexey, Nikolaev Nikolay, Schiffer Johannes, and Dochain Denis // Automatica. - 2021. - Vol. 129. -P. 109635.
- [23] A parameter estimation approach to state observation of nonlinear systems / Ortega Romeo, Bobtsov Alexey, Pyrkin Anton, and Aranovskiy Stanislav // Systems & Control Letters. — 2015. — Vol. 85. — P. 84–94.
- [24] Rugh Wilson. Linear Systems Theory. Prentice Hall, NJ, USA, 1996.
- [25] Kreisselmeier Gerhard, Rietze-Augst Gudrun. Richness and excitation on an interval-with application to continuous-time adaptive control // IEEE transactions on automatic control. — 1990. — Vol. 35, no. 2. — P. 165–171.
- [26] Kundur Prabha, Balu Neal J., Lauby Mark G. Power system stability and control. — McGraw-hill New York, 1994. — Vol. 7.
- [27] Sauer Peter W., Pai Mangalore A., Chow Joe H. Power system dynamics and stability: with synchrophasor measurement and power system toolbox. — John Wiley & Sons, 2017.
- [28] Transient stabilization of multimachine power systems with nontrivial transfer conductances / Ortega Romeo, Galaz Martha, Astolfi Alessandro, Sun Yuanzhang, and Shen Tielong // IEEE Transactions on Automatic Control. — 2005. — Vol. 50, no. 1. — P. 60–75.

- [29] Bastin George, Dochain Denis. On-line estimation and adaptive control of bioreactors: Elsevier, Amsterdam, 1990 (ISBN 0-444-88430-0). - 1991.
- [30] State observers for reaction systems with improved convergence rates / Ortega Romeo, Bobtsov Alexey, Dochain Denis, and Nikolaev Nikolay // Journal of Process Control. - 2019. - Vol. 83. -P. 53-62.
- [31] Adaptive extremum-seeking control of a continuous stirred tank bioreactor with Haldane's kinetics / Marcos Nikolas, Guay Martin, Dochain Denis, and Zhang Tao // Journal of Process Control. — 2004. — Vol. 14, no. 3. — P. 317–328.
- [32] Escobar Gerardo, Van Der Schaft Arjan J, Ortega Romeo. A Hamiltonian viewpoint in the modeling of switching power converters // Automatica. - 1999. - Vol. 35, no. 3. - P. 445-452.
- [33] Van der Schaft Arjan. L2-gain and passivity techniques in nonlinear control. — Springer, 2000.
- [34] Kassakian John G, Schlecht Martin F, Verghese George C. Principles of Power Electronics, 1991 // Adisson Wesley. – P. 499–539.
- [35] Control in power electronics: selected problems / Kazmierkowski Marian P, Krishnan Ramu, Blaabjerg Frede, and Irwin JD. — Academic press, 2002.
- [36] Sira-Ramirez Hebertt J, Silva-Ortigoza Ramón. Control design techniques in power electronics devices. — Springer Science & Business Media, 2006.
- [37] PID and predictive control of electrical drives and power converters using MATLAB/Simulink / Wang Liuping, Chai Shan, Yoo Dae, Gan Lu, and Ng Ki. — John Wiley & Sons, 2015.
- [38] Bernard Pauline. Observer design for nonlinear systems. Springer, 2019. — Vol. 479.
- [39] Performance Enhancement of Parameter Estimators via Dynamic Regressor Extension and Mixing / Aranovskiy Stanislav,

Bobtsov Alexey, Ortega Romeo, and Pyrkin Anton // IEEE Transactions on Automatic Control. - 2017. - Vol. 62, no. 7. - P. 3546–3550.

- [40] Astolfi Alessandro, Karagiannis Dimitrios, Ortega Romeo. Nonlinear and adaptive control with applications. — Springer, 2008. — Vol. 187.
- [41] Passivity-based control of Euler-Lagrange systems: mechanical, electrical and electromechanical applications / Ortega Romeo, Perez Julio Antonio Loría, Nicklasson Per Johan, and Sira-Ramirez Hebertt J. — Springer Science & Business Media, 2013.

Бобцов Алексей Алексеевич Козачёк Ольга Андреевна Николаев Николай Анатольевич

Синтез наблюдателей на основе оценки параметров. Лабораторный практикум

Учебное пособие

В авторской редакции Редакционно-издательский отдел Университета ИТМО Зав. РИО Н.Ф. Гусарова Подписано к печати Заказ № Тираж Отпечатано на ризографе

Редакционно-издательский отдел Университета ИТМО 197101, Санкт-Петербург, Кронверкский пр., 49, литер А