Редакционно-издательский отдел

Санкт-Петербургского национального исследовательского университета информационных технологий, механики и оптики 197101, Санкт-Петербург, Кронверкский пр., 49

1. Классификация твердых тел	4
1.2 Теория металлов Друде	4
1.3 Электропроводность металлов	5
2. Кристаллы	6
2.1 Кристаллическое состояние	7
2.2 Образование кристаллов	7
2.3 Структура кристалла	8
3. Полупроводники	8
3.1 Собственная проводимость	9
3.2 Примесная проводимость	11
3.3 Функция Ферми-Дирака	13
3.4 Температурная зависимость проводимости полупроводника	16
4. Терморезистор (термистор)	19
5. Фотосопротивление (фоторезистор)	19
6. Оптический квантовый генератор (лазер)	21
7. Электронно-дырочный переход (p – n-переход)	25
7.1 Вольтамперная характеристика (ВАХ) <i>р</i> – <i>n</i> -перехода	29
7.2 Емкость <i>p</i> – <i>n</i> -перехода	29
8. Биполярный транзистор	31
9. МДП (МОП) – транзисторы	31
10. Приборы с зарядовой связью (ПЗС)	33
11. Колебания кристаллической решетки	34
11.1 Уравнение колебаний для одного атома и для цепочки атомов	35
11.2 Фазовая и групповая скорость. Дисперсионный закон или	
дисперсионное соотношение. Дисперсионная кривая	37
12. Фонон	39
12.1 Температура Дебая	39
12.2 Рассеяние носителей заряда на акустических фононах	40
12.3 Рассеяние носителей заряда на оптических фононах	40
12.4 Фононные спектры	41
12.5 Другие механизмы рассеяния энергии	43
Список литературы	50
КАФЕДРА ЭЛЕКТРОНИКИ	51

Оглавление

1. Классификация твердых тел

- Металлы;

- Полупроводники;

- Изоляторы.

1.1 Металлы

Наиболее распространенный класс материалов. Они составляют более ³/₄ всех элементов. Металлы отличаются характерным внешним видом, блеском, хорошей отражательной способностью. Хорошо проводят электрический ток, обладают высокой электропроводностью: при комнатной температуре для чистых металлов удельное сопротивление $\rho = \sigma^{-1}$ (σ – проводимость) находится в пределах от $\rho = 1.55$ мкОм·см, для меди, до $\rho \approx 116$ мкОм·см, для висмута. Для сравнения, для полупроводников эта величина существенно выше и составляет, например $\rho = 47$ Ом·см для германия, или $2.3 \cdot 10^5$ Ом·см для кремния. Для кварца (диэлектрик, изолятор) $\rho = 1 \cdot 10^{19}$ Ом·см. Различие в физических свойствах обусловлено наличие электронов проводимости, образующих "газ" свободных электронов.

1.2 Теория металлов Друде

(1900г.) – теория, описывающая движение свободных электронов в рамках *классической* физики. Названа по имени немецкого физика Пауля Друде.

Описание движения электронов делается на основе следующих упрощающих реальную картину предположений:

– Принимается, что независимые электроны ведут себя как газ. В интервалах между столкновениями не учитывается их взаимодействие с другими электронами и ионами. Считается, что в отсутствие электромагнитных внешних полей электрон движется по прямой с постоянной скоростью до очередного столкновения. В присутствии внешних полей, электрон движется в соответствии с воздействием только этих полей. Дополнительные поля, порождаемыми другими электронами и ионами не принимаются во внимание;

– При столкновениях происходит мгновенное изменение скорости электронов;

– Если принять, что вероятность столкновения *P* за единицу времени τ есть величина, пропорциональная его обратной величине, то ее можно записать, как $P \sim \frac{1}{\tau}$.

– Тогда вероятность столкновения *P* за время *dt* равна $P \sim \frac{dt}{\tau}$, где τ – время релаксации, т.е. время от одного до другого столкновения.

На основе вышеприведенных предположений можно считать, что время релаксации не зависит от пространственного положения электрона и его скорости.

Благодаря столкновениям электрон приходит в состояние теплового равновесия со своим окружением. Скорость электрона после столкновения имеет случайное направление и соответствует температуре в данной локальной области.

1.3 Электропроводность металлов

Статическая электропроводность металлов. Теория Друде позволяет объяснить закон Ома – пропорциональность тока через проводник и падение напряжения вдоль проводника: U = IR и оценить величину сопротивления R. Для этого используется величина удельного сопротивления ρ , или удельная проводимость $\sigma=1/\rho$, которая является коэффициентом пропорциональности между вектором напряженности электрического поля **E** в некоторой точке металла и соответствующей плотностью тока j: $j=\sigma E$.

Плотность тока j - заряд в единицу времени через единицу площади S (рис.1.1)

Рис. 1.1 Плотность тока

Тогда

$$i = nev, \tag{1.1}$$

где n – концентрация зарядов, *е* – заряд электрона, **v** – мгновенная скорость заряда.

Сила, действующая на заряд, определяется, как:

$$\mathbf{F}=e\mathbf{E},\tag{1.2}$$

с другой стороны **F**=m·**a**, где m – масса и **a** - ускорение заряженной частицы, тогда получа-емое электроном ускорение **a** может быть определено, как:

$$\frac{d\mathbf{v}}{dt} = \frac{e\mathbf{E}}{m} \tag{1.3}.$$

Мгновенная скорость электрона:

$$v = v_0 - \frac{eEt}{m}$$

Среднее значение начальной скорости при хаотическом движении равно нулю, поэтому средняя скорость может быть определена, как:

$$\mathbf{v}_{cp} = \frac{e\mathbf{E}\tau}{2m} \tag{1.4}$$

где τ - среднее время между соударениями, или время релаксации. Множитель 2 в знаменателе появляется, т.к. принимается, что мгновенная скорость растет на рассматриваемом временном промежутке линейно. Плотность электронов равна n, следовательно,

ј =**оE**;
$$\sigma = \frac{ne^2\tau}{2m}$$
, τ - время релаксации. (1.5)

Длина свободного пробега:

$$\lambda = \mathbf{v}_{cp} \,\tau, \quad \mathbf{v}_{cp} = \sqrt{\frac{3kT}{m}} \,. \tag{1.6}$$

Если выполнить расчет средней скорости v_{cp} по этой формуле для температуры T=300К, то получится значение $v_{cp} \approx 1,2 \cdot 10^{\frac{5}{2}}$ м/с.

Проводимость σ может быть определена, как:

$$\sigma = \rho^{-1} = n e^2 \lambda I(m v_{cp}), \quad \sigma = \frac{n e^2 \lambda}{2 \sqrt{\frac{3kT}{m}}}$$
(1.7)

2. Кристаллы

Кристалл (от греч. κούσταλλος – «прозрачный лед») название прозрачного кварца (горный хрусталь). Первоначально главную особенность кристалла видели в его прозрачности и это слово употребляли всем прозрачным природным в применении ко твердым телам. Особенностью хрусталя являются гладкие плоские грани. В конце XVII в. было установлено, что имеется определенная симметрия В ИХ также, расположении. Было также установлено ЧТО некоторые непрозрачные минералы также имеют естественную правильную огранку и что форма огранки характерна для того или иного минерала. Возникла догадка, что форма может быть связана с внутренним строением. Сегодня кристаллами стали называть все тела определенной геометрической формы, ограниченные естественными плоскими гранями, и имеющие регулярную внутреннюю структуру.

2.1 Кристаллическое состояние

Атомы, из которых состоят газы, жидкости и твердые вещества, имеют разную степень упорядоченности.

В газе атомы и небольшие группы атомов, соединенные в молекулы, находятся в постоянном беспорядочном движении. Если охлаждать газ, то достигается температура, при которой молекулы сближаются друг с другом, насколько это возможно, и образуется жидкость. В жидкости атомы и молекулы могут двигаться относительно друг друга. При охлаждении некоторых жидкостей, например воды, достигается которой застывают температура, при молекулы неподвижном, кристаллическом состоянии. Для воды эта температура есть температура замерзания, t=0° С. При этом молекулы воды упорядоченно соединяются друг с другом, образуя правильные геометрические фигуры. Каждый атом или молекула вещества, находящегося в кристаллическом состоянии, окружен какими-то определенными атомами или молекулами, находящиеся на определенных местах. Это упорядоченное трехмерное расположение характерно для кристаллов и отличает их от других твердых веществ.

2.2 Образование кристаллов

Кристаллы образуются тремя путями:

- 1. из расплава;
- 2. из раствора;
- 3. из паров

Рис.1.2 Кристаллы витерита (<u>http://encyclopaedia.biga.ru/enc/science_and_technology/KRISTALLI.html</u>)

2.3 Структура кристалла

Основа кристалла - так называемая кристаллическая решетка - трехмерная решетка, состоящая из атомов или молекул.

Для пространства же имеется 14 способов расположения одинаковых точек, удовлетворяющих требованию, чтобы у каждой из них было одно и то же окружение. Это пространственные решетки, называемые также решетками Браве по имени французского ученого О. Браве, который в 1848 доказал, что число возможных решеток такого рода равно 14.

3. Полупроводники

По величине электропроводности занимают промежуточное положение между проводниками и диэлектриками. Электрические свойства полупроводника сильно зависят от концентрации в нём химических примесей и внешних условий (температура, наличие электрических и магнитных полей и т.д.). Ширина запрещенной зоны у полупроводника составляет от 0 до 6 эВ. 1эВ - энергия, которую приобретает электрон при ускорении в электростатическом поле с разностью потенциалов u=1 B. 1 эВ = $1,6 \times 10-19$ Дж.

Группы Периоды	II	111	IV	v	vi	VII	
2	⁴ в	5(1) B	6 (5.5) C	7 N	8 0		
3		1 A	1 (1) S	1 (1,5) P	1 (2,4) S	1 C	
4		з G	3 (0,7) G	3 (15) A	3 S	з В	
5		4 1	5 🐽 S	5 (0,1) S	5 (35) T	5 J	5 X
6			8 P	8 B	8 P	8 A	

Рис.1.4 Элементарные полупроводники

Различают:

- одноэлементные или элементарные полупроводники. 12 химических элементов, образующих компактную группу, расположенную в середине таблицы Д.И. Менделеева;

- *двухэлементные* полупроводники AIIIBV и AIIBVI из третьей и пятой группы и из второй и шестой группы элементов соответственно;

- *органические* полупроводники. Одноэлементные или элементарные полупроводники.

3.1 Собственная проводимость

При T=0 К в полупроводниковом кристалле заполнены все энергетические уровни *валентной зоны*, свободными остаются все уровни *зоны проводимости*. Валентная зона и зона проводимости разделены *запрещенной зоной*, ширина которой может быть до 6 эВ.

Валентная зона

Рис.1.5 Энергетические уровни для собственной проводимости

Поэтому при T=0 К при отсутствии внешних воздействий (электромагнитных полей) полупроводник не проводит электрического тока. При любых значениях T>0 К происходят переходы электронов из валентной зоны в зону проводимости.

Генерация-рекомбинация.

Средняя энергия тепловых колебаний кристаллической решетки:

$$\overline{E} = kT . \tag{1.8}$$

Из-за флуктуаций электрон может получить энергию больше средней, т.е. Вероятность *p* получения эл $E > \overline{E}$ ном при температуре *T* энергии ΔE пропорциональна $p \sim e^{-\frac{\Delta E}{kT}}$.

При комнатной температуре при ширине запрещенной зоны ΔE порядка долей эВ вероятность *p* перехода электрона из валентной зоны в зону проводимости очень мала, но с ростом температуры она растет. При переходе в зону проводимости в валентной зоне образуется *дырка*, т.е. при переходе образуется положительный и отрицательный заряд (этот процесс наз. *генерация*). Возможен и обратный переход (*рекомбинация*), при котором электрон возвращается на вакантный уровень в валентной зоне, тогда эта пара носителей зарядов исчезает. Процессы генерации-рекомбинации идут одновременно, поэтому в полупроводнике устанавливается некоторая равновесная концентрация носителей заряда.

$$\gamma = q_e n(u_n + u_p), \qquad (1.9)$$

где q_e - заряд электрона; *n*- концентрация свободных электронов, равная в собственном полупроводнике концентрации дырок; u_n - подвижность электронов; u_p - подвижность дырок.

Свободные носители заряда, образующиеся при переходе из валентной зоны в зону проводимости, называются собственными носителями, а соответствующая проводимость – собственной проводимостью.

3.2 Примесная проводимость

Валентные электроны связаны с кристаллической решеткой (∆Е≈1,1эВ), поэтому в нормальном состоянии не участвуют в проводимости кристалла.

Рис.1.6 Кристаллическая решетка примесной проводимости

Каждый атом кремния связан ковалентной связью с четырьмя ближайшими соседями. Если атомы кремния частично заменить атомами V группы периодической системы (P, As, Sb) с пятью валентными электронами, то четыре заполнят валентные связи, пятый окажется лишним.

Рис.1.7 Кристаллическая решетка

Т.к. примесные атомы ионизованы, то энергия для перехода примесных электронов в зону проводимости ΔE_{d} , ниже, чем для электронов собственной проводимости из валентной зоны ΔE .

Рис.1.8 Энергетические уровни

По этой причине концентрация примесных электронов при невысоких температурах значительно выше концентрации собственных электронов. Поэтому атомы примеси называют *донорами*. При замене атома кремния на атом III группы (например, бор), то его три связи не заполняют все валентные связи с соседними атомами, одна остается вакантной.

Рис.1.9 Кристаллическая решетка

Она может быть заполнена за счет перехода электрона из любой соседней связи. Этот переход освобождает один из верхних уровней в валентной зоне и, тем самым, создает *дырку*. Такой переход требует меньшей энергии, чем переход в зону проводимости ($\Delta E_a < \Delta E$). Такие примеси называются *акцепторами*.

Рис.1.10 Энергетические уровни

 $\gamma_n = q_e n u_n$ - проводимость полупроводника с донорной примесью.

 $\gamma_p = q_e p u_p$ - проводимость полупроводника с акцепторной примесью.

3.3 Функция Ферми-Дирака

Функция **Ферми – Дирака** определяет распределение электронов по энергетическим уровням системы, находящейся в термодинамическом равновесии и позволяет найти вероятность, с которой электрон занимает данный энергетический уровень. Среднее число частиц в состоянии с энергией *E* при T=0K:

$$n_{i} = \frac{q_{i}}{e^{\frac{E-\mu}{kT}} + 1},$$
(1.10)

 q_i - число состояний с энергией E; μ – химический потенциал - энергия, которую необходимо затратить, чтобы добавить в систему ещё одну частицу.

Энергия Ферми - увеличение энергии основного состояния системы при добавлении одной частицы.

При T=0K m равен энергии Ферми, $\mu = E_{\Phi}$. В этом случае $q_i = 1$ и функция распределения называется функцией Ферми:

$$f_n(E) = \frac{1}{e^{\frac{E-E_0}{kT}} + 1}$$
(1.11)

Рис.1.11 Равновесные концентрации свободных носителей заряда в полупроводнике

При T=0K в полупроводнике нет свободных носителей заряда: все энергетические уровни в зоне проводимости свободны, а все уровни валентной зоны заняты электронами. В каких-то процессах могут участвовать электроны, расположенные на нижних уровнях зоны *проводимости* и на верхних уровнях *валентной* зоны. Вероятность того, что энергетический уровень занят электроном, описывается функцией Ферми (1.11). Тогда вероятность того, что энергетический уровень не занят электроном:

$$f_{p}(E) = 1 - f_{n}(E) = \frac{1}{e^{-\frac{E - E_{\phi}}{kT}} + 1}$$
(1.12)

Валентная зона

Рис.1.12 Энергетические уровни

 $f_p(E)$ можно рассматривать, как вероятность того, что энергетический уровень E занят дыркой. Концентрация свободных электронов в зоне проводимости:

$$n_{i} = \int_{\Delta E}^{E_{1}} f_{n}(E) R_{n}(E) dE . \qquad (1.13)$$

Концентрация дырок в валентной зоне:

$$p_{i} = \int_{-E_{2}}^{0} f_{p}(E) R_{p}(E) dE . \qquad (1.14)$$

 $R_n(E)dE$, $R_p(E)dE$ — число состояний электронов и дырок в интервале энергий dE. В полупроводнике $\Delta E >> kT$ и вероятность перехода электрона из валентной зоны в зону проводимости очень мала, поэтому очень малы вероятности заполнения уровней зоны проводимости электронами $f_n(E)$ и заполнения уровней валентной зоны дырками $f_p(E)$, тогда: $f_n(E) << 1$, $f_p(E)$ <<1 и выражения

$$f_{n}(E) = \frac{1}{e^{\frac{E-E_{\phi}}{kT}} + 1}, \quad f_{p}(E) = \frac{1}{e^{-\frac{E-E_{\phi}}{kT}} + 1}$$

могут быть записаны, как:

$$f_p(E) \approx e^{\frac{E-E_{\phi}}{kT}}, \quad f_n(E) \approx e^{-\frac{E-E_{\phi}}{kT}}$$
 (1.15)

Равенства (1.15) – функция распределения Больцмана, выражающая распределение частиц идеального газа по энергии. Из выражений (1.15) можно получить:

$$E_{\hat{O}} = \frac{\Delta E}{2} + \frac{3}{4}kT \cdot \ln\frac{m_p}{m_n} , \qquad (1.16)$$

 ΔE -ширина запрещенной зоны, m_n - эффективная масса электрона, m_p - эффективная масса дырки.

Выражение (1.16) получено для собственного полупроводника.

Эффективная масса свободного электрона, такая масса, которую должен иметь электрон, чтобы под действием внешней силы приобрести такое же ускорение, как электрон в кристалле под действием той же силы.

При mn = mp и npu T=0K, уровень Ферми находится точно посередине запрещенной зоны. Но, как правило, mn < mp, поэтому уровень

Ферми в собственном полупроводнике ближе к зоне проводимости и при росте температуры смещается вверх.

Для концентрации свободных носителей заряда в зоне проводимости в собственном полупроводнике можно получить:

$$n_i = p_i = 2(2\pi kT)^{\frac{3}{2}} h^3(m_n m_p) e^{-\frac{\Delta E}{2kT}}$$
(1.17)

٨E

Вышеприведенные рассуждения делались в предположении, что электронный газ в полупроводнике не вырожден¹, т.е. |fn(E) << 1|

Фактически это выполняется при $e^{\frac{E-E_{\phi}}{kT}} >> 1^{\text{т.е. когда}} E - E_{\hat{O}} >> kT$

Если концентрация свободных электронов в зоне проводимости *примесного* полупроводника невелика и fn(E) << 1, то она м.б. вычислена, как:

$$n = 2(2\pi kT)^{\frac{3}{2}} h^{-3}(m_n m_p) e^{-\frac{E-E_{\phi}}{kT}} \quad (1.18)$$

Аналогично, концентрация дырок:

$$p = 2(2\pi kT)^{\frac{3}{2}} h^{-3}(m_n m_p) e^{-\frac{-E_{\phi}}{kT}} \quad (1.19)$$

3.4 Температурная зависимость проводимости полупроводника

Температурная зависимость определяется вышеприведенными зависимостями. При высоких температурах велико тепловое рассеивание, при низких – преобладает рассеяние на примесях. Если присутствуют оба механизма, то результирующую подвижность*) представляют в виде:

 $\frac{1}{u} = \frac{1}{u_{v\bar{v}}} + \frac{1}{u_{\tau}}$ (1.20)

Где *u_{np}* –подвижность носителей заряда при рассеивании только на примесях, *u_t* - подвижность носителей заряда при рассеивании только на тепловых колебаниях.

¹ ВЫРОЖДЕННЫЙ ГАЗ - газ, в котором квантовомеханическое влияние частиц друг на друга существенным образом сказывается на его физических свойствах

$$u_{np} \sim T^{3/2} \tag{1.21}$$

$$u_t \sim T^{-3/2} \tag{1.22}$$

Тогда:

$$\frac{1}{u} = aT^{-3/2} + bT^{3/2} \tag{1.23}$$

Рис.1.13 Температурная зависимость проводимости полупроводника

При низких температурах преобладает первый член, при высоких - второй.

$$\gamma = \gamma_{co\delta} + \gamma_{np} = Ce^{-\frac{\Delta E}{2kT}} + C'e^{-\frac{\Delta E_{np}}{2kT}(1.24)}$$
,

 ΔE -ширина запрещенной зоны; ΔE_{np} - энергия, необходимая для создания примесного носителя заряда; C и C' - коэффициенты, зависящие от природы полупроводника.

Полупроводник	Ширина	Подвижность		
	запрещенной	Электронов	Дырок	
	ЗОНЫ	$u_n, M^2/ B \cdot C$	$u_p, M^2/B \cdot c$	
	<i>∆E</i> , эВ			
Ge	0,75	0,39	0,19	
Si	1,12	0,12	0,05	
Sn	0,08	0,2	0,1	
InAs	0,36	3	0,2	
GaAs	1,35	0,4	0,04	
InSb	0,18	8	0,94	
PbS	0,6	0,064	0,08	
CdS	2,4	0,02	-	
PbSe	0.55	0,15	0,15	
SiC	1,5	0,06	0,01	

При низких температурах можно пренебречь первым слагаемым в (1.24), при высоких – вторым. Проводимость при низких температурах: $\ln \gamma = \ln C - \frac{\Delta E_{np}}{2k} \frac{1}{T}$.

При высоких температурах: $\gamma_{\tilde{n}\hat{l}\hat{a}} = Ce^{-\frac{\Delta E}{2kT}}$, $\ln \gamma = \ln C - \frac{\Delta E_{np}}{2k} \frac{1}{T}$.

Рис. 1.14 Температурная зависимость проводимости полупроводника

Удельное сопротивление: $\rho = \frac{1}{\gamma} = \frac{1}{C} e^{-\frac{\Delta E}{2kT}} = c' e^{-\frac{\Delta E}{2kT}}, \frac{\Delta E}{2k} = B.$

Сопротивление: $R = \rho \frac{l}{S} = c' \frac{l}{S} e^{\frac{B}{T}} = A e^{\frac{B}{T}}$

Температурный коэффициент сопротивления (ТКС):

$$\alpha = -\frac{B}{T^2}, \quad \alpha = \frac{1}{R}\frac{dR}{dT}.$$
(1.25)

4. Терморезистор (термистор)

Вольтамперная характеристика:

Рис.1.15 Вольтамперная характеристика терморезистора

При значениях тока *I*, протекающего через терморезистор, меньших, чем *I*', мощность $P = I^2 R$, где R – сопротивление терморезистора, не приводит к его существенному разогреву. Если *I*,> *I*', мощность *P* вызывает такой разогрев термистора, что его сопротивление начинает снижаться и падение напряжения на нем *U* также уменьшается.

5. Фотосопротивление (фоторезистор)

Фотопроводимость

Фотоны, попадая в полупроводник, создают в нем носители заряда - электроны и дырки. Увеличивается концентрация носителей заряда -

увеличивается проводимость. Если нет освещенности, остаются только заряды обусловленные тепловым движением, которые обусловливают так наз. «темновую проводимость». Возбуждение носителя заряда фотоном возможно только когда энергия фотона *E* не меньше, чем энергия активации свободных носителей заряда в данном полупроводнике

Рис. 1.16 Возбуждение носителя заряда фотоном

Для собственных полупроводников $h\nu \ge \Delta E$, для примесных $h\nu \ge \Delta E_{i\partial}$.

Поэтому существует граничная частота v_{rp} , для которой фотопроводимость еще наблюдается: при меньших частотах ($v < v_{2p}$) она отсутствует. Эта граничная частота v_{2p} называется красной границей фотопроводимости.

В таблице свойств полупроводников энергия запрещенной зоны лежит в границах от 0,08 эВ (Sn) до 2,4 эВ (CdS). Этим значениям соответствует область спектра от красного цвета до инфракрасной области.

$$V_{zp} = \frac{\Delta E}{h} \tag{1.26}$$

Пусть ДЕ=2эВ, тогда

$$v_{zp} = \frac{\Delta E}{h} = \frac{3.2 \cdot 10^{-19}}{6.63 \cdot 10^{-34}} \approx 0.483 \cdot 10^{15} \, \Gamma \psi$$

$$\lambda_{p} = \frac{c}{v_{p}} = \frac{3 \cdot 10^8}{0.483 \cdot 10^{15}} \approx 6.2 \cdot 10^{-7} \text{ } \text{M} = 0.62 \text{ } \text{MKM}$$

Если $v > v_{rp}$, то часть энергии фотона ($\Delta E = h v_{cp}$) расходуется на перевод электрона в зону проводимости, другая часть ($hv - \Delta E$) идет на увеличение кинетической энергии электрона, что ведет к нагреву кристалла. Начинает увеличиваться коэффициент поглощения *a* и излучение начинает поглощаться в тонком поверхностном слое

полупроводника. Изменение сопротивления этого тонкого поверхностного слоя не вносит заметный вклад в увеличение сопротивления всего объема полупроводника. На рисунке $a(\lambda)$ -поглощение, $r(\lambda)$ – фотопроводимость.

Рис.1.17 Фотопроводимость

Рис.1.18 Фоторезистор

Интегральная и спектральная чувствительность. Интегральная чувствительность – чувствительность в широком диапазоне длин волн Спектральная – в зависимости от длины волны.

6. Оптический квантовый генератор (лазер)

Пусть имеется только два возможных значения энергии: E_1 и E_2 При термодинамическом равновесии выполняется равенство:

$$\frac{N_2}{N_1} = e^{-\frac{E_2 - E_1}{kT}}$$
(1.27)

*N*₁ и *N*₂ – число частиц на этих уровнях. При падении извне потока электромагнитного излучения с частотой

$$\nu = \frac{E_2 - E_1}{h} \tag{1.28}$$

(переход из нормального в возбужденное состояние) количество частиц на верхнем уровне (E_2) будет увеличиваться до какого-то предела, пока снова не установится равновесие.

На новом уровне возможны следующие пути перехода из возбужденного состояния в нормальное:

1. *Спонтанный переход*, т.е. самопроизвольный возврат в нормальное состояние из возбужденного (в котором частица находится от 10⁻⁹ до 10⁻⁷ с).

2. Передача энергии от частицы к кристаллической решетке из-за столкновений. Энергия возбуждения переходит в энергию колебаний решетки, в результате растет температура системы. Такой переход называется *релаксационным*. Характеризуется временем релаксации *t*, которое характеризует скорость установления равновесного состояния.

3. Вынужденный переход из возбужденного состояния в нормальное.

Если в непосредственной близости от возбужденной частицы проходит квант с энергией $hv=E_2-E_1$, то частица может излучить квант с такой же энергией (частотой), фазой, вектором поляризации и направлением. Такой переход из возбужденного в нормальное состояние наз. *индуцированным*.

Если система находится в состоянии равновесия с внешним излучением, то число частиц, переходящих из нормального состояния в возбужденное, равно числу частиц, переходящих за тот же промежуток из возбужденного в нормальное состояние.

Если при увеличении интенсивности излучения возрастает число частиц N_2 (верхний уровень), то возрастет и обратный поток и с ним N_1 (нижний уровень). Система остается в равновесном состоянии. Если бы удалось увеличить число частиц на уровне E_2 , так, чтобы $N_2 > N_1$, то при попадании в такую систему кванта энергии $hv=E_2-E_1$, из-за

индуцированного излучения из нее вылетело бы несколько аналогичных квантов, падающее излучение было бы усилено. Вероятность перехода с одного энергетического уровня на другой при взаимодействии с излучением пропорционально числу частиц на уровне, с которого происходит переход. Если $N_2 > N_1$, то количество частиц, переходящих с верхнего уровня с излучением квантов энергии, будет больше, чем количество частиц, переходящих с нижнего уровня на верхний (с поглощением квантов энергии!). Возникает индуцированное излучение. Это излучение может также быть вызвано квантом, возникшим в результате спонтанного излучения, который может вызвать целую лавину квантов с такими же свойствами, т.е. вызвать генерацию излучения. Если в системе три энергетических уровня, то равновесие меду разными уровнями устанавливается с разной скоростью: $E_2 \rightarrow E_1$ за время релаксации τ_{21} , $E_3 \rightarrow E_1$ за $\tau_{31}, E_3 \rightarrow E_1$ за $\tau_{31}, E_3 \rightarrow E_2$ за τ_{32} . Если $\tau_{21} > \tau_{31}$ и $\tau_{21} > \tau_{31}$, то после окончания возбуждения системы отклонение количества частиц от равновесного значения на уровне N_2 сохранится дольше, чем на уровне N_3 . Такие уровни, как N₂, наз. *метастабильными*.

Рис.1.19 Метастабильные уровни

Пусть времена релаксации в этой системе $\tau_{31} > \tau_{21}$ и $\tau_{32} > \tau_{21}$, тогда равновесие между E_3 - E_1 и E_3 - E_2 восстанавливается медленнее, чем между

 E_2 - E_1 . Если на систему падает излучение с энергией $hv_{13}=E_3$ - E_1 , то из-за релаксационных переходов, количество частиц на уровне E_2 становится меньше равновесного, т.к. релаксационные переходы приводят к более быстрому уходу частиц с уровня E_2 , чем их приход на этот уровень с уровня E_3 . В то же время из-за действия излучения, побуждающего к переходу $E_1 \rightarrow E_3$, количество частиц на E_3 станет больше равновесного. Возникает усиление и генерация излучения на частоте $hv_{32}=E_3$ - E_2

 Al_2O_3 – рубин, с примесью Cr, доли процента. Появившийся в системе квант с частотой hV_{32} вызовет индуцированный переход возбужденной частицы с уровня E_3 на E_2 , появившиеся два кванта приведут к появлению новых квантов и т.д., начнется генерация излучения.

При поглощении света происходит ионизация ионов хрома и их переход на высокие энергетические уровни, откуда они за счет релаксационных переходов, без излучения, переходят на два близких друг к другу метастабильных уровня. Между нормальным и метастабильными уровнями создается неравновесное распределение ионов. При переходе с метастабильных уровней на уровень нормального состояния возникает индуцированное состояние. Излучается красный свет с основной длиной волны 0,6943мкм.

Для излучения необходим источник излучения с длиной волны 0,41 мкм или 0,56 мкм. Но применяют так наз. лампу накачки, которая излучает

в широком диапазоне, лишь небольшая часть излучения этой лампы идет на возбуждение лазера, большая часть уходит в тепло.

Рис.1.20 Лазер

7. Электронно-дырочный переход (p – n-переход)

Образуется на границе между п/п с дырочной (р-типа) и электронной (птипа) проводимостью. Изготавливается в одном кристалле, представляет собой границу между двумя частями кристалла с проводимостями р- и птипа.

Рис.1.21 Части кристалла с проводимостями р-и п-типа.

Рис.1.22 Проводимость р-и п-типа

 U_K - контактная разность потенциалов. Свободные носители заряда могут переходить из одной части кристалла в другую (из *n* в *p* и из *p* в *n*). Уровни Ферми в *n* и *p* частях кристалла устанавливаются на одной высоте. Тогда энергетические зоны в частях кристалла смещаются друг относительно

друга. Образуется потенциальный барьер высотой $\varphi = q_e U_K$

Рис.1.23 Электронно-дырочный переход

Из-за градиента концентрации носителей заряда они диффундируют в области с противоположным типом проводимости (из *n* в *p* и из *p* в *n*). В *p*области вблизи контакта после диффузии из неё дырок остаются нескомпенсированные ионизированные акцепторы (отрицательные п-области нескомпенсированные неподвижные заряды), a В ионизированные *доноры* (положительные неподвижные заряды). Из этих двух разноимённо заряженных слоёв образуется область обедненного носителями объёмного заряда, в которой возникает электрическое поле, направленное от *n*-области к *p*-области (диффузионное поле). Это поле препятствует дальнейшей диффузии основных носителей через барьер. Устанавливается равновесное состояние с небольшим током основных носителей из-за диффузии и током неосновных носителей под действием поля, компенсирующим друг друга. При этом между *n*- и *p*-областями существует разность потенциалов, называемая контактной. Потенциал *n*-области положителен по отношению к потенциалу *p*-области. Эта разность потенциалов составляет величину десятые доли вольта.

Концентрация свободных электронов, способных потенциальный барьер для кристалла *n*-типа:

$$n_1 = n e^{-\frac{\varphi}{kT}} \tag{1.29}$$

n - концентрация свободных электронов в кристалле *n*-типа. Концентрация свободных дырок, способных потенциальный барьер для кристалла *p*-типа:

$$p_1 = p e^{-\frac{\varphi}{kT}}, \qquad (1.30)$$

p- концентрация свободных дырок в кристалле *p*-типа.

Рис.1.24 Диаграмма проводимостей р-п-перехода

Если к переходу приложено напряжение U, то $I \neq 0$. Принято, что U > 0, если потенциал *p*-области больше, чем потенциал *n*-области. Тогда внешнее поле направлено против контактного, поэтому оно уменьшает напряженность контактного поля и высоту потенциального барьера. U < 0, если потенциал *n*-области больше, чем потенциал *p*-области. Тогда внешнее поле направлено также, как контактное, поэтому оно увеличивает напряженность контактного поля и высоту потенциального барьера. Положительное внешнее напряжение U > 0 называется *прямым*, отрицательное U < 0 обратным. Диффузионный ток I_D уменьшится, дрейфовый I_s останется без изменений

Рис.1.25 Диаграмма прямого и обратного включения р-п-перехода

Если к переходу приложено обратное напряжение U < 0, высота потенциального барьера увеличивается на $\left| q_e U \right|$

$$p_{1} = pe^{\frac{\varphi + |q_{e}U|}{kT}}, n_{1} = ne^{\frac{\varphi + |q_{e}U|}{kT}}$$
(1.31)

Если к переходу приложено прямое напряжение U >0, высота потенциального барьера уменьшается на $|q_e U|$,

$$n'_{1} = ne^{-\frac{\varphi - |q_{e}U|}{kT}}, p'_{1} = pe^{-\frac{\varphi - |q_{e}U|}{kT}}$$
 (1.32)

7.1 Вольтамперная характеристика (ВАХ) р – n-перехода

Рис.1.26 Вольтамперная характеристика р-п-перехода

U - напряжение, приложенное к *p*-*n* переходу; I_s - значение, к которому стремится обратный ток при увеличении обратного напряжения. Если T=300 K, то *k*T≈0,0253 эВ и при обратном напряжении U в десятые доли вольта $e^{\frac{q_e U}{kT}} << 1$, $I \approx -I_s$

При прямом напряжении U в десятые доли вольта $e^{\frac{q_e U}{kT}} >> 1$, прямой ток растет по экспоненте.

При прямом напряжении p-n переход хорошо проводит ток. Напротив, при обратном напряжении он имеет очень высокое сопротивление и проводит ток плохо. Поэтому его можно представить как нелинейное сопротивление, являющееся функцией приложенного напряжения.

7.2 Емкость *p* – *n*-перехода

Можно рассматривать p - n переход как два проводника, разделенных плохо проводящим электричество слоем. Тогда можно определить электрическую емкость C p - n- перехода,

$$C_{\delta} = \frac{\mathcal{E}\mathcal{E}_0 S}{x} \tag{1.34}$$

(\mathcal{E} - диэлектрическая проницаемость полупроводника, \mathcal{E}_0 - диэлектрическая проницаемость вакуума, S - площадь p - n- перехода, x - ширина p - n- перехода) и рассматривать его как плоский конденсатор с обкладками из областей n- и p- типа вне перехода, а обедненную носителями область объемного заряда считать изолятором между этими областями. Иногда эту емкость C_6 называют барьерной. Ее значение зависит от приложенного к переходу напряжения U. При росте потенциального барьера растет объемный заряд, расширяется его область (растет x) и уменьшается емкость. Она больше **проявляется при обратном включении перехода**, т.к. при прямом шунтируется низким сопротивлением p - n- перехода. Эту емкость называют барьерной или зарядной.

Имеется также так. наз. *диффузионная емкость*, обусловленная *инжекцией* зарядов. Увеличение напряжения на p - n -переходе приводит к увеличению концентрации основных и неосновных носителей, или к изменению заряда. Величина диффузионной ёмкости пропорциональна току через p-n -переход. При протекании прямого тока из p- области в n область перетекают дырки и из n- области в p - область перетекают электроны. До включения прямого тока концентрация дырок в n- области p_n и концентрация электронов в p- области n_p были невелики. После включения прямого тока эти концентрации резко возросли и равновесие нарушилось. Этот процесс носит название *инжекции неравновесных носителей зарядов*. Емкость, соответствующая этому процессу носит название *диффузионной*:

$$C_{\partial u\phi} = \frac{\Delta q}{\Delta U} \tag{1.35}$$

Суммарная емкость, *p*- *n*- перехода определяется суммой барьерной и диффузионной ёмкостей.

Рис.1.27 Емкости р-п-перехода.

 $C_{\rm 6}$ - барьерная емкость; $C_{\rm диф}$ - диффузная емкость; $R_{\rm d}$ - дифференциальное сопротивление перехода.

8. Биполярный транзистор

(transistor = transfer resistor transfer - переносить, *resistor -* сопротивление)

Рис.1.28 Биполярный транзистор

Ток в цепи двух электродов - коллектора и эмиттера, управляется третьим электродом, базой. Небольшое изменение входных величин может приводить к существенно большему изменению выходного тока.

9. МДП (МОП) – транзисторы

Рис.1.29 МДП транзисторы

В МДП-транзисторах с индуцированным каналом проводящий канал между сильнолегированными областями истока и стока отсутствует и, следовательно, заметный ток стока появляется только при определенной полярности и при определенном значении напряжения на затворе относительно истока, которое называют пороговым напряжением (U_{3Unop}).

В МДП-транзисторах со встроенным каналом у поверхности полупроводника под затвором при нулевом напряжении на затворе относительно истока существует инверсный слой - канал, который соединяет исток со стоком.

Индуцированный канал

При напряжении на затворе относительно истока равном нулю и при наличии напряжения на стоке, ток стока очень мал. Он представляет собой обратный ток *p-n* перехода между подложкой и сильнолегированной областью стока. При отрицательном потенциале на затворе в результате проникновения электрического поля через диэлектрический слой в полупроводник при малых напряжениях на затворе ($U_{3U} < U_{3Unop}$) у поверхности полупроводника под затвором возникает обедненный основными носителями слой и область объемного заряда, состоящая из нескомпенсированных ионизированных примесных При атомов. напряжениях на затворе, $U_{3U} > U_{3Unop}$, у поверхности полупроводника под затвором возникает инверсный слой, который и является каналом, соединяющим исток со стоком. Толщина и поперечное сечение канала изменяются с изменением напряжения на затворе, изменяется и ток стока. Так происходит управление током стока в полевом транзисторе с изолированным затвором и с индуцированным каналом. Т.к. затвор отделен от подложки диэлектрическим слоем, ток в цепи затвора ничтожно мал, мала и мощность, потребляемая от источника сигнала в цепи затвора и необходимая для управления относительно большим током стока. Таким образом, МДП-транзистор с индуцированным каналом может производить усиление электромагнитных колебаний по напряжению и по мощности.

Встроенный канал

При нулевом напряжении на затворе поперечное сечение и проводимость канала будут изменяться при изменении напряжения на затворе как отрицательной, так и положительной полярности. Таким образом, МДП-транзистор со встроенным каналом может работать в двух режимах: в режиме обогащения и в режиме обеднения канала носителями заряда.

10. Приборы с зарядовой связью (ПЗС)

Рис.1.30 Приборы с зарядной емкостью

Приборы с зарядовой связью представляют собой матричную МДПструктуру. Их применяют как чувствительные элементы в видеосистемах. На подложке из кремния р-типа имеется изолирующий слой SiO₂ и металлические пластины-электроды. Одна из пластин имеет более положительноеб смещение, чем остальные две, и под ней происходит Полупроводник р-типа, получают добавлением накопление заряда. (легированием) к кристаллу кремния акцепторных примесей, например, атомов бора. Акцепторная примесь создает в кристалле полупроводника свободные положительно заряженные носители — дырки. Дырки в полупроводнике являются носителями заряда: р-типа основными свободных электронов там очень мало. Если теперь подать небольшой положительный потенциал на один из электродов ячейки трехфазного ПЗС, а два других электрода оставить под нулевым потенциалом относительно подложки, то под положительно смещенным электродом образуется область обедненная основными носителям - дырками. Они будут оттеснены вглубь кристалла - под электродом формируется потенциальная яма.

В основе работы ПЗС лежит явление внутреннего фотоэффекта. Когда, в кремнии поглощается фотон, то генерируется пара носителей заряда - электрон и дырка. Электростатическое поле в области пиксела "растаскивает эту пару, вытесняя дырку в глубь кремния. Неосновные носители заряда, электроны, будут накапливаться в потенциальной яме под электродом, к которому подведен положительный потенциал. Здесь они могут находиться достаточно длительное время, поскольку дырок в обедненной области нет и электроны не рекомбинируют. Носители, пределами обедненной области. сгенерированные за медленно диффундируют и рекомбинируют с решеткой прежде, чем попадут под действие градиента поля обедненной области. Носители, сгенерированные вблизи обедненной области, могут диффундировать в стороны и могут попасть под соседний электрод. В красном и инфракрасном диапазонах длин волн ПЗС имеют разрешение хуже, чем в видимом диапазоне, так как красные фотоны проникают глубже в кристалл кремния и зарядовый пакет размывается. Заряд, накопленный под одним электродом, в любой момент может быть перенесен под соседний электрод, если его потенциал будет увеличен, а потенциал первого электрода, будет уменьшен.

Перенос в трехфазном ПЗС можно выполнить в одном из двух направлений (влево или вправо). Все зарядовые пакеты линейки пикселов будут переноситься в ту же сторону одновременно. Двумерный массив (матрицу) пикселов получают с помощью стоп-каналов, разделяющих электродную структуру ПЗС на столбцы. Стоп каналы - это узкие области, формируемые специальными технологическими приемами в приповерхностной области, которые препятствуют растеканию заряда под соседние столбцы.

Рис.1.31 Линейки ПЗС

11. Колебания кристаллической решетки

Атомы в кристаллической решетке всегда находятся в состоянии колебаний около какого - то равновесного положения. Их амплитуда растет с ростом температуры. Равновесное положение атомов

кристаллической решетки определяется силами, которые действуют между ними.

Рис.1.32 Кристаллическая решетка

Огромное число взаимодействующих атомов делают точное аналитическое описание колебательного движения невозможным. Поэтому для описания колебательного движения прибегают к упрощенным модельным представлениям.

11.1 Уравнение колебаний для одного атома и для цепочки атомов

Можно рассмотреть, например, одномерный кристалл, состоящий из цепочки атомов, вытянутой вдоль оси *x*.

Рис.1.33 Одномерный кристалл

Рис.1.34 Волны в одномерном кристалле

По закону Гука сила, действующая на атом, $F = -\kappa x$, где x - смещение от положения равновесия.

Для цепочки атомов:

$$F_{n,n+1} = -\kappa (x_n - x_{n+1})$$

$$F_{n,n-1} = -\kappa (x_n - x_{n-1})$$

$$F_n = -\kappa (2x_n - x_{n+1} - x_{n-1})$$
(1.36)

Уравнение колебаний для одного атома:

$$F_n = m_n \frac{d^2 x_n}{dt^2}, \qquad (1.37)$$

m - масса *n*-го атома. Для цепочки атомов:

$$m_n \frac{d^2 x_n}{dt^2} + \kappa (2x_n - x_{n+1} - x_{n-1}) = 0 \quad (1.38)$$

(1.37) и (1.38) - уравнения гармонических колебаний. Решение уравнения (1.38):

$$x_n = a_i \sin(\omega_i t - k_i x_n^*) \tag{1.39}$$

*а*_{*i*} - амплитуда *i*-ой волны; *а*_{*i*} - круговая частота ; *k*_{*i*} - волновое число;

 $k = \frac{2\pi}{\lambda}$, $x_n^* = d \cdot n$ - координата *n*-го (1.40) атома цепочки; *d* - параметр

кристаллической решетки (расстояние между атомами, соответствующее минимальной энергии); *n* - порядковый номер *n* -го атома.

11.2 Фазовая и групповая скорость. Дисперсионный закон или дисперсионное соотношение. Дисперсионная кривая

Здесь необходимо также вспомнить о понятиях фазовой

$$u_p = \frac{\omega}{k} \tag{1.41}$$

и групповой скорости

$$u_G = \frac{d\omega}{dk} \tag{1.42}$$

Решение (38) получено для следующего соотношения между частотой ω и волновым числом *k*:

$$\omega = 2\sqrt{\frac{\kappa}{m_a}} \sin \frac{kx}{2} \tag{1.43}$$

(выражение (1.43) называется дисперсионным законом или дисперсионным соотношением).

Тогда
$$u_p = \frac{2}{k} \sqrt{\frac{\kappa}{m_a} \sin \frac{kx}{2}}$$
 и

$$u_G = x \sqrt{\frac{\kappa}{m_a}} \cos \frac{kx}{2}$$

Для малых *k*, т.е. для *длинных волн*, когда $\lambda >> d$, и $\sin \frac{kx}{2} \approx \frac{kx}{2}$.

$$u_p = u_G = x \sqrt{\frac{\kappa}{m_a}} \approx d \sqrt{\frac{\kappa}{m_a}}$$
(1.44)

(1.44) - скорость распространения звука в кристалле.

Т.е. кристалл можно рассматривать, как непрерывную среду. Для коротких волн ($\lambda << d$) нельзя пренебречь сосредоточением массы в отдельных точках. Кристалл ведет себя как среда с нормальной дисперсией и дискретность массы влияет на процесс колебаний. С уменьшением λ (или с увеличением k) снижается u_P . Цепочка из чередующихся атомов с массами m_{a1} и m_{a2} (рис.1.35) также совершает гармонические колебания,

Рис.1.35 Цепочка из чередующихся атомов с массами *m*_{a1} и *m*_{a2} дисперсионная зависимость для нее:

$$\omega_{1,2}^{2} = \frac{\omega_{0}^{2}}{2} \left[1 \pm \sqrt{1 - \frac{2m_{a1}m_{a2}}{(m_{a1} + m_{a2})^{2}} \sin^{2}\frac{kx}{2}} \right], \quad (1.45)$$

где:
$$\frac{2m_{a1}m_{a2}}{(m_{a1}+m_{a2})^2}$$
, $\omega_0 = 2\sqrt{\frac{(m_{a1}+m_{a2})\kappa}{2m_{a1}m_{a2}}}$ - приведенная масса

атомов 1 и 2.

Рис.1.36 Дисперсионная кривая

Выражение (1.45) показывает, что в цепочке, состоящей из атомов двух видов, дисперсионная кривая имеет две ветви: нижнюю ветвь, охватывающую в начальной части область звуковых колебаний ($k \rightarrow 0$ и $\omega \rightarrow 0$), называют акустической, а верхнюю ветвь, у которой при $k \rightarrow 0$ частоты ω соответствуют колебаниям инфракрасной части спектра – оптической.

В акустической ветви колеблющиеся атомы движутся синфазно частота колебаний обратно пропорциональна *λ* и равна величине:

$$\omega = \frac{2\pi v}{\lambda}, v - \text{скорость звука.}$$
(1.46)

12. Фонон

Для описания колебаний атомов твердого тела применяют корпускулярное описание. Для этого вводят понятие *фонон*. Фонон это квазичастица, которую описывают следующими выражениями для энергии и импульса:

$$\begin{cases} E_{\phi} = \eta \omega \\ \rho & \rho \\ p_{\phi} = \eta k \end{cases}, \tag{1.47}$$

 E_{Φ} - энергия фонона, $\stackrel{\omega}{\overline{P}_{\Phi}}$ - импульс фонона.

Минимальная длина волны колебаний кристаллической решетки λ_{min} определяется расстоянием между атомами d и

$$\lambda_{min} = 2d. \tag{1.48}$$

Максимальная длина волны λ_{max} определяется размером кристалла l и

$$\lambda_{max} = 2l. \tag{1.49}$$

Соответствующие частоты колебаний:

$$\omega_{\min} = \frac{\pi v}{l}, \ \omega_{\max} = \frac{\pi v}{d}$$

Можно также определить температуру, при которой могут возбуждаться электромагнитные колебания. Для этого нужно, чтобы выполнялось условие равенства энергий: $kT = \eta \omega_0$, *k* - постоянная Больцмана.

12.1 Температура Дебая

Температура, определяющая максимальную частоту тепловых колебаний, которые могут возбуждаться в данном кристалле называется температурой Дебая $\Theta_{\mathcal{I}}$ и определяется из выражения: $k\Theta_{\mathcal{I}} = \eta \omega_{max}$. Отсюда:

$$\Theta_{\mathcal{A}} = \frac{h\omega_{\max}}{k}.$$
 (1.50)

Температура Дебая для большей части кристаллов лежит в пределах от 150 К до 600 К. При отклонении атома твердого тела от положения равновесия, вызванное этим возмущение будет передаваться другим атомам и распространяться по телу в виде волны упругого колебания со скоростью звука. Коллективные колебания огромного числа атомов, образуют волны определенной длины. Тепловые колебания в твердом теле также рассматривают как звуковые волны, для которых вводят аналог фотона электромагнитной волны – квазичастицу или квант звуковой волны. Этот квант называют фононом.

Фонон – элементарная порция звуковой энергии в твердом теле, с энергией $E_{\phi} = \eta \omega$ и импульсом $p_{\phi} = \eta k$. Фононы, как и обычные частицы, могут иметь собственный механический момент – спин, *г*.

12.2 Рассеяние носителей заряда на акустических фононах

Невырожденный газ (в вырожденном газе все нижние уровни энергии электронами). Время свободного заполнены пробега (или время релаксации - τ_{pd})

 $\tau_{p\phi} = aT^{-3/2}; \ \tau_{p\phi} (E) \sim E^{-1/2}; \ \tau(E) = C_{m,p} Er,$ где *а* – константа,

Е - значение энергии электрона,

r = -1/2 - акустические фононы,

r = +1/2 - акустические фононы при т.н. пьезоэлектрическом рассеянии, С_{м.р}- постоянная, зависящая от механизма рассеяния.

Вырожденный газ

 $\tau_{\rm p\phi} \sim T^{-1}$, т.к. длина свободного пробега $l_{c.n} \sim T^{-1}$, а скорость движения носителей заряда в вырожденном газе не зависит от температуры.

12.3 Рассеяние носителей заряда на оптических фононах

1. При температуре ниже температуры Дебая,

 $T \ll \Theta_{\pi}$

В области *низких температур* концентрация фононов $n_{\phi} \sim T^3$ и времени свободного пробега температуры – зависимость ОТ экспоненциальная:

При
$$T \rightarrow 0$$
 $\tau_{p\phi} \sim e^{\frac{\eta\omega}{kT}} - 1$, $e^{\frac{\eta\omega}{kT}} >> 1$ ^и $\tau_{p\phi} \sim e^{\frac{\eta\omega}{kT}}$

2. При температуре $T \approx \Theta_{\mathcal{A}}$, $\tau_{p\phi} = bT^{1/2}$, или $\tau_{p\phi} \sim E^{-1/2}$, где b – константа.

3. При высоких температурах:

$$\frac{\eta\omega}{kT} \ll 1$$
, т.к. $\eta\omega \ll kT$ и $e^{\frac{\eta\omega}{kT}} - 1 \approx \frac{\eta\omega}{kT}$

и число фононов пропорционально kT. $au(E^r) = C_{M,p}E^r$ r = -1/2 - неполярные оптические фононы,

r = +1/2 - поляризационные оптические фононы.

12.4 Фононные спектры

В одномерной цепочке из атомов двух разных масс *m*_{a1} и *m*_{a2} (рис.1.37)

Рис.1.37 Одномерная цепочка из атомов двух разных масс *m*_{a1} и *m*_{a2}

существует две ветви колебаний, частоты которых равны:

$$f_{\pm} = \left\{ \kappa \left[\left(\frac{m_{a1} + m_{a2}}{m_{a1} m_{a2}} \right) \pm \sqrt{\left(\frac{m_{a1} + m_{a2}}{m_{a1} m_{a2}} \right)^2 - \frac{4\sin(kd)}{m_{a1} m_{a2}}} \right] \right\}^{\frac{1}{2}}$$

к- модуль упругости,

d - расстояние между ближайшими атомами в цепочке (d = const при равновесии; d=x - при колебаниях),

k - волновое число.

Рис.1.38 Координата (синяя кривая) и скорость (красная кривая) в одномерной цепочке из атомов двух разных масс m_{a1} и m_{a2} .

Рис.1.39 Спектр колебаний для одномерной цепочки из атомов двух разных масс *m*_{*a*1} и *m*_{*a*2}

Спектр колебаний массы *m*_{a1}

При *k*→0:

1. Частота f-~k. Это акустическая часть спектра, поскольку дисперсия ее длинноволнового участка совпадает с законом дисперсии звука, распространяющегося в среде.

$$f_{+} \rightarrow \left[2\kappa \left(\frac{m_{a1} + m_{a2}}{m_{a1}m_{a2}} \right) \right]^{\frac{1}{2}}$$

Оптическая часть спектра. Соответствующие частоты обычно находятся в оптической части диапазона колебаний. В акустической части спектра атомы с отличающимися массами движутся в одном направлении. В оптической части спектра атомы перемещаются в противоположных направлениях. Мы рассмотрели модельную, одномерную решетку. В трехмерных решетках эти колебания существенно сложнее, имеются три акустические и три оптические моды. В продольно поляризованных модах атомы смещаются в направлении, параллельном волновому вектору, а в поперечно-поляризованных модах – перпендикулярно. Имеются продольные акустические и продольно- оптические моды и соответственно поперечные акустические и поперечные оптические моды.

12.5 Другие механизмы рассеяния энергии

Кроме рассеяния на колебаниях кристаллической решетки существуют и другие механизмы рассеяния энергии. Рассматривают два механизма рассеяния:

1. Рассеяние на дислокациях. Из-за локальных деформаций кристаллической решетки. Фактически это как рассеяние носителей на акустических фононах. Вызывается тем, что дислокация всегда заряжена отрицательно, а вокруг этого заряда имеются дырки, которые ее экранируют. Таким образом - это рассеяние на ионизированной примеси.

2. Рассеяние на вакансиях. В кристалле всегда присутствуют вакансии, число которых с ростом температуры растет по экспоненте. Если вакансия имеет заряд, то ее рассматривают как ионизированную примесь. Для нейтральной вакансии зависимость времени релаксации *t*р от энергии и температуры будет такая же, как и в случае рассеяния на акустических фононах.

Совместное действие нескольких механизмов рассеяния.

Из-за того, что в реальных кристаллах существуют разнообразные дефектов (фононы, примеси, вакансии, дислокации), в них одновременно действуют несколько механизмов рассеяния. Для описания выделяют доминирующие механизмы рассеяния и определяют их вклад.

В реальных полупроводниках рассматривают два механизма:

1. Рассеяние на акустических фононах с рассеянием на ионизированной примеси. Это характерно для атомарных полупроводников (Ge, Si, алмаз);

2. Рассеяние на ионах и оптических фононах. Характерно для полупроводников с ионным типом межатомных связей (NaCl, PbS, PbSe).

Результирующее время свободного пробега au определяется из соотношения:

$$\frac{1}{\tau} = \sum_{i=1}^{n} \frac{1}{\tau_i} \tag{1.51}$$

Поверхностные состояния

Состояния неограниченного в пространстве кристалла существенно отличаются от состояний кристалла, размеры которого конечны и ограничены в пространстве. В таком кристалле возникают дополнительные состояния, в которых электроны локализованы на поверхности кристалла.

Помимо рассмотренных нами ранее объемных уровней энергии, появляются локальные уровни. Это приводит к тому, что носители заряда, электроны и дырки, образуют дополнительный поверхностный заряд. Тогда на поверхности под ним образуется равный и противоположный по знаку индуцированный заряд - поверхностный слой обогащается или обедняется.

Рис.1.40 Заряды на поверхности

Такие слои влияют на равновесные свойства полупроводников, на работу выхода, на электропроводность и т.д.

Обрыв периодичности

Основной причиной появления поверхностных состояний является обрыв периодичности кристаллической решетки у поверхности кристалла.

Рис.1.41 Рисунок из: С. Панкратов, В. Панов. Поверхности твердых тел. <u>http://n-t.ru/nj/nz/1986/0501.htm</u>

В безграничной кристаллической решетке спектр энергии электрона состоит из чередующихся непрерывных полос или зон, которые разделены «запрещенными» участками.

Рис.1.42 Спектр энергии в безграничной кристаллической решетке

Смыкание энергетических уровней отдельных атомов в непрерывные зоны вызвано «обобществлением» электронов в кристалле, когда электроны переходят от одного атома к другому, и энергетический спектр такого электрона в пределах разрешенной зоны близок к непрерывному.

В поверхностном слое химические связи у атомов оказываются разорванными и поверхностные электроны стремятся образовать новые связи.

Если поверхности отсутствуют на чужеродные атомы. то поверхностные электроны образуют добавочные связи между поверхностными атомами. Соседние атомы поверхностного слоя могут объединяться в пары, которые называют димерами. Атомы каждого димера сближаются друг с другом, одновременно удаляясь от соседних атомов на поверхности, вошедших в другие димеры. Изменяется период кристаллической решетки.

Рис.1.43 Рисунок из С. Панкратов, В. Панов. Поверхности твердых тел. <u>http://n-t.ru/nj/nz/1986/0501.htm</u>

Если решетка в объеме кубична и анизотропна, то на поверхности она становится изотропной и ее период в одном направлении начинает отличаться от периода в другом направлении.

Рис.1.44 Энергетические зоны

До сих пор рассматривался идеальный случай, когда поверхность является чистой, т.е. на ней отсутствуют чужеродные атомы.

Однако обычно поверхность покрыта окислами и чужеродными атомами. Эти атомы создают поверхностные электронные уровни энергии и могут обмениваться электронами с полупроводником. Такую же роль играют собственные структурные дефекты поверхности полупроводника. Их совокупное действие приводит к появлению так называемого поверхностного потенциала.

Рис.1.45 Поверхностный потенциал. q_e - заряд электрона; φ_S – поверхностный потенциал.

Поверхностный потенциал φ_S – разность потенциалов между поверхностью полупроводника и его объемом.

$$Y_{S} = \frac{q_{e}\varphi_{S}}{kT}$$
(1.52)

Y_S - безразмерный поверхностный потенциал.

При изменении поверхностного потенциала изменяется концентрация носителей заряда в приповерхностном слое полупроводника, что приводит к изменению его электропроводности. Тогда, например, для получения данных о поверхностных состояниях можно исследовать изменение заряда на поверхности при разных степенях чистоты обработки поверхности полупроводника.

Ток через бесконечно тонкий слой пластинки dx:

$$i = q_e(u_n n(x) + u_p p(x)) E dx, \qquad (1.53)$$

Е- вектор напряженности электрического поля.

Если зоны не искривлены, $Y_s = 0$ и изменение тока по сравнению с этим случаем:

$$\Delta i = q_e [u_n (n(x) - n_0) + u_p (p(x) - p_0)] E dx \quad (1.54)$$

Обозначим:

$$P = \int_{0}^{\infty} (p(x) - p_0) dx,$$
$$N = \int_{0}^{\infty} (n(x) - n_0) dx.$$

Тогда изменение проводимости по длине:

$$\Delta G = \frac{\Delta i}{\mathsf{E}} \tag{1.55}$$

или:

$$\Delta G = q_e u_p (P + bN), \ b = \frac{u_n}{u_p} .s$$
(1.56)

 ΔG - поверхностная проводимость.

Влияние поверхностного потенциала на электропроводность

Положительный потенциал - зоны искривляются вниз, край зоны проводимости приближается к уровню Ферми E_{Φ}

- ЗОНЫ
вверх,
слой

Уровень Ферми E_{Φ} ближе к валентной поэтому зоне, концентрация дырок В приповерхностном слое делается выше концентрации электронов, образуется инверсионный слой (здесь *р*-типа)

Список литературы

- 1. В.П. Бонч-Бруевич, С.Г. Калашников. Физика полупроводников. Уч.пос. для вузов. М.: «Наука», 1990
- 2. P. Ryder. Quantenphysik und statistische Physik. Universitaet Bremen, 2003
- 3. Einführung in die FestkörperphysikDi 10:00-11.00 HG2, HS2 Do 08:00-10.00 HG2, HS2C.Westphal <u>Homepage/Programm</u>. <u>http://e1.physik.uni-dortmund.de/</u>
- 4. J. Nygard. Tutorial on Electronic Transport. Niels Bohr Institute University of Copenhagen. <u>http://nanotube.msu.edu/nt05/abstracts/NT05tutor-Nygard.pdf</u>

В 2009 году Университет стал победителем многоэтапного конкурса, в результате которого определены 12 ведущих университетов России, которым присвоена категория «Национальный исследовательский университет». Министерством образования и науки Российской Федерации была утверждена программа его развития на 2009–2018 годы. В 2011 году Университет получил наименование «Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики»

КАФЕДРА ЭЛЕКТРОНИКИ

Заведующий кафедрой: д.т.н., проф. Г.Н. Лукьянов.

Кафедра Электроники (первоначальное название "Радиотехники") была основана в 1945 году. Первым руководителем кафедры был С.И. Зилитинкевич известный в стране и за рубежом ученый в области физической электроники и радиотехники, активный работник высшей школы, заслуженный деятель науки и техники РСФСР, доктор технических наук, профессор ЛИТМО с 1938 г., инициатор создания в ЛИТМО инженерно-физического и радиотехнического факультетов (1946г.). С.И. Зилитинкевич заведовал кафедрой с 1945 до 1978 года. Под его научным руководством аспирантами и соискателями выполнено более 50 кандидатских диссертаций, многие его ученики стали докторами наук.

В дальнейшем, с 1978 г. по 1985 г. кафедру возглавил к.т.н., доцент Е.К. Алахов, один из учеников С.И. Зилитинкевича.

С 1985 г. по 2006 г. руководителем кафедры стал д.т.н., профессор В.В. Тогатов, известный специалист в области силовой электроники и приборов для измерения параметров полупроводниковых структур.

Начиная с 2006 г. кафедрой заведует д.т.н., профессор Г.Н. Лукьянов, под руководством и при участии которого кардинально обновилось лабораторное оборудование в рамках инновационной программы развития.

Основные направления кафедры связаны с разработкой приборов для лазерной и медицинской техники, приборов для измерения параметров

полупроводниковых структур, а также встраиваемых цифровых и микропроцессорных устройств.

Под руководством В.В. Тогатова было разработано и изготовлено большое число приборов различного назначения:

- Измеритель параметров ультрабыстрых диодов;
- Универсальное устройство для исследования переходных процессов в силовых полупроводниковых структурах;
- Измеритель времени жизни заряда в слаболегированных областях диодных, тиристорных и транзисторных структур;
- Универсальный разрядный модуль для накачки твердотельных лазеров;
- и ряд других.

На кафедре написаны и размещены на сайте ЦДО следующие материалы для дистанционного обучения (автор Ю.В. Китаев):

- Конспект лекций по дисциплине "Электроника и микропроцессорная техника";
- свыше 600 вопросов к обучающим и аттестующим тестам;
- 18 дистанционных лабораторных и практических работ

На кафедре имеются следующие компьютеризированные учебные лаборатории:

- АРМС полупроводниковые приборы;
- Устройства на полупроводниковых приборах;
- Цифровая техника;
- Микропроцессорная техника
- Моделирование электронных устройств.

Лукьянов Г.Н., Белякова И.И.

Физика полупроводников

Учебное пособие

В авторской редакции Редакционно-издательский отдел НИУ ИТМО Зав. РИО Лицензия ИД № 00408 от 05.11.99 Подписано к печати Заказ № Тираж Отпечатано на ризографе

Н.Ф. Гусарова