

Е.И. Белкина

ОСНОВНЫЕ СВОЙСТВА ЭЛЕМЕНТОВ И ИХ СОЕДИНЕНИЙ СПРАВОЧНЫЕ ТАБЛИЦЫ 1 – 19

Учебно-методическое пособие

Санкт-Петербург 2017

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ УНИВЕРСИТЕТ ИТМО

Е.И. Белкина

ОСНОВНЫЕ СВОЙСТВА ЭЛЕМЕНТОВ И ИХ СОЕДИНЕНИЙ СПРАВОЧНЫЕ ТАБЛИЦЫ 1 – 19

Учебно-методическое пособие

Санкт-Петербург 2017 УДК 541 (083)

Белкина Е.И. Основные свойства элементов и их соединений. Справочные таблицы 1-19: Учеб.-метод. пособие. — СПБ.: Университет ИТМО; 2017. — 47 с.

Учебно-методическое пособие содержит справочные материалы табл. 1–19, необходимые для решения задач и выполнения лабораторных работ.

Учебно-методическое пособие предназначено для бакалавров, обучающихся по направлениям 19.03.01, 19.03.02, 19.03.03, 18.03.02, 16.03.02, 14.03.01, 23.03.03, 15.03.04, 15.03.02.

Рецензент: д.т.н. Шарова Н.Ю.

Рекомендовано к печати Ученым советом Мегафакультета биотехнологий и низкотемпературных систем протокол №6 от 9 марта 2017 г.

Университет ИТМО – ведущий вуз России в области информационных и фотонных технологий, один из немногих российских вузов, получивших в 2009 году статус национального исследовательского университета. С 2013 года Университет ИТМО – участник программы повышения конкурентоспособности российских университетов среди ведущих мировых научно-образовательных центров, известной как «5 – 100». Цель Университета ИТМО – становление исследовательского университета мирового предпринимательского уровня, типу, ориентированного интернационализацию направлений на всех деятельности.

© Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики, 2017 © Белкина Е И

СОДЕРЖАНИЕ

Методические указания	4
Таблица 1. Атомные массы элементов	4
Таблица 2. Важнейшие величины и их единицы	5
Таблица 3. Значения некоторых фундаментальных постоянных	7
Таблица 4. Давление P водяного пара при температуре t	8
Таблица 5. Стандартные энтальпии образования $\Delta H_{298}^{\rm o}$ и энтропии	
S_{298}^{o} некоторых веществ при температуре 298 К	9
Таблица 6. Плотности водных растворов некоторых кислот	
при температуре $20 ^{\circ}\text{C}$, г/см 3	11
Таблица 7. Плотности водных растворов некоторых щелочей	
при температуре 20 °C, г/см 3	12
Таблица 8. Криоскопическая $K_{\scriptscriptstyle T}$ и эбуллиоскопическая $\Theta_{\scriptscriptstyle T}$	
константы некоторых растворителей	12
Таблица 9. Коэффициент активности f_i	13
Таблица 10. Константы ионизации К некоторых кислот	
и оснований при температуре 298 К	14
Таблица 11. Характеристика кислотно-основных индикаторов	17
Таблица 12. Произведения растворимости ПР некоторых трудно-	
растворимых электролитов при температуре 298 К	18
Таблица 13. Константа нестойкости К _{нест} некоторых комплексных	
ионов в водных растворах при температуре 298 К	21
Таблица 14. Значения логарифмов констант устойчивости	22
Таблица 15. Ряд напряжений металлов	25
Таблица 16. Стандартные окислительно-восстановительные	
потенциалы	25
Таблица 17. Потенциалы электродов сравнения	
(при температуре 20 °C)*	30
Таблица 18. Мантиссы десятичных логарифмов	32
Таблица 19. Антилогарифмы	40

Методические указания

Данные методические указания содержат справочные материалы по физико-химическим свойствам элементов и их соединений, необходимые для решения задач при выполнении домашних и контрольных работ, сдаче коллоквиумов, зачетов и экзаменов по курсу общей, неорганической и аналитической химии.

Таблица 1 **Атомные массы элементов**

Элемент			Элемент		
Наименование	Обозна-	Атомная	Наименование	Обозна-	Атомная
Паншенование	чение	масса,	Панменование	чение	масса,
		а.е.м.			а.е.м.
Азот	N	14.007	Кадмий	Cd	112.41
Актиний	Ac	227	Калий	K	39.098
Алюминий	Al	26.981	Калифорний	Cf	251
Америций	Am	243	Кальций	Ca	40.08
Аргон	Ar	39.948	Кислород	O	15.999
Астат	At	210	Кобальт	Co	58.933
Барий	Ba	137.33	Кремний	Si	28.085
Берклий	Bk	247	Криптон	Kr	83.80
Бериллий	Be	9.012	Ксенон	Xe	131.30
Бор	В	10.81	Кюрий	Cm	247
Бром	Br	79.904	Лантан	La	138.905
Ванадий	V	50.941	Литий	Li	6.941
Висмут	Bi	208.980	Лютеций	Lu	174.967
Водород	Н	1.008	Магний	Mg	24.305
Вольфрам	W	183.86	Марганец	Mn	54.938
Гадолиний	Gd	157.25	Медь	Cu	63.546
Галлий	Ga	69.72	Молибден	Mo	95.94
Гафний	Hf	178.49	Мышьяк	As	74.922
Гелий	Не	4.003	Натрий	Na	22.989
Германий	Ge	72.59	Неодим	Nd	144.24
Гольмий	Но	164.930	Неон	Ne	20.179
Диспрозий	Dy	162.50	Нептуний	Np	237.048
Европий	Eu	151.96	Никель	Ni	58.70
Железо	Fe	55.84	Ниобий	Nb	92.906
Золото	Au	196.966	Олово	Sn	118.69
Индий	In	114.82	Осьмий	Os	190.2
Йод	J	126.904	Палладий	Pd	106.4
Иридий	Ir	192.20	Платина	Pt	195.09
Иттербий	Yb	173.04	Плутоний	Pu	224
Иттрий	Y	88.906	Полоний	Po	209

Элемент			Элемент		
Наименование	Обозна-	Атомная	Наименование	Обозна-	Атомная
Паименование	чение	масса,	Паименование	чение	масса,
		а.е.м.			а.е.м.
Празеодим	Pr	140.907	Теллур	Te	127.60
Прометий	Pm	145	Тербий	Tb	158.925
Протактиний	Pa	231.035	Технеций	Tc	98.906
Радий	Ra	226.025	Титан	Ti	47.90
Радон	Rn	222	Торий	Th	232.038
Рений	Re	186.207	Тулий	Tm	168.934
Родий	Rh	102.905	Углерод	C	12.011
Ртуть	Hg	200.59	Уран	U	238.029
Рубидий	Rb	85.467	Фосфор	P	30.974
Рутений	Ru	101.07	Франций	Fr	223
Самарий	Sm	150.4	Фтор	F	18.998
Свинец	Pb	207.2	Хлор	C1	35.453
Селен	Se	78.96	Хром	Cr	51.996
Cepa	S	32.06	Цезий	Cs	132.905
Серебро	Ag	107.868	Церий	Ce	140.12
Скандий	Sc	44.956	Цинк	Zn	65.38
Стронций	Sr	87.62	Цирконий	Zr	91.22
Сурьма	Sb	121.75	Эрбий	Er	167.26
Таллий	T1	204.37			
Тантал	Та	180.947			

Таблица 2 Важнейшие величины и их единицы

Величина		Единица			
Наименование	Обозна-	Наименование	Обо-	Связь с основной	
	чение в		значе-	единицей	
	форму-		ние		
	лах				
Длина	l	Метр	M	Основная единица	
Площадь	S	Квадратный метр	M^2	$1 \text{ m}^2 = 1 \text{ m} \cdot 1 \text{ m}$	
Объем	V	Кубический метр	M^3	$1 \text{ m}^3 = 1 \text{m} \cdot 1 \text{m} \cdot 1 \text{m}$	
Объем	V	Литр	Л	$1 \pi = 0.001 \text{m}^3$	

Продолжение табл.2

Величин	a	Единица			
	Обозна-		Обозна-		
Наименование	чение в	Наименование	чение в	Связь с основной	
	форму-		форму-	единицей	
	лах		лах		
Время	t	Секунда	c	Основная единица	
Скорость	v	Метр в секунду	м/с	$1 \text{ m/c} = 1 \text{m} \cdot \text{c}^{-1}$	
Macca	m	Килограмм	ΚΓ	Основная единица	
Количество	n	Моль	МОЛЬ	Основная единица	
вещества					
Число эквива-	$n_{\scriptscriptstyle \mathrm{9KB}}$	Моль	МОЛЬ		
лентов					
Молярная	M	Грамм на моль	г/моль		
масса	17	П	_/		
Молярный объем	$V_{\scriptscriptstyle \mathrm{M}}$	Литр на моль	л/моль		
Плотность	0	Килограмм на	$\kappa\Gamma/M^3$		
Плотноств	ρ	кубический метр	KI / WI		
Сила	F	Ньютон	Н	$1 H = 1 \kappa \Gamma \cdot M \cdot c^{-2}$	
		Килограмм-сила	кгс	1 кгс = 9,80665Н	
Давление	p	Ньютон на квад-	H/M^2		
		ратный метр			
		Паскаль	Па	$1 \Pi a = H \cdot M^{-2}$	
		Физическая	Атм	$1 \text{ aTM} = 101325 \text{ H·m}^{-2} =$	
		атмосфера		= 101325 Πa	
		Миллиметр	MM	1 мм рт.ст. = 133,32 Па	
D. C	4	ртутного столба	рт.ст.	1 п	
Работа	A = -	Ньютон-метр	Н∙м	1 Н⋅м = 1 Дж	
Энергия	E	Джоуль	Дж	$1 Дж = 1 Вт \cdot c$	
		Ватт-секунда	Вт∙с	$1 \text{ BT-c} = 1 \text{kgc-m}^2/\text{c}^2$	
		Килограмм-сила-	кгс∙м	1 кгс⋅м = 9,80665 Н⋅м	
Мощность	W	метр Ватт	Вт	$1 \text{ BT} = 1 \text{ H} \cdot \text{M/c}$	
Сила тока	I I		A		
	U	Ампер Вольт	A B	Основная единица 1 В = 1Вт/А	
Напряжение					
Сопротивление	R	Ом	Ом	1 Om = 1 B/A	

Величина		Единица			
Наименование	Обозна-	Наименование	Обозна-	Связь с основной	
Паименование	форму-	Патменование	форму-	единицей	
	лах		лах		
Электри-	Q	Кулон	Кл	1 Кл = 1 A·c	
ческий заряд	_	(ампер-секунда)			
(количество					
электричества)					
Температура	T	Кельвин	К		
	t	Градус Цельсия	$^{\mathrm{o}}\mathrm{C}$	Основная единица	
Количество	Q	Джоуль	Дж	Основная единица	
теплоты					

Таблица 3 Значения некоторых фундаментальных постоянных

Величина	Обозна- чение	Значение
Атомная единица массы	а.е.м.	1,6606·10 ⁻²⁷ кг
Масса покоя нейтрона	$m_{ m n}$	1,67495·10 ⁻²⁷ кг
Масса покоя протона	$m_{ m p}$	1,67265·10 ⁻²⁷ кг
Масса покоя электрона	$m_{ m e}$	$9,10953\cdot10^{-31}\mathrm{kg}$
Молярный объем идеального газа	V_{o}	$22,4138 \ л\cdot$ моль $^{-1}$
Скорость света в вакууме	С	$2,99792 \cdot 10^8 \mathrm{m} \cdot \mathrm{c}^{-1}$
Элементарный заряд	e	1,60219·10 ⁻¹⁹ Кл
Универсальная газовая постоянная	R	$8,31441$ Дж·моль $^{-1}$ ·К $^{-1}$
Постоянная Авогадро	$N_{ m A}$	$6,02204 \cdot 10^{23} \ \text{моль}^{-1}$
Постоянная Больцмана	$k = R \cdot N_{\rm A}^{-1}$	1,38066⋅10 ⁻²³ Дж⋅К ⁻¹
Постоянная Планка	h	6,62618⋅10 ⁻³⁴ Дж⋅с
Постоянная Фарадея	F	96484,56 Кл∙моль ⁻¹

Таблица 4 Давление p водяного пара при температуре t

t,°C	1)	t,°C	p		
ι, υ	мм рт. ст.	Па	ι, τ	мм рт. ст.	Па	
0	4,578	610,338	22	19,63	2643,73	
1	4,936	656,734	23	21,07	2809,05	
3	5,685	757,924	24	22,38	2983,70	
5	6,543	872,313	25	23,76	3167,68	
7	7,513	101,63	30	31,82	4242,24	
9	8,609	1147,75	35	42,19	5623,44	
10	9,209	1227,74	40	55,32	7375,26	
11	9,840	1311,87	45	71,88	9583,04	
12	10,52	1402,52	50	92,51	12333,4	
13	11,23	1497,18	55	118,0	15731,8	
14	11,99	1598,51	60	149,9	19918,0	
15	12,79	1705,16	65	187,5	24997,5	
16	13,63	1817,15	70	233,7	31156,9	
17	14,53	1937,14	75	289,1	38542,8	
18	15,48	2063,79	80	355,1	47342,6	
19	16,48	2197,11	90	525,76	70095,3	
20	17,54	2338,43	95	633,90	84512,8	
21	18,65	2486,42	100	760,00	101325	

Таблица 5 Стандартные энтальпии образования ΔH_{298}° и энтропии S_{298}° некоторых веществ при температуре 298 К

Вещество	$\Delta H_{298}^{\rm o}$,	S_{298}^{o} ,	Вещество	$\Delta H_{298}^{\rm o}$,	S ₂₉₈ ,
(агрегатное			(агрегатное		
состояние)	кДж/моль	Дж/моль-К	состояние)	кДж/моль	Дж/моль·К
Ag ⁺ (p)	105,9	73,9	$Cl_2(\Gamma)$	0	222,9
AgCl (к)	-127	96,0	Cl ⁻ (p)	-167,5	55,1
Al (ĸ)	0	28,3	$Cl_2O(\Gamma)$	76,6	266,2
AlCl ₃ (к)	-697,4	167,0	$ClO_2(\Gamma)$	105,1	257,0
$AlF_3(\kappa)$	-1299,9	96,1	$Cl_2O_7(\mathbf{x})$	251,0	_
$Al_2O_3(\kappa)$	-1675	50,94	$Cr_2O_3(\kappa)$	-1440,0	81,2
$Al_4C_3(\kappa)$	-195,3	130,9	Cu (к)	0	33,3
BN (κ)	-251	14,6	$CuCO_3(\kappa)$	-594,4	87,8
$B_2O_3(\kappa)$	-1276	53,9	$Cu_2S(\kappa)$	-82,01	119,24
ВеО (к)	-592,2	14,2	CuO (ĸ)	-162,0	42,6
$Br_2(\Gamma)$	30,92	245,3	$Cu_2O(\kappa)$	-167,3	93,7
Br ₂ (ж)	0	152,3	Fe (к)	0	27,2
С графит (к)	0	5,7	FeO (κ)	-264,8	60,8
С алмаз (к)	1,897	2,3	$Fe_2O_3(\kappa)$	-822,2	87,4
CCl ₄ (ж)	-135,4	214,4	$Fe_3O_4(\kappa)$	-1117,1	146,2
СН ₄ (г)	-74,9	186,2	FeS (κ)	-95,4	67,4
$C_2H_2(\Gamma)$	226,8	200,8	FeSO ₄ (κ)	-922,6	107,5
$C_2H_4(\Gamma)$	52,3	219,4	GeO (ĸ)	-305,4	50,2
$C_2H_6(\Gamma)$	-89,7	229,5	$GeO_2(\kappa)$	-539,7	52,3
$C_6H_6(\mathbf{x})$	82,9	269,2	$H_2(\Gamma)$	0	130,5
СН ₃ ОН (ж)	-201,2	239,7	HBr (г)	-36,3	198,6
C_2H_5OH (ж)	-227,6	160,7	HCN (г)	135,0	113,1
СО (г)	-110,5	196,5	HCl (г)	-92,3	186,8
$CO_2(\Gamma)$	-393,5	213,7	HF (Γ)	-270,7	178,7
$COCl_2(\Gamma)$	-223,0	289,2	НІ (г)	26,9	206,5
COS (r)	-137,2	231,5	$HN_3(\mathbf{x})$	294,0	328,0
Са (к)	0	41,6	$H_2O(\Gamma)$	-241,8	188,7
$CaC_2(\kappa)$	-62,8	70,3	$H_2O(x)$	-285,8	70,1
$CaCO_3(\kappa)$	-1207,0	88,7	$H_2O(\kappa)$	-291,8	39,3
CaF ₂ (κ)	-1214,6	68,9	$H_2O_2(\mathbf{ж})$	-187,0	105,9
Ca_3N_2 (κ)	-431,8	105	$H_2S(\Gamma)$	-21,0	205,7
СаО (к)	-635,5	39,7	$H_2SO_4(ж)$	-811,3	156,9
$Ca(OH)_2$ (κ)	-986,6	76,1	KCl (κ)	-435,9	82,6
CaSO ₄ (κ)	-1424,0	106,7	KClO ₃ (к)	-391,2	143,0

Вещество (агрегатное состояние)	$\Delta H_{298}^{ m o},$ кДж/моль	$S_{298}^{ m o},$ Дж/моль·К	Вещество (агрегатное состояние)	$\Delta H_{298}^{ m o},$ кДж/моль	S ^o ₂₉₈ , Дж/моль∙К
Mg (ĸ)	0	32,5	$O_2(\Gamma)$	0	205,0
$MgCO_3$ (κ)	-1096,2	67,7	$O_3(\Gamma)$	142,3	238,8
MgCl ₂ (к)	-641,1	89,9	$OF_2(\Gamma)$	25,1	247,0
$Mg_3N_2(\kappa)$	-461,1	87,9	$PH_3(\Gamma)$	17,1	210,1
MgO (ĸ)	-601,8	26,9	$P_2O_3(\kappa)$	-820,0	173,5
$Mg(OH)_2(\kappa)$	-924,7	63,1	$P_2O_5(\kappa)$	-1492,0	114,5
$N_2(\Gamma)$	0	191,5	Pb (κ)	0	64,9
$NH_3(\Gamma)$	-46,2	192,6	PbO (κ)	-219,3	66,1
$NH_4Cl(\kappa)$	-315,4	94,6	$PbO_2(\kappa)$	-276,6	74,9
$NH_4NO_2(\kappa)$	-256,0	_	S (ромб)	0	31,88
$NH_4NO_3(\kappa)$	-365,4	151,9	$SO_2(\Gamma)$	-296,9	248,1
$(NH_4)_2SO_4(\kappa)$	-1179,3	220,3	$SO_3(\Gamma)$	-395,8	256,7
$N_2O(\Gamma)$	82,0	219,9	SiCl ₄ (ж)	-687,8	239,7
NO (Γ)	90,3	210,6	SiH ₄ (Γ)	34,7	204,6
$N_2O_3(\Gamma)$	83,3	307,0	SiO_2 (к) кварц	-911,55	41,7
$NO_2(\Gamma)$	33,5	240,2	SnO (k)	-286,17	56,5
$N_2O_4(\Gamma)$	9,6	303,8	$SnO_2(\kappa)$	-581,17	52,3
$N_2O_5(\Gamma)$	-42,7	178,0	Тi (к)	0	30,6
NaCl (ĸ)	-410,9	72,4	TiCl ₄ (ж)	-804,7	252,6
NaOH (к)	-462,6	64,2	$TiO_2(\kappa)$	-943,9	50,3
$Na_2CO_3(\kappa)$	-1129,0	136,0	$WO_3(\kappa)$	-842,7	75,9
Ni (ĸ)	0	29,9	Zn (ĸ)	0	41,6
NiO (κ)	-239,7	38,0	ZnO (ĸ)	-350,6	43,6

Таблица 6 Плотности водных растворов некоторых кислот при температуре 20 °C, г/см 3

Массовая доля растворенного вещества, %	H ₂ SO ₄	HNO ₃	HCl	Массовая доля растворенного вещества, %	H ₂ SO ₄	HNO ₃
4	1,025	1,020	1,018	54	1,435	1,334
6	1,038	1,031	1,028	56	1,456	1,345
8	1,052	1,043	1,038	58	1,477	1,356
10	1,066	1,054	1,047	60	1,489	1,367
12	1,080	1,066	1,057	62	1,520	1,377
14	1,095	1,078	1,068	64	1,542	1,387
16	1,109	1,090	1,078	66	1,565	1,396
18	1,124	1,103	1,088	68	1,587	1,405
20	1,139	1,115	1,098	70	1,611	1,413
22	1,155	1,128	1,108	72	1,634	1,422
24	1,170	1,140	1,119	74	1,657	1,430
26	1,186	1,153	1,129	76	1,681	1,438
28	1,202	1,167	1,139	78	1,704	1,445
30	1,219	1,180	1,149	80	1,727	1,452
32	1,235	1,193	1,159	82	1,749	1,459
34	1,252	1,207	1,169	84	1,769	1,466
36	1,268	1,221	1,179	86	1,887	1,472
38	1,286	1,234	1,189	88	1,802	1,477
40	1,303	1,246	1,198	90	1,814	1,483
42	1,321	1,259	_	92	1,824	1,487
44	1,338	1,272	_	94	1,831	1,491
46	1,357	1,275	_	96	1,836	1,495
48	1,376	1,298	_	98	1,837	1,501
50	1,395	1,310	_	100	1,831	1,513
52	1,415	1,322	_			

Таблица 7
Плотности водных растворов некоторых щелочей при температуре 20 °C, г/см³

Массовая доля растворенного вещества,	КОН	NaOH	NH ₃	Массовая доля растворенного вещества, %	КОН	NaOH	NH ₃
4	1,035	1,043	0,981	28	1,267	1,306	0,898
6	1,053	1,065	0973	30	1,288	1,329	0,892
8	1,072	1,087	0,965	32	1,309	1,349	_
10	1,090	1,109	0,958	34	1,330	1,370	0,898
12	1,109	1,131	0,950	36	1,359	1,390	0,892
14	1,126	1,153	0,943	38	1,373	1,410	_
16	1,147	1,175	0,935	40	1,396	1,430	_
18	1,167	1,197	0,930	42	1,416	1,449	_
20	1,186	1,219	0,923	44	1,441	1,469	_
22	1,206	1,241	0,916	46	1,464	1,487	_
24	1,226	1,263	0,910	48	1,487	1,507	_
26	1,247	1,285	0,904	50	1,510	1,525	_

Таблица 8

Криоскопическая $K_{\scriptscriptstyle T}$ и эбуллиоскопическая $\Theta_{\scriptscriptstyle T}$ константы некоторых растворителей

Растворитель	Температура	$K_{\scriptscriptstyle \mathrm{T}}$	Температура	$\mathfrak{I}_{\mathtt{T}}$
	плавления, °С		кипения, °С	
Анилин	-5,96	5,87	184,4	3,69
Бензол	5,48	5,07	80,2	2,57
Вода	0	1,86	100,0	0,52
Уксусная кислота	16,65	3,90	118,5	3,07
Фенол	40,7	7,27	182,1	3,60
Хлороформ	-63,1	4,9	61,12	3,80
Четыреххлористый	-24,7	29,8	76,7	5,3
углерод				
Этиловый спирт	-114,0	_	78,5	1,16
Диэтиловый эфир	-117,6	1,73	34,6	2,02
Сероуглерод	_	_	46,2	2,29

Таблица 9

Коэффициент активности	f_i
------------------------	-------

Ионная сила,	3аряд иона, z					
I	±1	±2	±3	±4		
0,001	0,96	0,86	0,73	0,56		
0,005	0,92	0,72	0,51	0,30		
0,01	0,89	0,63	0,39	0,19		
0,05	0,84	0,50	0,21	0,062		
0,1	0,81	0,44	0,16	0,037		
0,2	0,80	0,41	0,14	0,028		
0,3	0,81	0,42	0,14	0,032		
0,4	0,82	0,45	0,17	0,042		
0,5	0,84	0,50	0,21	0,062		
0,6	0,87	0,56	0,27	0,098		
0,7	0,89	0,63	0,36	0,16		
0,8	0,92	0,72	0,48	0,27		
0,9	0,96	0,83	0,66	0,48		
1,0	0,99	0,96	0,91	0,85		

Расчет коэффициента активности f_i в растворах с различной ионной силой:

1. В разбавленных растворах с ионной силой $I \le 0.05$

$$\lg f_i = -0.5 z_i^2 \sqrt{I}$$
,

где z — заряд иона.

2. В разбавленных растворах с ионной силой $I \le 0,1$

$$\lg f_i = -0.5z_i^2 \frac{\sqrt{I}}{1 + 1.5\sqrt{I}}.$$

3. При высоких значениях ионной силы раствора $\mathit{I} \leq 1$

$$\lg f_i = -0.5z_i^2 \sqrt{I} / (1 + 1.5\sqrt{I}) - 0.2\sqrt{I}.$$

Таблица 10 Константы ионизации К некоторых кислот и оснований при температуре 298 К

Электролит	Формула	Ступень ионизации	К	рК
Нео	рганические к	ислоты		
Азидная (азотистоводородная)	HN_3	_	$2,0\cdot10^{-5}$	4,70
Азотистая	HNO_2	_	$6,9 \cdot 10^{-4}$	3,16
Алюминиевая	$HAlO_2$	_	$3,0\cdot10^{-13}$	12,40
Борная	H_3BO_3	1	$7,1\cdot10^{-10}$	9,15
•		2	$1.8 \cdot 10^{-13}$	12,74
		3	$1,6\cdot10^{-14}$	13,80
Бромноватая	$HBrO_3$	_	$2 \cdot 10^{-1}$	0,7
Бромноватистая	HBrO	_	$2,2\cdot10^{-8}$	8,66
Двухромовая	$H_2Cr_2O_7$	2	$2,3\cdot10^{-2}$	1,64
Дитионовая	$H_2S_2O_6$	1	$6,3\cdot10^{-1}$	0,2
	2 2 0	2	$4,0.10^{-4}$	3,4
Йодная	H_5IO_6	1	$2,45\cdot10^{-2}$	1,61
, ,	3 0	2	$4,3\cdot10^{-9}$	8,33
		3	$1,0.10^{-15}$	15,0
Йодноватая	HIO_{3}	_	$1,6.10^{-1}$	0,79
Йодноватистая	HIO	_	$2,3\cdot10^{-11}$	10,64
Кремниевая	H_2SiO_3	1	$2,2\cdot10^{-10}$	9,66
	2 3	2	$1,6\cdot10^{-12}$	11,80
Марганцовистая	H_2MnO_4	1	$1,0.10^{-1}$	1,0
,		2	$7,1\cdot10^{-11}$	10,15
Мышьяковая	H_3AsO_4	1	$5,6\cdot10^{-3}$	2,25
	, , , , , , , , , , , , , , , , , , ,	2	$1,7.10^{-7}$	6,77
		3	$2,95\cdot10^{-12}$	11,53
Мышьяковистая	H_3AsO_3	1	$5.9 \cdot 10^{-10}$	9,23
Пероксид водорода	H_2O_2	1	$2,63\cdot10^{-12}$	11,58
Роданистоводородная	HSCN	_	$1,4\cdot 10^{-2}$	0,85
Серная	H_2SO_4	2	$1,15\cdot10^{-2}$	1,94
Сернистая	H_2SO_3	1	$1,4.10^{-2}$	1,85
•	-	2	$6,2\cdot10^{-8}$	7,20
Сероводородная	H_2S	1	$1,02\cdot10^{-7}$	6,99
		2	$2,5\cdot 10^{-13}$	12,60

Продолжение табл. 10

Электролит	Формула	Ступень ионизации	К	рК
Теллуристая	H ₂ TeO ₃	1	$2,7\cdot10^{-3}$	2,57
	1121003	2	$1.8 \cdot 10^{-8}$	7,74
Теллуровая	H ₂ TeO ₄	1	$2,45\cdot10^{-8}$	7,61
1 Court postari	1121004	2	$1,1\cdot 10^{-11}$	1095
Теллуроводородная	H ₂ Te	1	$2,3\cdot10^{-3}$	2,64
Готородородия		2	$6,9\cdot10^{-13}$	12,16
Тетраборная	$H_2B_4O_7$	1	$1.8 \cdot 10^{-4}$	3,74
The state of	2 4-7	2	$2,0.10^{-8}$	7,70
Тиосерная	$H_2S_2O_3$	1	$2,5 \cdot 10^{-1}$	0,60
The state of the s	22 - 3	2	$1,9 \cdot 10^{-2}$	1,72
Угольная	H_2CO_3	1	$4,45\cdot10^{-7}$	6,35
	2 3	2	$4,69 \cdot 10^{-11}$	10,33
Фосфористая	H_3PO_3	1	$3,1\cdot10^{-2}$	1,51
		2	$1,6.10^{-7}$	6,69
Фосфорная	H_3PO_4	1	$7,1\cdot10^{-3}$	2,15
	J 1		$6,2\cdot10^{-8}$	7,21
		2 3	$5,0.10^{-13}$	12,30
Фтороводородная	HF	_	$6,6\cdot10^{-4}$	3,18
Хлористая	HClO ₂	_	$1,1\cdot 10^{-2}$	1,97
Хлорноватистая	HClO	_	$2,95\cdot10^{-8}$	7,53
Хромовая	H ₂ CrO ₄	1	$1,6\cdot10^{-1}$	0,80
1		2	$3,2\cdot10^{-7}$	6,50
Цианистоводородная	HCN	_	$5,0.10^{-10}$	9,30
Циановая	HOCN	_	$2,7\cdot10^{-4}$	3,57
	рганические ки	слоты	,	
	Î	1	$1,3\cdot 10^{-3}$	2.80
Винная	$H_2C_4H_4O_6$	2	$3,0.10^{-5}$	2,89 4,52
Лимонная	$H_4C_6H_4O_7$	1	$7,4\cdot10^{-4}$	3,13
Пимонная	114C6114O7	2	$2,2\cdot10^{-5}$	4,66
		3	$4.0 \cdot 10^{-7}$	6,40
		4	$1,0.10^{-16}$	16,0
Молочная	$C_3H_6O_3$	_	$1,0^{\circ}10^{\circ}$ $1,5\cdot10^{-4}$	3,83
Муравьиная	HCOOH	_	$1,772 \cdot 10^{-4}$	3,752
Уксусная	CH ₃ COOH	_	$1,772 \cdot 10$ $1,754 \cdot 10^{-5}$	4,756
Фенол	C_6H_5OH	_	$1,01\cdot 10^{-10}$	9,998
Хлоруксусная	CH ₂ ClCOOH	_	$1,01^{\circ}10^{-3}$	2,85
Шавелевая	$H_2C_2O_4$	1	$6.5 \cdot 10^{-2}$	1,187
Пцивелевия	1120204	2	$5,18 \cdot 10^{-5}$	4,296
			Оконпание	

Электролит	Формула	Ступень ионизации	К	рК
Этилендиаминтетрауксусная	H_6Y^{2+}	1	0,126	0,9
1 3 3	Ŭ	2	0,025	1,6
		3	0,010	2,0
		4	$2,1\cdot10^{-3}$	2,67
		5	$6,9 \cdot 10^{-7}$	6,16
		6	$5,5\cdot10^{-11}$	10,26
Янтарная	$H_2C_4H_4O_4$	1	$6,21\cdot10^{-5}$	4,207
		2	$2,31\cdot10^{-6}$	5,636
Неорга	нические осно	ования		
Гидроксид алюминия	$Al(OH)_3$	3	$1,38 \cdot 10^{-9}$	8,86
Гидроксид аммония	NH ₄ OH	_	$1,77 \cdot 10^{-5}$	4,752
Гидроксид бария	$Ba(OH)_2$	2	$2,3\cdot10^{-1}$	0,64
Гидроксид железа (II)	$Fe(OH)_2$	2	$1,3\cdot 10^{-4}$	3,89
Гидроксид железа (III)	Fe(OH) ₃	2	$1,82 \cdot 10^{-11}$	10,74
		3	$1,35 \cdot 10^{-12}$	11,87
Гидроксид кадмия	$Cd(OH)_2$	2 2	$5,0\cdot10^{-3}$	2,30
Гидроксид кальция	$Ca(OH)_2$		$4,0\cdot10^{-2}$	1,40
Гидроксид кобальта (II)	$Co(OH)_2$	2 2 2	$4,0.10^{-5}$	4,4
Гидроксид магния	$Mg(OH)_2$	2	$2,5\cdot10^{-3}$	2,60
Гидроксид марганца (II)	$Mn(OH)_2$		$5,0.10^{-4}$	3,30
Гидроксид меди (II)	$Cu(OH)_2$	2 2	$3,4\cdot10^{-7}$	6,47
Гидроксид никеля (II)	$Ni(OH)_2$		$2,5\cdot10^{-5}$	4,6
Гидроксид свинца (A) (II)	$Pb(OH)_2$	1	$9,55\cdot10^{-4}$	3,02
		2	$3,0.10^{-8}$	7,52
Гидроксид стронция	$Sr(OH)_2$	2	$1,50\cdot10^{-1}$	0,82
Гидроксид хрома (III)	$Cr(OH)_3$	3	$1,02 \cdot 10^{-10}$	9,99
Гидроксид цинка	$Zn(OH)_2$	2	$4,0.10^{-5}$	4,4
Орган	ические основ			
Анилин	$C_6H_5NH_2\cdot H_3$	₂ O -	$3,82 \cdot 10^{-10}$	9,418
Пиридин	C_6H_5N	_	$1,7\cdot 10^{-9}$	8,77

Таблица 11 **Характеристика кислотно-основных индикаторов**

Индикатор	рК	Интервал	Окр	аска
индикатор	pix	изменения	кислотной	щелочной
		окраски	формы	формы
Кристаллический		0,0-2,0	Зеленая	Фиолетовая
фиолетовый				
Тимоловый голубой	1,5	1,2-2,8	Красная	Желтая
Тропеолин ОО		1,4-3,2	Красная	Желтая
β-динитрофенол	3,69	2,2-4,0	Бесцветная	Желтая
Метиловый	3,7	3,1-4,4	Красная	Желтая
оранжевый	2 00		274	T .
Бромфеноловый голубой	3,98	3,0 – 4,6	Желтая	Голубая
α–динитрофенол	4,00	2,8-4,5	Бесцветная	Желтая
Бромкрезоловый	4,67	3,8-5,4	Желтая	Голубая
зеленый	,	-,,		J - 1
Метиловый красный	5,1	4,2-6,3	Красная	Желтая
ү-динитрофенол	5,2	4,0-5,5	Бесцветная	Желтая
Бромкрезоловый	6,3	5,2-6,8	Желтая	Пурпурная
пурпурный				
Лакмус		5,0-8,0	Красная	Синяя
Бромтимоловый	7,0	6,0-7,6	Желтая	Голубая
голубой				-
п-нитрофенол	7,1	5,6 – 7,6	Бесцветная	Желтая
Феноловый красный	7,9	6,8 - 8,4	Желтая	Красная
Нейтральный красный		6,8 - 8,0	Красная	Желто-
				коричневая
Крезоловый красный	8,3	7,2-8,8	Желтая	Красная
μ-нитрофенол	8,35	6,7 - 8,4	Бесцветная	Желтая
Тимоловый голубой	8,9	8,0-9,6	Желтая	Голубая
Фенолфталеин	9,4	8,3 - 10,0	Бесцветная	Красная
Тимолфталеин		9,3-10,5	Бесцветная	Синяя
Ализариновый		10,1-12,0	Желтая	Фиолетовая
желтый				

Таблица 12 Произведения растворимости ПР некоторых труднорастворимых электролитов при температуре 298 К

Электролит	Произведение концентраций ионов	Произведение растворимости ПР	$p\Pi P = -lg\Pi P$				
	Гидроксиды						
AgOH	$[Ag^{+}][OH^{-}]$	$1,6\cdot10^{-8}$	7,80				
Al(OH) ₃	$[Al^{3+}][OH^{-}]^{3}$	$1,0.10^{-32}$	32,00				
$Ca(OH)_2$	$[Ca^{2+}][OH^{-}]^{2}$	$5,5\cdot10^{-6}$	5,26				
$Cd(OH)_2$	$[Cd^{2+}][OH^{-}]^{2}$	$2,2\cdot 10^{-14}$	13,66				
$Co(OH)_2$	$[\text{Co}^{2+}][\text{OH}^{-}]^{2}$	$6,3\cdot10^{-15}$	14,20				
$Cr(OH)_3$	$[Cr^{3+}][OH^{-}]^{3}$	$6,3\cdot10^{-31}$	30,20				
Cu(OH) ₂	$[Cu^{2+}][OH^{-}]^{2}$	$2,2\cdot 10^{-20}$	19,66				
Fe(OH) ₂	$[Fe^{2+}][OH^{-}]^{2}$	$8,0.10^{-16}$	15,1				
Fe(OH) ₃	[Fe ³⁺][OH ⁻] ³	$6.3 \cdot 10^{-38}$	37,2				
$Mg(OH)_2$	$[Mg^{2+}][OH^{-}]^{2}$	$6,0\cdot10^{-10}$	9,22				
$Mn(OH)_2$	$[Mn^{2+}][OH^{-}]^{2}$	$1,9 \cdot 10^{-13}$	12,72				
$Ni(OH)_2$	$[Ni^{2+}][OH^{-}]^{2}$	$2,0\cdot10^{-15}$	14,70				
Sb(OH) ₃	$[Sb^{3+}][OH^{-}]^{3}$	$4,0.10^{-42}$	41,4				
$Sn(OH)_2$	$[Sn^{2+}][OH^{-}]^{2}$	$6,3\cdot10^{-27}$	26,20				
$Zn(OH)_2$	$[Zn^{2+}][OH^{-}]^{2}$	$1,2\cdot 10^{-17}$	16,92				
, ,	Сульс	фиды					
Ag_2S	$[Ag^{+}]^{2}[S^{2-}]$	$2,0\cdot10^{-50}$	49,7				
Bi_2S_3	$[Bi^{3+}]^2[S^{2-}]^3$	$1,0\cdot10^{-97}$	97,0				
CdS	$[Cd^{2+}][S^{2-}]$	$1,6\cdot 10^{-28}$	27,8				
α-CoS	$[\text{Co}^{2+}][\text{S}^{2-}]$	$4.0 \cdot 10^{-21}$	20,40				
β-CoS	$[\text{Co}^{2+}][\text{S}^{2-}]$	$2,0.10^{-25}$	24,70				
CuS	$[Cu^{2+}][S^{2-}]$	$6.3 \cdot 10^{-36}$	35,20				
Cu_2S	$[Cu^{+}]^{2}[S^{2-}]$	$2.5 \cdot 10^{-48}$	47,60				
FeS	$[Fe^{2+}][S^{2-}]$	$5.0 \cdot 10^{-18}$	17,3				
HgS	$[Hg^{2+}][S^{2-}]$	$1.6 \cdot 10^{-52}$	58,1				
MnS	$[Mn^{2+}][S^{2-}]$	$2.5 \cdot 10^{-10}$	9,60				
α-NiS	[Ni ²⁺][S ²⁻]	$3,2\cdot10^{-19} \\ 1,0\cdot10^{-24}$	18,50				
β-NiS γ-NiS	[Ni ²⁺][S ²⁻] [Ni ²⁺][S ²⁻]	$1,0.10$ $2,0.10^{-26}$	24,0 25,70				
PbS	$[Pb^{2+}][S^{2-}]$	$2,0.10$ $2,5.10^{-27}$	26,60				
SnS	$[Sn^{2+}][S^{2-}]$	$2,5\cdot10$ $2,5\cdot10^{-27}$	26,6				
α -ZnS	$[Sn^{-}][S^{-}]$	$1,6.10^{-24}$	23,80				
β-ZnS	$[Zn^{2+}][S^{2-}]$	$2,5\cdot 10^{-22}$	21,6				

Продолжение табл. 12

Электролит	Произведение концентраций ионов	Произведение растворимости ПР	рПР = —lgПР			
Фториды						
CaF ₂	$[Ca^{2+}][F^{-}]^{2}$	$4,0\cdot10^{-11}$	10,40			
PbF ₂	$[Pb^{2+}][F^{-}]^{2}$	$2,7\cdot10^{-8}$	7,57			
	Хлорг	иды				
AgCl	$[Ag^{+}][Cl^{-}]$	$1,78 \cdot 10^{-10}$	9,75			
Hg_2Cl_2	$[Hg_2^{2+}][Cl^-]^2$	$1,30\cdot10^{-18}$	17,88			
PbCl ₂	$[Pb^{2+}][Cl^-]^2$	$1,60\cdot10^{-5}$	4,79			
	Брома					
AgBr	$[Ag^{+}][Br^{-}]$	$5,3\cdot10^{-13}$	12,28			
Hg_2Br_2	$[Hg_2^{2+}][Br^-]^2$	$5.8 \cdot 10^{-23}$	22,24			
PbBr ₂	$[Pb^{2+}][Br^{-}]^{2}$	$9,1\cdot10^{-6}$	5,04			
	Йоди					
AgI	$[Ag^{+}][I^{-}]$	$8,3\cdot10^{-17}$	16,08			
CuI	[Cu ⁺][I ⁻]	$1,1\cdot 10^{-12}$	11,96			
Hg_2I_2	$[Hg_2^{2+}][I^-]^2$	$4,5\cdot 10^{-29}$	28,35			
PbI ₂	$[Pb^{2+}][I^-]^2$	$1,1\cdot 10^{-9}$	8,98			
	Карбон	i				
Ag ₂ CO ₃	$[Ag^{+}]^{2}[CO_{3}^{2-}]$	$1,2\cdot 10^{-12}$	11,09			
BaCO ₃	$[Ba^{2+}][CO_3^{2-}]$	$4,0\cdot10^{-10}$	9,40			
CaCO ₃	$[Ca^{2+}][CO_3^{2-}]$	$3.8 \cdot 10^{-9}$	8,42			
CdCO ₃	$[Cd^{2+}][CO_3^{2-}]$	$1,0\cdot 10^{-12}$	12,0			
MgCO ₃	$[Mg^{2+}][CO_3^{2-}]$	$2,1\cdot10^{-5}$	4,68			
PbCO ₃	$[Pb^{2+}][CO_3^{2-}]$	$7,5\cdot 10^{-14}$	13,13			
SrCO ₃	$[\mathrm{Sr}^{2+}][\mathrm{CO}_{3}^{2-}]$	$1,1\cdot 10^{-10}$	9,96			
ZnCO ₃	$[Zn^{2+}][CO_3^{2-}]$	1,45·10 ⁻¹¹	10,84			

Продолжение табл. 12

Электролит	Произведение концентраций ионов	Произведение растворимости ПР	$p\Pi P = -lg\Pi P$			
	Оксала	ты				
BaC ₂ O ₄	$[Ba^{2+}][C_2O_4^{2-}]$	$1,1\cdot 10^{-7}$	6,96			
CaC ₂ O ₄	$[Ca^{2+}][C_2O_4^{2-}]$	$2,3\cdot10^{-9}$	8,64			
MgC_2O_4	$[Mg^{2+}][C_2O_4^{2-}]$	$8,5\cdot 10^{-5}$	4,07			
PbC ₂ O ₄	$[Pb^{2+}][C_2O_4^{2-}]$	$4.8 \cdot 10^{-10}$	9,32			
SrC ₂ O ₄	$[\mathrm{Sr}^{2+}][\mathrm{C}_2\mathrm{O}_4^{2-}]$	$1,6\cdot 10^{-7}$	6,80			
ZnC ₂ O ₄	$[Zn^{2+}][C_2O_4^{2-}]$	$2,75\cdot10^{-8}$	7,56			
	Сульфа	иты				
Ag_2SO_4	$[Ag^{+}]^{2}[SO_{4}^{2-}]$	$2,0\cdot10^{-5}$	4,7			
BaSO ₄	$[Ba^{2+}][SO_4^{2-}]$	$1,1\cdot 10^{-10}$	9,96			
CaSO ₄	$[Ca^{2+}][SO_4^{2-}]$	$2,5\cdot 10^{-5}$	4,6			
Hg ₂ SO ₄	$[Hg_2^{2+}][SO_4^{2-}]$	$6.8 \cdot 10^{-7}$	6,17			
PbSO ₄	$[Pb^{2+}][SO_4^{2-}]$	$1,6\cdot10^{-8}$	7,20			
SrSO ₄	$[Sr^{2+}][SO_4^{2-}]$	$3,2\cdot 10^{-7}$	6,49			
	Фосфа	ты				
Ag_3PO_4	$[Ag^{+}]^{3}[PO_{4}^{3-}]$	$1,3\cdot 10^{-20}$	19,89			
CaHPO ₄	$[Ca^{2+}][HPO_4^{2-}]$	$2,7\cdot10^{-7}$	6,57			
$Ca_3(PO_4)_2$	$[Ca^{2+}]^3[PO_4^{3-}]^2$	$2,0\cdot 10^{-29}$	28,70			
MgNH ₄ PO ₄	$[Mg^{2+}][NH_4^+][PO_4^{3-}]$	$2,5\cdot 10^{-13}$	12,6			
$Pb_3(PO_4)_2$	$[Pb^{2+}]^3[PO_4^{3-}]^2$	$7,9 \cdot 10^{-43}$	42,1			
Хроматы						
Ag ₂ CrO ₄	$[Ag^{+}]^{2}[CrO_{4}^{2-}]$	$1,1\cdot 10^{-12}$	11,95			
BaCrO ₄	$[Ba^{2+}][CrO_4^{2-}]$	$1,2\cdot 10^{-10}$	9,93			
CaCrO ₄	$[Ca^{2+}][CrO_4^{2-}]$	$7,1\cdot 10^{-4}$	3,15			
PbCrO ₄	$[Pb^{2+}][CrO_4^{2-}]$	$1,8 \cdot 10^{-14}$	13,75			
SrCrO ₄	$[Sr^{2+}][CrO_4^{2-}]$	$3,6\cdot10^{-5}$	4,44			

Окончание табл. 12

Электролит	Произведение концентраций ионов	Произведение растворимости ПР	$p\Pi P = -lg\Pi P$
	Другие сое	динения	
Ag ₃ AsO ₃	$[Ag^{+}]^{3}[AsO_{3}^{3-}]$	$1,0\cdot 10^{-17}$	17,0
Ag ₃ AsO ₄	$[Ag^{+}]^{3}[AsO_{4}^{3-}]$	$1,0\cdot 10^{-22}$	22,0
AgBrO ₃	$[Ag^+][BrO_3^-]$	$5,8\cdot10^{-5}$	4,24
AgCN	$[Ag^{+}][CN^{-}]$	$1,4\cdot 10^{-16}$	15,84
$Ag_3[Fe(CN)_6]$	$[Ag^{+}]^{3}[Fe(CN)_{6}^{3-}]$	$1,0.10^{-22}$	22,0
$Ag_4[Fe(CN)_6]$	$[Ag^{+}]^{4}[Fe(CN)_{6}^{4-}]$	$8,5\cdot10^{-45}$	44,07
AgSCN	[Ag ⁺][SCN ⁻]	$1,1\cdot 10^{-12}$	11,97
KHC ₄ H ₄ O ₆	$[K^+][HC_4H_4O_6^-]$	$3,0\cdot10^{-4}$	3,5

Таблица 13 Константа нестойкости К_{нест} некоторых комплексных ионов в водных растворах при температуре 298 К

Комплек-	Состав	Кнест	Комплек-	Состав	Кнест
сообразо-	комплексного		сообразо-	комплексного	
ватель	иона		ватель	иона	
Ag^+	$\left[\mathrm{Ag}(\mathrm{NH_3})_2\right]^+$	$5,9\cdot10^{-8}$	Co ²⁺	$[Co(NH_3)_6]^{2+}$	$4,1\cdot10^{-5}$
	$[AgCl_2]^-$	$9,1\cdot10^{-6}$		$\left[\text{Co(SCN)}_4\right]^{2-}$	2,0
	$[Ag(S_2O_3)]^-$	$1,5\cdot 10^{-9}$	Co ³⁺	$[Co(NH_3)_4]^{3+}$	$6,2\cdot10^{-36}$
	$[Ag(S_2O_3)_2]^{3-}$	$3,5\cdot10^{-14}$	Cu^+	$[Cu(CN)_2]^-$	$1,0\cdot 10^{-24}$
	$[Ag(S_2O_3)_3]^{5-}$	$7,1\cdot10^{-15}$	Cu ²⁺	$[Cu(NH_3)_4]^{2+}$	$9,3\cdot10^{-13}$
	$[Ag(CN)_2]^-$	$1,4.10^{-10}$		$\left[\text{Cu(CN)}_4 \right]^{2-}$	$5,0\cdot10^{-31}$
	$\left[Ag(CN)_3\right]^{2-}$	$2.8 \cdot 10^{-21}$	Fe^{2+}	$[Fe(CN)_6]^{4-}$	$1,3\cdot 10^{-37}$
	$\left[\mathrm{Ag}(\mathrm{CN})_4\right]^{3-}$	$3,8\cdot10^{-20}$	Fe ³⁺	$[Fe(CN)_6]^{3-}$	$1,3\cdot 10^{-44}$
Al^{3+}	$[AlF_6]^{3-}$	$2.1 \cdot 10^{-21}$		$[Fe(SCN)_3]$	$2,3\cdot10^{-5}$
Au^+	$[Au(CN)_2]^-$	$5,0.10^{-39}$		$[FeF_6]^{3-}$	$7,9 \cdot 10^{-17}$
Cd^{2+}	$[Cd(NH_3)_4]^{2+}$	$2.8 \cdot 10^{-7}$	Hg^{2+}	$[HgCl_4]^{2-}$	$6,0\cdot10^{-16}$
	$[CdCl_4]^{2-}$	$2,0.10^{-2}$	_	$[HgI_4]^{2-}$	$1,5\cdot 10^{-30}$
	$[Cd(CN)_3]^-$	$1,2\cdot10^{-14}$		$[Hg(SCN)_4]^{2-}$	$1.0 \cdot 10^{-22}$
	$\left[\text{Cd}(\text{CN})_4 \right]^{2-}$	$7.8 \cdot 10^{-18}$		$[\mathrm{Hg}(\mathrm{CN})_4]^{2-}$	$1,1\cdot 10^{-39}$
	$\left[\operatorname{CdI}_{4}\right]^{2-}$	$4.5 \cdot 10^{-6}$		$[Hg(CN)_6]^{4-}$	$2,4\cdot10^{-41}$
Zn^{2+}	$[Zn(NH_3)_4]^{2+}$	$2,0.10^{-9}$	Ni ²⁺	$[Ni(NH_3)_6]^{2+}$	$9.8 \cdot 10^{-9}$
	$\left[\operatorname{Zn}(\operatorname{CN})_4\right]^{2-}$	$2,0.10^{-17}$		$\left[Ni(CN)_4\right]^{2-}$	$1,0\cdot10^{-31}$
Sn ⁴⁺	$[\operatorname{SnCl}_6]^{2-}$	$1,5\cdot 10^{-1}$			

Таблица 14 Значения логарифмов констант устойчивости

Цент- ральный ион	lgK ₁	lgK _{1,2}	lgK _{1,2,3}	lgK _{1,2,3,4}	lgK _{1,2,3,4,5}	lgK _{1,2,3,4,5,6}	
	КОМПЛЕТ	КСЫ С НЕ	ЕОРГАНИ	ЧЕСКИМИ .	ЛИГАНДАМ	И	
		Компле	ксы с амм	иаком (NH ₃)			
Ag^+	3,32	7,23	_	_	_	_	
Au ⁺	_	27	_	_	_	_	
Cd^{2+}	2,51	4,47	5,77	6,56	6,26	4,56	
Co ²⁺	1,99	3,50	4,43	5,07	5,13	4,39	
Co ³⁺	7,3	14,0	20,1	25,7	30,8	35,21	
Cu ²⁺	3,99	7,33	10,6	12,03	11,43	8,9	
Ni ²⁺	2,67	4,79	6,40	7,47	8,10	8,01	
Zn ²⁺	2,18	4,43	6,74	8,70	_	_	
		Гидро	ксокомпле	ексы (ОН-)			
Ag^+	2,30	4,0	5,2	_	_	_	
Al^{3+}	9,0	_	27	33	_	_	
Ca ²⁺	1,46	11,0	_	_	_	_	
Co ²⁺	4,4	9,2	10,5	_	_	_	
Cu ²⁺	6,0	13,18	14,42	14,56	_	_	
Fe ²⁺	5,56	9,77	9,67	8,56	_	_	
Fe ³⁺	11,87	21,17	30,67	_	_	_	
Mg^{2+}	2,60	_	_	_	_	_	
Ni ²⁺	4,97	8,55	11,33	_	_	_	
Pb ²⁺	7,52	10,54	13,95	_	_	_	
Sn ²⁺	11,93	20,94	25,40	_	_	_	
Zn^{2+}	6,31	11,19	14,31	17,70	-	_	
		Родонид	ные компл	пексы (SCN)		
Ag^+	4,74	8,23	9,45	9,67	_	_	
Al^{3+}	1,74	2,40	2,30	2,91	_	_	
Ag ⁺ Al ³⁺ Ca ²⁺	1,72	1,6	1,8	-0,3	_	_	
Co^{2+}	3,03	4,33	4,63	4,53	4,23	3,23	
Cu ²⁺	_	17,60	20,40	21,20	_	_	
		Тиосульф	атные комп	лексы $(S_2O_3^{2-})$)		
Ag ⁺ Ca ²⁺	8,82	13,46	13,15	_	_	_	
Ca ²⁺	1,91	3,98	_	_	_	_	

Продолжение табл. 14

Цент-	lgK ₁	lgK _{1,2}	lgK _{1,2,3}	lgK _{1,2,3,4}	lgK _{1,2,3,4,5}	lgK _{1,2,3,4,5,6}
ральный		,		. , , , ,	_ ,,,,	,,,,,,
ион						
Cd^{2+}	3,94	6,48	8,2	_	_	_
Co^{2+}	2,05	_	_	_	_	_
Cu^{2+}	_	12,29	_	_	_	_
Fe ²⁺	2,0	_	_	_	_	_
Fe ³⁺	2,10	_	_	_	_	_
Mg^{2+}	1,79	_	_	_	_	_
Ni ²⁺	2,06	_	_	_	_	_
Pb ²⁺	2,07	5,13	6,35	7,2	_	_
Zn^{2+}	2,29	4,59	_	_	_	_
		Фтори	дные комі	плексы (F-)		
Ag^+	0,36	_	_	_	_	_
Ca^{2+}	1,01	_	_	_	_	_
Cd^{2+}	0,3	0,53	1,2	_	_	_
Cu^{2+}	1,23	_	_	_	_	_
Fe ³⁺	6,04	10,74	13,74	15,74	16,10	16,10
Mg^{2+}	1,82	_	_	_	_	_
Pb^{2+}	1,48	_	_	_	_	_
Zn^{2+}	1,26	_	_	_	_	_
		Хлорид	цные комп	лексы (Cl ⁻)		
Ag^{+}	3,04	5,04	5,04	5,30	_	_
Cu^{2+}	0,07	0,57	2,1	_	_	_
Fe ²⁺	0,36	0,40	_	_	_	_
Fe ³⁺	1,45	2,10	1,10	0,85	_	_
Pb ²⁺	1,62	2,44	2,04	1,0	_	_
Sn ²⁺	1,57	2,24	2,03	1,48	_	_
Zn ²⁺	0,19	0,18	1,4	1,52	_	_
		Цианид	ные комп.	лексы (CN ⁻)		
Ag^+	_	19,85	20,55	19,42	_	_
Cd^{2+}	5,18	9,60	13,92	17,11	_	_
Co ²⁺	_	_	_	_	_	19,09
Cu ²⁺	_	24,0	28,6	30,3	_	_
Fe ²⁺	_	_	_	_	18,6	36,9
Fe ³⁺	_	_	_	_	_	43,9
Ni ²⁺	_	_	22,26	31,0	30,3	
Zn^{2+}	_	11,07	16,05	19,62	_	_
		*			Омахи	ание табл 14

жомплексы с органическими лигандами Ад* 0,73 0,64 —	Цент-	lgK ₁	$lgK_{1,2}$	lgK _{1,2,3}	lgK _{1,2,3,4}	lgK _{1,2,3,4,5}	lgK _{1,2,3,4,5,6}	
КОМПЛЕКСЫ С ОРГАНИЧЕСКИМИ ЛИГАНДАМИ Ад* 0,73 0,64 —	ральный							
Аде* дегатные комплексы (СН3СОО¬) Са²+ дегат дег	ион							
Ад ⁺		КОМПЛЕКСЫ С ОРГАНИЧЕСКИМИ ЛИГАНДАМИ						
Cu²+ 2,23 3,63 - <td< td=""><td></td><td></td><td>Ацетатные</td><td>е комплекс</td><td>сы (СН3СОС</td><td>))</td><td></td></td<>			Ацетатные	е комплекс	сы (СН3СОС))		
Cu²+ 2,23 3,63 - <td< td=""><td>$Ag_{\underline{a}}^{+}$</td><td>0,73</td><td>0,64</td><td>_</td><td>_</td><td>_</td><td>_</td></td<>	$Ag_{\underline{a}}^{+}$	0,73	0,64	_	_	_	_	
Cu²+ 2,23 3,63 - <td< td=""><td>Ca^{2+}</td><td>0,98</td><td>_</td><td>_</td><td>_</td><td>_</td><td>_</td></td<>	Ca^{2+}	0,98	_	_	_	_	_	
Cu²+ 2,23 3,63 - <td< td=""><td>Co²⁺</td><td>1,46</td><td>_</td><td>_</td><td>_</td><td>_</td><td>_</td></td<>	Co ²⁺	1,46	_	_	_	_	_	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Cu^{2+}	2,23	3,63	_	_	_	_	
Mg²+ 1,25 — <	Fe ²⁺	3,2	6,1	8,3	_	_	_	
Mg²+ 1,25 — <	Fe ³⁺	3,38	6,1	8,7	_	_	_	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Me^{2+}	1,25	_	_	_	_	_	
Zn²+ 1,57 2,38 - - - Этилендиаминтетраацетатные комплексы (Y⁴-)[(OOCCH₂)₂N(CH₂)₂N(CH₂)₂N(CH₂COO)₂]⁴- Al³+ 16,5 10,59	Ni ²⁺	1,43	2,12	_	_	_	_	
Этилендиаминтетраацетатные комплексы $(Y^{4-})[(OOCCH_2)_2N(CH_2)_2N(CH_2COO)_2]^{4-}$ Al^{3+}		2,68	4,08	6,48	8,58	_	_	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Zn^{2+}	1,57	2,38	_	_	_	_	
Al ³⁺ 16,5 Ca ²⁺ 10,59 Cd ²⁺ 16,46 Co ²⁺ 16,31 Co ³⁺ 40,6 Cr ³⁺ 23,40 Fe ²⁺ 18,80 Fe ³⁺ 14,20 Hg ²⁺ 24,23 Hg ₂ ²⁺ 21,8 Mg ²⁺ 9,12 Mn ²⁺ 14,04 Ni ²⁺ 18,62 Pb ²⁺ 18,04 Sn ²⁺ 18,3 Sr ²⁺ 8,80								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(Y	(OOCC)	H_2 ₂ $N(CH_2)$	$_{2})_{2}N(CH_{2}COC)$	$O)_2]^{4-}$		
Cd ²⁺ 16,46 Co ²⁺ 16,31 Co ³⁺ 40,6 Cr ³⁺ 23,40 Fe ²⁺ 18,80 Fe ³⁺ 14,20 Hg ²⁺ 24,23 Hg ₂ ²⁺ 21,8 Mg ²⁺ 9,12 Mn ²⁺ 14,04 Ni ²⁺ 18,62 Pb ²⁺ 18,04 Sn ²⁺ 18,3 Sr ²⁺ 8,80	Al^{3+}	16,5						
Co ²⁺ 16,31 Co ³⁺ 40,6 Cr ³⁺ 23,40 Fe ²⁺ 18,80 Fe ³⁺ 14,20 Hg ²⁺ 24,23 Hg ₂ ²⁺ 21,8 Mg ²⁺ 9,12 Mn ²⁺ 14,04 Ni ²⁺ 18,62 Pb ²⁺ 18,04 Sn ²⁺ 18,3 Sr ²⁺ 8,80	Ca ²⁺							
Co ³⁺ 40,6 Cr ³⁺ 23,40 Fe ²⁺ 18,80 Fe ³⁺ 14,20 Hg ²⁺ 24,23 Hg ₂ ²⁺ 21,8 Mg ²⁺ 9,12 Mn ²⁺ 14,04 Ni ²⁺ 18,62 Pb ²⁺ 18,04 Sn ²⁺ 18,3 Sr ²⁺ 8,80	Cd^{2+}							
Fe ³⁺ 14,20 Hg ²⁺ 24,23 Hg ₂ ²⁺ 21,8 Mg ²⁺ 9,12 Mn ²⁺ 14,04 Ni ²⁺ 18,62 Pb ²⁺ 18,04 Sn ²⁺ 18,3 Sr ²⁺ 8,80	Co ²⁺	16,31						
Fe ³⁺ 14,20 Hg ²⁺ 24,23 Hg ₂ ²⁺ 21,8 Mg ²⁺ 9,12 Mn ²⁺ 14,04 Ni ²⁺ 18,62 Pb ²⁺ 18,04 Sn ²⁺ 18,3 Sr ²⁺ 8,80	Co ³⁺	40,6						
Fe ³⁺ 14,20 Hg ²⁺ 24,23 Hg ₂ ²⁺ 21,8 Mg ²⁺ 9,12 Mn ²⁺ 14,04 Ni ²⁺ 18,62 Pb ²⁺ 18,04 Sn ²⁺ 18,3 Sr ²⁺ 8,80	Cr^{3+}	23,40						
Fe ³⁺ 14,20 Hg ²⁺ 24,23 Hg ₂ ²⁺ 21,8 Mg ²⁺ 9,12 Mn ²⁺ 14,04 Ni ²⁺ 18,62 Pb ²⁺ 18,04 Sn ²⁺ 18,3 Sr ²⁺ 8,80	Fe ²⁺	18,80						
Hg ₂ ²⁺ 21,8 Mg ²⁺ 9,12 Mn ²⁺ 14,04 Ni ²⁺ 18,62 Pb ²⁺ 18,04 Sn ²⁺ 18,3 Sr ²⁺ 8,80	Fe^{3+}	14,20						
Hg ₂ ²⁺ 21,8 Mg ²⁺ 9,12 Mn ²⁺ 14,04 Ni ²⁺ 18,62 Pb ²⁺ 18,04 Sn ²⁺ 18,3 Sr ²⁺ 8,80	Hg^{2+}	24,23						
Mg ²⁺ 9,12 Mn ²⁺ 14,04 Ni ²⁺ 18,62 Pb ²⁺ 18,04 Sn ²⁺ 18,3 Sr ²⁺ 8,80	Hg_2^{2+}	21,8						
Mn ²⁺ 14,04 Ni ²⁺ 18,62 Pb ²⁺ 18,04 Sn ²⁺ 18,3 Sr ²⁺ 8,80	Mg^2	9,12						
Ni ²⁺ 18,62 Pb ²⁺ 18,04 Sn ²⁺ 18,3 Sr ²⁺ 8,80	Mn^{2+}							
Pb ²⁺ 18,04 Sn ²⁺ 18,3 Sr ²⁺ 8,80	Ni ²⁺							
Sn ²⁺ 18,3 Sr ²⁺ 8,80	Pb ²⁺							
Sr ²⁺ 8,80	Sn ²⁺							
	Sr ²⁺							
	Zn^{2+}	16,26						

 Π р и м е ч а н и е. Две и более цифр индекса поставлены у констант полной диссоциации комплексов с соответствующим числом групп лиганда, например

$$K_{1,2} = \frac{[FeCl_2^+]}{[Fe^{3+}][Cl^-]^2}; \quad K_{1,2,3} = \frac{[FeCl_3]}{[Fe^{3+}][Cl^-]^3}.$$

В табл.14 даны только логарифмы констант полной диссоциации. Логарифмы констант отдельных ступеней можно найти по разностям:

$$\lg K_2 = \lg K_{1,2} - \lg K_1;$$
 $\lg K_3 = \lg K_{1,2,3} - \lg K_{1,2}$ и т. д.

Таблица 15 Ряд напряжений металлов

Уравнение электродного	Стандартный потенциал E° , В	Уравнение электродного	Стандартный потенциал E^{o} , В
процесса	при <i>T</i> = 298 К	процесса	при $T = 298 \text{ K}$
$Li^+ + e = Li$	-3,01	$Ni^{2+} + 2e = Ni$	- 0,25
$Rb^+ + e = Rb$	-2,92	$Sn^{2+} + 2e = Sn$	-0,14
$C_S^+ + e = C_S$	-2,92	$Pb^{2+} + 2e = Pb$	-0.13
$K^+ + e = K$	-2,92		
$Ba^{2+} + 2e = Ba$	-2,91	$2H^+ + 2e = H_2$	0,00
$Ca^{2+} + 2e = Ca$	-2,87		
$Na^+ + e = Na$	-2,71	$Sb^{3+} + 3e = Sb$	+0,20
$Mg^{2+} + 2e = Mg$	-2,36	$Bi^{3+} + 3e = Bi$	+0,21
$Al^{3+} + 3e = Al$	-1,66	$Cu^{2+} + 2e = Cu$	+0,34
$Ti^{2+} + 2e = Ti$	-1,66	$Cu^+ + e = Cu$	+0,52
$Mn^{2+} + 2e = Mn$	-1,05	$Ag^{+} + e = Ag$	+0,79
$Cr^{2+} + 2e = Cr$	-0,91	$Hg^{2+} + 2e = Hg$	+0,85
$Zn^{2+} + 2e = Zn$	-0,76	$Pt^{2+} + 2e = Pt$	+1,19
$Cr^{3+} + 3e = Cr$	-0,74	$Pd^{2+} + 2e = Pd$	+0,99
$Fe^{2+} + 2e = Fe$	-0,44	$Au^{3+} + 3e = Au$	+1,50
$Cd^{2+} + 2e = Cd$	-0,40	$Au^+ + e = Au$	+1,69
$Co^{2+} + 2e = Co$	-0,28	$Ce^{2+} + 3e = Ce$	+2,48

Таблица 16 **Стандартные окислительно-восстановительные потенциалы**

Высшая степень	Количество	Низшая степень	Стандартный
окисления	электронов <i>п</i>	окисления	окислительно-
			восстановительный по-
			тенциал E° , В
		Азот	
$HNO_2 + H^+$	1	$NO + H_2O$	+0,99
$NO_3^- +3H^+$	2	$HNO_2 + H_2O$	+0,94
$NO_3^- +2H^+$	1	$NO_2 + H_2O$	+0,83
$10^{-} + 4H^{+}$	3	NO+2H ₂ O	+0,96
$NO_3^- + 10H^+$	8	$NH_4^+ + 3H_2O$	+0,87
$NO_3^- + 7H_2O^+$	8	NH ₄ OH + 9OH ⁻	+0,12
$2NO_3^- + 12H^+$	10	$N_2 + 6H_2O$	+1,25

Продолжение табл. 16

Высшая степень окисления	Количество электронов <i>п</i>	Низшая степень окисления	Стандартный окислительно-восстановительный потенциал E° , В
		Алюминий	,
$AlO_2^- + 2H_2O$	3	$Al + 4OH^-$	-2,35
		Бром	
Br ₂	2	2Br ⁻	+ 1,07
$2HBrO + 2H^{+}$	2 2 2	$Br_2 + 2H_2O$	+ 1,59
$HBrO + H^{+}$	2	$Br^- + 2H_2O$	+ 1,35
$BrO^- + H_2O$	2	$Br^- + 2OH^-$	+ 0,76
$2BrO_{3}^{-} + 12H^{+}$	10	$Br_2 + 6H_2O$	+ 1,52
$BrO_3^- + 6H^+$	6	$Br^- + 3H_2O$	+ 1,44
$BrO_3^- + 3H_2O$	6	$Br^- + 6OH^-$	+ 0,60
	,	Висмут	
$NaBiO_3 + 6H^+$	2	$Bi^{3+} + Na^{+} + 3H_2O$	+ 1,80
		Водород	
2H ⁺	2	H_2	0,00
2H ₂ O	2	$H_2 + 2OH^-$	-0,83
		Железо	
Fe ³⁺	1	Fe^{2+}	+ 0,77
Fe(OH) ₃	1	$Fe(OH)_2 + OH^-$	- 0,56
$[Fe(CN)_6]^{3-}$	1	$[Fe(CN)_6]^{4-}$	+ 0,36
Fe(OH) ₂	2	Fe + 2OH ⁻	- 0,88
	,	Золото	
$[Au(CN)_2]^-$	1	Au +2CN	- 0,61
[AuCl ₄]	3	Au + 4C1	+ 1,00
	I -	Йод	
I_2	2	21	+ 0,53
2HIO +2H ⁺	2 2 2	$I_2 + 2H_2O$	+ 1,45
IO ⁻ +H ₂ O		I + 2OH	+ 0,49
$2IO_{3}^{-} + 12H^{+}$	10	$I_2 + 6H_2O$	+ 1,95
$10_{3}^{-} + 6H^{+}$	6	$I^- + 3H_2O$	+ 1,08
$IO_{3}^{-} + 3H_{2}O$	6	I ⁻ + 6OH ⁻	+ 0,26
HIO + H ⁺	2	$\Gamma + H_2O$	+ 0,99

Продолжение табл. 16

окисления электронов n окисления окислительной потенциал E^0 , B Кислороо $O_2 + 4H^+$ 4 $2H_2O$ $+1,23$ $O_2 + 2H_2O$ 4 $4OH^ +0,40$ $O_3 + H_2O$ 2 $O_2 + 2OH^ +1,24$ $O_3 + 2H^+$ 2 $O_2 + 2H_2O$ $+2,07$ $O_2 + 2H_2O$ 2 $H_2O_2 + 2OH^ -0,08$ $O_2 + 2H^+$ 2 H_2O_2 $+0,68$ H_2O_2 $+1,77$ $+0,88$ Koбальт CO(OH)3 1 $Co(OH)2 + OH^ +0,20$ $ICO(NH_3)_6 ^{3^4}$ 1 $ICO(NH_3)_6 ^{2^4}$ $+0,10$ Mapzaneq Mapzaneq MnO2 + 4H^+ 2 $ICO(NH_3)_6 ^{2^4}$ $ICO(NH_3$	Высшая степень	Количество	Низшая степень	Стандартный
$ \begin{array}{ c c c c c } \hline & & & & & & & & & & & & & & & & & & $	окисления	электронов п	окисления	окислительно-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				тенциал E^{o} , В
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Кислород	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$O_2 + 4H^+$	4	$2H_2O$	+1,23
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$O_2 + 2H_2O$	4	4OH ⁻	+0,40
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$O_3 + H_2O$	2	$O_2 + 2OH^-$	+1,24
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$O_3 + 2H^+$	2	$O_2 + H_2O$	+2,07
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2	$H_2O_2 + 2OH^-$	-0,08
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$O_2 + 2H^+$	2	H_2O_2	+0,68
	$H_2O_2 + 2H^+$		$2H_2O$	+1,77
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	H_2O_2	2	2OH ⁻	+0,88
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Кобальт	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Co(OH) ₃	1	$Co(OH)_2 + OH^-$	+0,20
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$[Co(NH_3)_6]^{3+}$	1	$[Co(NH_3)_6]^{2+}$	+0,10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Марганец	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$MnO_2 + 4H^+$	2	$Mn^{2+} + 2H_2O$	+1,28
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$MnO_4^- + 8H^+$	5	$Mn^{2+} + 4H_2O$	+1,51
	$MnO_4^- + 4H^+$	3	$MnO_2 + 2H_2O$	+1,69
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	MnO_4^-	1	MnO_4^{2-}	+0,54
$Cu^{2^{+}} + \Gamma$ 1 CuI +0,88 $Cu^{2^{+}} + Br$ 1 $CuBr$ +0,64 Cu^{+} 1 Cu +0,52 Mышьяк $H_{3}AsO_{4} + 2H^{+}$ 2 $HAsO_{2} + 2H_{2}O$ +0,56 $As + 3H^{+}$ 3 AsH_{3} -0,60 $AsO_{4}^{3^{-}} + 2H_{2}O$ 2 $AsO_{2}^{-} + 4OH^{-}$ -0,71 Hukenb $Ni(OH)_{3}$ 1 $Ni(OH)_{2} + OH^{-}$ +0,49 $Ni(OH)_{3} + 3H^{+}$ 1 $Ni^{2^{+}} + 3H_{2}O$ +1,75 Onobo			Медь	
$Cu^{2^{+}} + Br$ 1 $CuBr$ $+0,64$ $+0,52$ $Mышьяк$ $H_{3}AsO_{4} + 2H^{+}$ 2 $HAsO_{2} + 2H_{2}O$ $+0,56$ $As + 3H^{+}$ 3 AsH_{3} $-0,60$ $AsO_{4}^{3^{-}} + 2H_{2}O$ 2 $AsO_{2}^{-} + 4OH^{-}$ $-0,71$ $Hukenb$ $Ni(OH)_{3}$ 1 $Ni(OH)_{2} + OH^{-}$ $+0,49$ $Ni(OH)_{3} + 3H^{+}$ 1 $Ni^{2^{+}} + 3H_{2}O$ $+1,75$ $Onobo$	Cu ²⁺	1	Cu ⁺	+0,17
Cu^{+} 1 Cu $+0,52$ $Mышьяк$ $H_3AsO_4 + 2H^{+}$ 2 $HAsO_2 + 2H_2O$ $+0,56$ $As + 3H^{+}$ 3 AsH_3 $-0,60$ $AsO_4^{3-} + 2H_2O$ 2 $AsO_2^{-} + 4OH^{-}$ $-0,71$ $Hukenb$ $Ni(OH)_3$ 1 $Ni(OH)_2 + OH^{-}$ $+0,49$ $Ni(OH)_3 + 3H^{+}$ 1 $Ni^{2+} + 3H_2O$ $+1,75$ $Onobo$	$Cu^{2+} + I^{-}$	1	CuI	+0,88
M ышьяк $H_3AsO_4 + 2H^+ \qquad \qquad 2 \qquad \qquad HAsO_2 + 2H_2O \qquad \qquad +0,56 \\ As + 3H^+ \qquad \qquad 3 \qquad \qquad AsH_3 \qquad \qquad -0,60 \\ AsO_4^{3-} + 2H_2O \qquad \qquad 2 \qquad \qquad AsO_2^{-} + 4OH^- \qquad \qquad -0,71 \\ \qquad $	$Cu^{2+} + Br$	1	CuBr	+0,64
$H_3AsO_4 + 2H^+$ 2 $HAsO_2 + 2H_2O$ +0,56 As + 3H ⁺ 3 AsH ₃ -0,60 AsO ₄ ³⁻ + 2H ₂ O 2 AsO ₂ ⁻ + 4OH ⁻ -0,71 <i>Никель</i> Ni(OH) ₃ 1 Ni(OH) ₂ +OH ⁻ +0,49 Ni(OH) ₃ + 3H ⁺ 1 Ni ²⁺ +3H ₂ O +1,75 <i>Олово</i>	Cu ⁺	1	Cu	+0,52
$As + 3H^{+}$ 3 AsH_{3} $-0,60$ $AsO_{4}^{3-} + 2H_{2}O$ 2 $AsO_{2}^{-} + 4OH^{-}$ $-0,71$ -0			Мышьяк	
$As + 3H^{+}$ 3 AsH_{3} $-0,60$ $AsO_{4}^{3-} + 2H_{2}O$ 2 $AsO_{2}^{-} + 4OH^{-}$ $-0,71$ -0	$H_3AsO_4 + 2H^+$	2	$HAsO_2 + 2H_2O$	+0,56
$AsO_4^{3-} + 2H_2O$			AsH ₃	*
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$AsO_4^{3-} + 2H_2O$		$AsO_{2}^{-} + 4OH^{-}$	-0,71
$Ni(OH)_3 + 3H^+$ 1 $Ni^{2+} + 3H_2O$ +1,75 Onobo		•	Никель	
$Ni(OH)_3 + 3H^+$ 1 $Ni^{2+} + 3H_2O$ +1,75 Onobo	Ni(OH) ₃	1	$Ni(OH)_2 + OH^-$	+0,49
Олово				-
	7-	•	-	,
	Sn ⁴⁺	2		+0,15

Продолжение табл. 16

Высшая степень окисления	Количество электронов <i>n</i>	Низшая степень окисления	Стандартный окислительно- восстановительный
			потенциал E^{o} , В
		Ртуть	
$2Hg^{2+}$	2	$\left[\mathrm{Hg}_{2}\right]^{2+}$	+0,91
2HgCl ₂	2	$Hg_2Cl_2 + 2Cl^-$	+0,62
Hg ₂ Cl ₂	2	2Hg +2Cl ⁻	+0,27
D1 0 . 477 ⁺		Свинец	
$PbO_2 + 4H^+$	2	$Pb^{2+}+2H_2O$	+1,45
$PbO_2 + SO_4^{2-} +$	2	PbSO ₄ +2H ₂ O	+1,68
4H ⁺ Pb ⁴⁺	2	Pb ²⁺	+1,69
		Селен	
Se	2	Se ²⁻	-0,78
$Se + 2H^+$	2 2	H_2Se	-0,35
$SeO_4^{2-} + 4H^+$	2	$H_2SeO_3 + 2H_2O$	+1,15
$H_2SeO_3 + 4H^+$	4	Se + 3H2O	+0,74
		Сера	
S	2	S^{2-}	-0,51
$S + 2H^+$	2	H_2S	+0,17
$S_4O_6^{2-}$	2	$2S_2O_3^{2-}$	+0,08
$SO_3^{2-} + 3H_2O$	6	$S^{2-} + 6OH^{-}$	-0,61
$SO_4^{2-} + 4H^+$	2	$H_2SO_3 + 2H_2O$	+0,20
$SO_4^{2-} + H_2O$	2	$SO_3^{2-} + 2OH^-$	-0,90
$SO_4^{2-} + 8H^+$	6	$S + 4 H_2O$	+0,37
$S_2O_8^{2-}$	2	$2SO_4^{2-}$	+2,05
$H_2SO_3 + 4H^+$	6	$S^{2-}+3H_2O$	+0,23
$SO_4^{2-} + 8H^+$	8	$S^{2-} + 4 H_2O$	-0,15
$2SO_3^{2-} + 3H_2O$	4	$S_2O_3^{2-} + 6OH^-$	-0,58
		Серебро	L
$Ag_2O + H_2O$	2	$2Ag + 2 OH^{-}$	+0,34
$[Ag(CN)_2]^-$	1	$Ag + 2CN^{-}$	-0,29
		Таллий	
T1 ⁺	1	T1	-0,34
T1 ³⁺	2	Tl^+	+1,25

Продолжение табл. 16

Высшая степень	Количество	Низшая степень	Стандартный
окисления	электронов п	окисления	окислительно-
			восстановительный
			потенциал E^{0} , В
		Титан	1
$TiO_2 + 4H^+$	4	$Ti + 2H_2O$	-0,86
	_	Углерод	1
$2H_2CO_3 + 2H^+$	2	$H_2C_2O_4 + 2H_2O$	-0,39
2CO ₂	2	$C_2O_4^{2-}$	-0,12
		Фосфор	
$H_3PO_4 + 5H^+$	5	$P_{(\text{бел})} + 4H_2O$	-0,41
$H_3PO_4 + 2H^+$	2 3	$H_3PO_3 + H_2O$	-0,27
$P + 3H^+$	3	PH_3	+0,06
$H_2PO_2^-$	1	P + 2OH ⁻	-2,05
		Фтор	
F_2	2	2F ⁻	+2,85
		Хлор	
Cl ₂	2	2Cl ⁻	+1,36
$ClO_3^- + 6H^+$	6	$Cl^- + 3H_2O$	+1,45
$ClO_3^- + 3H_2O$	6	Cl ⁻ + 6OH ⁻	+0,62
$HOC1 + H^{+}$	2	$Cl^- + H_2O$	+1,50
$ClO^- + H_2O$	2	$C1^{-} + 2OH^{-}$	+0,94
$ClO_2 + 4H^+$	5	$\text{Cl}^- + 2\text{H}_2\text{O}$	+1,50
$ClO_4^- + 8H^+$	8	$C1^{-} + 4H_{2}O$	+1,34
$ClO_4^- + 4H_2O$	8	Cl ⁻ + 8OH ⁻	+0,51
$2C10_{3}^{-} + 12H^{+}$	10	$Cl_2 + 6H_2O$	+1,47
2HOC1 + 2H ⁺	2	$Cl_2 + 2H_2O$	+1,63
$2C1O^{-} + 2H_{2}O$	2	$Cl_2 + 4OH^-$	+0,40
$ClO_4^- + H_2O$	2	$ClO_{3}^{-} + 2OH^{-}$	+0,36
$ClO_3^- + 2H^+$	1	$ClO_2 + H_2O$	+1,15
		Хром	
Cr ³⁺	1	Cr^{2+}	-0,41
$\text{CrO}_{4}^{2-} + 2\text{H}_{2}\text{O}$	3	$\text{CrO}_{2}^{-} + 4\text{OH}^{-}$	-0,12
$Cr_2O_7^{2-} + 14H^+$	6	$2Cr^{3+} + 7H_2O$	+1,33

Высшая степень	Количество	Низшая степень	Стандартный
окисления	электронов п	окисления	окислительно-
			восстановительный
			потенциал E^{o} , В
		Церий	
Ce ⁴⁺	1	Ce ³⁺	+1,44
		Цинк	
$ZnO_2^{2-} + 2H_2O$ $[Zn(CN)_4]^{2-}$	2	$Zn + 4OH^-$	-1,21
$[Zn(\overline{CN})_4]^{2-}$	2	$Zn + 4CN^{-}$	-1,26

Таблица 17

Потенциалы электродов сравнения (при температуре 20 °C)

	Электрод сравнения					
Наименование	Состав	Потенциал E° , В				
Нормальный водородный электрод (НВЭ) Pt, H ₂ (H ⁺)	Платинированная платиновая пластинка, насыщенная H_2 под давлением 1 атм в 1 М растворе кислоты	0,000				
Хлорсеребряный электрод (XCЭ) Ag, AgCl (Cl⁻)	Металлическое серебро, покрытое слоем AgCl, в растворе HCl или KCl следующих концентраций: 0,1 н	+ 0,290				
Каломельный электрод	1,0 н насыщенный Металлическая ртуть, паста из	+ 0,237 + 0,222				
(КЭ) Hg, Hg ₂ Cl ₂ (KCl)	металлической ртути и Hg ₂ Cl ₂ в растворе КСl следующих концентраций: 0,1 н 1,0 н 3,5 н насыщенный	+ 0,337 + 0,284 +0,250 +0,247				

Электрод сравнения					
Наименование	Состав	Потенциал E° , В			
Меркурсульфатный электрод (М-сульф.Э) Hg, Hg ₂ SO ₄ (H ₂ SO ₄)	Металлическая ртуть, паста из металлической ртути и Hg_2SO_4 в 2 н растворе H_2SO_4	+0,682			
Хингидронный электрод Pt	Платиновый электрод в насыщенном растворе (с осадком) хингидрона	+0,703			

Таблица 18 **Мантиссы десятичных логарифмов**

N	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
10	0000	0043	0086	0128	0170	0212	0253	0294	0334	0374	4 4 4 4	9 9 8 8	13 13 12 12	17 17 16 16	22 21 21 20	26 25 25 24	30 30 29 28	35 34 33 32	39 38 37 36
11	0414	0453	0492	0531	0569	0607	0645	0682	0719	0755	4 4 4	8 8 7	12 11 11	16 15 15	20 19 18	24 23 22	27 27 26	31 30 29	35 34 33
12	0792	0828	0864	0899	0934	0969	1004	1038	1072	1106	3 4 3	7 7 7	11 11 10	14 14 14	18 17 17	21 21 20	25 24 24	28 28 27	32 31 30
13	1139	1173	1206	1239	1271	1303	1335	1367	1399	1430	3 3 3	7 6 6	10 10 9	13 13 13	17 16 16	20 19 19	23 23 22	27 26 25	30 29 28
14	1461	1492	1523	1553	1584	1614	1644	1673	1703	1732	3 3 3	6 6 6	9 9 9	13 12 11	16 15 14	19 18 17	22 21 20	25 24 23	28 27 26
15	1761	1790	1818	1847	1875	1903	1931	1959	1987	2014	3	6 5	9 8	11 11	14 14	17 16	20 19	23 22	26 25

Продолжение табл. 18

N	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
16	2041	2068	2095	2122	2148	2175	2201	2227			3	5	8	11	13	16	19	21	24
									2253	2279	3	5	8	10	13	15	18	20	23
17	2304	2330	2355	2380	2405	2430					3	5	8	10	13	15	18	20	23
							2455	2480	2504	2529	2	5	7	10	12	15	17	19	22
1.0	2552	2577	2601	2625	2640	2672	2605	2710				_	7		10	1 /	1.0	10	21
18	2553	2577	2601	2625	2648	2672	2695	2718	2742	2765	2	5	7	9	12	14	16	19	21
									2742	2765	2	5	7	9	11	13	16	18	20
19	2788	2810	2833	2856	2878	2900					2	4	7	9	11	13	16	18	20
17	2700	2010	2033	2030	2070	2700	2923	2945	2967	2989	$\frac{2}{2}$	4	6	8	11	13	15	17	19
							2723	2743	2707	2707	_				11	13	13	1 /	1)
20	3010	3032	3054	3075	3096						2	4	6	8	11	13	15	17	19
						3118	3139	3160	3181	3201	2	4	6	8	10	12	14	17	19
21	3222	3243	3263	3284	3304	3324	3345	3365	3385	3404	2	4	6	8	10	12	14	16	18
22	3424	3444	3464	3483	3502	3522	3541	3560	3579	3598	2	4	6	7	10	12	14	15	17
23	3617	3636	3655	3674	3692	3711	3729	3747	3766	3784	2	4	6	7	9	11	13	15	17
24	3802	3820	3838	3856	3874	3892	3909	3927	3945	3962	2	4	5	7	9	11	12	14	16
												_							
25	3979	3997	4014	4031	4048	4065	4032	4099	4116	4133	2	3	5	7	9	10	12	14	15
26	4150	4166	4183	4200	4216	4232	4249	4265	4281	4298	2	3	5	7	8	10	11	13	15
27	4314	4330	4346	4362	4378	4393	4409	4425	4440	4456	2	3	5	6	8	9	11	13	14
28	4472	4487	4502	4518	4533	4548	4564	4579	4594	4609	2	3	5	6	8	9	11	12	14
29	4624	4639	4654	4669	4683	4698	4713	4728	4742	4757	I	3	4	6	7	9	11	12	13

Продолжение табл. 18

N	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
30	4771	4786	4800	4814	4829	4843	4857	4871	4886	4900	1	3	4	6	7	9	10	11	13
31	4914	4928	4942	4955	4969	4983	4997	5011	5024	5038	1	3	4	6	7	8	10	11	12
32	5051	5065	5049	5092	5105	5119	5132	5145	5159	5172	1	3	4	5	7	8	9	11	12
33	5185	5198	5211	5224	5237	5250	5263	5276	5289	5302	1	3	4	5	6	8	9	10	12
34	5315	5328	5340	5353	5366	5378	5391	5403	5416	5428	1	3	4	5	6	8	9	10	11
35	5441	5453	5465	5478	5490	5502	5514	5527	5539	5551	1	2	4	5	6	7	9	10	11
36	5563	5575	6687	5599	5611	5623	5635	5647	5658	5670	1	2	4	5	6	7	8	10	11
37	5682	5694	5705	5717	5729	5740	5752	5763	5775	5786	1	2	3	5	6	7	8	9	10
38	5798	5809	5821	5832	5843	5855	5866	5877	5888	5899	1	2	3	5	6	7	8	9	10
39	5911	8922	5933	5944	5955	5966	5977	5988	5999	6010	1	2	3	4	5	7	8	9	10
40	6021	6031	6042	6053	6064	6075	6085	6096	6107	6117	1	2	3	4	5	6	8	9	10
41	6128	6138	6149	6160	6170	6180	6191	6201	6212	6222	1	2	3	4	5	6	7	8	9
42	6232	6243	6253	6263	6274	6284	6294	6304	6314	6325	1	2	3	4	5	6	7	8	9
43	6335	6345	6355	6365	6375	6385	6395	6405	6415	6425	1	2	3	4	5	6	7	8	9
44	6435	6444	6454	6464	6474	6484	6493	6503	6513	6522	1	2	3	4	5	6	7	8	9
45	6532	6542	6551	6561	6571	6580	6590	6599	6609	6618	1	2	3	4	5	6	7	8	9
46	6628	6637	6646	6656	6865	6675	6684	6693	6702	6712	1	2	3	4	5	6	7	7	8
47	6721	6730	6739	6749	6758	6767	6776	6785	6794	6803	1	2	3	4	5	5	6	7	8
48	6812	6821	6830	6839	6848	6857	6866	6875	6884	6893	1	2	3	4	4	5	6	7	8
49	6902	6911	3620	6928	6937	6946	6955	6964	6972	6981	1	2	3	4	4	5	6	7	8
50	6990	6998	7007	7016	7024	7033	7042	7050	7059	7067	1	2	3	3	4	5	6	7	8
51	7076	7084	7093	7101	7110	7118	7126	7135	7143	7152	1	2	3	3	4	5	6	7	8

Продолжение табл.18

N	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
52	7160	7168	7177	7185	7193	7202	7210	7218	7226	7235	1	2	2	3	4	5	6	7	7
53	7243	7251	7259	7267	7275	7284	7292	7300	7308	7316	1	2	2	3	4	5	6	6	7
54	7324	7332	7340	7348	7356	7364	7372	7380	7388	7396	1	2	2	3	4	5	6	6	7
55	7404	7412	7419	7427	7435	7443	7451	7459	7466	7474	1	2	2	3	4	5	5	6	7
56	7482	7490	7497	7505	7513	7520	7528	7536	7543	7551	1	2	2	3	4	5	5	6	7
57	7559	7566	7574	7582	7589	7567	7604	7612	7619	7627	1	2	2	3	4	5	5	6	7
58	7634	7642	7649	7657	7604	7672	7679	7686	7694	7701	1	1	2	3	4	4	5	6	7
59	7709	7710	7723	7731	7738	7745	7752	7760	7767	7774	1	1	2	3	4	4	5	6	7
60	7782	7789	7796	7803	7810	7818	7825	7832	7839	7846	1	1	2	3	4	4	5	6	6
61	7853	7860	7868	7875	7882	7889	7896	7903	7910	7917	1	1	2	3	4	4	5	6	6
62	7924	7931	7938	7645	7952	7959	7966	7973	7980	7987	1	1	2	3	3	4	5	6	6
63	7993	8000	8007	8011	8021	8028	8035	8041	8048	8055	1	1	2	3	3	4	5	5	6
64	8062	8069	8075	8082	8089	8096	8102	8109	8116	8122	1	1	2	3	3	4	5	5	6
65	8129	8136	8142	8149	8156	8162	8169	8176	8182	8189	1	1	2	3	3	4	5	5	6
66	8195	8202	8209	8215	8222	8228	8235	8241	8248	8254	1	1	2	3	3	4	5	5	6
67	8261	8267	8274	8280	8287	8293	8299	8306	8312	8319	1	1	2	3	3	4	5	5	6
68	8325	8331	8338	8344	8351	8357	8363	8370	8376	8382	1	1	2	3	3	4	4	5	6
69	8388	8395	8401	8407	8414	8420	8426	8432	8439	8445	1	1	2	2	3	4	4	5	6
70	8451	8457	8463	8470	8476	8482	8488	8494	8500	8506	1	1	2	2	3	4	4	5	6
71	8513	8519	8525	8531	8537	8543	8549	8555	8561	8567	1	1	2	2	3	4	4	5	5
72	8573	8579	8585	8591	8597	8603	8609	8615	8621	8627	1	1	2	2	3	4	4	5	5

Продолжение табл. 18

N	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
73	8633	8639	8645	8651	8657	8663	8669	8675	8681	8686	1	1	2	2	3	4	4	5	5
74	8692	8698	8704	8710	8716	8722	8727	8733	8739	8745	1	1	2	2	3	4	4	5	5
75	8751	8756	8762	8768	8774	8779	8785	8791	8797	8802	1	1	2	2	3	3	4	5	5
76	8808	8814	8820	8825	8831	8837	8842	8848	8854	8859	1	1	2	2	3	3	4	5	5
77	8865	8871	8876	8882	8887	8893	8899	8904	8910	8915	1	1	2	2	3	3	4	4	5
78	8921	8927	8932	8938	8943	8949	8954	8960	8965	8971	1	1	2	2	3	3	4	4	5
79	8976	8982	8987	8993	8998	9004	9009	9015	9020	9025	1	1	2	2	3	3	4	4	5
80	9031	9036	9042	9047	9053	9058	9063	9069	9074	9079	1	1	2	2	3	3	4	4	5
81	9085	9090	9096	9101	9106	9112	9117	9122	9128	9133	1	1	2	2	3	3	4	4	5
82	9138	9143	9149	9154	9159	9165	9170	9175	9180	9186	1	1	2	2	3	3	4	4	5
83	9191	9196	9201	9206	9212	9217	9222	9227	9232	9238	1	1	2	2	3	3	4	4	5
84	9243	9248	9253	9258	9263	9269	9274	9279	9284	9289	1	1	2	2	3	3	4	4	5
85	9294	9299	9304	9309	9315	9320	9325	9330	9335	9340	1	1	2	2	3	3	4	4	5
86	9345	9350	9355	9360	9365	9370	9375	9380	9385	9390	1	1	2	2	3	3	4	4	5
87	9395	9400	9405	9410	9415	9420	9425	9430	9435	9440	0	1	1	2	2	3	3	4	4
88	9445	9450	9455	9460	9465	9469	9474	9479	9484	9489	0	1	1	2	2	3	3	4	4
89	9494	9499	9504	9509	9513	9518	9523	9528	9533	9538	0	1	1	2	2	3	3	4	4
	0.546	0.7.4	0.7.7	0	0.7.6	0.7.6		 .	0.701	0.50									
90	9542	9547	9552	9557	9562	9566	9574	9576	9581	9586	0	1	1	2	2	3	3	4	4
91	9590	9595	9600	9605	9609	9614	9619	9624	9628	9633	0	1	1	2	2	3	3	4	4
92	9638	9643	9647	9652	9657	9661	9666	9671	9675	9680	0	1	1	2	2	3	3	4	4

N	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
93	3685	9689	9694	9699	9703	9708	9713	9717	9722	9727	0	1	1	2	2	3	3	4	4
94	9731	9736	9741	9745	9750	9754	9759	9763	9768	9773	0	1	1	2	2	3	3	4	4
95	9777	9782	9786	9791	9795	9800	9805	9809	9814	9818	0	1	1	2	2	3	3	4	4
96	9823	9827	9832	9836	9841	9845	9850	9854	9859	9863	0	1	1	2	2	3	3	4	4
97	9868	9872	9877	9881	9886	9890	9894	9899	9903	9908	0	1	1	2	2	3	3	4	4
98	9912	9917	9917	9926	9930	9934	9939	9943	9948	9952	0	1	1	2	2	3	3	4	4
99	9956	9961	9965	9969	9974	9978	9983	9987	9991	9996	0	1	1	2	2	3	3	3	4

Логарифмирование численных величин

Десятичный логарифм (lg) целого числа представляет собой показатель степени, в которую следует возвести число 10, чтобы получилась искомая численная величина

$$lg1000 = lg10^3 = 3$$
.

Представляя численную величину в степенном виде, важно знать, что $10^\circ = 1$, a lg 1 = 0, lg $10^1 = 1$, lg $10^{-5} = -5$.

Если заданное число является десятичной дробью, его можно представить в степенном виде, помня, что всякое перемещение запятой на один знак вправо соответствует уменьшению показателя степени на 1, например:

$$0,00325 = 0,0325 \cdot 10^{-1} = 0,325 \cdot 10^{-2} = 3,25 \cdot 10^{-3}$$
.

Аналогично всякое перемещение запятой на один знак влево соответствует увеличению показателя степени на 1:

$$325 = 32,5 \cdot 10^1 = 3,25 \cdot 10^2 = 0,325 \cdot 10^3$$
.

Для нахождения $\lg 0.00325 = \lg 3.25 \cdot 10^{-3}$, например, произведение под знаком логарифма может быть представлено в виде суммы логарифмов:

$$\lg 3.25 \cdot 10^{-3} = \lg 3.25 + \lg 10^{-3}$$

а слагаемые прологарифмированы раздельно. Поскольку в $\lg 3,25$ целая часть дробного числа выражена однозначным числом (3,...) больше единицы, то характеристика — целая часть его логарифма — всегда равна нулю, так как 1 < 3,... < 10, а поскольку $\lg 1 < \lg 3,... < \lg 10$, то $0 < \lg 3,... < 1$.

Мантиссу — дробную часть логарифма — находим по табл. 18 для числа 325, игнорируя десятичную запятую. Для этого необходимо в первой слева колонке таблицы найти первые две цифры 325. Затем, следуя по найденной строке вправо, дойти до колонки, оцифрованной третьей цифрой (5). Число 5119 и будет мантиссой десятичного логарифма числа 3,25, а характеристика его равна нулю: 0,5119.

Таким образом, $\lg 3,25 + \lg 10^{-3} = 0,5119 - 3 = -2,4881$. И еще пример:

$$\lg 450 = \lg (4,50 \cdot 10^2) = \lg 4,50 + \lg 10^2 = 0,653 + 2 = 2,653.$$

Проверьте эти результаты по табл. 18 Брадиса.

Характеристика логарифма числа, большего единицы, на единицу меньше числа цифр в целой части заданного числа:

$$lg 3,25 = 0 + 0,5119 = 0,5119$$

$$lg 32,5 = 1 + 0,5119 = 1,5119$$

$$lg 325 = 2 + 0,5119 = 2,5119.$$

Характеристика логарифма числа, меньшего единицы, содержит столько отрицательных единиц, сколько нулей в десятичном изображении этого числа до первой цифры, считая и нуль целых:

$$lg 0,325 = -1 + 0,5119 = -0,4881
lg 0,0325 = -2 + 0,5119 = -1,4881
lg 0,00325 = -3 + 0,5119 = -2,4881.$$

Таблица 19 **Антилогарифмы**

m	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
,00	1000	1002	1005	1007	1009	1012	1014	1016	1019	1021	0	0	1	1	1	1	2	2	2
,01	1023	1026	1028	1030	1033	1035	1038	1040	1042	1045	0	0	1	1	1	1	2	2	2
,02	1047	1050	1052	1054	1057	1059	1062	1064	1067	1069	0	0	1	1	1	1	2	2	2
,03	1072	1074	1076	1079	1081	1084	1086	1089	1091	1094	0	0	1	1	1	1	2	2	2
,04	1095	1099	1102	1104	1107	1109	1112	1114	1117	1119	0	1	1	1	1	2	2	2	2
,05	1122	1125	1127	1120	1132	1135	1138	1140	1143	1146	0	1	1	1	1	2	2	2	2
,06	1148	1151	1153	1156	1159	1161	1164	1167	1169	1172	0	1	1	1	1	2	2	2	2
,07	1175	1178	1180	1183	1186	1189	1191	1194	1197	1199	0	1	1	1	1	2	2	2	2
,08	1202	1205	1208	1211	1213	1216	1219	1222	1225	1227	0	1	1	1	1	2	2	2	3
,09	1230	1233	1036	1239	1242	1245	1247	1250	1253	1256	0	1	1	1	1	2	2	2	3
,10	1259	1252	1265	1268	1271	1274	1276	1279	1282	1285	0	1	1	1	1	2	2	2	3
,11	1288	1291	1294	1297	1300	1303	1306	1309	1312	1315	0	1	1	1	2	2	2	2	3
,12	1318	1321	1324	1327	1330	1334	1337	1340	1343	1346	0	l	l		2	2	2	2	3
,13	1349	1352	1355	1358	1361	1365	1363	1371	1374	1377	0	l	l	l	2	2	2	3	3
,14	1380	1384	1387	1390	1393	1396	1400	1403	1406	1409	0	1	1	1	2	2	2	3	3
1.5	1.412	1.41.6	1.410	1.400	1.426	1.420	1 422	1.42.5	1.420	1 4 4 2		1	1	1		_	_	2	2
,15	1413	1416	1419	1422	1426	1429	1432	1435	1439	1442	0	1	I	I	2	2	2	3	3
,16	1445	1449	1452	1455	1459	1462	1466	1469	1472	1476	0	I 1	I 1	I 1	2	2	2	3	3
,17	1479	1483	1486	1489	1493	1496	1500	1503	1507	1510	0	I 1	I 1	<u>I</u>	2	2	2	3	3
,18	1514	1517	1521	1524	1528	1531	1535	1538	1542	1545	0	I 1	I 1	1 1	2	2	2	3	3
,19	1549	1552	1556	1560	1563	1567	1570	1574	1578	1581	0	I 1	I 1	I 1	2	2	3	3	3
,20	1585	1589	1592	1596	1600	1603	1607	1611	1614	1618	0	1	l	1	2	2	3	3	3

Продолжение табл. 19

	1	I	ı	ı	ı	I	ı	ı		ı			1					1	
m	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
,21	1922	1626	1629	1633	1637	1641	1644	1648	1652	1656	0	1	1	2	2	2	3	3	3
,22	1660	1663	1667	1671	1675	1679	1683	1687	1690	1694	0	1	1	2	2	2	3	3	3
,23	1698	1702	1706	1710	1714	1718	1722	1726	1730	1734	0	1	1	2	2	2	3	3	4
,24	1738	1742	1746	1750	1754	1758	1762	1766	1770	1774	0	1	1	2	2	2	3	3	4
,25	1778	1782	1786	1791	1795	1799	1803	1807	1811	1816	0	1	1	2	2	2	3	3	4
,26	1820	1824	1828	1832	1837	1841	1845	1849	1854	1858	0	1	1	2	2	3	3	3	4
,27	1862	1866	1871	1875	1879	1884	1888	1892	1897	1901	0	1	1	2	2	3	3	3	4
,28	1905	1910	1914	1919	1923	1928	1932	1936	1941	1945	0	1	1	2	2	3	3	4	4
,29	1950	1954	1959	1963	1968	1972	1977	1982	1986	1991	0	1	1	2	2	3	3	4	4
,30	1995	2000	2004	2009	2014	2018	2023	2028	2032	2037	0	1	1	2	2	3	3	4	4
,31	2024	2046	2051	2056	2061	2063	2072	2075	2080	2084	0	1	1	2	2	3	3	4	4
,32	2089	2094	2099	2104	2109	2113	2118	2123	2128	2133	0	1	1	2	2	3	3	4	4
,33	2138	2143	2148	2153	2158	2163	2168	2173	2178	2183	0	1	1	2	2	3	3	4	4
,34	2188	2193	2198	2203	2208	2213	2218	2223	2228	2234	1	1	2	2	3	3	4	4	5
,-																			
,35	2239	2244	2249	2254	2259	2265	2270	2275	2280	2286	1	1	2	2	3	3	4	4	5
,36	2291	2296	2301	2307	2312	2317	2323	2328	2333	2339	1	1	2	2	3	3	4	4	5
,37	2344	2350	2355	2360	2366	2371	2377	2382	2388	2393	1	1	2	2	3	3	4	4	5
,38	2399	2404	2410	2415	2421	2427	2432	2428	2443	2449	1	1	2	2	3	3	4	4	5
,39	2455	2460	2466	2472	2477	2483	2489	2495	2500	2506	1	1	2	2	3	3	4	5	5
,,,,	2.00	2.00		, -	, ,	2.05	,	, 5		2000	•	•	_	-					
,40	2512	2518	2523	2529	2535	2541	2547	2553	2559	2564	1	1	2	2	3	4	4	5	5
,41	2570	2576	2582	2588	2594	2600	2606	2612	2618	2624	1	1	$\frac{2}{2}$	2	3	4	4	5	5
, 71	2370	2370	2302	2300	237 4	2000	2000	2012	2010	202 1	1	1)	Т Т	Т .)	J

Продолжение табл.19

m	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
,42	2630	2636	2642	2649	2655	2661	2667	2673	2679	2685	1	1	2	2	3	4	4	5	6
,43	2692	2698	2704	2710	2716	2723	2729	2735	2742	2748	1	1	2	3	3	4	4	5	6
,44	2754	2761	2767	2773	2780	2786	2793	2799	2805	2812	1	1	2	3	3	4	4	5	6
																			ĺ
,45	2818	2825	2831	2838	3192	2851	2858	2864	2871	2877	1	1	2	3	3	4	5	5	6
,46	2884	2891	2897	2904	2911	2917	2924	2931	2938	2944	1	1	2	3	3	4	5	5	6
,47	2951	2958	2965	2972	2979	2985	2992	2999	3006	3013	1	1	2	3	3	4	5	5	6
,48	3020	3027	3034	3041	3048	3055	3062	3069	3076	3083	1	1	2	3	4	4	5	6	6
,49	3090	3097	3105	3112	3119	3126	3133	3141	3148	3155	1	1	2	3	4	4	5	6	6
,50	3162	3170	3177	3184	3192	3199	3206	3214	3221	3228	1	1	2	3	4	4	5	6	7
,51	3236	3243	3251	3258	3266	3273	3281	3289	3296	3304	1	2	2	3	4	5	5	6	7
,52	3311	3319	3327	3334	3342	3350	3357	3365	3379	3381	1	2	2	3	4	5	5	6	7
,53	3388	3396	3404	3412	3420	3428	3436	3443	3451	3459	1	2	2	3	4	5	6	6	7
,54	3467	3475	3483	3491	3499	3508	3516	3524	3532	3540	1	2	2	3	4	5	6	6	7
,55	3548	3556	3565	3573	3581	3199	3597	3606	3614	3622	1	2	2	3	4	5	6	7	7
,56	3631	3639	3648	3656	3664	3273	3681	3690	3698	3707	1	2	3	3	4	5	6	7	8
,57	3715	3724	3733	3741	3750	3350	3767	3776	3784	3793	1	2	3	3	4	5	6	7	8
,58	3802	3811	3819	3828	3837	3428	3855	3864	3873	3882	1	2	3	4	4	5	6	7	8
,59	3890	3899	3908	3917	3926	3508	3945	3954	3963	3972	1	2	3	4	5	5	6	7	8
,60	3981	3990	3999	4009	4018	4027	4036	4046	4055	4064	1	2	3	4	5	6	6	7	8
,61	4074	4083	4093	4102	4111	4121	4130	4140	4150	4159	1	2	3	4	5	6	7	8	9

Продолжение табл. 19

_			1			1	1			1									
m	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
,62	4169	4178	4188	4198	4207	4217	4227	4236	4246	4256	1	2	3	4	5	6	7	8	9
,63	4266	4276	4285	4295	4305	4315	4325	4335	4345	4355	1	2	3	4	5	6	7	8	9
,64	4365	4375	4385	4395	4406	4416	4426	4436	4446	4457	1	2	3	4	5	6	7	8	9
,65	4467	4477	4487	4498	4508	4519	4529	4539	4550	4560	1	2	3	4	5	6	7	8	9
,66	4571	4581	4592	4603	4613	4624	4634	4645	4656	4667	1	2	3	4	5	6	7	9	10
,67	4677	4688	4699	4710	4721	4732	4742	4763	4764	4775	1	2	3	4	5	7	8	9	10
,68	4786	4797	4808	4819	4831	4842	4853	4864	4875	4887	1	2	3	4	6	7	8	9	10
,69	4898	4909	4920	4932	4943	4955	4965	4977	4989	5000	1	2	3	5	6	7	8	9	10
,00	1000	.,,,,	.,,_,	.,,,,	., .,	.,,,,	1,500	.,,,	., 0,		1	_				,			
,70	5012	5023	5035	5047	5058	5070	5082	5093	5105	5117	1	2	4	5	6	7	8	9	11
,71	5129	5140	5152	5161	5176	5188	5200	5212	5224	5236	1	2	4	5	6	7	8	10	11
,72	5248	5200	5272	5284	5297	5309	5321	5333	5346	5358	1	2	4	5	6	7	9	10	11
,72	5370	5383	5395	5408	5420	5433	5445	5458	5470	5483	1	3	4	5	6	8	9	10	11
,73	5495	5508	5521	5534	5546	5559	5572	5585	5598	5610	1	3	4	5	6	8	9	10	12
,/4	3493	3308	3321	3334	3340	3339	3372	3363	3390	3010	1	3	4	3	0	0	9	10	12
75	5622	5626	5640	5660	5675	5690	5702	5715	5720	5741	1	2	1	5	7	8	9	10	12
,75	5623	5636	5649	5662	5675	5689	5702	5715	5728	5741	1 1	3	4		7				
,76	5754	5768	5781	5794	5808	5821	5834	5848	5861	5875	1 1	3	4	5	,	8	9	11	12
,77	5888	5902	5916	5929	5943	5957	5970	5984	5998	6012	I	3	4	5	7	8	10	11	12
,78	6026	6039	6053	6067	6031	6095	6109	6124	6138	6152	1	3	4	6	7	8	10	11	13
79	6166	6180	6194	6209	6223	6237	6252	6266	6281	6295	1	3	4	6	7	9	10	11	13
,80	6310	6324	6339	6353	6368	6383	6397	6412	6427	6442	1	3	4	6	7	9	10	12	13
,81	6457	6471	6486	6501	6516	6531	6546	6561	6577	6592	2	3	5	6	8	9	11	12	14
,82	6607	6622	6637	6653	6668	6683	6699	6714	6730	6745	2	3	5	6	8	9	11	12	14

Окончание табл. 19

m	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
,83	6761	6776	6792	6808	6823	6839	6855	6871	6887	6902	2	3	5	6	8	9	11	13	14
,84	6918	6934	6950	6966	6982	6998	7015	7031	7047	7063	2	3	5	6	8	10	11	13	15
,85	7079	7096	7112	7129	7145	7161	7178	7194	7211	7228	2	3	5	7	8	10	12	13	15
,86	7244	7261	7278	7295	7311	7328	7345	7362	7379	7396	2	3	5	7	8	10	12	13	15
,87	7413	7430	7447	7464	7482	7499	7516	7534	7551	7568	2	3	5	7	9	10	12	14	16
,88	7586	7637	7621	7638	7656	7674	7691	7709	7727	7745	2	4	5	7	9	11	12	14	16
,89	7762	7780	7798	7816	7834	7852	7870	7889	7907	7925	2	4	5	7	9	11	13	14	16
,90	7943	7962	7980	7998	8017	8035	8054	8072	8091	8110	2	4	6	7	9	11	13	15	17
,91	8128	8147	8166	8185	8204	8222	8241	8260	8279	8299	2	4	6	8	9	11	13	15	17
,92	8318	8337	8356	8385	8395	8414	8433	8453	8472	8492	2	4	6	8	10	12	14	15	17
,93	8511	8531	8551	8570	8590	8610	8630	8650	8670	8690	2	4	6	8	10	12	14	16	18
,94	8710	8730	8750	8770	8790	8810	8831	8851	8872	8892	2	4	6	8	10	12	14	16	18
,95	8913	8933	8954	8974	8995	9016	9036	9057	9078	9099	2	4	6	8	10	12	15	17	19
,96	9120	9141	9162	9183	9204	9226	9247	9268	9290	9311	2	4	6	8	11	13	15	17	19
,97	9333	9354	9376	9397	9419	9441	9462	9484	9506	9528	2	4	7	9	11	13	15	17	20
,98	9550	9572	9594	9616	9638	9661	9683	9705	9727	9750	2	4	7	9	11	13	16	18	20
,99	9772	9795	9817	9840	9863	9886	9908	9931	9054	9977	2	5	7	9	11	14	16	18	20

Потенцирование

Определение числа по заданному логарифму этого числа – действие, обратное логарифмированию, называется потенцированием. Потенцирование сводится к нахождению антилогарифма (antylg) мантиссы логарифма по табл. 19 антилогарифмов Брадиса.

<u>Пример 1.</u> Требуется найти число (x), логарифм которого равен (-2,4881), т. е.

$$\lg x = -2,4881$$
, a $x = \text{antylg}(-2,4881) = 10^{-2,4881}$.

Для нахождения антилогарифма отрицательного числа необходимо провести преобразование таким образом, чтобы его мантисса стала положительной:

$$-2,4881 = -3 + 0,5119,$$

представив его в виде суммы положительной мантиссы (0,5119) и отрицательной характеристики, на единицу меньшей, чем целая часть числа (–3). Антилогарифм суммы чисел равен произведению антилогарифмов слагаемых:

$$x = \text{antylg}(-2,4881) = \text{antylg}(-3 + 0,5119) = \text{antylg}(-3) \cdot \text{antylg}(0,5119)$$

Находим антилогарифмы каждого из умножаемых: antylg $(-3) = 10^-$

Для нахождения antylg 0,5119 необходимо по табл. 19 в первой слева колонке найти две первые цифры после запятой (,51...). Затем, следуя по строке вправо, дойти до колонки, номер которой совпадает с третьей цифрой (1), и получить число 3243. Продолжая следовать по строке вправо, в «пропорциональной части» таблицы в колонке, оцифрованной четвертой цифрой (9), находим поправку — величину, равную 7. Поправка прибавляется к табличной мантиссе. Суммируем обе найденные величины:

$$3243 + 7 = 3250$$
.

Положение десятичной запятой устанавливается по характеристике:

antylg
$$0.5119 = 3.250$$
, T. e. $10^{0.5119} = 3.250$,

$$x = \text{antylg } (-2,4881) = 3,25 \cdot 10^{-3} = 0,00325.$$

<u>Пример 2.</u> $\lg x = 5,322$. Найти число x.

$$x = \text{antylg } 5,322 = \text{antylg } (5 + 0,322) = \text{antylg } 0,322 \cdot \text{antylg } 5 = 2,1 \cdot 10^5,$$

T. e. $x = 10^{5,322} = 10^5 \cdot 10^{0,322} = 2,1 \cdot 10^5.$

<u>Пример 3.</u> Определить $[H^+]$ в растворе с pH = 3,80

$$\begin{split} pH = &- \lg[H^+] = 3,80; \\ \lg[H^+] = &- 3,80 = -4 + 0,20 = \overline{4}\,,\, 20^*); \\ [H^+] = & \text{antylg } 0,20 \cdot \text{antylg}(-4) = \text{antylg}(\overline{4}\,,\, 20)^* = 1,6\cdot 10^{-4}. \\ \text{или } [H^+] = &10^{-3,80} = 10^{-4}\cdot 10^{0,20} = 1,6\cdot 10^{-4}. \end{split}$$

 $^{^{*)}}$ $\overline{4}$, 20 — черта над цифрой 4 (знак минус) указывает на то, что в данном числе отрицательна только характеристика, а мантисса (0,20) — положительна.

Миссия университета — генерация передовых знаний, внедрение инновационных разработок и подготовка элитных кадров, способных действовать в условиях быстро меняющегося мира и обеспечивать опережающее развитие науки, технологий и других областей для содействия решению актуальных задач.

КАФЕДРА ХИМИИ И МОЛЕКУЛЯРНОЙ БИОЛОГИИ

Кафедра химии и молекулярной биологии (ХиМБ) была создана в 2012 г. в результате слияния двух кафедр Института Холода и Биотехнологий — «Органической, физической, биологической химии и микробиологии» и «Общей, неорганической и аналитической химии».

В настоящее время в составе кафедры трудятся профессора:

Волкова О.В., д.т.н., лауреат премии правительства РФ, руководитель направления «Создание и совершенствование абсорбционных бромисто-литиевых преобразователей теплоты нового поколения»;

Красникова Л.В., д.т.н., руководитель направления «Микробиологические основы пищевых технологий»;

Шлейкин А.Г., д.м.н., руководитель направления «Ферментативная модификация белков».

Доценты: Белкина Е.И., к.т.н., Бландов А.Н., к.х.н., Гунькова П.И., к.т.н., Скворцова Н.Н., к.х.н., лауреат премии правительства РФ.

Кафедра осуществляет подготовку специалистов высшей квалификации – аспирантов и магистров

Направления подготовки аспирантов:

- 04.06.01 Химические науки (02.00.04 Физическая химия)
- 06.06.01 Биологические науки (03.01.04 Биохимия)
- 13.06.01 Электро- и теплотехника (05.04.03 Машины и аппараты, процессы холодильной и криогенной техники, систем кондиционирования и жизнеобеспечения)
- 19.06.01 Промышленная экология и биотехнология (15.18.04 Технология мясных, рыбных, молочных продуктов и холодильных произ-

водств; 15.18.07 Биотехнология пищевых продуктов и биологических активных веществ).

Белкина Елена Ильинична

ОСНОВНЫЕ СВОЙСТВА ЭЛЕМЕНТОВ И ИХ СОЕДИНЕНИЙ СПРАВОЧНЫЕ ТАБЛИЦЫ 1 – 19

Учебно-методическое пособие

В авторской редакции Редакционно-издательский отдел Университета ИТМО Зав. РИО Н.Ф. Гусарова Подписано к печати Заказ N_2 Тираж Отпечатано на ризографе