

D.B. Afanasev, I.A. Bessmertny, S.V. Bykovskii,

A.G. Ilina, S.V. Klimenkov, J.A. Koroleva

Basic Computer
Study guide

Part 1

Saint Petersburg

2020

MINISTRY OF SCIENCE AND HIGHER EDUCATION OF THE RUSSIAN

FEDERATION

ITMO UNIVERSITY

D.B. Afanasev, I.A. Bessmertny, S.V. Bykovskii,

A.G. Ilina, S.V. Klimenkov, J.A. Koroleva

Basic Computer

Study guide

Part 1

RECOMMENDED AS A STUDY GUIDE

09.03.01 «Informatics and Computer Engineering»

ITMO University and Hangzhou Dianzi University joint Bachelor's program

«Computer Science and Technology»

Saint Petersburg

2020

D.B. Afanasev, I.A. Bessmertny, S.V. Bykovskii, A.G. Ilina, S.V. Klimenkov,

J.A. Koroleva. Basic Computer study guide. Part 1 – Saint Petersburg: ITMO University, 2020. -

112 p.

Reviewer: Polyakov V.I., associate professor, Faculty of Software Engineering and

Computer Systems, ITMO University.

The study guide contains theoretical and practical materials to conduct a laboratory work

on «Computer Basics». It covers such topics as computer architecture, data representation in

computers, processor instruction formats, principles of low-level program execution, concepts of

program flow, subprograms and machine cycles.

The study guide explains how a computer executes programs and how it handles data. For

practice the students are offered to use a simplified Basic Computer Model, which was designed

at ITMO and successfully tested by generations of students. The model allows rapid

development of skills to interact with internal features of computers, such as registers, internal

memory, control and arithmetic units. It helps to create knowledge background to study more

complex concepts in programming and computer architecture.

The study guide is for foreign computer science students of 09.03.01 «Informatics and

Computer Engineering» of ITMO University and Hangzhou Dianzi University joint bachelor's

program «Computer Science and Technology».

ITMO University - is the leading Russian university in the field of information and

photonic technologies, one of the Russian universities with the status of the national research

university granted in 2009. Since 2013 ITMO University has been a participant of the Russian

universities' competitiveness raising program among the world's leading academic centers known

as "5 to 100".

 ITMO University, 2020

 D.B. Afanasev, I.A. Bessmertny, S.V. Bykovskii, A.G. Ilina, S.V. Klimenkov,

J.A. Koroleva 2020

3

Contents

Glossary ... 4

Introduction .. 9

1. The Basic Computer model ... 10

1.1 Purpose and description of the Basic Computer model ... 10

1.2 Basic Computer instructions .. 11

1.3 Representation of integers in Basic Computer .. 12

1.4 Arithmetic operations .. 15

1.5 Shifts and logical operations .. 15

1.6 Computational process control .. 16

1.7 Subprograms .. 19

1.8 Machine instruction execution ... 20

2. Laboratory works ... 24

2.1 Laboratory work 1. Program execution in Basic Computer 24

2.1.1 Overview ... 24

2.1.2 Lab work task ... 24

2.1.3 Lab work guidance ... 25

2.1.4 Lab work variants ... 35

2.2 Laboratory work 2. Low level instruction execution ... 40

2.2.1 Overview ... 40

2.2.2 Lab work task ... 40

2.2.3 Lab work guidance ... 41

2.2.4 Lab work variants ... 55

2.3 Laboratory work 3. Program control flow ... 60

2.3.1 Overview ... 60

2.3.2 Lab work task ... 60

2.3.3 Lab work guidance ... 60

2.3.4 Lab work variants ... 74

2.4 Laboratory work 4. Subprograms .. 84

2.4.1 Overview ... 84

2.4.2 Lab work task ... 84

2.4.3 Lab work guidance ... 85

2.4.4 Lab work variants ... 99

Appendix A. Instruction Set of Basic Computer ... 109

Appendix B. Basic Computer Hot Keys .. 110

4

Glossary

A

Abacus a simple mechanical device that was used to perform arithmetical

operations in the ancient Near East, Europe, China, and Russia.

Access time a time period that is needed to reach a resource like a memory, a

computer etc.

Accumulator a register used by the processor to store results of arithmetic and

logic operations from ALU.

Addition adding numbers or amounts together.

Address bus signal lines (wires) that are used in a computer to transfer the

address value to the memory or to peripheral devices to define a

place of data reading and writing.

Address register a register that holds the address value.

ALU Arithmetic and Logic Unit. It is a part of the processor.

Analog computation a kind of computation with data in analog representation.

Analog computer a computer which works with analog signals.

Analog signal a continuous signal.

Arithmetic operation an operation with numbers or amounts such as addition,

subtraction, multiplication and division.

Arithmometer the first digital mechanical calculator.

Application a computer program that runs on a computer.

Assembler a computer program that converts a mnemonic program code to a

machine code. Assembler is also a language that is used to write

a mnemonic program code.

Assembly operation an operation that represents a mnemonic code in a machine code.

B

Bit a minimal unit to represent information in digital computers.

Bit rate how many bits per second can be transmitted using predefined

channels.

Binary system a system that uses only two symbols (0 and 1) to represent data.

Binary number a number in the binary system.

Branch (in program) a point in a computer program, where the algorithm can be

changed depending on a condition.

Byte a unit that is used to measure the amount of digital information.

It equals 8 bits.

C

Calculator a device that performs mathematic operations with numbers.

Capacity (for memory) amount of data that can be stored in the memory.

Circuit design a process of creating digital electronic circuits.

CISC Complex Instruction Set Computer.

Cluster computing computing on a set of tightly connected computers by high speed

communication channels. For users it looks like a one hardware

resource.

Command line an interface that is used to enter commands for an operating

system.

5

Compiler a computer program translating program commands which are

written in a programming language into sets of machine codes.

Complement code a code that is used to represent negative numbers.

Computer a machine that can handle data and perform calculations

automatically according to the predefined program.

Computer architecture a set of rules and methods that describe the functionality,

organization, and implementation of computer systems.

Computer basics basic (fundamental) knowledge about the way a computer works.

Clock signal a signal that defines the time in a computer.

Computer data data which a computer operates with. They could be numbers,

symbols, and computer commands.

Computer memory a device that stores data.
Control bus signal lines (wires) that are used in a computer to transfer control

signals (like read/write signals) between its units such as ALU,

the memory, registers etc.

Control flow the order in which program instructions or function calls are

executed.

Control path a scheme of control signals transmission between functional units

such as ALU, the memory, registers etc.

CPU Central Processing Unit.

Cyclic shift the operation of moving bits in a register. In the left cyclic shift,

the last bit goes to the place of the first bit, i.e. the bits go to the

left. In the right cyclic shift, the bits go to the right (another

direction) and the first bit goes to the place of the last bit.

D

Data bus signal lines (wires) that are used in a computer to transfer data

between its units such as ALU, the memory, registers etc.

Data register a register in a processor that stores data.

Data representation a format of data storing or exchanging.

Data storage a storage for data, for example, a hard disk.

Datapath

a scheme of data signals transmission between functional units

such as ALU, the memory, registers etc.

Data word a byte of data equals to eight bits.

Digital computer a computer in which data are represented as digital signals.

Digital design

designing, developing and debugging electronic schemes using

logic gates. Circuit design

Digital signal a signal that uses data represented as a sequence of discrete

values.

Distributed computing a field of computer science that studies computer performance

improvement and scalability using calculation on several

computers which are located in different places.

Display an output device for representing graphical information.

Discretization measuring values in discrete time moments and storing them as a

sequence of discrete numbers.

Division an arithmetic operation that shows how many times a number is

contained in a larger number.

6

F

Fan or cooler a device for producing airflow, often for cooling.

File system a system or a computer program that defines and controls how

data is stored and fetched.

Firmware a class of computer programs that provides low-level control for

computer hardware.

Fixed point numbers a real data type for a number that has a fixed number of digits

after the decimal point.

Float point numbers a real data type for a number that has a float position of the

decimal point. This position is indicated as the exponent

component.

G

Gate a circuit part which controls outputs and inputs according to the

truth table.

H

Hard disk an electro-mechanical data storage device that uses magnetic

storage to maintain and retrieve digital information.

Hardware physical parts of a computer.

Hexadecimal (hex)

numbers

a system that uses the hexadecimal format (sixteen symbols: 0, 1,

2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F) to represent data.

Human-machine

interface (HMI)

an interface that is used to communicate between humans and

computers.

I

Instruction set a set of instructions that a processor can execute.

Integrated circuit a set of electronic circuits on one small piece of semiconductor

material.

Instruction pointer a processor register that stores the address of the next instruction

to execute.

Instruction register a processor register that stores the value of instruction that is

being executed.

I/O System an input/output system of a computer.

L

Layout (in digital

circuits design)

an arrangement of elements in digital circuits.

Logical operation a boolean logic operation.

M

Machine code data and instruction representation that can be handled by a

computer (machine).

Mainframe big computers to process large amounts of data.

Memory a device for storing data.

Microprogram a program that implements a higher-level processor instruction.

7

Mnemonic code

a program code which represents every machine operation

(instruction) in a readable format for the user. For example,

mnemonic ADD stands for addition.

Motherboard the main printed circuit board found in general purpose

computers. It holds CPU and the memory allowing

communication between them, and provides connectors for

peripheral devices.

Multiprogramming a feature that enables to run several programs

simultaneously.

Multiplication an arithmetic operation of adding a number to itself a

particular number of times.

N

Natural language interface a type of computer human interface where verbs, phrases and

clauses act as control commands for creating and modifying

data in computers.

Negative numbers a real number that is less than zero.

Numbers range a set of numbers.

P

Performance an amount of instructions that a computer performs in a unit

time.

PC personal computer.

Parallel data transfer transfer of several data bits simultaneously.

Personal computer a multi-purpose computer with the size,

capabilities, and price feasible for an individual user.

Pipeline a technique for implementing instruction-level parallelism

within a single processor.

Pop (memory operation) fetching data from a predefined place.

Printing a way to have a hardcopy of data stored in a computer which

are computing results. It is a way to transfer data outside the

computer.

Processor a part of a computer that executes program.

Processor instruction a command of a processor to do some manipulations with

data.

Program a sequence of instructions that make a computer perform an

action or a particular type of work

Program model of

processor

a representation of a computer from a programmer’s point of

view.

Programmer a person who writes programs.

Programming a process of creating a program.

Programming language a language that is used for writing a program.

Push (memory operation) storing data to a predefined place.

R

Register a memory element that stores one word of data.

RISC Reduced Instruction Set Computer

ROM Read Only Memory

8

S

Sequential data transfer bit by bit data transfer.

Shift an operation of moving bits in one direction inside the

register.

Signal an electrical signal – a time-varying physical value (for

example, electric current, voltage, etc.) that contains

information.

Stack (memory) a kind of memory that is based on the principle of last-in-first-

out pattern.

Software a program or set of programs that tell the computer how to

work.

Subtraction an arithmetical operation of taking a number or an amount

from another number or an amount.

Super-computer a computer with a high level of performance.

System bus signal lines (wires) that are used to connect CPU and the

memory.

T

Terminal a set of primary input and output devices for a computer

Transistor a semiconductor device used to amplify or switch electronic

signals and electrical power. It is a base of modern integrated

circuits.

Trigger a device that can be in one stable state in every moment of

time. If an event occurs, it changes its state. It can store one

bit of data.

Truth table a table that shows the dependence between input and output

values in digital circuits.

U

User interface space where humans and machines communicate.

9

Introduction

This study guide discusses the basic concepts of computer organization and functioning.

The study guide is divided into two chapters.

The first part provides information about data representation in a computer, how a

computer executes program on a low level, the theory about the basic computer architecture,

instruction formats and how a computer performs operations. The basic concepts are explained

using the Basic Computer Model developed at ITMO University. This is a simplified model that

has typical features of the widely used digital computers.

The second chapter contents a set of laboratory works that can be used to build up

knowledge and develop skills of understanding a program execution process using the Basic

Computer Model. Each laboratory work contents the step-by-step guides that help to successfully

complete the task.

The assignments for the laboratory works cover such topics as:

 basic principles of program execution in computer;

 low level instruction execution;

 program control flow;

 subprograms.

To work with the book the students need:

 The Basic Computer Model that can be downloaded by this link:

https://se.ifmo.ru/web/guest/bcomp.jar

 JRE (Java Runtime Environment) Version 8 Update 221 or newer. It can be

downloaded using this link: https://java.com/ru/download/.

https://se.ifmo.ru/web/guest/bcomp.jar
https://java.com/ru/download/

10

1. The Basic Computer model

1.1 Purpose and description of the Basic Computer model

Basic Computer is a simple hypothetical machine that has the typical features of many

specific computers. Awareness what parts a basic computer has and how it functions is quite

useful for the development of microprocessor systems of any type. This is the reason why it is

called a basic computer. It is highly advisable to start studying computers with a low-level

machine.

Figure 1 shows the simple structure of a basic computer. It is a unicast (single-address)

computer of accumulator type, it works with 16-bit words. It implements two types of addresses:

direct and indirect. The smallest addressable unit is a word that consists of eight bits or one byte.

Figure 1. The Basic computer model

Consider the components of Basic Computer:

 Memory consists of 2048 cells (1 cell = 16 bit). These cells have addresses from 0 to

2047. A hex address range 008 to 00F are index cells. They are intended for addressing

mode organization, usually, they are useful in loops.

 The Processor consists of several registers, an arithmetic and logic unit, and a control

unit.

 Arithmetic and logic unit (ALU) usually performs arithmetic operations, such as

addition and addition-with-carry. A carry can be obtained as a result of the previous

operation, which is the operation of logical multiplication and inversion. All transfers

between registers are also performed via the ALU.

 Instruction Pointer (IP) is a register, that stores the address of a memory cell, which

contains the address of the next command to be executed. The length of IP is 11 bit, so it

11

allows to address 2048 memory cells. In literature this register can be also referred as the

program counter.

 Address register (AR) also has 11-bit length. It contains the address of the memory cell

accessed by the processor.

 Instruction register (IR) has 16-bit length. It stores the code of the currently executing

command.

 Data register (DR) has 16-bita length. It is used for temporary storage of 16-bit words

during the exchange of data between the memory and the processor.

 Buffer register (BR) has 17-bit length. It is used for temporary storage of calculation

results from ALU. This register is also used when performing shifts.

 Accumulator (A) is a 16 -bit register. One operand for arithmetic and logic operations is

in the accumulator; the second one is in the data register. The intermediate result is stored

in the accumulator register.

 One-bit registers (flags) are useful for both arithmetic and logic operations:

o Carry flag (C) is a flag register used to indicate when an accumulator register is

overflowed.

o Zero flag (Z) is a single-bit register. It is set to 1 or true, if an arithmetic result in

the accumulator register is zero or otherwise it resets.

o Sign flag (N) stores a number sign value from the accumulator register, it is a

duplicate of the fifteenth bit of this value.

1.2 Basic Computer instructions

The basic computer can execute the predefined instruction set. While writing a program,

a user is limited by these instructions. The basic computer instructions can be divided into three

groups depending on blocks they refer to.

 address instructions;

 no-address instructions;

 input/output instructions.

Address instructions command the machine to perform actions with a memory location

which address is specified in the address part of the instruction.

No-address instructions perform various actions without reference to a memory location.

For example, the CLA instruction (Table 1) commands the basic computer to clean the

accumulator register (write a zero-code into A). This is an instruction to process an operand,

which is located in a specific place. The machine “knows” the place, so the address is not

needed. Another example of no-address instruction is the HLT instruction.

I/O instructions control the exchange of data between the processor and external

computer devices.

A complete list of basic computer instructions is given in Table 1.

Instruction formats and addressing mode.

The developers of the computer choose three formats of 16-bit (single-word) commands

with a 4-bit operation code (figure 2). In memory access instructions, 11 bits are allocated to the

address. Therefore, it is possible to directly address 2
11

= 2048 memory cells, i.e. to the entire

memory of the basic computer, (which is direct addressing). In this case, the address type bit

should contain 0. If 1 is set in this bit, then the address located in the address part of the

command indicates the cell that contains the operand address; this is indirect addressing.

Note that when mnemonically writing instructions, indirect addressing is indicated by

enclosing the address in brackets. For example, the instruction ADD (25) means to add the

contents of A to the content of the cell which address is stored in cell 25 (indirect addressing).

12

Figure 2. Instruction formats: a – address; b – no-address; c – i/o instructions

1.3 Representation of integers in Basic Computer

Unsigned binary integers can be used to represent zero and positive integers. Placing such

numbers in one 16-bit word, they can vary from (0000 0000 0000 0000)2 = (0000)16 = 0 to (1111

1111 1111 1111)2 = (FFFF)16 = 216 - 1 = 65535. This value representation is called a direct

number code.

Such values (signed binary numbers) are fixed-point numbers that separate the integer

and fractional parts of a number. In the numbers used in the basic computer, the position of the

decimal point is strictly fixed after the least significant bit of the word.

The signed binary numbers are used when distinguishing between positive and negative

numbers is necessary. In modern computers, an additional code represents signed integers. The

most significant bit of the format determines the sign of a number: 0 for positive numbers and 1

for negative ones. Obviously, a twos-complement form of positive number matches its direct

code. To represent a negative number in the twos-complement form, the direct code of the

number module should be inverted (obtaining the reverse number code) and add 1 to the result.

The same operation is used while changing the sign of a number represented in the twos-

complement form.

(M), (A), (IP), (C), (B) – the content of a cell, where the address is memory, accumulator,

the instruction pointer, carry register, data register and I / O devices with address B.

XXX – memory cell address.

XX – I / O device address.

13

Table 1. Basic computer instructions

Address Instructions

No-address Instructions

I/O Instructions

14

To represent the number -70910 in twos-complement form one needs:

1. Write the direct code of the module of a given number

0 000 0010 1100 01012 = |70910|

2. Invert it (all 0 must be changed to 1, and all 1 must be changed to 0)

1 111 1101 0011 1010

3. Add 1 to the result

1 111 1101 0011 1010

+ 1

————————————————————

1 111 1101 0011 1011 This is the -709 in twos-complement form

Check the correctness of the calculations. Let’s add two numbers 70910 and -70910 :

0 000 0010 1100 0101 it is 709

+ 1 111 1101 0011 1011 it is -709

——————————————————————

0 000 0000 0000 0000 the result is 0

Since the carrying from the high order extends beyond the boundaries of the bit grid, it is

not considered. The rest 16-bit sum is zero, so it confirms the correctness of the conversion.

The use of twos-complement form simplifies computer designing, it allows to avoid

subtracting a smaller module number from a larger one adding two numbers with different signs.

After it, the sign of a larger number is assigned to the result. In addition, the same adder circuit

can be used to perform operations on the sign and unsigned representation of a number. An

indication of going beyond the boundaries of the bit grid for an unsigned representation of a

number is the transfer to the most significant bit (C bit means carry). An indication of an

overflow of the bit grid for the sign representation is the overflow bit. In the basic computer,

unfortunately, this feature of the result is not implemented. Consider the occurrence of these

situations in the example of the numbers representation in a four-digit grid (figures 3a and 3b).

Figure 3a. Overflow and carry examples

15

Figure 3b. Overflow and carry examples

The processor determines overflow by the following rule: if bitwise transfers in the sign

and in the most significant bit are simultaneously absent or present, then there is no overflow; if

bitwise transfers are present in only one of them, then there is an overflow of the sign bit grid.

1.4 Arithmetic operations

In the basic computer, ADD instruction is used for the addition of binary integers, both

signed and unsigned.

To increase the value in the accumulator by one, the accumulator uses INC instruction,

while DEC instruction subtracts 1 from the value stored in the accumulator. If a transfer from the

most significant bit of A occurs, then one is written into the carry register, otherwise 0 is written

into it.

Subtraction (X-Y) can be performed by changing the sign of the subtracted (CLA, ADD

Y, CMA, INC) and subsequent adding to the other argument (ADD X). Obviously, this requires

the execution of several commands. In the basic computer, to reduce programs and subtraction

execution time, the SUB Y (CLA, ADD X, SUB Y) instruction is provided, it implements the

same actions taking less time.

In the basic computer there are no commands for performing multiplication and division

(ALU does not perform such operations). Therefore, composition and quotient are obtained as a

result of a program.

1.5 Shifts and logical operations

In any computer, bitwise data processing is performed by logical multiplication and

cyclic shift instructions, as well as the instructions for inverting and cleaning of the accumulator

and carry register.

 Instruction AND M performs a logical multiplication operation on each bit of the accumulator

content and the content of a memory cell M. The result of executing the instruction for each pair

of operand bits equals one only when both bits are equal to one, and the result bit is zero in other

cases.

Instructions ROL (cyclic left shift by one bit) and ROR (cyclic right shift by one bit)

encircle the accumulator and the carry register into a ring and shift all bits of the ring on one bit

to the left or right (figure 4). The operations of multiplication or division by two (one shift), by

four (two shifts), by eight (three shifts), etc. can be realized by shifting the number to the left or

to the right.

16

The CMA instruction (accumulator invert) inverts the contents of the accumulator bit by

bit.

The CMC (invert carry flag) and CLC (reset carry flag) instructions invert and reset the

state of the carry flag, respectively.

C flag Accumulator

Before shift 0 1011100000101011

After left shift 1 0111000001010110

After right shift 1 0101110000010101

Figure 4. cyclic shifts

1.6 Computational process control

In any computer, the task of managing the computing process, i.e. the required sequence

of instruction execution, is solved by using the transition instructions (BCS, BPL, BMI, BEQ,

BR), the instructions "Increment and skip" (ISZ) and "Stop" (HLT). All these instructions

(except HLT) are addressable, i.e. they contain the address of a memory cell from which the next

program instruction should be selected when one or another condition is true. If the conditions

are not true, then the instruction is located after this control instruction is executed. Moreover,

like in other address commands, indirect addressing can be used here. Jump instructions do not

change the state of the accumulator and the carry register. These instructions can only change the

contents of the instruction pointer by placing in it the address, determined by the address part of

the instruction.

Instruction BCS M determines the jump to the instruction located in the memory cell with

the address M, if the content of the carry register is 1.

Instruction BPL M defines the jump to the instruction, located in the memory cell with

the address M, if the sign of the result N is 0. Therefore, it means the result is positive, i.e. it is

greater than or equal to zero.

Instruction BMI M determines the jump to the instruction, located in the memory cell

with address M, if the sign of result N is 1, so it means, the result is negative.

Instruction BEQ M determines the jump to the instruction, located in the memory cell

with the address M, if the sign Z is 0 (zero result).

Instruction BR M jumps to the instruction, located in the memory cell with the address

M.

Jump instructions are useful for organization of cyclic programs, which are used in the

cases where it is necessary to perform a set of identical actions several times with different data.

The basic computer has a number of tools to simplify cyclic programs. The feasibility of

introducing these funds will be considered using the following examples.

Example 1. Get the result of Z = Y * 50.

Since in the Basic Computer command system there is no multiplication command,

multiplication by a constant can be performed by combining the operations of shift and addition.

To illustrate this, let's consider the simplest but non- optimal way: Y will be added Y value 50

times using the program shown in Table 2. Because in this program the accumulator is used not

only to accumulate the composition, but also to change the number of completed cycles and

compare them with the value of the multiplier, the intermediate results Z and C have to be stored

in the memory. Obviously, this program can be simplified by calculating the number of

completed cycles and checking the termination condition of a cyclic program that does not affect

the content of the accumulator. This means ISZ instruction (increment and skip). Each time the

ISZ M instruction is executed, 1 is added to the content of the memory cell with address M. If

17

the result is less than zero, then the instruction following ISZ M is executed. The instruction is

located in the memory cell with address A + 1. Otherwise, this instruction is skipped, that is, the

instruction located at address A + 2 is executed. The example of a program using the ISZ

instruction is given in Table 3.

Table 2. First example of program for getting Z = Y * 50

Address
Content

Comments
Code Mnemonics

5 0078 Y Multiplicand (in decimal it is 120)

6 0000 Z Memory cell for result

7 0032 M Multiplicand 50 = (32)16

8 0000 C The cell used to accumulate the number of completed cycles -

cycle counter

... ...

10 F200 CLA Clear accumulator

11 4006 ADD 6 To the intermediate result located in cell 6, one more value of

the Y is added 12 4005 ADD 5

13 3006 MOV 6

14 F200 CLA

15 4008 ADD 8 Content of the cycle counter is incremented by 1, and its copy

is stored in accumulator 16 F800 INC

17 3008 MOV 8

18 6007 SUB 7 If the content of the cycle counter is less than the multiplier

value, it goes to the instructions performing a new summation

of Y with intermediate Z value
19 A010 BMI 10

1A F000 HLT Stop. The result is in the memory cell 6

Table 3. Second example of program for getting Z = Y * 50

Address
Content

Comments
Code Mnemonics

5 0078 Y Multiplicand

6 0000 Z Memory cell for result

7 FFCE M Negative value of multiplicand (-50)

... ...

10 F200 CLA Clear accumulator

11 4005 ADD 5 Add Y to accumulator content

12 0007 ISZ 7 Increment M on 1 and execute instruction BR 11 if M below

Zero. If M = 0 then instruction BR 11 skipped. 13 C011 BR 11

14 3006 MOV 6 Result of 50 addition sets to cell 6

15 F000 HLT Stop computer

Example 2. Get sum of 32 array elements in memory cell 005. All array elements are

stored in the memory cell with addresses from 010 to 02F.

In the previous task, the content of the same memory cell (Y) is summarized many times,

so in this example, one needs to summarize the content of different memory cells. If the

computer instructions allowed only direct addressing of memory cells, then a program for

solving the task would either have to use 32 addition instructions (4010, 4011, ..., 402E, 402F),

or apply the modification address part of the addition instruction. The latter is implemented in

the program that is described in Table 4.

18

Usually, modern computers do not use instruction modifications. To ensure the ability to

work with uploaded programs in read-only memory devices (instructions can only be read),

special addressing tools were developed, the one of these tools is indirect addressing.

Table 4. First example of summarize array elements program

Address
Content

Comments
Code Mnemonics

5 0000 Memory cell for result

6 FFE0 Negative count of array elements

...

10

Number values of array elements
.

.

.

2F

30 F200 CLA The temporary result (cell 5) is added to

the content of the array element which address is located in the

address part of the instruction in cell 32 (first this address is

10, and then it increment by 1 by instructions from 34 to 37 on

each loop iteration)

31 4005 ADD 5

32 4010 ADD 10

33 3005 MOV 5

34 F200 CLA Move instruction into accumulator that located in memory cell

32, increment its content by 1 and save modified instruction in

old place (memory cell 32)
35 4032 ADD 32

36 F800 INC

37 3032 MOV 32

38 0006 ISZ 6 Increment array elements counter by 1 and go to instruction 30

while counter is less than 0 39 C030 BR 30

3A F000 HLT Stop computer

To use indirect addressing, one needs to select in the computer memory a cell (for

example, 007), write the address of the first element of the summed array (address 010), replace

in the program Table 4 instruction 4010 to instruction 4807 (cell 32) and replace the

modification instructions with the calculation instructions of the current address of the array

element to be summed. You can get a more compact program if you use instruction ISZ 7

(without changing the content of the accumulator) to calculate the current address of the array

element to sum. The example of the program is described in Table 5.

Table 5. Second example of summarize array elements program

Address
Content

Comments
Code Mnemonics

5 0000 Memory cell for result

6 FFE0 Negative count of array elements

7 0010 Current address of array element

...

10

Number values of array elements
.

.

2F

30 F200 CLA Clear accumulator

31 4807 ADD (7) Summarize next array element

32 0007 ISZ 7 Increment current address of array element by 1

33 F100 NOP Instruction “No operation”

34 0006 ISZ 6 Increment elements counter by 1 and go to instruction 31

19

35 C031 BR 31 while elements counter is less than zero

36 3005 MOV 5 Set result into memory cell 5

37 F000 HLT Stop computer

Table 6. Third example of summarize array elements program

Address
Content

Comments
Code Mnemonics

5 0000 Memory cell for result

6 FFE0 Negative count of array elements

...

F 0010 Address of the first element in the array

10

Number values of array elements

.

.

.

2F

30 F200 CLA Clear accumulator

31 480F ADD (F) Add the next array element. In the first iteration the index

memory cell F contains the address of the first element in the

array (10). After the first execution of this instruction the

content of memory cell F will be incremented by 1 and will be

pointed to the second element of the array, after the second

execution on the third element, etc.

32 0006 ISZ 6 Increment the elements counter by 1 and go to instruction 31

while elements counter is less than zero 33 C031 BR 31

34 3005 MOV 5

35 F000 HLT Stop computer

Since the ISZ 7 instruction (Table 5) increment value (address), then after its execution,

the instruction counter will be pointed to the instruction 34 (instruction at address 33 will be

skipped). Therefore, in the cell 33 the instruction “No operation” is placed, but only a number

could be placed. Finally, consider another tool to simplify cyclic basic computer programs -

index cells (cells with addresses from 008 to 00F). If you indirectly address any of these cells,

then firstly their content will be used as the address of the operand, and then will be

automatically incremented by 1. Index cells are not changed by indirect addressing, as their

content can only be changed only in the case of writing new information in the cell. The

described condition of index cells allows creating optimal program to summarize the array

elements (Table 6).

1.7 Subprograms

 Usually, different parts of a program must execute the same actions related to data

processing, for example, calculation of trigonometric function. In such cases, it is reasonable to

move repeated parts of a program into a subprogram and to replace appropriated places of the

same code with instruction that execute this subprogram. The instruction JSR is used for this

purpose in the basic computer. The part of the main program that contains two instructions JSR

300 that jumps to subprogram execution, described on figure 5.

 Instruction JSR 300 located in cell 25 writes number 25 + 1 = 26, which is the

instruction pointer value after executing the instruction selection cycle, in the memory cell with

address 300 and writes number 300 + 1 = 301 into the instruction pointer, which is the first

instruction address of the subprogram. This is the way of jumping to the subprogram. Further

subprogram instructions execute before the instruction BR (300) located in the memory cell 326.

20

The instruction of an unconditional jump with indirect addressing prescribes a jump to the

instruction located at the address stored in the cell 300. Since the number 26 is previously written

in this cell, it executes the instruction located in cell 26, i.e. following the call to the subprogram.

Similarly, the instruction JSR 300 will be executed. This instruction is located in the memory

cell 72;a jump to memory cell 73 will happen after subprogram instructions are executed.

Figure 5. Subprogram call and return from it

Thus, when coding a subprogram before its first instruction you should place a cell that

contains return address from the subprogram. The subprogram call instruction contains the

address of this cell, for example, the address M in the instruction JSR M. To return from the

subprogram you can use any jump instruction indirectly addressed to cell M, e.g. BR (M). It

executes the jump to the instruction which address is stored in the first cell of the subprogram.

1.8 Machine instruction execution

 Executing instructions, the computer control unit analyses and transfers an

instruction, its individual parts (operation code, addressing mark and address) or operand from

one computer register to its other register, ALU, memory or input / output device. These actions

(microoperations) are coordinated and occur in defined time sequence. To ensure such a

coordination, the computer uses clock generator cycles. The control device contains a sequence

of actions for executing instructions and elementary operation called cycles.

Figure 6. Control unit cycles

Instruction cycle. Many actions need to implement one instruction; each of these actions

is initiated by one clock cycle. The total number of clock cycles required to execute an

instruction determines the execution time, called the instruction cycle. The instruction cycle

includes several machine cycles: instruction fetching, address fetching, execution and

interruption. The main actions performed by the computer during each machine cycles are

illustrated and described below.

 Instruction fetching. In this machine, the cycle is executed by reading instruction from

the memory and its partial decoding.

21

1. The instruction pointer content is written into the buffer register via ALU.

2. The buffer register’s content is written into the address register (figure 7).

3. The memory cell content that is pointed in the address register is read from the memory

to data register (figure 8) and the instruction pointer content goes to ALU where it is

incremented by 1. The result is stored into the buffer register.

4. The buffer register’s content is stored into the instruction pointer.

5. The data register is sent through ALU into the buffer register

6. The buffer register is stored into the instruction register.

7. The code of the instruction that is located in the instruction register partially decodes to

understand the type of instruction (address, without address, input/output) and type of

addressing for address instruction (direct, indirect) (figure 9)

Figure 7. Transfer IC into data register (pulses 1 and 2 of the instruction fetching)

Figure 8. Instruction fetching with the IC incrementing at the same time (pulses 3 and 4

of the instruction fetching)

Figure 9. Writing instruction code into IR (pulses 5,6 and 7 of the instruction fetching)

22

Address fetching. This machine cycles are executed after instruction fetching only for

address instructions with indirect addressing, i.e the instruction where the type addressing bit

equals 1.

This cycle is used for reading an operand address from the memory, resulting and

jumping. It consists of several steps:

1. The data register content is sent into the buffer register through ALU.

2. The address (lower 11 bits) of content is stored in the buffer, register, which is stored into

the address register.

3. The memory cell content that points to the address register is read into the data register.

Now, this register contains an operand address or a result address, or the jump address

that will be used in an execution instruction cycle. If one of the index cells (addresses

8...F) is addressed indirectly, then the sampling cycle of the operand address (result)

continues, otherwise, the machine cycle finishes.

4. The data register content goes to ALU where is incremented by 1. Then the result is

stored into the buffer register.

5. The buffer register content is stored into the data register.

6. The changed content of the data register is transferred into the memory cell located at the

address that is pointed in the address register.

7. The register content is transferred into ALU where it is decremented by 1 and sent into

the buffer register.

8. The buffer register content is stored into the data register.

After the last operation, the data register restores the address value that was in the index

cell before step 3. The index cell content is incremented by 1. The next time it is accessed and a

new address will be selected.

Execution. The execution instruction determines the sequence of actions in this machine

cycle.

1. For instructions that require fetching an operand from the memory (AND, ADD, ADC,

SUB, ISZ), the execution cycle reads the operand into the data register and execution of

the operation indicated by the instruction operation code. An example of the execution

cycle of the ADD 21 instruction is given in figure 10.

2. By the transfer instruction (MOV), this machine cycle is written in the content of the

accumulator into a memory cell with an address stored in the data register. To do this, the

content of the data register is sent to the address register and the content of the

accumulator in the data register and then in the memory cell, which is pointed by the

address register.

3. When transition instructions (BCS, BPL, BMI, BEQ) are executed, the corresponding

condition (1 - in the transfer register, 0 - in the N flag, etc.) is checked and the address

from the data register will be transferred to the instruction pointer when fulfilling this

condition. Otherwise, that instruction will be selected, which follows the transition

instruction. When executing an unconditional jump instruction (BR) the transfer address

is forwarded to the instruction pointer without any check.

4. During this machine cycle the subprogram call (JSR) instruction transfers the content of

the instruction pointer to the memory cell, the address of which is contained in the data

register, and stores the data register content incremented by one in the instruction pointer.

23

Figure 10. Cycle “Execution” of the instruction ADD 21

Control panel operation cycle includes the following actions: input address, write, read,

start.

Control panel operation “Input address” writes the content of keyboard registry in the

instruction pointer.

Control panel operation “Write” writes the content of keyboard registry in a memory cell,

which address is pointed in the instruction pointer. After that, the content of the instruction

pointer is incremented by one and goes to the next cell.

Control panel operation “Read” reads into the data register the content of a memory cell ,

which address is in the instruction pointer. After that, it increments by one the instruction pointer

content and goes to the next cell.

Control panel operation “Start” resets the accumulator content, overflow flag, availability

of all external devices, restricts all interrupts. If mode “Work” is set, Control panel operation

“Start” goes to the instruction, which address is stored in the instruction pointer.

24

2. Laboratory works

2.1 Laboratory work 1. Program execution in Basic Computer

2.1.1 Overview

Laboratory work 1 is aimed at understanding computer programs written in machine

codes and how a computer program can be executed. The work is performed using the Basic

Computer model. This simplified computer model represents the basic principles of program

execution on a low level. All programs written in modern programming languages are translated

into machine codes. The machine codes can be different in different computers, but the basic

principles of program execution are the same. This lab work equips students with the knowledge

how any program is executed in computers.

After completing this lab work students will know the architecture of Basic Computer;

the basic principles of program execution in computer. They will be able to translate the machine

code of a program to mnemonic; to understand the content of the program; to upload and execute

the program.

2.1.2 Lab work task

1. Read your variant.

2. Translate the given machine code in a hexadecimal system into a mnemonic code and fill

in Table 7.

3. Table 7. The answer table for instruction 2 of laboratory work 1

ADDRESS MACHINE CODE MNEMONIC

CODE

4. Define the operands XXXX, YYYY, ZZZZ in your variant with any proper numbers

from the domain of their definition except 0 (zero). All operands and the results should

be represented by signed 16-bit digits. Write the operands in hexadecimal format

in Table 8.

Table 8. The answer table for instruction 3 of laboratory work 1

OPERAND VALUE

XXXX

YYYY

ZZZZ

5. Execute your program virtually in your head and decide what the memory in Basic

Computer would contain after the program execution. Fill in Table 9 below with your

ideas.

Table 9. The answer table for instruction 2 of laboratory work 1

ADDRESS MACHINE CODE

6. Enter the program code into Basic Computer Memory

7. Execute your program in Basic Computer Model

25

8. Fill in Table 10 with the content of the memory after the program execution.

Table 10. Template for answer table for instruction 7 of laboratory work 1

ADDRESS MACHINE CODE

9. Compare the result obtained with the result in point 4. Check yourself – the table contents

should be the same. If the table contents are not the same, you should find and correct the

mistakes. The mistakes can be in both tables. Be careful.

2.1.3 Lab work guidance

To understand how to do the laboratory work we will do the sample variant step by step.

1. Read your variant.

For example, your variant defines a program that is listed in Table 11.

Table 11. The sample of laboratory work 1

ADDRESS MACHINE CODE ENTRY POINT

0DD XXXX

0DE 0000

0DF ZZZZ

0E0 0000

0E1 F200 +

0E2 40EA

0E3 10DD

0E4 30DE

0E5 F200

0E6 60DF

0E7 60DE

0E8 30E0

0E9 F000

0EA YYYY

This variant contains the list of machine codes of program data and instructions. The

program is stored into the memory of the Basic Computer Model. Each code is kept in the

address, which you can see in the corresponding line of the column «ADDRESS». The first

instruction of your program (the entry point) is marked with symbol «+».

All machine codes are presented as hexadecimal values.

2. Translate the given machine code in a hexadecimal system into a mnemonic code and

fill in the table below.

To translate the machine code, you can use the table with the instruction set of Basic

Computer. The instruction set for Basic Computer is presented in Appendix A. Note, some

memory cells can have a data code instead of instructions. Basic Computer has the von Neumann

architecture. It means the data and instructions are stored in the same memory. The program

starts from the cell that is identified as ENTRY POINT and ends with instruction code F000

(HALT instruction).

26

The first instruction is F200. It is the code of CLA (Table 12) instruction according to the

instruction set table.

Table 12. CLA instruction description

Name Mnemonic code Machine code Description

Clear accumulator register CLA F200 0 -> A

The next instruction is 40EA. It is the addition (ADD) (Table 13). The content of the

memory cell with address 0EA is added to the accumulator register. The result is stored in the

accumulator register.

Table 13. ADD instruction description

Name Mnemonic code Machine code Description

Addition ADD 0EA 40EA (0EA) + (A) -> A

The next instruction is 10DD. It is conjunction (AND) (Table 14). The conjunction is

calculated with the content of the memory cell with address 0DD and the accumulator register.

The result is stored in the accumulator register.

Table 14. AND instruction description

Name Mnemonic code Machine code Description

Conjunction AND 0DD 10DD (0DD) & (A) -> A

The next instruction is 30DE. It is a move instruction (MOV) (Table 15). The content of

the accumulator registers is stored in the memory cell with address 0DE.

Table 15. MOV instruction description

Name Mnemonic code Machine code Description

Move MOV 0DE 30DE (A) -> 0DE

The next instruction is F200 again. It clears the accumulator register.

The next instruction is 60DF. It is subtraction (SUB) (Table 16). The content of the

memory cell with address 0DF is subtracted from the accumulator register. The result is stored in

the accumulator register.

Table 16. SUB instruction description

Name Mnemonic code Machine code Description

Subtraction SUB 0DF 60DF (A) – (0DF) -> (A)

The next instruction is 60DE. It is also subtraction but with the content of the memory

cell with address 0DE. The result is also stored in the accumulator register.

The next instruction is 30E0. It is a move instruction again, but it stores the accumulator

register content in the memory cell with address 0E0.

The next instruction is F000. It is a halt instruction (HALT) (Table 17). It indicates the

end of the program.

Table 17. HLT instruction description

Name Mnemonic code Machine code Description

Halt HLT F000 Stop program execution

27

The rest memory cells with addresses 0DD, 0DE, 0DF, 0E0, 0EA have the machine codes

of program data. The rest memory cells are used as a data source and destination place in the

memory of the Basic Computer.

Thus, the correct answer at this point is presented in Table 18.

Table 18. The answer of instruction 2 of laboratory work 1

ADDRESS MACHINE CODE MNEMONIC CODE

0DD XXXX

0DE 0000

0DF ZZZZ

0E0 0000

0E1 F200 CLA

0E2 40EA ADD 0EA

0E3 10DD AND 0DD

0E4 30DE MOV 0DE

0E5 F200 CLA

0E6 60DF SUB 0DF

0E7 60DE SUB 0DE

0E8 30E0 MOV 0E0

0E9 F000 HLT

0EA YYYY

3. Define the operands XXXX, YYYY, ZZZZ in your variant with any proper numbers

from the domain of their definition except 0 (zero). All operands and the results should

be represented by signed 16-bit digits.

In this case any 16-bit number would be correct. For example, in this sample it would be

A, B, C in the hexadecimal system (Table 19).

Table 19. The answer of instruction 2 of laboratory work 1

OPERAND VALUE

XXXX 000A

YYYY 000B

ZZZZ 000C

4. Execute your program virtually in your head and decide what the memory in Basic

Computer would contain after the program execution.

Let’s perform all the instructions in our heads. The first instruction clears the accumulator

register.

A = 0

The next instruction adds the content of the cell memory with address 0EA to the

accumulator register. The cell 0EA contains YYYY operand with value 000B.

A = 000B

The next instruction calculates the conjunction between the accumulator and the value of

the cell 0DD with operand XXXX.

A = 000B & 000A = 000A

28

The next instruction moves the value of the accumulator to the memory cell with address

0DE. At this step we have the memory content presented in Table 20.

Table 20. The partial answer of instruction 3 of laboratory work 1

ADDRESS MACHINE CODE

0DD 000A

0DE 000A

0DF 000C

0E0 0000

0E1 F200

0E2 40EA

0E3 10DD

0E4 30DE

0E5 F200

0E6 60DF

0E7 60DE

0E8 30E0

0E9 F000

0EA 000B

The next instruction clears the accumulator again.

A = 0

The next instruction subtracts the value of cell 0DF from the accumulator.

A = 0 – 000C = FFF4

The next instruction subtracts the value of cell 0DE from the accumulator.

A = FFF4 – 000A = FFEA

The next instruction moves the accumulator value to cell 0E0. After this instruction, the

memory is changed as presented in Table 21.

Table 21. The answer of instruction 3 of laboratory work 1

ADDRESS MACHINE CODE

0DD 000A

0DE 000A

0DF 000C

0E0 FFEA

0E1 F200

0E2 40EA

0E3 10DD

0E4 30DE

0E5 F200

0E6 60DF

0E7 60DE

0E8 30E0

0E9 F000

0EA 000B

29

The next instruction is a HALT instruction. It is the end of the program. The table above

contains the correct answer of this task.

5. Enter the program code into the Basic Computer Memory

To enter a program code into Basic Computer Memory you should open Basic Computer

Model. It can be done by using double click on the file bcomp.jar. After that, you can see the

structure of the processor of Basic Computer presented in figure 11.

Figure 11. The main window of the Basic Computer Model

Let’s enter your program into Basic Computer memory. To enter each machine code into

the memory you need to define the address using F4 key and the memory cell value using F5

key. If you enter the codes sequentially, you should only define the address of the first

instruction. After storing the first instruction, the Instr. Pointer will be autoincremented and you

can enter the second code immediately. For example, let’s enter the first instruction with code

F200.

Use Up arrow on your keyboard to change the value of each bit in the Keyb. Register.

Use arrows Left and Right to move from one bit to another. Set the address of the first command

in the Keyb. Register (figure 12). In our sample, the address of the first command is 0E1 (0000

0000 1110 0001 in a binary system). The Keyb. Register is used as the intermediate register to

input data to the Basic Computer Memory. It looks like a simple user console.

30

Figure 12. The new value of the Keyb. Register

Press F4 to store this address in the Instr. Pointer (figure 13).

Figure 13. The new value of the Instr. Pointer

Enter the value of machine code F200 (1111 0010 0000 0000 in binary system) into

Keyb. Register (figure 14).

31

Figure 14. The first instruction in the Keyb. Register

Press F5 to store the value of the Keyb. Register in the memory in the cell with 0E1

address (figure 15).

Figure 15. The first instruction in the memory cell

Then, enter the rest instructions of your program. For the second instruction and other

ones you do not need to enter the instruction address again, as the content of Instr. Pointer

register will be autoincremented after pressing F5.

Similarly, enter your operands XXXX, YYYY, ZZZZ.

32

6. Execute your program in Basic Computer Model

Before starting the execution, you need to define the first program address, i.e. the

program entry point. Enter the first address of your program in the Instr. Pointer using the

Keyb. Register and F4 as before.

Then make sure that the mode of the program execution is Halt, as presented in

figure 16.

Figure 16. Halt mode button

If it does not work, you should press key F9 to change the mode. The Halt mode allows

executing a program sequentially – step by step.

 Press F7 to start execution. Then press F8 to continue execution till the last instruction

F000 with address 0E9.

If you have done all the instructions correctly, you will see the window presented in

figure 17.

33

Figure 17. Halt instruction in the Instr. Register

The Inst. Register has the last instruction F000. It is HALT instruction. It is the end of

the program.

On the left side of the window, we can see the Memory content. We need to use this

information in the next step of our task.

7. Fill in the table with the content of the memory after the program execution.

After program execution we can see only a part of memory content on the left side of the

Basic Computer window. To see the top part of the memory we can enter the address of the first

data cell 0DD and press F4 to enter the address and then press F6 to read from this address.

After this, you can see the top part of the memory content as presented in Table 18.

34

Figure 18. The top part of the memory content

Now we can fill in the answer table as presented in Table 22.

Table 22. The answer of the instruction 7 of laboratory work 1

ADDRESS MACHINE CODE

0DD 000A

0DE 000A

0DF 000C

0E0 FFEA

0E1 F200

0E2 40EA

0E3 10DD

0E4 30DE

0E5 F200

0E6 60DF

0E7 60DE

0E8 30E0

0E9 F000

0EA 000B

8. Compare the result obtained with the result in point 4. Check yourself – the tables

content should be the same. If the tables content is not the same, you should find and

correct the mistakes. The mistakes can be in both tables. Be careful.

We can see that both of our tables are the same. It means we have done the task

successfully.

35

2.1.4 Lab work variants

Variant 1 of laboratory work 1 is presented in Table 23.

Table 23. Variant 1 of laboratory work 1

Variant 2 of laboratory work 1 is presented in Table 24.

Table 24. Variant 2 of laboratory work 1

ADDRESS MACHINE CODE ENTRY

POINT

0B3 XXXX

0B4 YYYY

0B5 ZZZZ

0B6 0000

0B7 F200 +

0B8 40B5

0B9 10B3

0BA 30C0

0BB F200

0BC 60B4

0BD 60C0

0BE 30B6

0BF F000

0C0 0000

ADDRESS MACHINE CODE ENTRY

POINT

038 0000

039 0000

03A YYYY

03B F200 +

03C 4044

03D 4045

03E 3039

03F F200

040 403A

041 1039

042 3038

043 F000

044 XXXX

045 ZZZZ

36

Variant 3 of laboratory work 1 is presented in Table 25.

Table 25. Variant 3 of laboratory work 1

Variant 4 of laboratory work 1 is presented in Table 26.

Table 26. Variant 4 of laboratory work 1

ADDRESS MACHINE CODE ENTRY

POINT

0A0 F200 +

0A1 40AC

0A2 10AB

0A3 30AA

0A4 F200

0A5 60AD

0A6 40AA

0A7 30A9

0A8 F000

0A9 0000

0AA 0000

0AB YYYY

0AC ZZZZ

0AD XXXX

ADDRESS MACHINE CODE ENTRY

POINT

042 0000

043 F200 +

044 404E

045 104F

046 3042

047 F200

048 404C

049 6042

04A 304D

04B F000

04C ZZZZ

04D 0000

04E YYYY

04F XXXX

37

Variant 5 of laboratory work 1 is presented in Table 27.

Table 27. Variant 5 of laboratory work 1

Variant 6 of laboratory work 1 is presented in Table 28.

Table 28. Variant 6 of laboratory work 1

ADDRESS MACHINE CODE ENTRY

POINT

09F 0000

0A0 F200 +

0A1 40A9

0A2 10AC

0A3 309F

0A4 F200

0A5 40AB

0A6 409F

0A7 30AA

0A8 F000

0A9 YYYY

0AA 0000

0AB ZZZZ

0AC XXXX

ADDRESS MACHINE CODE ENTRY

POINT

041 0000

042 ZZZZ

043 0000

044 XXXX

045 F200 +

046 6044

047 4042

048 3043

049 F200

04A 404E

04B 1043

04C 3041

04D F000

04E YYYY

38

Variant 7 of laboratory work 1 is presented in Table 29.

Table 29. Variant 7 of laboratory work 1

Variant 8 of laboratory work 1 is presented in Table 30.

Table 30. Variant 8 of laboratory work 1

ADDRESS MACHINE CODE ENTRY

POINT

0A9 0000

0AA ZZZZ

0AB F200 +

0AC 60B5

0AD 60AA

0AE 30A9

0AF F200

0B0 40B4

0B1 10A9

0B2 30B6

0B3 F000

0B4 XXXX

0B5 YYYY

0B6 0000

ADDRESS MACHINE CODE ENTRY

POINT

04B F200 +

04C 4056

04D 4055

04E 3054

04F F200

050 4057

051 1054

052 3058

053 F000

054 0000

055 YYYY

056 XXXX

057 ZZZZ

058 0000

39

Variant 9 of laboratory work 1 is presented in Table 31.

Table 31. Variant 9 of laboratory work 1

Variant 10 of laboratory work 1 is presented in Table 32.

Table 32. Variant 10 of laboratory work 1

ADDRESS MACHINE CODE ENTRY

POINT

0A8 F200 +

0A9 60B4

0AA 40B3

0AB 30B1

0AC F200

0AD 40B5

0AE 10B1

0AF 30B2

0B0 F000

0B1 0000

0B2 0000

0B3 XXXX

0B4 ZZZZ

0B5 YYYY

ADDRESS MACHINE CODE ENTRY

POINT

049 ZZZZ

04A 0000

04B YYYY

04C 0000

04D F200 +

04E 6049

04F 4056

050 304A

051 F200

052 404B

053 104A

054 304C

055 F000

056 XXXX

40

2.2 Laboratory work 2. Low level instruction execution

2.2.1 Overview

This lab work is aimed at understanding the basic principles of instruction execution on a

low level. The lab gives basic skills of tracing program and knowledge about low-level steps of

each instruction, known as machine cycles.

After completing this lab work, students will know the basic principles of instruction

execution on a low level; know the concept of machine cycles. They will be able to decompose

instruction execution into machine cycles; to trace a program.

2.2.2 Lab work task

1. Read your variant.

2. Translate the given machine code in a hexadecimal system into a mnemonic code and fill

Table 33.

Table 33. Template for answer table for instruction 2 of laboratory work 2

ADDRESS MACHINE CODE MNEMONIC

CODE

3. Execute your program virtually in your head and fill in trace Table 34 with your ideas. In

the trace table, you need to define the internal register content after each instruction

execution, the address and the value of the memory cell that have been changed.

Table 34. The answer table for instruction 3 of laboratory work 2

ADDRESS MACHINE

CODE

REGISTER CONTENT The cell of the memory that has been

changed after instruction execution

AR DR IR IP A C ADDRESS NEW MACHINE

CODE

4. Enter the program code into Basic Computer Memory

5. Execute your program in the Basic Computer Model step by step and fill in trace table

35. You should write the content of each register after the execution of each instruction.

Table 35. The answer table for instruction 5 of laboratory work 2

ADDRESS MACHINE

CODE

REGISTER CONTENT The cell of the memory that has been

changed after instruction execution

AR DR IR IP A C ADDRESS NEW MACHINE CODE

6. Compare the obtained result with the result in point 3. Check yourself – the tables content

should be the same. If the tables content is not the same, you should find and correct the

mistakes. The mistakes can be in both tables. Be careful.

41

2.2.3 Lab work guidance

To understand how to complete the laboratory work, we will do the sample variant step

by step.

1. Read your variant

For example, the variant defines a program that is listed in Table 36.

Table 36 The sample variant of laboratory work 2

ADDRESS MACHINE CODE ENTRY POINT

091 0001

092 001F

093 0347

094 0000

095 F200 +

096 6092

097 4091

098 3094

099 F200

09A 4093

09B 1094

09C 309E

09D F000

09E 0000

This sample contains the list of machine codes for program data and instructions. The

program is stored in the memory of the Basic Computer Model. Each code is kept in the address,

which you can see in the corresponding line of the column «ADDRESS». The first instruction of

your program is marked with symbol «+».

All machine codes are presented as a hexadecimal value.

2. Translate the given machine code in hexadecimal system into a mnemonic code and fill in

the answer table.

To translate the given machine code, you can use the table with the instruction set of

Basic Computer. The Instruction set of the Basic Computer is presented in Appendix A. Note,

some memory cells can have a data code instead of instructions. Basic Computer has the von

Neumann architecture. It means the data and instructions are stored in the same memory. The

program starts from the cell that is identified as ENTRY POINT and ends with instruction code

F000 (HALT instruction).

The first instruction is F200. It is a code of CLA instruction (Table 37) according to the

instruction set table.

42

Table 37 CLA instruction description

Name Mnemonic code Machine code Description

Clear accumulator register CLA F200 0 -> A

The next instruction is 6092. It is subtraction (Table 38). The content of the memory cell

with address 092 is subtracted from the accumulator register. The result is stored in the

accumulator register.

Table 38 SUB instruction description

Name Mnemonic code Machine code Description

Subtraction SUB 092 6092 (A) – (092) -> (A)

The next instruction is 4091. It is an addition (Table 39). The content of the memory cell

with address 091 is added to the accumulator register. The result is stored in the accumulator

register.

Table 39 ADD instruction description

Name Mnemonic code Machine code Description

Addition ADD 091 4091 (091) + (A) -> A

The next instruction is 3094. It is a move instruction (Table 40). The content of the

accumulator register is stored in the memory cell with address 094.

Table 40. MOV instruction description

Name Mnemonic code Machine code Description

Move MOV 094 3094 (A) -> 094

The next instruction is F200 again. It clears the accumulator register.

The next instruction is 4093. It is an addition. The content of the memory cell with

address 093 is added to the accumulator register. The result is stored in the accumulator register.

The next instruction is 1094. It is conjunction (Table 41). The conjunction is calculated

with the content of the memory cell with address 094 and the accumulator register. The result is

stored in the accumulator register.

Table 41. AND instruction description

Name Mnemonic code Machine code Description

Conjunction AND 094 1094 (094) & (A) -> A

The next instruction is 309E. It is a move instruction. The content of the accumulator

register is stored in the memory cell with address 09E.

The next instruction is F000. It is halt instruction (Table 42). It indicates the end of the

program.

Table 42. HLT instruction description

Name Mnemonic code Machine code Description

Halt HLT F000 Stop program execution

43

Thus, the correct answer at this point is presented in Table 43.

Table 43. The answer for the instruction 2 of the sample variant

ADDRESS MACHINE CODE MNEMONIC

CODE

091 0001

092 001F

093 0347

094 0000

095 F200 CLA

096 6092 SUB 092

097 4091 ADD 091

098 3094 MOV 094

099 F200 CLA

09A 4093 ADD 093

09B 1094 AND 094

09C 309E MOV 09E

09D F000 HLT

09E 0000

3. Execute your program virtually in your head and fill in the trace table with your ideas. In

the trace table you need to define the internal register content after each instruction

execution, the address and the value of the memory cell that has been changed.

The Basic Computer model has five internal registers: the address register (AR), the data

register (DR), the instruction register (IR), the instruction pointer (IP) and the accumulator

register (A). The accumulator register stores intermediate results while instruction executing.

The address register is an 11-bit register that stores the address of data or instruction to

access. The data register is a 16-bit register to store data during the execution of an instruction

that moves data from or to the memory. The instruction register is a 16-bit register that stores

the code of the current instruction. The instruction pointer is an 11-bit register that stores the

address of the next instruction. The accumulator register is a 16-bit register that stores the

result of ALU operation.

Each instruction is executed in Basic Computer in several steps. The number of steps is

also known as machine cycles, which depend on the type of an instruction. In this lab work we

have instructions only with direct addressing, for example ADD instruction, and without

addressing, for example CLA instruction.

In many cases the instruction execution is divided into three stages. They are the

instruction fetch, the address fetch and the execution. The address fetch stage is presented only in

the instruction with indirect addressing. The additional information about stages of instruction

execution you can see in chapter 1.

Let’s start from the first instruction. The first instruction is F200. To perform this

instruction Basic Computer does several machine cycles:

1) The content of the instruction pointer 095 goes to the address register. 095 is the

address of the first instruction (figure 19). It is necessary for the instruction pointer to

have this value before the program execution.

44

Figure 19. The first cycle of the F200 instruction

2) The memory cell value F200 with address 095 that is stored in the address register

moves to the data register (figure 20).

Figure 20. The second cycle of the F200 instruction

45

3) The instruction pointer is incremented by 1 and becomes 096 (figure 21).

Figure 21. The third cycle of the F200 instruction

4) The content F000 of the data register is moved to the instruction register and is

decoded (figure 22).

Figure 22. The fourth cycle of the F200 instruction

5) The accumulator register is cleared (figure 23).

Figure 23. The fifth cycle of the F200 instruction

46

The instruction fetch stage consists of the machine cycles from 1 to 4. The machine cycle

5 is the execution stage of this instruction. Thus, after the instruction execution the content of the

internal registers will be as presented in Table 44.

Table 44. The register content after the F200 instruction execution

ADDRES

S

MACHIN

E CODE

REGISTER CONTENT The cell of the memory that has

been changed after instruction

execution

AR DR IR IP A C ADDRESS NEW MACHINE

CODE

095 F200 095 F200 F200 096 0000 0

The next instruction is 6092. To perform this instruction Basic Computer does several

machine cycles:

1) The content of the instruction pointer 096 goes to the address register (figure 24).

Figure 24. The first cycle of the 6092 instruction

2) The memory cell value 6092 with address 096 that is stored in the address register

moves to the data register (figure 25).

Figure 25. The second cycle of the 6092 instruction

47

The instruction pointer is incremented by 1 and becomes 097 (figure 26).

Figure 26. The third cycle of the 6092 instruction

3) The content 6092 of the data register is moved to the instruction register and decoded

(figure 27).

Figure 27. The fourth cycle of the 6092 instruction

48

4) The address part of the data register is moved to the address register (figure 28).

Figure 28. The fifth cycle of the 6092 instruction

5) The content of the memory cell with address 092 is moved to the data register

(figure 29). 092 is the operand address for 6092 instruction (SUB 092).

Figure 29. The sixth cycle of the 6092 instruction

49

6) The operand from the data register is subtracted from the accumulator register

(figure 30). The result is stored in the accumulator register.

Figure 30. The seventh cycle of the 6092 instruction

The instruction fetch stage consists of the machine cycles from 1 to 4. The machine

cycles from 5 to 7 are the execution stage of this instruction. Thus, after the instruction

execution the content of the internal registers will be the same as presented in Table 45.

Table 45. The register content after the 6092 instruction execution

ADDRES

S

MACHINE

CODE

REGISTER CONTENT The cell of the memory that has

been changed after instruction

execution

AR DR IR IP A C ADDRESS NEW MACHINE

CODE

096 6092 092 001F 6092 097 FFE1 0

The next instruction is 4091. To perform this instruction Basic Computer does several

machine cycles:

1) The content of the instruction pointer 097 goes to the address register.

2) The memory cell value 4091 with address 097 that is stored in the address register

moves to the data register.

3) The instruction pointer is incremented by 1and becomes 098.

4) The content 4091 of the data register is moved to the instruction register and decoded.

5) The address part 091 of the data register is moved to the address register.

6) The content of the memory cell with address 091 is moved to the data register. 091 is

the operand address for the 4091 instruction (ADD 091).

7) The operand from the data register is added to the accumulator register. The result is

stored in the accumulator register.

Thus, after the instruction execution the content of the internal registers will be the same

as presented in Table 46.

50

Table 46. The register content after the 4091 instruction execution

ADDRES

S

MACHINE

CODE

REGISTER CONTENT The cell of the memory that has

been changed after instruction

execution

AR DR IR IP A C ADDRESS NEW MACHINE

CODE

097 4091 091 0001 4091 098 FFE2 0

The next instruction is 3094. To perform this instruction Basic Computer does several

machine cycles:

1) The content of the instruction pointer 098 goes to the address register.

2) The memory cell value 3094 with address 098 that is stored in the address register

moves to the data register.

3) The instruction pointer is incremented by 1 and becomes 099.

4) The content 3094 of the data register is moved to the instruction register and is

decoded.

5) The address part 094 of the data register is moved to the address register.

6) The content of the accumulator register is moved to the data register.

7) The content of the data register is stored in the memory cell with address 094.

Thus, after the instruction execution the content of the internal registers will be the same

as presented in Table 47.

Table 47 The register content after the 3094 instruction execution

ADDRES

S

MACHIN

E CODE

REGISTER CONTENT The cell of the memory that has

been changed after instruction

execution

AR DR IR IP A C ADDRES

S

NEW MACHINE

CODE

098 3094 094 FFE2 3094 099 FFE2 0 094 FFE2

Similarly, we need to decompose other instructions. The result trace table will be the

same as presented in Table 48.

Table 48 The registers content during the program execution

ADDRES

S

MACHIN

E CODE

REGISTER CONTENT The cell of the memory that has

been changed after instruction

execution

AR DR IR IP A C ADDRESS NEW MACHINE

CODE

095 F200 095 F200 F200 096 0000 0

096 6092 092 001F 6092 097 FFE1 0

097 4091 091 0001 4091 098 FFE2 0

098 3094 094 FFE2 3094 099 FFE2 0 094 FFE2

099 F200 099 F200 F200 09A 0000 0

09A 4093 093 0347 4093 09B 0347 0

09B 1094 094 FFE2 1094 09C 0342 0

09C 309E 09E 0342 309E 09D 0342 0 09E 0342

09D F000 09D F000 F000 09E 0342 0

51

4. Enter the program code into Basic Computer Memory

To enter a program code into the Basic Computer Memory, you should open Basic

Computer Model. It can be done by using double click on the file bcomp.jar. After that you can

see the structure of the processor of Basic Computer presented in figure 31.

Figure 31. The main window of Basic Computer Model

Let’s enter your program into the Basic Computer memory. To enter each machine code

into the memory, you need to define the address using F4 key and memory cell value using F5

key. If you enter the codes sequentially, you should define only the address of the first code.

After storing, the first code the Instr. Pointer will be autoincremented, and you can enter the

second code immediately. For example, let’s enter the first code 0001 in address 091.

Use Up arrow on your keyboard to change the value of each bit in the Keyb. Register.

Use arrows Left and Right to move from one bit to another. Set the address of the first code in

the Keyb. Register (figure 32).

Figure 32. The content of the Keyb. Register

52

In this sample, the address of the first code is 091 (0000 0000 1001 0001 in binary

system). The Keyb. Register is used as the intermediate register to input data to the Basic

Computer Memory. It looks like a simple user console.

Press F4 to store this address in the Instr. Pointer (figure 33).

Figure 33. The first code address in the Instr. Pointer

Enter the value of machine code 0001 (0000 0000 0000 0001 in binary system) into the

Keyb. Register (figure 34).

Figure 34. The first code in Keyb. Register

Press F5 to store the value of the Keyb. Register in the memory cell with 091 address

(figure 35).

53

Figure 35. The first code in the memory

Then, enter the rest codes of your program. For the second code and other ones you do

not need to enter the code address again, as the content of the Instr. Pointer register will be

autoincremented after pressing F5.

5. Execute your program in Basic Computer Model step by step and fill in the trace table

below. You should write the content of each register after the execution of each

instruction.

Before starting the execution, you need to define the first program address, i.e. the

program entry point. Enter the first address 095 of your program in the Instr. Pointer using

Keyb. Register and F4 as before.

Then make sure that the mode of program execution is Halt (figure 36).

Figure 36. The halt mode button

54

If it does not work, you should press key F9 to change the mode. The Halt mode allows

executing program sequentially – step by step.

Press F7 to start execution. Then press F8 to execute the first instruction. After the

instruction execution, you can see the content of the internal registers: the Addr. Register (AR),

the Data Register (DR), the Instr. Register (IR), the Instr. Pointer (IP), the Accumulator (A) and

the carry flag (C). It is depictured in figure 37.

Figure 37. The content of the internal registers

Then you should write the content of the internal registers in the answer table as

presented in Table 49.

Table 49. The register content after the F200 instruction execution

ADDRES

S

MACHIN

E CODE

REGISTER CONTENT The cell of the memory that has been

changed after instruction execution

AR DR IR IP A C ADDRESS NEW MACHINE

CODE

095 F200 095 F200 F200 096 0000 0

Continue the program execution step by step till the last instruction F000 with address

09D and continue filling the answer table.

The correct answers can be found in Table 50.

55

Table 50. The registers content during the program execution

ADDRES

S

MACHIN

E CODE

REGISTER CONTENT The cell of the memory that has

been changed after instruction

execution

AR DR IR IP A C ADDRESS NEW MACHINE

CODE

095 F200 095 F200 F200 096 0000 0

096 6092 092 001F 6092 097 FFE1 0

097 4091 091 0001 4091 098 FFE2 0

098 3094 094 FFE2 3094 099 FFE2 0 094 FFE2

099 F200 099 F200 F200 09A 0000 0

09A 4093 093 0347 4093 09B 0347 0

09B 1094 094 FFE2 1094 09C 0342 0

09C 309E 09E 0342 309E 09D 0342 0 09E 0342

09D F000 09D F000 F000 09E 0342 0

6. Compare the obtained result with the result in point 3. Check yourself – the tables content

should be the same. If the tables content are not the same, you should find and correct the

mistakes. The mistakes can be in both tables. Be careful.

We can see the both tables are the same. It means we have done the task successfully.

2.2.4 Lab work variants

Variant 1 of laboratory work 2 is presented in Table 51.

Table 51. Variant 1 of laboratory work 2

ADDRESS MACHINE CODE ENTRY

POINT

0D8 0045

0D9 0F13

0DA 0000

0DB F200 +

0DC 40E5

0DD 40D8

0DE 30E4

0DF F200

0E0 40D9

0E1 10E4

0E2 30DA

0E3 F000

0E4 0000

0E5 0007

56

Variant 2 of laboratory work 2 is presented in Table 52.

Table 52. Variant 2 of laboratory work 2

Variant 3 of laboratory work 2 is presented in Table 53.

Table 53. Variant 3 of laboratory work 2

Variant 4 of laboratory work 2 is presented in Table 54.

Table 54. Variant 4 of laboratory work 2

ADDRESS MACHINE CODE ENTRY

POINT

071 F200 +

072 407A

073 407C

074 307D

075 F200

076 407B

077 107D

078 307E

079 F000

07A 0001

07B 000F

07C A001

07D 0000

07E 0000

ADDRESS MACHINE CODE ENTRY

POINT

013 0005

014 F200 +

015 6020

016 401F

017 301D

018 F200

019 4013

01A 101D

01B 301E

01C F000

01D 0000

01E 0000

01F FF02

020 0012

ADDRESS MACHINE CODE ENTRY

POINT

070 0000

071 0000

072 0890

073 0056

074 F200 +

075 4072

076 407D

57

Variant 5 of laboratory work 2 is presented in Table 55.

Table 55. Variant 5 of laboratory work 2

Variant 6 of laboratory work 2 is presented in Table 56.

Table 56. Variant 6 of laboratory work 2

077 3070

078 F200

079 4073

07A 1070

07B 3071

07C F000

07D 0A56

ADDRESS MACHINE CODE ENTRY

POINT

012 0000

013 0055

014 0066

015 0177

016 F200 +

017 4014

018 1015

019 3012

01A F200

01B 4013

01C 4012

01D 301F

01E F000

01F 0000

ADDRESS MACHINE CODE ENTRY

POINT

07A 0000

07B 0456

07C F200 +

07D 4085

07E 107B

07F 3086

080 F200

081 4087

082 4086

083 307A

084 F000

085 0001

086 0000

087 0CCC

58

Variant 7 of laboratory work 2 is presented in Table 57.

Table 57. Variant 7 of laboratory work 2

Variant 8 of laboratory work 2 is presented in Table 58.

Table 58. Variant 8 of laboratory work 2

ADDRESS MACHINE CODE ENTRY

POINT

01C F200 +

01D 4029

01E 1028

01F 3026

020 F200

021 6027

022 4026

023 3025

024 F000

025 0000

026 0000

027 0007

028 0008

029 F561

ADDRESS MACHINE CODE ENTRY

POINT

078 F200 +

079 4082

07A 4085

07B 3084

07C F200

07D 4083

07E 1084

07F 3081

080 F000

081 0000

082 0123

083 0A98

084 0000

085 0003

59

Variant 9 of laboratory work 2 is presented in Table 59.

Table 59. Variant 9 of laboratory work 2

Variant 10 of laboratory work 2 is presented in Table 60.

Table 60. Variant 10 of laboratory work 2

ADDRESS MACHINE CODE ENTRY

POINT

01A 0006

01B 0007

01C 0001

01D 0000

01E F200 +

01F 401B

020 101C

021 301D

022 F200

023 601A

024 601D

025 3027

026 F000

027 0000

ADDRESS MACHINE CODE ENTRY

POINT

083 AFCB

084 0000

085 0000

086 F200 +

087 608F

088 6083

089 3085

08A F200

08B 4090

08C 1085

08D 3084

08E F000

08F 0036

090 01A8

60

2.3 Laboratory work 3. Program control flow

2.3.1 Overview

This lab is aimed at understanding how a program behavior can be changed depending on

conditions. The lab gives knowledge about branch instructions and how they are executed in a

computer. Different types of addressing are introduced. The lab also gives basic skills of

organizing loops in programs and visualizing the algorithm with a flow chart.

After performing the lab task students will be able to analyze the program control flow

and control the program behavior using branch instructions and loops.

2.3.2 Lab work task

1. Read your variant.

2. Translate the given machine code in a hexadecimal system into a mnemonic code and fill

Table 61. Write the type of addressing (direct or indirect) used in the instructions.

Table 61. Template for answer table for instruction 2 of laboratory work 3

ADDRESS MACHINE CODE MNEMONIC

CODE

TYPE OF

ADDRESSING

3. Draw the flow chart of your program

4. Enter the program code into the Basic Computer memory

5. Execute your program in the Basic Computer model

6. Fill Table 62 with the content of the memory after the program execution. Write the

number of memory accesses for each memory cell during program execution.

Table 62. The answer table for instruction 6 of laboratory work 3

ADDRESS MACHINE CODE NUMBER OF MEMORY

ACCESSES

2.3.3 Lab work guidance

To understand how to do the laboratory work we will do the sample variant step by step.

Let’s start from the first instruction.

1. Read your variant

This variant contains the list of machine codes of program data and instructions. The

program is stored in the memory of the Basic Computer Model. Each code is kept in address,

that you can see in the corresponding line of the column «ADDRESS». The first instruction of

your program is marked by symbol «+».

All machine codes are presented as a hexadecimal value.

61

For example, your variant defines a program, which is in Table 63.

Table 63. The sample variant of laboratory work 3

ADDRESS MACHINE CODE ENTRY POINT

3FA 0412

3FB 0004

3FC F500

3FD F200 +

3FE 43FB

3FF F400

400 F800

401 300D

402 F200

403 33FC

404 43FA

405 300E

406 F200

407 480E

408 F700

409 840F

40A F600

40B 63FC

40C 940F

40D 43FC

40E 33FC

40F 000D

410 C406

411 F000

412 F501

413 FA01

414 F700

415 E101

2. Translate the given machine code in a hexadecimal system into a mnemonic code and

fill in the table. Please write down the type of addressing (direct or indirect) that is used

in instructions.

To translate the machine code, you can use the table with the instruction set of Basic

Computer. The instruction set of Basic Computer is presented in Appendix A. Note, some

memory cells can have a data code instead of an instruction. Basic Computer has the von

Neumann architecture. It means data and instructions are stored in the same memory. The

program starts from the cell that is identified as ENTRY POINT and ends with instruction code

F000 (HALT instruction).

The first instruction is F200. It is a code of CLA instruction according to the instruction

set table (Table 64).

Table 64. CLA instruction description

Name Mnemonic code Machine code Description

Clear accumulator register CLA F200 0 -> A

62

The next instruction is 43FB. It is an addition. The content of the memory cell with

address 3FB is added to the accumulator register content. The result is stored in the accumulator

register (Table 65).

Table 65. ADD instruction description

Name Mnemonic code Machine code Description

Addition ADD 3FB 43FB (3FB) + (A) -> A

The next instruction is F400. This instruction inverts the value of the accumulator register

(Table 66).

Table 66. CMA instruction description

Name Mnemonic code Machine code Description

Invert accumulator register CMA F400 (!A) -> A

The instruction is F800. This instruction increments the accumulator, i.e. it adds to the

accumulator value 1 (Table 67).

Table 67. INC instruction description

Name Mnemonic code Machine code Description

Increment accumulator

register

INC F800 (A) + 1 -> A

The next instruction is 300D. It is a move instruction (Table 68). The content of the

accumulator registers is stored in the memory cell with address 00D.

Table 68. MOV instruction description

Name Mnemonic code Machine code Description

Move MOV 00D 300D (A) -> 00D

The next instruction is F200 again. It clears the accumulator register.

The next instruction is 33FC. It is a move instruction. The content of the accumulator

registers is stored in the memory cell with address 3FC.

The next instruction is 43FA. It is an addition. The content of the memory cell with

address 3FA is added to the accumulator register. The result is stored in the accumulator register.

The next instruction is 300E. It is a move instruction. The content of the accumulator

registers is stored in the memory cell with address 00E.

The next instruction is F200 again. It clears the accumulator register.

The next instruction is 480E. It is an addition. This instruction uses INDIRECT

addressing because of the most significant bit in the address 80E (1000 0000 1110 in the binary

system) equals 1. The content of the memory cell with the address, which is stored in the cell

with address 00E, is added to the accumulator register. The result is stored in the accumulator

register. Attention! The memory cells with addresses from 008 to 00F are index registers. The

content of such a cell is autoincremented when the program writes or reads from it using

INDIRECT addressing. In this case, after the execution of this instruction, the content of the

cell 00E will be autoincremented!

63

The next instruction is F700. This instruction makes the right cyclic shift of the value of

the carry flag in the accumulator register by 1 bit. The cyclic shift means that the least significant

bit is not lost and goes to the place of the carry flag «C». The value of the carry flag goes to the

place of 15
th

 bit of the accumulator as depictured below (figure 38 and Table 69).

Figure 38. The scheme of ROR instruction execution

Table 69. ROR instruction description

Name Mnemonic code Machine code Description

Right cyclic shift by 1 bit ROR F700 A & C content moves right,

A(0) -> C, C -> A(15)

The next instruction is 840F. It is a branch instruction. The program goes to the address

40F if the carry flag is set. In this case, the address 40F is stored in Instruction Pointer (IP)

register (Table 70). If the carry flag is not set, the program goes further and the Basic Computer

Model executes the next instruction in address 40A.

Table 70. BCS instruction description

Name Mnemonic code Machine code Description

Branch if carry flag is set BCS 40F 840F If (C)=1, then 40F -> IP

The next instruction is F600. This instruction makes the left cyclic shift of the value of

the carry flag in the accumulator register by 1 bit. The cyclic shift means that the most

significant bit is not lost and goes to the place of the carry flag «C». The value of the carry flag

goes to the place of 0 (zero) bit of the accumulator as depictured below (figure 39 and Table 71).

Figure 39. The scheme of ROL instruction execution

64

Table 71. ROL instruction description

Name Mnemonic code Machine code Description

Left cyclic shift by 1 bit ROL F600 A & C content moves left,

A(15) -> C, C -> A(0)

The next instruction is 63FC. It is a subtraction. The content of the memory cell with

address 3FC is subtracted from the accumulator register. The result is stored in the accumulator

register (Table 72).

Table 72. SUB instruction description

Name Mnemonic code Machine code Description

Subtraction SUB 3FC 63FC (B) – (3FC) -> (A)

The next instruction is 940F. It is a branch instruction. If the accumulator value is greater

or equal to zero, Basic Computer goes to the address 40F. In this case, the address 40F will be

stored in Instruction Pointer (IP) register. If the condition is not satisfied, the program goes

further and the Basic Computer executes the next instruction in address 40D (Table 73).

Table 73. BPL instruction description

Name Mnemonic code Machine code Description

Branch if the accumulator

is positive

BPL 40F 940F If (A) >= 0, then 40F ->

IP

The next instruction is 43FC. It is an addition. The content of the memory cell with

address 3FC is added to the accumulator register. The result is stored in the accumulator register.

The next instruction is 33FC. It is a move instruction. The content of the accumulator

registers is stored in the memory cell with address 3FC.

The next instruction is 000D. This instruction increments the value in the address 000D

and if the result is a positive number, the instruction pointer is incremented also. If the result is

negative, Basic Computer performs the next instruction without jumping through one instruction

(Table 74).

Table 74. ISZ instruction description

Name Mnemonic code Machine code Description

Increment and skip ISZ 00D 000D (00D) + 1 -> 00D

If (00D) >= 0 then

(IP)+1 -> IP

The next instruction is C406. It is an unconditional branch. After performing this

instruction Basic Computer jumps to the address 406. It changes the content of instruction

pointer (IP) to 406 (Table 75).

Table 75. BR instruction description

Name Mnemonic code Machine code Description

Unconditional branch BR 406 C406 406 -> IP

The next instruction is F000. It is a halt instruction. It indicates the end of the program

(Table 76).

Table 76. ROL instruction description

Name Mnemonic code Machine code Description

Halt HLT F000 Stop program execution

65

Thus, the correct answer at this point is presented below in Table 77.

Table 77. The answer for instruction 2 of the sample variant

ADDRESS MACHINE CODE MNEMONIC

CODE

TYPE OF

ADDRESSING

3FA 0412

3FB 0004

3FC F500

3FD F200 CLA

3FE 43FB ADD 3FB DIRECT

3FF F400 CMA

400 F800 INC

401 300D MOV 00D DIRECT

402 F200 CLA

403 33FC MOV 3FC DIRECT

404 43FA ADD 3FA DIRECT

405 300E MOV 00E DIRECT

406 F200 CLA

407 480E ADD 80E INDIRECT

408 F700 ROR

409 840F BCS 40F DIRECT

40A F600 ROL

40B 63FC SUB 3FC DIRECT

40C 940F BPL 40F DIRECT

40D 43FC ADD 3FC DIRECT

40E 33FC MOV 3FC DIRECT

40F 000D ISZ 00D DIRECT

410 C406 BR 406 DIRECT

411 F000 HLT

412 F501

413 FA01

414 F700

415 E101

3. Draw the flow chart of your program.

The flow chart helps to understand the algorithm that is realized in the program. It also

helps to understand the control flow of the program, that contains branches and loops.

To draw the flow chart in this lab we need three figures.

The first is an ellipse. It is presented in figure 40 and defines the start and endpoint of a

program.

Figure 40. The start and end point of the program

The next figure is a rectangle. It is used to represent actions in a program. For example,

the first instruction in our program is F200 (CLA). It sets zero value in the accumulator. We can

draw this action in the flow chart as presented in figure 41.

66

Figure 41. The CLA instruction in the flow chart

The last necessary figure is a rhombus. It represents branches. For example, the first

branch in our program is BCS 40F (840F) in address 409. It checks the carry flag. We can show

it in the flow chart as presented in figure 42.

Figure 42. The BCS instruction in the flow chart

The rhombus has two branches illustrating what the program does if the condition is

TRUE or FALSE. The condition is written in the center of the rhombus.

To draw the flow chart for our program we need to convert mnemonic codes of

instructions to program actions. We use the parentheses to show that the value of the

accumulator or the memory cell is used in the instruction.

For example, for 43FB instruction Basic Computer does:

A = (A) + (3FB),

i.e. the value of the memory cell 3FB is added to the accumulator. For a cyclic shift we

use such symbols as >>> (right cycle shift) and <<< (left cycle shift). For the inversion, we use

the symbol «!» (exclamation mark).

We need to draw the flow chart step by step. The arrows in the flow chart show the

sequence of instruction execution in the program.

The right program chart for our program is presented in figure 43.

67

Figure 43. The flow chart of the program

If we analyze this flow chart, we can find the three branches in our program. One of these

branches defines a loop, i.e. repeating part of the code. The loops are used to repeat the same

operations with different data, for example with elements of data arrays.

In this case, the instruction 000D defines the loop. The loop ends when the content of the

memory cell with address 00D becomes a positive number.

68

4. Enter the program code into the Basic Computer Memory

To enter a program code into Basic Computer Memory you should open the Basic

Computer Model. It can be done by double click on the file bcomp.jar. After that you can see

the structure of the processor of Basic Computer presented in figure 44.

Figure 44. The main window of the Basic Computer Model

Let’s enter your program into Basic Computer memory. To enter each machine code into

the memory you need to define the address using F4 key and memory cell value using F5 key. If

you enter the codes sequentially, you should define only the address of the first code. After

storing the first code, the Instr. Pointer will be autoincremented and you can enter the second

code immediately. For example, let’s enter the first code 0412 in address 3FA:

Use Up arrow on your keyboard to change the value of each bit in Keyb. Register. Use

arrows Left and Right to move from one bit to another. Set the address of the first code in the

Keyb. Register (figure 45). In our sample, the address of the first code is 3FA (0000 0011 1111

1010 in a binary system). The Keyb. Register is used as an intermediate register to input data to

the Basic Computer Memory. It looks like a simple user console.

Figure 45. The flow chart of the program

69

Press F4 to store this address in Instr. Pointer (figure 46).

Figure 46. The first code address in Instr. Pointer

Enter the value of machine code 0412 (0000 0100 0001 0010 in binary system) into

Keyb. Register (figure 47).

Figure 47. The first code in Keyb. Register

Press F5 to store the value of Keyb. Register in the memory in the cell with 3FA address

(figure 48).

70

Figure 48. The first code in the memory

Then enter the rest codes of your program. For the second code and other you do not need

to enter the code address again as the content of Instr. Pointer register will be autoincremented

after pressing F5.

5. Execute your program in Basic Computer Model

Before starting the execution, you need to define the first program address, i.e. the

program entry point. Enter the first address 3FD of your program in Instr. Pointer using Keyb.

Register and F4 as before.

Then make sure that the mode of program execution is Halt, as presented in figure 49.

Figure 49. The halt mode button

71

If it is not so, you should press the key F9 to change the mode. The Halt mode allows

executing program sequentially – step by step.

Press F7 to start execution. Then press F8 to continue execution till the last instruction

F000 with address 411. During execution you need to count the number of memory accesses.

A memory access can be a reading instruction from the memory or reading and writing data into

memory.

If you have done all instructions correctly, you will see the window presented in

figure 50.

Figure 50. The HALT instruction in Instr. Register

The Inst. Register has the last instruction F000. It is HALT instruction. It is the end of

the program.

In the left side of the window we can see the Memory content. We need to use this

information in the next step of our task.

6. Fill in the table with the content of the memory after the program execution. Please

write down the number of memory accesses for each memory cell during program

execution.

After program execution we can see only a part of memory content in the left side of the

Basic Computer window. To see the top part of the memory we can enter the address of the first

data cell 3FA and press F4 to enter address and then press F6 to read from this address. After this

you can see the top part of the memory content as presented in Table 51.

72

Figure 51. The top part of the memory content

If you enter the program correctly, the Basic Computer memory will have the content

presented in Table 78. In the table you can see the number of memory accesses.

73

Table 78. The answer for instruction 6 of the sample variant

ADDRESS MACHINE CODE NUMBER OF

MEMORY

ACCESSES

3FA 0412 1

3FB 0004 1

3FC F700 4

3FD F200 1

3FE 43FB 1

3FF F400 1

400 F800 1

401 300D 1

402 F200 1

403 33FC 1

404 43FA 1

405 300E 1

406 F200 4

407 480E 4

408 F700 4

409 840F 4

40A F600 1

40B 63FC 1

40C 940F 1

40D 43FC 1

40E 33FC 1

40F 000D 4

410 C406 3

411 F000 1

412 F501 1

413 FA01 1

414 F700 1

415 E101 1

If we follow up the program execution, we can understand that in the data array from

address 412 to address 415 the program finds the last negative element, which has the least

significant bit equal to zero, and stores it in the memory cell with address 3FC.

74

2.3.4 Lab work variants

Variant 1 of laboratory work 3 is presented in Table 79.

Table 79. Variant 1 of laboratory work 3

ADDRESS MACHINE CODE ENTRY POINT

332 034B

333 0004

334 F500

335 F200 +

336 4333

337 F400

338 F800

339 300C

33A F200

33B 3334

33C 4332

33D 300B

33E F200

33F 480B

340 F700

341 8348

342 F700

343 8348

344 F600

345 F600

346 4334

347 3334

348 000C

349 C33E

34A F000

34B 533D

34C F700

34D F402

34E 233D

75

Variant 2 of laboratory work 3 is presented in Table 80.

Table 80. Variant 2 of laboratory work 3

ADDRESS MACHINE CODE ENTRY POINT

36D 0385

36E 0004

36F F500

370 F200 +

371 436D

372 300E

373 F200

374 336F

375 636E

376 300D

377 F200

378 480E

379 F700

37A F500

37B 8382

37C F500

37D F600

37E F200

37F 436F

380 F800

381 336F

382 000D

383 C377

384 F000

385 0378

386 C378

387 8378

388 C36C

76

Variant 3 of laboratory work 3 is presented in Table 81.

Table 81. Variant 3 of laboratory work 3

ADDRESS MACHINE CODE ENTRY POINT

2FD 0311

2FE 0003

2FF F300

300 F200 +

301 32FF

302 42FE

303 F400

304 F800

305 300C

306 F200

307 42FD

308 300D

309 F200

30A 480D

30B A30E

30C 02FF

30D F100

30E 000C

30F C309

310 F000

311 230C

312 F000

313 12FE

77

Variant 4 of laboratory work 3 is presented in Table 82.

Table 82. Variant 4 of laboratory work 3

ADDRESS MACHINE CODE ENTRY POINT

2F8 030F

2F9 0005

2FA F300

2FB F200 +

2FC 32FA

2FD 42F8

2FE 300E

2FF F200

300 62F9

301 300D

302 F200

303 480E

304 F700

305 830C

306 F700

307 830C

308 F600

309 F600

30A 62FA

30B 32FA

30C 000D

30D C302

30E F000

30F F501

310 F300

311 6309

312 6305

313 F903

78

Variant 5 of laboratory work 3 is presented in Table 83.

Table 83. Variant 5 of laboratory work 3

ADDRESS MACHINE CODE ENTRY POINT

3DD 03F6

3DE 0005

3DF F500

3E0 F200 +

3E1 33DF

3E2 43DD

3E3 3009

3E4 F200

3E5 43DE

3E6 F400

3E7 F800

3E8 300A

3E9 F200

3EA 4809

3EB F700

3EC 83EE

3ED C3F3

3EE F600

3EF 63DF

3F0 A3F3

3F1 43DF

3F2 33DF

3F3 000A

3F4 C3E9

3F5 F000

3F6 F301

3F7 B3EB

3F8 13EB

3F9 FA00

3FA FB00

79

Variant 6 of laboratory work 3 is presented in Table 84.

Table 84. Variant 6 of laboratory work 3

ADDRESS MACHINE CODE ENTRY POINT

417 042D

418 0004

419 F300

41A F200 +

41B 3419

41C 6418

41D 3009

41E F200

41F 4417

420 300A

421 F200

422 480A

423 F700

424 F500

425 F200

426 F400

427 1419

428 F600

429 3419

42A 0009

42B C421

42C F000

42D E300

42E 1423

42F F400

430 3422

80

Variant 7 of laboratory work 3 is presented in Table 85.

Table 85. Variant 7 of laboratory work 3

ADDRESS MACHINE CODE ENTRY POINT

3A8 03C0

3A9 0003

3AA F300

3AB F200 +

3AC 43A8

3AD 300C

3AE F200

3AF 33AA

3B0 43A9

3B1 F400

3B2 F800

3B3 300D

3B4 F200

3B5 480C

3B6 F700

3B7 F500

3B8 83BD

3B9 F500

3BA F600

3BB 43AA

3BC 33AA

3BD 000D

3BE C3B4

3BF F000

3C0 E000

3C1 13B5

3C2 F501

81

Variant 8 of laboratory work 3 is presented in Table 86.

Table 86. Variant 8 of laboratory work 3

ADDRESS MACHINE CODE ENTRY POINT

3E2 03F7

3E3 0005

3E4 F500

3E5 F200 +

3E6 63E3

3E7 3009

3E8 F200

3E9 33E4

3EA 43E2

3EB 300A

3EC F200

3ED 480A

3EE F700

3EF F200

3F0 F400

3F1 13E4

3F2 F600

3F3 33E4

3F4 0009

3F5 C3EC

3F6 F000

3F7 93F4

3F8 33EA

3F9 B3E3

3FA E301

3FB A3E7

82

Variant 9 of laboratory work 3 is presented in Table 87.

Table 87. Variant 9 of laboratory work 3

ADDRESS MACHINE CODE ENTRY POINT

4C7 04D9

4C8 0005

4C9 F500

4CA F200 +

4CB 64C8

4CC 300B

4CD F200

4CE 34C9

4CF 44C7

4D0 300C

4D1 F200

4D2 480C

4D3 94D6

4D4 04C9

4D5 F100

4D6 000B

4D7 C4D1

4D8 F000

4D9 F200

4DA 0000

4DB 0000

4DC 24C8

4DD F100

83

Variant 10 of laboratory work 3 is presented in Table 88.

Table 88. Variant 10 of laboratory work 3

ADDRESS MACHINE CODE ENTRY POINT

502 0518

503 0003

504 F300

505 F200

506 3504

507 4502

508 300B

509 F200

50A 4503

50B F400

50C F800

50D 300C

50E F200

50F 480B

510 9515

511 6504

512 9515

513 4504

514 3504

515 000C

516 C50E

517 F000

518 0000

519 0000

51A 0000

84

2.4 Laboratory work 4. Subprograms

2.4.1 Overview

This lab is dedicated to understanding the principles of reusing code in the program. The

lesson observes how to encapsulate code in subprograms and reuse it. The students will know

what is a program context and how it can be stored and restored, how subprograms are executed

on a low level in a computer. This task develops the skill of analyzing the behavior of modular

program with subprograms and how to write it.

After completing this lab work student will know what program context is. They will be

able to encapsulate code in subprograms; to store and restore program context; to write programs

with subprograms.

2.4.2 Lab work task

1. Read your variant

2. Translate the given hexadecimal machine code into mnemonic code and fill Table 89.

Please write down the type of special points in the code: the entry point of the main

program (EPMP), the entry point of subprogram (EPSP), the end point of the main

program (ENDMP), the endpoint of a subprogram (ENDSP), the place of the return

address (RA).

Table 89. Template for answer table for instruction 2 of laboratory work 4

ADDRESS MACHINE CODE MNEMONIC

CODE

CODE REGION

3. Draw the flow chart of your program.

4. Enter the program code into the Basic Computer Memory

5. Execute your program in the Basic Computer Model

6. Fill in Table 90 with the content of the memory after the program execution. Please write

down the number of memory accesses for each memory cell.

Table 90. The answer table for instruction 6 of laboratory work 4

ADDRESS MACHINE CODE NUMBER OF MEMORY

ACCESSES

85

2.4.3 Lab work guidance

To understand how to do the laboratory work we will do the sample variant step by step.

Let’s start from the first instruction.

1. Read your variant

For example, the variant defines a program that is listed in Table 91.

Table 91. The sample variant of laboratory work 4

ADDRESS MACHINE CODE ENTRY POINT

5DB F200 +

5DC 35F0

5DD 45ED

5DE 26A0

5DF 65F0

5E0 35F0

5E1 F200

5E2 45EE

5E3 F900

5E4 26A0

5E5 45F0

5E6 35F0

5E7 F200

5E8 45EF

5E9 26A0

5EA 45F0

5EB 35F0

5EC F000

5ED 0045

5EE F567

5EF 0707

5F0 0000

6A0 0000

6A1 A6A6

6A2 66AF

6A3 96A5

6A4 C6AB

6A5 46AF

6A6 36AE

6A7 F300

6A8 F600

6A9 66B0

6AA CEA0

6AB F200

6AC 46AF

6AD CEA0

6AE 0000

6AF 00AC

6B0 0081

86

2. Translate the given hexadecimal machine code into the mnemonic code and fill in the

table. Please write down the type of the special points in the code: the entry point of the

main program (EPMP), the entry point of a subprogram (EPSP), the endpoint of the

main program (ENDMP), the end point of subprogram (ENDSP), the place of the

return address (RA).

To translate the machine code, you can use the table with the instruction set of Basic

Computer. The instruction set of Basic Computer is presented in appendix A. Note, some

memory cells can have data code instead of instructions. Basic Computer has the von Neumann

architecture. It means data and instructions are stored in the same memory. The program starts

from the cell that is identified as ENTRY POINT and ends with instruction code F000 (HALT

instruction).

The first instruction is F200. It is a code of CLA instruction according to the instruction

set table (Table 92).

Table 92. CLA instruction description

Name Mnemonic code Machine code Description

Clear accumulator register CLA F200 0 -> A

The next instruction is 35F0. It is a move instruction. The content of the accumulator

register is stored in the memory cell with address 5F0 (Table 93).

Table 93. MOV instruction description

Name Mnemonic code Machine code Description

Move MOV 5F0 35F0 (A) -> 5F0

The next instruction is 45ED. It is Addition. The content of the memory cell with address

5ED is added to the accumulator register. The result is stored in the accumulator register (Table

94).

Table 94. ADD instruction description

Name Mnemonic code Machine code Description

Addition ADD 5ED 45ED (5ED) + (A) -> A

The next instruction is 26A0. It is a subprogram call. This instruction stores the content of

the instruction pointer at the address 6A0 and change the instruction pointer value to the 6A0+1

= 6A1. The subprogram starts execution from address 6A1. The memory cell with address 6A0

keeps the program context, i.e. the return address (Table 95).

Table 95. JSR instruction description

Name Mnemonic code Machine code Description

Subprogram call JSR 6A0 26A0 (IP) -> A, 6A0 + 1 ->

IP

In some cases, it is necessary to store the accumulator value in the memory at the begin

of the subprogram because it can change it in an unpredictable way. In this case, we need also

restore the accumulator value in the end of the subprogram.

The next instruction is 65F0. It is a subtraction. The content of the memory cell with

address 5F0 is subtracted from the accumulator register. The result is stored in the accumulator

register (Table 96).

87

Table 96. SUB instruction description

Name Mnemonic code Machine code Description

Subtraction SUB 5F0 65F0 (C) – (5F0) -> (A)

The next instruction is 35F0. It is a move instruction. The content of the accumulator

registers is stored in the memory cell with address 5F0.

The next instruction is F200 again. It clears the accumulator register.

The next instruction is 45EE. It is an addition. The content of the memory cell with

address 5EE is added to the accumulator register. The result is stored in the accumulator register.

The instruction is F900. This instruction decrements the accumulator, i.e. it subtracts 1

from the accumulator value (Table 97).

Table 97. DEC instruction description

Name Mnemonic code Machine code Description

Increment accumulator

register

DEC F900 (B) - 1 -> A

The next instruction is 26A0 again. It is a subprogram call.

The next instruction is 45F0. It is an addition. The content of the memory cell with

address 5F0 is added to the accumulator register. The result is stored in the accumulator register.

The next instruction is 35F0. It is a move instruction. The content of the accumulator

registers is stored in the memory cell with address 5F0.

The next instruction is F200 again. It clears the accumulator register.

The next instruction is 45EF. It is an addition. The content of the memory cell with

address 5EF is added to the accumulator register. The result is stored in the accumulator register.

The next instruction is 26A0 again. It is a subprogram call.

The next instruction is 45F0. It is an addition. The content of the memory cell with

address 5F0 is added to the accumulator register. The result is stored in the accumulator register.

The next instruction is 35F0. It is a move instruction. The content of the accumulator

registers is stored in the memory cell with address 5F0.

The next instruction is F000. It is halt instruction (Table 98). It indicates the end of the

program.

Table 98. HLT instruction description

Name Mnemonic code Machine code Description

Halt HLT F000 Stop program execution

We have decoded all the instructions in the main program. Then we need to decode the

instruction of the subprogram that starts from address 6A0.

The first instruction of the subprogram is A6A6. It is a branch instruction. If the

accumulator value less than zero, Basic Computer will go to the address 6A6. In this case, the

address 6A6 will be stored in Instruction Pointer (IP) register (Table 99). If the condition is not

satisfied, the program goes further and the Basic Computer will execute the next instruction in

address 6A2.

Table 99. BMI instruction description

Name Mnemonic code Machine code Description

Branch if the accumulator

is negative

BMI 6A6 A6A6 If (A) < 0, then 6A6 -> IP

88

The next instruction is 66AF. It is Subtraction. The content of the memory cell with

address 6AF is subtracted from the accumulator register. The result is stored in the accumulator

register.

The next instruction is 96A5. It is a branch instruction. If the accumulator value is greater

or equal to zero, the Basic Computer will go to the address 6A5. In this case, the address 6A5

will be stored in Instruction Pointer (IP) register (Table 100). If the condition is not satisfied, the

program goes further and the Basic Computer will execute the next instruction in address 6A4.

Table 100. BPL instruction description

Name Mnemonic code Machine code Description

Branch if the accumulator

is positive

BPL 6A5 96A5 If (A) >= 0, then 6A5 ->

IP

The next instruction is C6AB. It is an unconditional branch. After performing this

instruction Basic Computer jumps to the address 6AB. It changes the content of instruction

pointer (IP) to 6AB (Table 101).

Table 101. BR instruction description

Name Mnemonic code Machine code Description

Unconditional branch BR 6AB C6AB 6AB -> IP

The next instruction is 46AF. It is an addition. The content of the memory cell with

address 6AF is added to the accumulator register. The result is stored in the accumulator register.

The next instruction is 36AE. It is a move instruction. The content of the accumulator

registers is stored in the memory cell with address 6AE.

The next instruction is F300. This instruction clears the carry register C (Table 102).

 Table 102. CLC instruction description

Name Mnemonic code Machine code Description

Clear carry register F300 CLC 0 -> C

The next instruction is F600. This instruction does the left cyclic shift of the value of the

carry flag and the accumulator register by 1 bit. The cyclic shift means that the most significant

bit is not lost and goes to the place of the carry flag «C». The value of the carry flag goes to the

place of 0 (zero) bit of the accumulator as depictured below (figure 52 and Table 103).

Figure 52. The scheme of ROL instruction execution

89

Table 103. ROL instruction description

Name Mnemonic code Machine code Description

Left cyclic shift by 1 bit ROL F600 A & C content moves left,

A(15) -> C, C -> A(0)

The next instruction is 66B0. It is Subtraction. The content of the memory cell with

address 6B0 is subtracted from the accumulator register. The result is stored in the accumulator

register.

The next instruction is CEA0. It is an unconditional branch with indirect addressing. The

code EA0 (1110 1010 0000) has 1 in the most significant bit. Thus, after performing this

instruction the Basic Computer jumps to the address, that was stored in 6A0. It changes the

content of the instruction pointer (IP) to the content of 6A0 memory cell. This cell stores the

return address of the subprogram.

The next instruction is F200. It clears the accumulator register.

The next instruction is 46AF. It is addition. The content of the memory cell with address

6AF is added to the accumulator register. The result is stored in the accumulator register.

The next instruction is CEA0. It is an unconditional branch with indirect addressing

again.

The rest memory cells are data cells because the program does not use it as an instruction.

The value of these cells is used as operands in the arithmetic instruction (addition and

subtraction).

Summing up, the correct answer of this part of the task is presented in Table 104.

Table 104. The answer for instruction 2 of laboratory work 4

ADDRESS MACHINE CODE MNEMONIC

CODE

TYPE OF THE CODE

POINTS

5DB F200 CLA EPMP

5DC 35F0 MOV 5F0

5DD 45ED ADD 5ED

5DE 26A0 JSR 6A0

5DF 65F0 SUB 5F0

5E0 35F0 MOV 5F0

5E1 F200 CLA

5E2 45EE ADD 5EE

5E3 F900 DEC

5E4 26A0 JSR 6A0

5E5 45F0 ADD 5F0

5E6 35F0 MOV 5F0

5E7 F200 CLA

5E8 45EF ADD 5EF

5E9 26A0 JSR 6A0

5EA 45F0 ADD 5F0

5EB 35F0 MOV 5F0

5EC F000 HLT ENDMP

5ED 0045

5EE F567

5EF 0707

5F0 0000

6A0 0000 RA

6A1 A6A6 BMI 6A6 EPSP

6A2 66AF SUB 6AF

6A3 96A5 BPL 6A5

90

6A4 C6AB BR 6AB

6A5 46AF ADD 6AF

6A6 36AE MOV 6AE

6A7 F300 CLC

6A8 F600 ROL

6A9 66B0 SUB 6B0

6AA CEA0 BR EA0 ENDSP

6AB F200 CLA

6AC 46AF ADD 6AF

6AD CEA0 BR EA0 ENDSP

6AE 0000

6AF 00AC

6B0 0081

3. Draw the flow chart of your program.

The flow chart helps to understand the algorithm that was realized in the program. It also

helps to understand the control flow of the program.

To draw the flow chart in this lab we need four figures.

The first is an ellipse, it is presented below. It is used to define the start and the end points

of a program (figure 53).

Figure 53. The start and end points of the program

The next figure is a rectangle. It is used to represent actions in a program. For example,

the first instruction in our program is F200 (CLA). It sets the accumulator value as zero. We can

draw this action in the flow chart as presented in figure 54.

Figure 54. The CLA instruction in the flow chart

The next necessary figure is a rhombus. It is used to represent branches. For example, the

first branch in our program is BMI 6A6 (A6A6) in the address 6A1. It checks the content of the

accumulator. We can show it in the flow chart as presented in figure 55. The rhombus has two

branches that show what the program does if the condition is TRUE or FALSE. The condition is

written in the center of the rhombus.

Figure 55. The BMI instruction in the flow chart

91

The last necessary figure is presented in figure 56. This figure is used to show the subprogram

call by JSR instruction. The number after the «SUBPROG» is a number of the subprogram.

Figure 56. The subprogram symbol in the flow chart

To draw the flow chart for our program we need to convert the mnemonic codes of the

instructions to the program actions. We will use the parentheses to show that the accumulator

value or the memory cell is used in the instruction.

For example, for 45ED instruction the Basic Computer does:

A = (A) + (5ED),

i.e. the value of the memory cell 5ED is added to the accumulator. For a cyclic shift we

will use such symbol as >>> (right cycle shift) and <<< (left cycle shift). For inversion, we will

use the symbol «!» (exclamation mark).

We need to draw the flow chart step by step. The arrows in the flow chart show the

sequence of instruction execution in the program.

The correct program chart for our program is presented in figure 57.

92

Figure 57. The flow chart of the program

93

4. Enter the program code into the Basic Computer Memory.

To enter program code into the Basic Computer Memory you should open the Basic

Computer Model. It can be done by using double click on the file bcomp.jar. After that you can

see the Basic Computer processor structure (figure 58).

Figure 58. The main window of Basic Computer Model

Let’s enter your program code into the Basic Computer memory. To enter every machine

code into the memory you need to define the address using F4 key and the memory cell value

using F5 key. If you enter the codes sequentially, you should only define the address of the first

instruction. After storing the first instruction, the Instr. Pointer will be autoincremented and you

can enter the second code immediately. For example, let’s enter the first instruction F200 in

address 5DB:

Use Up arrow on your keyboard to change the value of each bit in Keyb. Register. Use

arrows Left and Right to move from one bit to another. Set the address of the first command in

the Keyb. Register (figure 59). In our sample, the address of the first command is 5DB (0000

0101 1101 1011 in a binary system). The Keyb. Register is used as the intermediate register to

input data to the Basic Computer Memory. It looks like a simple user console.

94

Figure 59. The first code address in Keyb. Register

Press F4 to store this address in Instr. Pointer (figure 60).

Figure 60. The first code address in Instr. Pointer

Enter the value of machine code F200 (1111 0010 0000 0000 in binary system) into

Keyb. Register (figure 61).

95

Figure 61. The first code in Keyb. Register

Press F5 to store the value of Keyb. Register in the memory in the cell with 5DB address

(figure 62).

Figure 62. The first code in the memory

Then enter the rest instructions of your program. For the second instruction and other

ones you do not need to enter the instruction address, as the content of Instr. Pointer register will

be autoincremented after pressing F5.

96

5. Execute your program in Basic Computer Model

Before starting the execution, you need to define the first program address, i.e. the

program entry point. Enter the first address 5DB of your program in Instr. Pointer using Keyb.

Register and F4 as before.

Then make sure that the mode of program execution is Halt, as presented in figure 63.

Figure 63. The halt mode button

If it does not work, you should press key F9 to change the mode. The Halt mode allows

executing program sequentially – step by step.

Press F7 to start execution. Then press F8 to continue execution till the last instruction

F000 with address 5EC. During execution you need to count the number of memory accesses.

Memory access can be a reading instruction from the memory or reading and writing data into

memory.

If you have done all instructions correctly, you will see the window presented in

figure 64.

97

Figure 64. The HALT instruction in Instr. Register

The Inst. Register contains the last instruction F000. It is HALT instruction. It is the end

of the program.

On the left side of the window, we can see the Memory content. We need to use this

information in the next step of our task.

6. Fill in the table with the content of the memory after the program execution. Please

write down the number of memory accesses for each memory cell.

After program execution we can see only a part of memory content on the left side of the

Basic Computer window. To see the top part of the memory we can enter the address of the data

cell into Keyb. Register and press F4 and then press F6 to read from this address. After this, you

can see the top part of the memory content.

If you have entered the program correctly the Basic Computer memory will have the

content presented in Table 105. In the table you can see also the number of memory accesses.

98

Table 105. The answer for instruction 6 of laboratory work 4

ADDRESS MACHINE CODE NUMBER OF MEMORY

ACCESSES

5DB F200 1

5DC 35F0 1

5DD 45ED 1

5DE 26A0 1

5DF 65F0 1

5E0 35F0 1

5E1 F200 1

5E2 45EE 1

5E3 F900 1

5E4 26A0 1

5E5 45F0 1

5E6 35F0 1

5E7 F200 1

5E8 45EF 1

5E9 26A0 1

5EA 45F0 1

5EB 35F0 1

5EC F000 1

5ED 0045 1

5EE F567 1

5EF 0707 1

5F0 F884 7

6A0 05EA 6

6A1 A6A6 3

6A2 66AF 2

6A3 96A5 2

6A4 C6AB 1

6A5 46AF 1

6A6 36AE 2

6A7 F300 2

6A8 F600 2

6A9 66B0 2

6AA CEA0 2

6AB F200 1

6AC 46AF 1

6AD CEA0 1

6AE 0707 2

6AF 00AC 4

6B0 0081 2

99

2.4.4 Lab work variants

Variant 1 of laboratory work 4 is presented in Table 106.

Table 106. Variant 1 of laboratory work 4

ADDRESS MACHINE CODE ENTRY POINT

5AB F200 +

5AC 35C2

5AD 45BF

5AE 26CB

5AF F800

5B0 45C2

5B1 35C2

5B2 F200

5B3 45C1

5B4 26CB

5B5 F900

5B6 65C2

5B7 35C2

5B8 F200

5B9 45C0

5BA 26CB

5BB F900

5BC 45C2

5BD 35C2

5BE F000

5BF 120F

5C0 0056

5C1 0089

5C2 0000

6CB 0000

6CC A6D1

6CD 66DA

6CE 96D0

6CF C6D6

6D0 46DA

6D1 36D9

6D2 F300

6D3 F600

6D4 66DB

6D5 CECB

6D6 F200

6D7 46DA

6D8 CECB

6D9 0000

6DA 0F38

6DB 00A3

100

Variant 2 of laboratory work 4 is presented in Table 107.

Table 107. Variant 2 of laboratory work 4

ADDRESS MACHINE CODE ENTRY POINT

27B F200 +

27C 328F

27D 428E

27E 2749

27F 428F

280 328F

281 F200

282 428C

283 2749

284 628F

285 328F

286 F200

287 428D

288 2749

289 428F

28A 328F

28B F000

28C 0009

28D 0035

28E F631

28F 0000

749 0000

74A A754

74B B754

74C 6758

74D 9754

74E 4758

74F 3757

750 F300

751 F600

752 4759

753 CF49

754 F200

755 4758

756 CF49

757 0000

758 075D

759 0023

101

Variant 3 of laboratory work 4 is presented in Table 108.

Table 108. Variant 3 of laboratory work 4

ADDRESS MACHINE CODE ENTRY POINT

24B F200 +

24C 3261

24D 425E

24E F800

24F 2674

250 6261

251 3261

252 F200

253 425F

254 F800

255 2674

256 4261

257 3261

258 F200

259 4260

25A 2674

25B 4261

25C 3261

25D F000

25E 0001

25F 0026

260 3024

261 0000

674 0000

675 B677

676 967B

677 6684

678 A67A

679 C680

67A 4684

67B 3683

67C F300

67D F600

67E 6685

67F CE74

680 F200

681 4684

682 CE74

683 0000

684 FBFB

685 00CA

102

Variant 4 of laboratory work 4 is presented in Table 109.

Table 109. Variant 4 of laboratory work 4

ADDRESS MACHINE CODE ENTRY POINT

31B F200 +

31C 3331

31D 432E

31E 274D

31F 4331

320 3331

321 F200

322 432F

323 F800

324 274D

325 F900

326 6331

327 3331

328 F200

329 4330

32A 274D

32B 4331

32C 3331

32D F000

32E 0001

32F 0074

330 0458

331 0000

74D 0000

74E B750

74F 9754

750 675C

751 A753

752 C758

753 475C

754 375B

755 475B

756 675D

757 CF4D

758 F200

759 475C

75A CF4D

75B 0000

75C F92F

75D 0016

103

Variant 5 of laboratory work 4 is presented in Table 110.

Table 110. Variant 5 of laboratory work 4

ADDRESS MACHINE CODE ENTRY POINT

2EB F200 +

2EC 3302

2ED 4300

2EE 2679

2EF 6302

2F0 3302

2F1 F200

2F2 4301

2F3 2679

2F4 F800

2F5 6302

2F6 332

2F7 F200

2F8 42FF

2F9 F900

2FA 2679

2FB F800

2FC 6302

2FD 3302

2FE F000

2FF 0070

300 0125

301 F012

302 0000

679 0000

67A A684

67B B684

67C 6688

67D 9684

67E 4688

67F 3687

680 4687

681 4687

682 4689

683 CE79

684 F200

685 4688

686 CE79

687 0000

688 00CA

689 00F2

104

Variant 6 of laboratory work 4 is presented in Table 111.

Table 111. Variant 6 of laboratory work 4

ADDRESS MACHINE CODE ENTRY POINT

57B F200 +

57C 3592

57D 4590

57E 26F6

57F F800

580 4592

581 3592

582 F200

583 4591

584 F800

585 26F6

586 F900

587 4592

588 3592

589 F200

58A 458F

58B 26F6

58C 6592

58D 3592

58E F000

58F 0005

590 0756

591 8912

592 0000

6F6 0000

6F7 A6FD

6F8 B6FD

6F9 6705

6FA 96FC

6FB C701

6FC 4705

6FD 3704

6FE 4704

6FF 6706

700 CEF6

701 F200

702 4705

703 CEF6

704 0000

705 0A70

706 002D

105

Variant 7 of laboratory work 4 is presented in Table 112.

Table 112. Variant 7 of laboratory work 4

ADDRESS MACHINE CODE ENTRY POINT

54B F200 +

54C 3561

54D 455F

54E 2722

54F F900

550 4561

551 3561

552 F200

553 4560

554 2722

555 6561

556 3561

557 F200

558 455E

559 F900

55A 2722

55B 6561

55C 3561

55D F000

55E 0001

55F 0020

560 0560

561 0000

722 0000

723 A729

724 B729

725 6733

726 9728

727 C72F

728 4733

729 3732

72A F300

72B F600

72C 4732

72D 6734

72E CF22

72F F200

730 4733

731 CF22

732 0000

733 06FF

734 0066

106

Variant 8 of laboratory work 4 is presented in Table 113.

Table 113. Variant 8 of laboratory work 4

ADDRESS MACHINE CODE ENTRY POINT

05A F200 +

05B 3072

05C 4071

05D F800

05E 26FB

05F F800

060 6072

061 3072

062 F200

063 4070

064 F900

065 26FB

066 F900

067 6072

068 3072

069 F200

06A 406F

06B 26FB

06C 6072

06D 3072

06E F000

06F 0004

070 0023

071 F511

072 0000

6FB 0000

6FC 9701

6FD 670B

6FE A700

6FF C707

700 470B

701 370A

702 F300

703 F600

704 470A

705 470C

706 CEFB

707 F200

708 470B

709 CEFB

70A 0000

70B F94F

70C 0015

107

Variant 9 of laboratory work 4 is presented in Table 114.

Table 114. Variant 9 of laboratory work 4

ADDRESS MACHINE CODE ENTRY POINT

02A F200 +

02B 3040

02C 403E

02D 2726

02E 6040

02F 3040

030 F200

031 403D

032 2726

033 4040

034 3040

035 F200

036 403F

037 F900

038 2726

039 F800

03A 4040

03B 3040

03C F000

03D F005

03E 1245

03F 0056

040 0000

726 0000

727 B729

728 972D

729 6736

72A A72C

72B C732

72C 4736

72D 3735

72E F300

72F F600

730 6737

731 CF26

732 F200

733 4736

734 CF26

735 0000

736 F1C8

737 0090

108

Variant 10 of laboratory work 4 is presented in Table 115.

Table 115. Variant 10 of laboratory work 4

ADDRESS MACHINE CODE ENTRY POINT

2BB F200 +

2BC 32D0

2BD 42CF

2BE F800

2BF 26A4

2C0 42D0

2C1 32D0

2C2 F200

2C3 42CE

2C4 26A4

2C5 62D0

2C6 32D0

2C7 F200

2C8 42CD

2C9 26A4

2CA 42D0

2CB 32D0

2CC F000

2CD 0001

2CE 0025

2CF 0106

2D0 0000

6A4 0000

6A5 96AF

6A6 66B3

6A7 A6AF

6A8 B6AF

6A9 46B3

6AA 36B2

6AB 46B2

6AC 46B2

6AD 46B4

6AE CEA4

6AF F200

6B0 46B3

6B1 CEA4

6B2 0000

6B3 FD5D

6B4 00F3

109

Appendix A. Instruction Set of Basic Computer

Address Instructions

No-address Instructions

I/O Instructions

110

Appendix B. Basic Computer Hot Keys

General commands

F4 Enter address. Move the content of Keyb. Register to Instr. Pointer

F5
Write data. Data of Keyb. Register is moved to the memory cell with the address from

Instr. Pointer. Instr. Pointer is incremented.

F6
Read data. Move data from the memory cell with address from Instr. Pointer to Data

Register.

F7

Start program execution. This command clears accumulator, carry register, ready flags

from peripheral devices, deny all interrupts. If the Run mode is active the program

execution is started from the address that stored in Instr. Register.

F8
Continue execution. If the Run mode is active the program execution will be

continued. If the Halt mode is active the next instructions will be executed.

F9 Change modes of program execution. There are two modes: Run and Halt.

F10 Exit

Commands for Keyb. Register modification

RIGHT
Pressing RIGHT arrow on the keyboard moves pointer one position to the right in

Keyb. Register.

LEFT
Pressing LEFT arrow on the keyboard moves pointer one position to the left in

Keyb. Register

UP Inversion of the bit value in Keyb. Register

1 Set 1 in the selected bit in Keyb. Register

0 Set 0 in the selected bit in Keyb. Register

D.B. Afanasev

I.A. Bessmertny

S.V. Bykovskii

A.G. Ilina

S.V. Klimenkov

J.A. Koroleva

Basic Computer

Study guide

Part 1

Educational and methodological guide

Edition

ITMO University's Editorial and Publishing Department

Department head Gusarova N.F.

Order №

Edition copy

Printed on risograph

All rights reserved; no part of this publication may be reproduced or transmitted in any

form or by any means, electronic, mechanical, photocopying, or otherwise without the prior

written permission of ITMO University.

ITMO University's

Editorial and Publishing Department

197101, Saint Petersburg, 49 Kronverksky Pr.

