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CHAPTER 1

Electrodynamics of a continuous medium

1.1 Maxwell’s equations in a medium, constitutive relations

Useful reading: Landau, Lifshitz, vol. 8, Ref. [1].
Formal derivation of Maxwell’s equations in a medium.
Maxwell’s equations in vacuum in CGS system of units:

rot B =
4π

c
j +

1

c

∂E

∂t
, (1.1)

div E = 4π ρ , (1.2)

rot E = −1

c

∂B

∂t
, (1.3)

div B = 0 . (1.4)

A medium can be treated as a collection of charged particles and described with
Eqs. (1.1)-(1.4). However, this would be impractical. We separate bound charges/currents
associated with the medium polarization or magnetization (ρB, jB) from the external
charges/currents (ρext, jext):

ρ = ρB + ρext , (1.5)

j = jB + jext , (1.6)

where each of pairs ρB, jB and ρext, jext satisfies the continuity equation. We define
the bound current as follows:

jB =
∂P

∂t
+ c rot M , (1.7)

where P and M are called the polarization and magnetization vectors, respectively.
Note that Eq. (1.7) defines M up to the gradient of arbitrary scalar function. As a
result, the bound charge density satisfies the equation

∂ρB

∂t
= − div jB = −∂ div P

∂t
, (1.8)

i.e. we define
ρB = − div P . (1.9)

Next we use Eqs. (1.5), (1.6) and put the definitions Eq. (1.7) and (1.9) into
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Maxwell’s equations in vacuum. We get

rot H =
4π

c
jext +

1

c

∂D

∂t
, (1.10)

div D = 4π ρext , (1.11)

rot E = −1

c

∂B

∂t
, (1.12)

div B = 0 , (1.13)

where the auxiliary D and H fields are defined as

D = E + 4 πP , (1.14)
H = B− 4 πM . (1.15)

Equations (1.10)-(1.13) are known as Maxwell’s equations in a medium. Equations
(1.14)-(1.15) are the so-called constitutive relations.

Explaining the physical meaning of P and M.
In the reasoning above, vectors P and M were introduced formally. Now we

analyze their physical meaning.
The time derivative of the system’s dipole moment:

ḋ =
∂

∂t

∑
a

qa ra =
∑
a

qa va =

∫
jB dV =

=

∫
∂P

∂t
dV + c

∫
rot M dV =

∂

∂t

∫
P dV +

∮
Ω

[n×M] df .
(1.16)

The surface term vanishes since polarization is zero outside of the medium. Thus,
the dipole moment of the finite medium sample reads:

d =

∫
P dV . (1.17)

An alternative derivation based on Gauss theorem states (as a homework?):

di =

∫
ρB xi dV = −

∫
div Pxi dV = −

∫
(∂k Pk) xidV =

= −
∫

∂k (Pk xi) dV +

∫
Pk ∂k xi dV =

= −
∮

Pk xi nk df +

∫
Pi dV =

∫
Pi dV . (1.18)

The magnetic moment of the system (we neglect the displacement currents
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here):

m =
1

2 c

∫
[r× j] dV =

1

2

∫
[r× rot M] dV . (1.19)

r× [∇×M] = ∇ (r ·M)− (r · ∇) M = ei [xk ∂iMk − xk ∂kMi] =

= ei [∂i (xkMk)− δikMk − ∂k (xkMi) + δkkMi] =

= ei [∂i (xkMk)− ∂k (xkMi)] + 2 M .

(1.20)

Volume integrals of the terms like ∂k Tik vanish, because
∫
∂k Tik dV =

∮
Tik nk df ,

and finally we obtain

m =

∫
M dV . (1.21)

Hence, we define magnetization as the magnetic moment of a unit volume of a
medium. Note that this identification is only valid in the low-frequency limit.

Homework. Calculate the time derivative of the electric dipole moment without
resorting to the substitution

∫
ρ r dV =

∑
a
qa ra.

Material parameters.
A wide class of linear media is characterized by the linear scalar relation

between polarization and electric field. An analogous relation holds for magnetization
and magnetic field:

P = χe E , (1.22)
M = χm H . (1.23)

The coefficients χe and χm are called the electric and magnetic susceptibilities.
Normally, they depend on frequency (the so-called frequency dispersion). Their
values can be determined either empirically or theoretically. See Practice 1.

However, susceptibilities are not necessarily scalar. In a more general case of
an anisotropic medium, polarization and magnetization read:

Pi = χe
ik Ek , (1.24)

Mi = χm
ikHk , (1.25)

where the summation over the repeated indices is implied. The permittivity and
permeability tensors are defined as

εik = δik + 4 π χe
ik , (1.26)

µik = δik + 4 π χm
ik . (1.27)

The material Eqs. (1.24), (1.25) can be rearranged as

Di = εik Ek , (1.28)
Bi = µikHk . (1.29)
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1.2 Wave propagation in anisotropic media: the general theory

We consider propagation of a plane electromagnetic wave

Ẽ = E eik·r−iω t , (1.30)

H̃ = H eik·r−iω t . (1.31)

in a non-magnetic anisotropic transparent medium in the absence of external charges
and currents. From Maxwell’s equations for rot Ẽ and rot H̃ we obtain linear
equations for the field amplitudes:

H = k× E/q , (1.32)
D = −k×H/q , (1.33)

where q = ω/c, ω is the angular frequency of the wave and k is the wave vector.

k

H

D
E

S
α

Figure 1.1: Relative alignment of fields in non-magnetic anisotropic medium.

Thus, we notice that the vectors k, H and D are mutually orthogonal. Since H
is also orthogonal to E, the vector of electric field lies in the plane defined by the
vectors D and k.

Dispersion equation.
From Eqs. (1.32), (1.33) we obtain:[

k2 Î − k⊗ k− q2ε̂
]

E = 0 . (1.34)

Thus, plane wave solutions of Maxwell’s equations satisfy the equation

det
[
k2 Î − k⊗ k− q2ε̂

]
= 0 . (1.35)

For instance, in the system of principal axes of the tensor ε̂ the dispersion equation
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reads:

k2
[
εx k

2
x + εy k

2
y + εz k

2
z

]
− q2

[
k2
x εx (εy + εz) + k2

y εy (εz + εx) +

+k2
z εz (εx + εy)

]
+ q4 εx εy εz = 0 . (1.36)

This equation is known in crystal optics as the Fresnel equation. The Fresnel
equation is fourth order with respect to k. Thus, for the given direction of the
wave vector there are two refractive indices. Eq. (1.36) determines a surface in
k-space known as the isofrequency surface.

Note that if the surface is defined by f(q,k) = 0, ∂f
∂k would be the normal to

the surface. Since ∂f
∂q

∂q
∂k + ∂f

∂k = 0, the group velocity ∂ ω/∂ k is perpendicular to
the isofrequency surface. It can be shown that the group velocity and the Poynting
vector for an anisotropic medium are parallel. Therefore, the direction of energy
flow is perpendicular to the isofrequency surface.

Proof that the Poynting vector is normal to the isofrequency surface
We consider the variation of the fields when the direction of propagation is

varied (so that k changes and q stays constant). The variation of equations

qH = k× E , (1.37)
qD = −k×H (1.38)

yields

q δH = δk× E + k× δE , (1.39)
q δD = −δk×H− k× δH , (1.40)

From these equations we get that

qH · δH + qE · δD =

= [δk× E] ·H + H · [k× δE]− [δk×H] · E− E · [k× δH] =

= δk · [E×H] + [H× k] · δE− δk · [H× E]− [E× k] · δH =

= 2δk · [E×H] + qD · δE + qH · δH .
(1.41)

Therefore
2δk · [E×H] = qE · δD− qD · δE = 0 (1.42)

due to the symmetry of permittivity tensor (εik = εki). This means that δk · S = 0,
i.e. the Poynting vector is orthogonal to the isofrequency surface.

Polarization of the waves propagating in anisotropic medium
We choose the coordinate system with z axis along the k vector.

D = − [k× [k× E]] /q2. Thus, D⊥ = n2 E⊥. On the other hand, Eα = ε−1
αβ Dβ,

where α, β can take the values 1 or 2, and we take into account that D · k = 0. As
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a result, we get (
n−2 δαβ − ε−1

αβ

)
Dβ = 0 . (1.43)

This is an eigenvalue problem for the symmetric matrix ε−1
αβ . Therefore, the D

vectors for the two eigenmodes are always orthogonal. Each of the eigenmodes is
linearly polarized.

1.3 Optical properties of uniaxial crystals

Advanced reading: review on hyperbolic metamaterials by Poddubny et al.,
Ref. [2]

Dispersion equation for uniaxial crystal
Uniaxial crystals are an important class of anisotropic crystals. They are

characterized by the permittivity

ε̂ = ε⊥ Î + (ε|| − ε⊥) ez ⊗ ez . (1.44)

In this special case, the dispersion equation can be greatly simplified. We employ
several useful formulas:

det
(
aÎ + cn⊗ n

)
= a2 (a+ c) , (1.45)

det
(
aÎ + bk⊗ k + cn⊗ n

)
= a (a+ b k2) (a+ c)− abc (k · n)2 , (1.46)

where n2 = 1. The dispersion equation Eq. (1.35) reads:

det
[
k2 Î − k⊗ k− q2 ε̂

]
= det

[
(k2 − q2 ε⊥) Î − k⊗ k− q2 (ε|| − ε⊥) ez ⊗ ez

]
=

= (k2 − q2 ε⊥)
[
−q2 ε⊥ (k2 − q2 ε||)− q2(ε|| − ε⊥) k2

z

]
= 0 .

(1.47)

Thus, the dispersion equation splits into two independent equations:

k2 = q2 ε⊥ , (1.48)

k2
x + k2

y

ε||
+
k2
z

ε⊥
= q2 , (1.49)

which describe the ordinary and extraordinary waves, respectively. Next, we analyze
the polarization of the ordinary and extraordinary waves. For simplicity, we choose
x and y axes so that k lies in the plane Oxz, i.e. ky = 0:
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k2 − k2
x − q2 ε⊥ 0 −kx kz
0 k2 − q2 ε⊥ 0

−kx kz 0 k2 − k2
z − q2 ε||

 Ex

Ey

Ez

 = 0 . (1.50)

In the case of ordinary waves described by Eq. (1.48), Ex = Ez = 0. This means
that for the ordinary wave, the electric field is perpendicular both to the wave
vector and to the anisotropy axis (i.e. E is perpendicular to the main plane, TE, or
s, polarization).

In the case of an extraordinary wave, Ey = 0, i.e. the electric field lies in
the plane defined by k and the axis of anisotropy. Thus, extraordinary waves
correspond to TM, or p, polarization.

Isofrequency surfaces for the uniaxial crystal.
Isofrequency surfaces described by the Eqs. (1.48), (1.49) can be easily visualized.

They are presented in Fig. 1.2. The dispersion regime when ε⊥ and ε|| have different
signs is called hyperbolic dispersion regime.

kx

kz

no ne kx

kz

none

kx

kz

nokx

kz

ne

(a)

(c)

(b)

(d)

no

Figure 1.2: Isofrequency contours for the ordinary (green) and extraordinary (blue) waves. (a,b)
Elliptic dispersion regime (ε⊥ > 0, ε|| > 0). (a) Positive crystal: ne > no, ε|| > ε⊥, e.g., quartz.
(b) Negative crystal: ne < no, ε|| < ε⊥, e.g., iceland spar. (c,d) Hyperbolic dispersion regime
(ε⊥ ε|| < 0). (c) ε|| > 0, ε⊥ < 0. (d) ε|| < 0, ε⊥ > 0.

Plotting the direction of the refracted wave.
In order to solve boundary problems, we use the continuity of the tangential

component of the wave vector at the boundary of the two media. Using the fact
that the Poynting vector is normal to the isofrequency surface, one can plot the
direction of the refracted wave.
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1.4 Systems of units in electrodynamics

Useful reading: book by Jackson Ref. [3] and Ref. [4].
Maxwell’s equations in vacuum and the expression for the Lorentz force can be

represented in the following general form:

div E = 4π k1 ρ , (1.51)

rot B = 4π k2 j + k3
∂E

∂t
, (1.52)

rot E = −k4
∂B

∂t
, (1.53)

div B = 0 , (1.54)
F = q [E + k5 [v ×B]] . (1.55)

The coefficients ki depend on the chosen system of units.
Restrictions on the coefficients ki.

1. Continuity equation [use Eqs. (1.51), (1.52)]:

div j +
k1 k3

k2

∂ρ

∂t
= 0 . (1.56)

Thus, we require that
k1 k3 = k2 . (1.57)

2. Wave equation [use Eqs. (1.52), (1.53)]:

∆ E− k3 k4
∂2E

∂t2
= 0 . (1.58)

Thus,
k3 k4 = 1/c2 , (1.59)

where c is the speed of light in a vacuum.

3. Faraday’s law [Eqs. (1.53) and (1.55)]. The flux through the closed contour
can change due to (a) change in the magnetic field, in which case the
electromotive force is given by E = −k4

∂Φ
∂t ; (b) change of the contour size

and shape, in which case the electromotive force reads E = −k5
∂Φ
∂t . We

require that the expression for the electromotive force is the same in both
scenarios. Therefore,

k5 = k4 . (1.60)
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4. Coulomb’s law [Eq. (1.51)]. The electric field of the point charge

E =
k1 q

r2
. (1.61)

5. Ampere’s law [Eq. (1.52)]. The magnetic field of a constant line current
B = 2 k2 I

r , whereas the force between two parallel currents reads:

F = 2 k2 k5
l

r12
I1 I2 . (1.62)

Thus, only two coefficients out of five can be chosen independently.
Examples of the systems of units

• CGS (Gaussian) system of units. k1 = 1 is chosen in order to simplify the
Coulomb’s law and k4 = 1/c is chosen in order to to provide that the electric
and magnetic fields have the same dimension. Therefore, k2 = k3 = k5 = 1/c.
Maxwell’s equations read:

div E = 4π ρ , (1.63)

rot B =
4π

c
j +

1

c

∂E

∂t
, (1.64)

rot E = −1

c

∂B

∂t
, (1.65)

div B = 0 , (1.66)

F = q

[
E +

1

c
[v ×B]

]
. (1.67)

• Heaviside-Lorentz system of units. k1 = 1/(4 π) (to simplify Maxwell’s
equations) and k4 = 1/c (to provide that the electric and magnetic fields have
the same dimension). Therefore, k2 = 1/(4π c), k3 = 1/c, and k5 = 1/c.
Maxwell’s equations read:

div E = ρ , (1.68)

rot B =
1

c
j +

1

c

∂E

∂t
, (1.69)

rot E = −1

c

∂B

∂t
, (1.70)

div B = 0 , (1.71)

F = q

[
E +

1

c
[v ×B]

]
. (1.72)
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• SI system of units. k4 = 1 (to simplify the Faraday’s law), i.e. k5 = 1 and
k3 = 1/c2. The unit of current is introduced. 1 A of current corresponds
to the force 2 · 10−7 N per unit length between the two wires of negligible
cross-section placed at the distance of 1 m from each other in vacuum. This
yields k2 = 10−7 N/A2.

Next, we introduce constants µ0 = 4π k2 = 4π 10−7 H/m and ε0 = 1/(µ0 c
2).

This yields k1 = 1/(4 π ε0). Maxwell’s equations in vacuum read:

div E = ρ/ε0 , (1.73)

rot B = µ0 j +
1

c2

∂E

∂t
, (1.74)

rot E = −∂B

∂t
, (1.75)

div B = 0 , (1.76)
F = q [E + [v ×B]] . (1.77)

The constitutive relations in SI system of units read

D = ε0 E + P , (1.78)
B = µ0 (H + M) . (1.79)

Note that starting from 2019, the unit of current in SI is defined in terms of
elementary electric charge. Magnetic constant µ0 is no longer exact, but, instead, it
is calculated from the measured value of fine structure constant α:

µ0 =
2αh

c e2
. (1.80)

The rest of parameters in Eq. (1.80) are exact. Modern value of
µ0 = 4π · 1.00000000082(20) · 10−7 H/m. Starting from 2019, the following
fundamental constants are considered exact: h, e, k, NA.

Transformation of expressions between systems of units
Mechanical quantities are not transformed. Electromagnetic quantities are

transformed according to the following table:
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CGS SI
Electric field E (ϕ, V ) E

√
4π ε0E

Electric induction D D
√

4π
ε0
D

Charge density ρ (q, I , P ) ρ ρ/
√

4π ε0

Magnetic field H H
√

4π µ0H

Magnetic induction B B
√

4π
µ0
B

Magnetization M M
√

µ0

4π M
Conductivity σ σ σ/(4π ε0)
Polarizability α α α/(4 π)
Impedance Z Z 4π ε0 Z

1. Comment on the transformation of units.
E.g. 1 C = 3 · 109 CGSE, 1 V/m = 10−4/3 CGSE.
2. Comment on the analysis of dimensions.

1.5 Analytical properties of dielectric permittivity

Kramers-Kronig relations
We have already discussed that in a wide variety of media, the electric

displacement (or polarization) is related to the electric field by linear relation.
However, due to retardation effects inherent to medium, the polarization at the
moment t can depend on the electric field in the previous moments of time:

D(t) = E(t) +

t∫
−∞

f(t− t′)E(t′) dt′

= E(t) +

∞∫
0

f(τ)E(t− τ) dτ , (1.81)

where f(τ) is some real function decaying with retardation time τ . The dependence
of the displacement/polarization on the retarded electric field is called the time
dispersion or the frequency dispersion. By Fourier transforming Eq. (1.81), we
obtain:

D(ω) ≡
∞∫

−∞

D(t) eiω t dt/(2π)

= E(ω) +

∞∫
−∞

dt ei ω t/(2π)

∞∫
0

f(τ)E(t− τ) dτ
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= E(ω) +

∞∫
0

dτ f(τ) eiω τ
∞∫

−∞

E(t− τ) eiω (t−τ) d(t− τ)

= E(ω) + E(ω)

∞∫
0

f(τ) eiω τ dτ . (1.82)

As a result, the permittivity of the medium at frequency ω reads:

ε(ω) = 1 +

∞∫
0

f(τ) eiω τ dτ . (1.83)

Note that the similar reasoning is valid in the case of an anisotropic medium when

εjk(ω) = δjk +

∞∫
0

fjk(τ) eiωτ dτ . (1.84)

From this definition it is obvious that ε(−ω) = ε∗(ω) for real frequencies ω.
Therefore,

ε′(−ω) = ε′(ω) , (1.85)
ε′′(−ω) = −ε′′(ω) . (1.86)

By its definition, the function f(τ) cannot have singularities for τ > 0. Therefore,
for complex ω = ω′+i ω′′ with ω′′ > 0 (upper half-plane), the function ε(ω) defined
by Eq. (1.83) is analytic. At very high frequencies ε(ω) tends to 1 (give a reference
to the calculation of free electron gas permittivity here).

ω ξ’

ξ’’

C
1

C
2

Figure 1.3: Proof of the Kramers-Kronig relations: the integration contour is chosen on the complex
plane.

We consider the function
ε(ξ)− 1

ξ − ω
for a complex frequency ξ and some real

frequency ω. We choose the integration contour as indicated in Fig. 1.3. We take
into account that the integral over C2 vanishes and the integral over C1 yields
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−iπ (ε(ω)− 1). Therefore,

v.p.

∞∫
−∞

ε(ξ)− 1

ξ − ω
dξ = iπ (ε(ω)− 1) . (1.87)

By separating the real and imaginary parts in this expression, we deduce the
Kramers-Kronig relations:

ε′(ω)− 1 =
1

π
v.p.

∞∫
−∞

ε′′(ξ)

ξ − ω
dξ , (1.88)

ε′′(ω) = −1

π
v.p.

∞∫
−∞

ε′(ξ)− 1

ξ − ω
dξ . (1.89)

Physically, equations Eq. (1.88) and (1.89) demonstrate that, for any medium, the
real and imaginary parts of permittivity are related due to causality. Thus, the
medium’ dispersion inevitably implies losses and vice versa.

Quite importantly, this reasoning is very general and can be applied to the
other types of generalized susceptibilities: polarizability, conductivity, elasticity
coefficients, piezoelectric constants, etc.

Now consider harmonic oscillator as an example of the Kramers-Kronig relations
application. A harmonic oscillator is a lossless system, and, therefore, the imaginary
part of permittivity can be different from zero only at the resonance frequency ω0.
Since the imaginary part of permittivity is an antisymmetric function,

ε′′(ω) = C [δ(ω − ω0)− δ(ω + ω0)] , (1.90)

where C is some constant and ω0 is the oscillator eigenfrequency (so losses emerge
only at resonance). Here, we also take into account that the imaginary part of
permittivity is an antisymmetric function of frequency, see Eq. (1.86). Next, we
apply the equation (1.88):

ε′(ω) = 1 +
2C ω0

π

1

ω2
0 − ω2

. (1.91)

Next, we assume that the static permittivity is known and equal to ε0. Thus, we
find that

C = π ω0/2 (ε0 − 1) , (1.92)
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ε′(ω)− 1 = (ε0 − 1)
ω2

0

ω2
0 − ω2

, (1.93)

ε′′(ω) =
π ω0

2
(ε0 − 1) [δ(ω − ω0)− δ(ω + ω0)] . (1.94)

Symmetry of dielectric permittivity
Here, we consider a case of a static field and apply thermodynamic considerations

(paragraph 11 vol. 8, LL). Assume that the external field is created by charged
conductors and a dielectric object is placed in this field.

To increase the charge on conductors kept at potential ϕ by δq, external forces
have to do the work

δA = ϕ δq = − 1

4π

∮
ϕ δD · n df = − 1

4π

∫
div(ϕ δD) dV . (1.95)

Here, we take into account that the charge density on the surface of conductors is
equal to σ = −Dn /(4π), where the inner normal to the surface of conductors is
chosen.

div (ϕ δD) = ∇ϕ · δD + ϕ div δD = −E · δD , (1.96)

where we take into account that div D = 4π ρ and, hence, div δD = 0. Thus, the
work of external forces is found to be

δA =
1

4π

∫
E · δD dV . (1.97)

The variation of the internal energy and free energy reads:

dU = TdS +
1

4π

∫
E · δD dV , (1.98)

dF = −SdT +
1

4π

∫
E · δD dV . (1.99)

Note that in the presence of an external field we can construct the thermodynamic
potentials of the two types: F defined above and also F̃ = F −1/(4π)

∫
E ·D dV .

It can be shown that the first potential F reaches minimum for fixed temperature
and fixed charges of conductors, while the second potential F̃ reaches minimum
for fixed temperature and fixed potentials of conductors. To demonstrate this, we
need to write the work in terms of charges and potentials.

Integration in Eq. (1.99) is done over the entire space. We denote by E0 the
electric field in vacuum which causes the polarization of a dielectric object, whereas
the total electric field is E. Next, we construct the quantity Fd = F−

∫
E2

0/(8π) dV
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such that

dF = −S dT +
1

4π

∫
(E · δD− E0 · δE0) dV =

= −S dT +
1

4π

∫
(D− E0) · δE0 dV +

1

4π

∫
E · (δD− δE0) dV

− 1

4π

∫
(D− E) · δE0 dV . (1.100)

Now we analyze the integrals comprising Eq. (1.100):

I1 =
1

4π

∫
(D− E0) · δE0 dV = − 1

4π

∫
(D− E0) · ∇δϕ0 dV =

= − 1

4π

∫
div ((D− E0)δϕ0) dV +

1

4π

∫
(div D− div E0) δϕ0 dV =

= − 1

4π

∮
(D− E0) · n δϕ0 dV +

1

4π

∫
(div D− div E0) δϕ0 dV .(1.101)

The second integral vanishes since div D = div E0 = 4π ρext. The first integral
vanishes at infinity, whereas at the surface of conductors it yields
δϕ0/(4π)

∮
(D− E0) ·n dV , which also vanishes: the first and second terms yield

the surface charge of conductor.

I2 =
1

4π

∫
E · (δD− δE0) dV = − 1

4π

∫
∇ϕ · (δD− δE0) dV =

= − 1

4π

∫
div (ϕ (δD− δE)) dV +

1

4π

∫
ϕ (div δD− div δE) =

= − 1

4π

∮
ϕ (δD− δE) · n df = 0 . (1.102)

Hence, the only nonzero integral is the last one and

δFd = −S dT −
∫

P · δE0 dV . (1.103)

Now we assume that the field is almost homogeneous on the scales of a dielectric
object. Hence, polarization of the object can be written as Pi = αik E0k/V , where
αik is an object polarizability. Therefore, the free energy reads:

dFd = −S dT − αik E0k dE0i . (1.104)

This said,

αik =
∂2Fd

∂E0i ∂E0k
. (1.105)

This identity ensures that the polarizability tensor of an object is necessarily symmetric:
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αik = αki. Clearly, by analyzing Eq. (1.103), we can analogously demonstrate that
the permittivity tensor is also symmetric: εik = εki.

More importantly, the symmetry of the permittivity tensor also holds in the
case of time-dependent fields. To prove this, one needs to apply the principle of
symmetry of the kinetic coefficients (paragraph 120, vol. 5 LL):

εik(ω) = εki(ω) , (1.106)

whereas in the presence of spatial dispersion and external magnetic field/rotation,
etc, the following identity holds:

εik(ω,k,H,Ω) = εki(ω,−k,−H,−Ω) . (1.107)

Reciprocity theorem
We consider some reciprocal medium characterized by the symmetric permittivity

and permeability tensors. We assume that the external monochromatic sources
j1 placed in the medium excite the field distribution (E1,H1), whereas external
sources j2 located in the medium excite the field distribution (E2,H2).

Maxwell’s equations read:

rot E1 = i qB1 , (1.108)

rot H1 = −i qD1 +
4π

c
j1 . (1.109)

The analogous equations are valid for the fields created by the second source.
Therefore,

(H2 · rot E1 −H1 · rot E2) + (E2 · rot H1 − E1 · rot H2)

= iq (H2 ·B1 −H1 ·B2)− iq (E2 ·D1 − E1 ·D2) + 4π/c [E2 · j1 − E1 · j2]
(1.110)

Due to the presumed symmetry of permittivity and permeability tensors,
H2 ·B1 = H1 ·B2 and E2 ·D1 = E1 ·D2. We also make use of the formula

div [a× b] = b · rot a− a · rot b . (1.111)

We thus obtain:

div (E1 ×H2 − E2 ×H1) =
4π

c
[E2 · j1 − E1 · j2] . (1.112)

By integrating this equation over a sufficiently large volume and transforming the
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left-hand side with Gauss theorem, we finally prove the reciprocity theorem∫
j1 · E2 dV =

∫
j2 · E1 dV . (1.113)

In the case of two dipole sources

d1 · E2 = d2 · E1 . (1.114)

Now we introduce the dyadic Green’s function (see details in Chap. 2) as follows:

E1 = Ĝ(r1, r2) d2 , (1.115)

E2 = Ĝ(r2, r1) d1 . (1.116)

As a consequence,

d1iGik(r1, r2) d2k = d2kGki(r2, r1) d1i . (1.117)

Thus, the following symmetry property of the Green’s function holds in an arbitrary
linear reciprocal medium characterized with symmetric permittivity and permeability
tensors:

Gik(r1, r2) = Gki(r2, r1) . (1.118)

As a consequence of reciprocity, transmission from the left-hand side of the optical
setup to the right is equal to the transmission from right- to the left-hand side. In
other words, reciprocity prohibits the construction of optical diode in any linear
medium with symmetric permittivity and permeability tensors.

1.6 Dissipation rate, field energy and Poynting vector in the medium with
frequency dispersion

In the previous section, we have introduced the phenomenon of the frequency
dispersion of dielectric permittivity and deduced some general restrictions on permittivity
tensor. Now we turn to the discussion of energy relations in the dispersive medium.

rot E = −1

c

∂B

∂t
, (1.119)

rot H =
1

c

∂D

∂t
. (1.120)
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Equations above yield:

div [E×H] ≡ −E · rot H + H · rot E = −1

c

[
E · ∂D

∂t
+ H · ∂B

∂t

]
⇒ (1.121)

− div S =
1

4 π

(
E · ∂D

∂t
+ H · ∂B

∂t

)
, (1.122)

where the Poynting vector is defined as

S =
c

4π
[E×H] , (1.123)

i.e. similarly to the non-dispersive media.
Dissipation rate
We consider a monochromatic wave in a dispersive medium. Since the field

energy in monochromatic case does not change in time, the time average −〈div S〉
yields the dissipation rate q: the energy absorbed per unit time in the unit volume
of the medium.

q =
1

4 π

〈
E · ∂D

∂t
+ H · ∂B

∂t

〉
. (1.124)

Since the wave is monochromatic, time dependence of the fields has the form:

E = E0 e
−iω t + E∗0 e

iω t , (1.125)

D = D0 e
−iω t + D∗0 e

iω t , (1.126)
∂D

∂t
= −iωD0 e

−iω t + iωD∗0 e
iω t . (1.127)

Then the averaging yields:〈
E · ∂D

∂t

〉
= 2ω

E∗0 ·D0 − E0 ·D∗0
2i

. (1.128)

Assuming the constitutive relations of the form

D = ε̂E , (1.129)
B = µ̂H , (1.130)

where both ε̂ and µ̂ are frequency-dependent tensors, we finally derive (ε′ ≡ Re ε,
ε′′ ≡ Im ε):

q =
ω

2π

[
εjk − ε∗kj

2i
E∗0j E0k +

µjk − µ∗kj
2i

H∗0jH0k

]
. (1.131)
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Thus, a lossless medium is characterized by Hermitian permittivity and permeability
tensors: ε̂† = ε̂, µ̂† = µ̂. If the permittivity and permeability tensors are symmetric,
losses in the medium are associated with the imaginary parts of these tensors. Since
dissipation rate is a positive quantity for a medium in thermodynamic equilibrium,
the quadratic form, Eq. (1.131), should be positively defined. This requirement is
known as the passivity condition. In the isotropic case, for instance, the passivity
condition yields

ε′′ > 0, µ′′ > 0 . (1.132)

Frequency intervals where the dissipation rate is small are called transparency
windows.

Field energy
As we already know, the permittivity of a medium can be negative (e.g. in

plasma below plasma frequency). Trying to compute the field energy in such a
medium by the conventional formula, we get a negative value of energy, which
is an apparent inconsistency. Therefore, we have to revise energy relations in
the dispersive medium, restricting the analysis to the transparency window of the
medium and an almost monochromatic wave packet with the field given by

E(t) = E0(t) e−iω t + E∗0(t) e
iω t ,H(t) = H0(t) e−iω t + H∗0(t) e

iω t , (1.133)

where the amplitudes E0(t) andH0(t) are slowly varying functions of time. Comment
why we can’t consider fully monochromatic case here. For simplicity, we assume
that µ ≡ 1 here, i.e. B = H. Time averaging yields:

−〈div S〉 =
1

4π

{〈
E · ∂D

∂t

〉
+

〈
H · ∂H

∂t

〉}
(1.134)

Averaging for magnetic part is straightforward:〈
H · ∂H

∂t

〉
=

1

2

∂

∂t

〈
H2
〉

=
1

2

∂

∂t

〈(
H0 e

−iω t + H∗0 e
iω t
)
·
(
H0 e

−iω t + H∗0 e
iω t
)〉

=
∂

∂t
|H0|2 . (1.135)

To do averaging for electric part, we represent electric displacement in the form:

D(t) = D(−)(t) + D(+)(t) , (1.136)

where, loosely speaking, D(−)(t) varies in time as e−iω t and D(+)(t) as eiω t. Then〈
E · ∂D

∂t

〉
=
〈(

E0 e
−iω t + E∗0 e

iω t
)
·
(
Ḋ(−) + Ḋ(+)

)〉
=

= E0 ·
〈
e−iω t Ḋ(+)

〉
+ E∗0 ·

〈
eiω t Ḋ(−)

〉
.

(1.137)
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In turn, the derivative Ḋ(−) can be calculated as:

Ḋ
(−)
j =

∂

∂t

∞∫
−∞

D
(−)
j (α + ω) e−i (ω+α) t dα =

∂

∂t

∞∫
−∞

εjk(α + ω)E0k(α) e−i (ω+α) t dα

(1.138)

=

∞∫
−∞

−i(α + ω) εjk(α + ω)E0k(α) e−i (ω+α) t dα . (1.139)

Since the amplitudes E0(α) with α close to zero dominate, the following Taylor
expansion is applicable:

(α + ω) εjk(α + ω) = ω εjk(ω) + α
∂

∂ω
(ω εjk(ω)) . (1.140)

As a result,

Ḋ
(−)
j (t) = −iω εjk(ω)E0k(t) e

−iω t +
∂

∂ω
(ω εjk(ω))

∂E0k

∂t
e−iω t . (1.141)

At the same time,

Ḋ
(+)
j (t) =

[
Ḋ

(−)
j (t)

]∗
= iω ε∗jk(ω)E∗0k(t) e

iω t+
∂

∂ω

(
ω ε∗jk(ω)

) ∂E∗0k
∂t

eiω t. (1.142)

Hence, Eq. (1.137) yields:〈
E · ∂D

∂t

〉
(1.137)

= E0k

(
iω ε∗kj(ω)E∗0j(t) +

∂

∂ω

(
ω ε∗kj(ω)

) ∂E∗0j
∂t

)
+

+ E∗0j

(
−iω εjk(ω)E0k(t) +

∂

∂ω
(ω εjk(ω))

∂E0k

∂t

)
=

=
∂

∂ω
(ω εjk(ω))

∂

∂t

(
E∗0j E0k

)
,

(1.143)

where we have used the fact that in the transparency window ε∗kj = εjk. Finally,
combining Eqs. (1.143), (1.135) and (1.134), we obtain that

−〈div S〉 =
1

4π

[
∂

∂ω
(ω εjk(ω))

∂

∂t

(
E∗0j E0k

)
+
∂

∂t
|H0|2

]
. (1.144)

On the other hand, the energy conservation law reads:

∂u

∂t
= −〈div S〉 , (1.145)
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where u is the electromagnetic energy density. Comparing the two equations above,
we obtain that

u =
1

4 π

[
∂

∂ω
(ω εjk(ω)) E∗0j E0k + |H0|2

]
. (1.146)

Equation (1.146), known as the Brillouin formula, gives the energy of electromagnetic
field in the transparency window of the medium with frequency dispersion. This
formula can be readily generalized to the case of dispersive permeability.

1.7 Magneto-optical effects

Electromagnetic properties of a medium can also depend on applied external static
electric and magnetic fields. The dependence on static electric field is termed as
the Kerr effect, and in the case of an isotropic medium the Kerr effect yields
εik = ε(0) + αEiEk. Thus, the external static electric field leads to birefringence,
transforming an isotropic medium into the uniaxial one.

Gyrotropic media
Here we will focus on the other possibility: dependence of permittivity on

applied static magnetic field. In the absence of dissipation, the permittivity tensor
is Hermitian, i.e. εik = ε∗ki. Separating the real and imaginary parts, we get

ε′ik = ε′ki ,

ε′′ik = −ε′′ki ,
(1.147)

i.e. the real and imaginary parts of permittivity tensor in a lossless medium are
represented by symmetric and antisymmetric tensors, respectively. An antisymmetric
tensor ε′′ik can be associated with some vector gn as follows:

ε′′ik = eikl gl . (1.148)

The constitutive relation then becomes

Di = εik Ek = ε′ik Ek + i ε′′ik Ek = ε′ik Ek + i eikl glEk ⇒
D = ε̂′E + i [E× g] . (1.149)

Our derivation of the constitutive relation was based on the fact that ε̂ is
Hermitian. The inverse tensor η̂ = ε̂−1 is obviously also Hermitian. Repeating
the similar reasoning for the inverse tensor, we can get the constitutive relation in
the equivalent form

E = η̂′D + i [D×G] . (1.150)

Vector g is called the gyration vector, and G is called the optical activity vector.
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To clarify the dependence of the gyration vector on the external magnetic field,
we employ the symmetry of the kinetic coefficients which states that

εik(H0) = εki(−H0) . (1.151)

Using the relations Eq. (1.147), we get

ε′ik(H0) = ε′ik(−H0) , (1.152)
ε′′ik(H0) = −ε′′ik(−H0) . (1.153)

Thus, the real and imaginary parts of the permittivity tensor are even and odd
functions of magnetic field, respectively.

Faraday effect
Now we expand the components of permittivity tensor in series with respect to

H up to the first order and consider a medium which is isotropic in the absence
of external field. In this case, ε̂′ik = ε δik and g = f H, where ε and f are some
scalar constants. We also align z axis along the direction of external magnetic field,
which yields permittivity tensor in the form

ε̂ =

 ε if H0 0
−if H0 ε 0

0 0 ε

 (1.154)

From Maxwell’s equations

k×H = −qD , (1.155)
k× E = qH (1.156)

we get D− n2 E⊥ = 0, where E⊥ is the component of electric field perpendicular
to the wave vector. The most interesting situation is the propagation along the lines
of magnetic field (k||H0) when(

ε− n2 if H0

−if H0 ε− n2

) (
Ex

Ey

)
= 0 (1.157)

The dispersion equation reads:

n± =
√
ε∓ f H0 ≈ n0 ∓

fH0

2n0
, (1.158)

where n0 =
√
ε. Examining Eq. (1.157), we find that the polarization of the

eigenmodes is described by Ex = ∓ iEy so that the polarization vectors are
complex: e± = ex ± i ey. This means that the electric field of the eigenmode



28

reads:

E± = Re
[
A (ex ± i ey) eiqn± z−iω t

]
= A [ex cosϕ± ey sinϕ] ,

(1.159)

where ϕ = ω t − q n± z is the phase of the wave. Equation (1.159) describes the
vector which rotates counterclockwise/clockwise for +/− sign choice. Thus, we
conclude that the eigenmodes in Faraday effect are circularly polarized. Right and
left circular polarizations are characterized by the different refractive indices n+

and n−, respectively.
To calculate the magnitude of rotation, we assume that the wave entering

magneto-optical medium is polarized along x axis, i.e.

E(z = 0) = E0 ex e
−iω t = E0/2 (e+ + e−) e−iω t . (1.160)

At the point with the coordinate z the field is given by

E(z) = E0 e
−iω t/2

[
eiqn+ z e+ + eiqn− z e−

]
=

= E0/2 e
iq<n>z−i ω t

[
eiq∆n z/2 e+ + e−iq∆n z/2 e−

]
=

= E0 e
iq<n>z−i ω t [cos θ ex + sin θ ey] ,

(1.161)

where ∆n = n+ − n−, < n >= (n+ + n−)/2 and θ = −q∆n z/2. Thus, for the
linearly polarized wave which passed a distance z in the medium, the polarization
plane is rotated by the angle θ proportional to the distance z. Using Eqs. (1.158)
for the refractive indices, we get:

θ = V H0 l , (1.162)

where V = q f/(2n0) is called the Verdet constant. The effect of rotation of the
polarization plane in the magneto-optical medium is known as the Faraday effect.

Cotton-Mouton effect
Next, we consider another limiting case when the direction of light propagation

is orthogonal to the direction of applied static magnetic field. Again, we search
for plane wave solutions in such a non-magnetic medium (B = H), starting from
Maxwell’s equations

k× E = qH , (1.163)
k×H = −qD . (1.164)

We combine them together and get:

k2 E− k (k · E) = q2 D . (1.165)

Due to div D = 0, the projections of the left- and right-hand sides onto k are zero,
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and, therefore, we get:
k2 E⊥ = q2 D , (1.166)

where E⊥ is a component of the electric field orthogonal to the direction of wave
propagation. Note that in the magneto-optical case

E = ε−1 D + iF [D×H0] . (1.167)

In the chosen geometry, D and H0 are orthogonal to k. Hence, their vector product
is parallel to k and, therefore, is not included in the Eq. (1.166). In the other words,
the effect linear in H0 vanishes.

As a result, in this geometry the corrections to the permittivity tensor, which
are second order in H0, should be taken into account. We consider the equation(
η̂ − Î/n2

)
D = 0, direct x axis along the wave vector (so that D has y and z

components only), and z axis along static magnetic field. The principal components
of η̂ tensor become η|| for the direction along the magnetic field and η⊥ for the
direction perpendicular to the magnetic field.

Therefore, the eigenmodes of the medium are linearly polarized and have different
refractive indices η−1/2

|| and η−1/2
⊥ . Therefore, after passing magneto-optical medium

perpendicularly to the applied magnetic field, the linearly polarized light will
become elliptically polarized (Cotton-Mouton effect), and the whole magnetized
medium acts similarly to the birefringent crystal.

Faraday effect for free electron gas
The physics of the Faraday effect can be understood on a simple example of a

medium considered as free electron gas. Actually, this approximation is valid for
any medium at frequencies much higher than the medium resonance frequencies.
Additionally, we assume that the frequency of the driving field is much higher than
the cyclotron frequency

ωc = eH0/(mc) . (1.168)

Electron equation of motion reads

m
dv

dt
= −eEe−iω t − e

c
[v ×H0] , (1.169)

where e > 0 is an elementary charge. Since ω � ωc, the last term in Eq. (1.169)
representing Lorentz force is considered as a perturbation (i.e. H0 is considered as
small parameter). By solving Eq. (1.169) iteratively, we get:

v = −ieE

mω
e−iω t − e2

m2 ω2 c
[E×H0] e−iω t . (1.170)

If concentration of free electrons is n, then j = −nev. On the other hand, the
current density is related to the polarization as j = −iωP, i.e. P = −ienv/ω.
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Finally, we obtain the following expression for the effective permittivity:

ε̂ =

[
1− 4π n e2

mω2

]
− i 4π n e3

m2 ω3 c
H×0 , (1.171)

(H×0 is tensor dual to vector H0) which coincides exactly with Eq. (1.149) where
the gyration vector g = fH0 and

ε′(ω) = 1− 4π n e2

mω2
, (1.172)

f(ω) =
4π n e3

m2 ω3 c
=

e

2mc

dε′

dω
. (1.173)

The Verdet constant can be estimated as

V =
4π n e3

m2 c2 ω2
=

e

mc2
(1− ε′) . (1.174)

1.8 Bi-anisotropic materials and optical activity

Definition of a bi-anisotropic medium
Previously, we supposed that the properties of a medium are fully described by

the permittivity and permeability tensors. However, if such simplified description
is adopted, a number of physical phenomena cannot be explained properly. The
simplest example is the rotation of polarization plane for the light propagating in
the water solution of sugar.

We consider the class of materials described by the constitutive relations

D = ε̂E + α̂H , (1.175)

B = β̂ E + µ̂H . (1.176)

It can be shown that in the absence of dissipation β̂ = α̂†. The material described
by the material equations Eqs. (1.175)-(1.176) is called bi-anisotropic. If all the
tensors ε̂, µ̂, α̂ and β̂ reduce to scalars, the medium is called bi-isotropic.

Discuss the origin of magneto-electric coupling on the example of omega-
particle.

Symmetry restrictions
Now we establish the symmetry requirements necessary for nonzero bianisotropy.

We note that the magnetic fields H and B are even under mirror reflection, whereas
the electric fields E and D are odd under mirror reflection.

If the medium unit cell has a center of inversion, its material parametrs should be
invariant under the inversion. Thus, if we apply inversion to Eqs. (1.175), (1.176),
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we obtain:

−D = −ε̂E + α̂H , (1.177)

B = −β̂ E + µ̂H . (1.178)

This means that bianisotropy tensors α̂ and β̂ should necessarily vanish for the
inversion-symmetric medium. Thus, bianisotropy is only possible in the media
without inversion symmetry. Note about chiral sugar molecule.

Rotation of polarization plane
As an illustrative example, we consider light propagation in bi-isotropic medium

with α = χ+ iκ, β = χ− iκ. Maxwell’s equations for monochromatic field yield:

k×H = −q εE− q (χ+ iκ) H , (1.179)
k× E = q (χ− iκ) E + q µH . (1.180)

We rewrite Eqs. (1.179), (1.180) in terms of vectors e± = (ex ± i ey) assuming that
the wave vector k is directed along z axis. We use the property ez × e± = ∓ ie±.
As a result,

εE± + [χ+ iκ ∓ i n±] H± = 0 , (1.181)
[χ− iκ ± i n±] E± + µH± = 0 . (1.182)

Finally, we obtain that
n± =

√
ε µ− χ2 ± κ . (1.183)

The sign of the square root in Eq. (1.183) is chosen on the basis of passivity
condition.

The analysis above shows that the eigenmodes are polarized along complex
vectors e±. This means that the electric field of the eigenmode reads:

E± = Re
[
A (ex ± i ey) eiqn± z−iω t

]
= A [ex cosϕ± ey sinϕ] ,

(1.184)

where ϕ = ω t − q n± z is the phase of the wave. Equation (1.184) describes the
vector which rotates counterclockwise/clockwise for +/− sign choice. Thus, we
conclude that the eigenmodes of a bi-isotropic medium are circularly polarized.
Right and left circular polarizations are characterized by the different refractive
indices n+ and n−, respectively.

Assume that the wave entering bi-isotropic medium is polarized along x axis,
i.e.

E(z = 0) = E0 ex e
−iω t = E0/2 (e+ + e−) e−iω t . (1.185)
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At the point with the coordinate z, the field is given by

E(z) =E0 e
−iω t/2

[
eiqn+ z e+ + eiqn− z e−

]
=E0/2 e

iq<n>z−i ω t
[
eiq∆n z/2 e+ + e−iq∆n z/2 e−

]
=E0 e

iq<n>z−i ω t [cos θ ex + sin θ ey] ,

(1.186)

where ∆n = n+ − n−, < n >= (n+ + n−)/2 and θ = −q∆n z/2 = −q κ z.
Refer to the calculation of the previous lecture for Faraday rotation. Thus, for the
linearly polarized wave which passed a distance z in the medium, the polarization
plane is rotated by the angle θ proportional to the distance z.

1.9 Spatial dispersion. Link between local and nonlocal description

Useful reading: book by Agranovich and Ginzburg [5].
To describe the properties of linear media, we have previously introduced the

permittivity ε̂ and permeability µ̂ tensors. To describe specific phenomena like
optical activity, we have also introduced the bianisotropy tensors α̂ and β̂.

Now the natural question is whether this “bianisotropic” framework is complete
for linear media, or it requires further advancement. It turns out that in order to
describe such phenomena as anisotropy of cubic crystals, or trirefringence, one
needs to extend this framework and introduce spatial dispersion.

The most general link between the polarization of a medium (this medium is
assumed to be linear, stationary and uniform) and electric field reads:

Pi(r) =

t∫
−∞

χ̂ij (t− t′, r− r′) Ej(r
′) d3 r′ . (1.187)

This said, the polarization in a given point depends on the fields in the previous
moments of time (time of frequency dispersion) and in some neighboring regions
of space (spatial dispersion).

Importantly, in spatial dispersion framework we do not distinguish the
polarization current and the magnetization current, and always assume that B = H.
It is possible since the fields H and D are considered as auxiliary.

By Fourier transforming Eq. (1.187), we obtain that

Pi(ω,k) = χij(ω,k)Ej(ω,k) ,

Di(ω,k) = εij(ω,k)Ej(ω,k) ,
(1.188)

where εij(ω,k) = δij + 4π χij(ω,k). Thus, the properties of the medium in spatial
dispersion framework are described by the tensor ε̂(ω,k). Since this is the most
general framework, there should be a link between this framework and the approach
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based on local material parameters ε̂(ω), µ̂(ω), α̂(ω), β̂(ω), which are included in
the material equations (1.175), (1.176).

We consider the fields D and H included in the local material equations (1.175),
(1.176) as auxiliary and therefore we can redefine them, keeping the redefined
fields consistent with Maxwell’s equations. In physical terms, this corresponds to
the inclusion of magnetization currents into polarization currents. The redefined
magnetic field reads

H′ = H− a , (1.189)

where a is some vector field, which will be chosen later. Since in the plane wave
case k × H = −qD and also k × H′ = −qD′, electric displacement should be
redefined as follows:

D′ = D + k× a/q . (1.190)

Now we choose the vector field a from the requirement that H′ = B or, in other
words,

H′ = B = β̂ E + µ̂H = β̂ E + µ̂ (H′ + a) , (1.191)

which yields

a =
[
µ̂−1 − Î

]
H′ − µ̂−1 β̂ E . (1.192)

This choice leads to

H′ = B = k×E/q , (1.193)

H = H′ + a = µ̂−1 k×E/q − µ̂−1 β̂ E . (1.194)

Now we can evaluate the redefined electric displacement

D′ = D +
k×

q
a = ε̂E + α̂H +

k×

q
a . (1.195)

Finally, we get the following material equations:

D′ = ε̂(ω,k) E , (1.196)
B = H′ , (1.197)

where the spatially dispersive permittivity tensor is given by the expression:

ε̂(ω,k) =
[
ε̂− α̂ µ̂−1 β̂

]
+

1

q

[
α̂ µ̂−1k× − k× µ̂−1 β̂

]
+

1

q2
k×
[
µ̂−1 − Î

]
k× .

(1.198)



34

Matrix k× is given by the formula

~k× =

 0 −kz ky
kz 0 −kx
−ky kx 0

 (1.199)

Equation (1.198) demonstrates that the corrections to the nonlocal permittivity
tensor linear with respect to k are related to the bianisotropy of the structure,
whereas some of the corrections proportional to k2 can be related to the magnetic
response. In other words, bianisotropy is a first-order spatial dispersion effect,
whereas magnetism can be viewed as a second-order spatial dispersion effect. It
is evident, however, that not every nonlocal permittivity tensor ε̂(ω,k) can be
presented in the form Eq. (1.198).

Note that the nonlocal permittivity tensor for bi-isotropic medium with µ = 1 is
given by

ε̂(ω,k) = ε− κ2 + 2iκ/q k× . (1.200)

There is a similarity of this expression with magneto-optical medium with the
permittivity

ε̂(ω,H0) = ε− i f H×0 . (1.201)

1.10 Optical effects due to spatial dispersion: “additional” waves and
additional boundary conditions

After the discussion of the link between local (ε̂, µ̂, α̂, β̂) and nonlocal [ ˆε(ω,k)]
description, it is instructive to analyze the new optical effects stemming from spatial
dispersion.

Longitudinal waves
As a simplest example, we consider some isotropic medium possessing inversion

symmetry. The effective permittivity tensor of such a medium εil can only contain
the Kronecker symbol δil and the tensor product ki kl. Generally, the permittivity
tensor has the form

εil(ω,k) = εt
[
δil − ki kl/k2

]
+ εl ki kl/k

2 , (1.202)

where εt and εl are some scalar functions of frequency and the absolute value of
wave vector that are called the transverse and longitudinal permittivity, respectively.
The dispersion equation reads

0 =
∣∣∣q2 ε̂− k2 Î + k⊗ k

∣∣∣ =
∣∣∣(q2 εt − k2)

[
Î − k⊗ k/k2

]
+ q2 εl k⊗ k/k2

∣∣∣ .
(1.203)
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This equation decouples into two independent dispersion equations:
(i)

k2 = q2 εt(ω, k) , (1.204)

which describes the waves with electric field orthogonal to k. These transverse
waves are the direct analogues of those existing in local medium.

(ii)
εl(ω, k) = 0 , (1.205)

which describes the waves with electric field aligned parallel to k. Such waves are
called longitudinal, and they are characteristic to media with spatial dispersion.

“Additional” waves
Useful reading: paper by Orlov et al. on multilayered structures [6], paper by

Gorlach and Belov on uniaxial structures [7].
An interesting phenomenon possible in spatially dispersive medium is the so-

called trirefringence, when the light beam incident at the boundary of the structure
generates three transmitted beams (not two, as in the case of anisotropic dielectric).
The phenomenon of trirefringence may happen in many cases, here we will focus
on two special situations.

Discuss the first situation of ε ≈ 0. Skip the second case ε → ∞. Stress that
we analyze TM waves. TE case is trivial. The first situation corresponds to the
uniaxial medium with the anisotropy axis perpendicular to the boundary as shown
in Fig. 1.4(a), when the only essential component of permittivity tensor is along
anisotropy axis (z).

Permittivity is approximated as

εzz(ω,k) ≈ εloc + α k2
z + α̃ k2

x . (1.206)

To simplify the analysis even further, we assume that α̃ is negligible in comparison

(a) (b)
E

H
k

y x

z

y z

x

E

H
k

Figure 1.4: Geometry of the problem. (a) Trirefringence in ε near zero regime. (b) Trirefringence in
ε→∞ regime.
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with α. The dispersion equation for TM waves yields

k2
x

εzz
+ k2

z = q2 ⇒ (q2 − k2
z) εzz(ω,k) = k2

x ⇒

α k4
z − k2

z

(
α q2 − εloc

)
+
(
k2
x − q2 εloc

)
= 0 . (1.207)

Thus, kz (the component of wave vector normal to the boundary) satisfies the
biquadratic equation, which generally has four solutions. Selecting the waves
propagating into the structure, we get two solutions. Both solutions describe TM-
polarized waves, whereas TE-polarized waves do not interact with the structure.
Thus, the incident beam generates one TE transmitted wave and two TM
waves. Depending on parameters, TM-waves can be both propagating, both
evanescent or one of them is propagating and another one is evanescent. Point out
that evanescent waves have elliptic polarization, whereas propagating solutions are
linearly polarized.

To get further insights into the nature of trirefringence, we analyze the
polarization state of TM solutions for the specific case of kx = 0 (normal incidence).
One of the solutions has k2

z1 = q2, which corresponds to the transverse wave
polarized along x axis, which does not interact with the structure. The second
solution has k2

z2 = −εloc/α, i.e. εzz(ω,k) = 0. This describes the longitudinal
wave with electric field parallel to the wave vector. Note that such modes can not
be excited by the wave from vacuum at normal incidence. Quite importantly, this
“additional” solution will be manifested if εloc is sufficiently small which would
ensure that kz1 and kz2 have comparable magnitude.

In a similar way, Eq. (1.207) can be analyzed for oblique incidence. In this
case, the transverse and longitudinal modes are hybridized, and the eigenmodes are
neither purely transverse, nor purely longitudinal. Both of them can be excited by
the incident wave.

The second scenario of trirefringence may take place when the anisotropy axis
is parallel to the interface, but the effective permittivity is very large (i.e. the
frequency of excitation is close to some resonance of the medium). In this case, we
consider the expansion of inverse permittivity η̂ = ε̂−1:

ηzz(ω,k) = ηloc + β k2
x + β̃ k2

z . (1.208)

For simplicity we assume that |β̃| � |β|. The dispersion equation for TM waves
then yields

k2
x ηzz + k2

z = q2 ⇒ β k4
x + ηloc k

2
x +

(
k2
z − q2

)
= 0 . (1.209)

Thus, we again obtain two solutions propagating into the structure and having
TM-like polarization. In this case, the spatial dispersion effects will be strongly
manifested for sufficiently small |ηloc| which corresponds to very high permittivity.

To summarize, the phenomenon of trirefringence is expected either in the
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vicinity of zeros or in the vicinity of poles of the effective permittivity. The
specific range of parameters favouring the trirefringence is determined for the
specific model of the structure.

Additional boundary conditions
Trying to calculate reflection or transmission coefficients from the boundary

of spatially dispersive medium, we need to determine the amplitudes of the two
transmitted waves and one reflected wave (overall, three parameters). However,
for a fixed polarization (TM, in our case), we have only two boundary conditions
which require the continuity of electric and magnetic field tangential components.
Thus, it is evident that an additional boundary condition is required.

These additional boundary conditions can be derived from the microscopic
theory (e.g., the discrete dipole model which we will discuss in the second part
of the course) or, sometimes, from some macroscopic considerations.

For instance, for the wire medium with the wires perpendicular to the boundary,
the additional boundary condition requires the continuity of εhEn at the interface [8].
Here, εh is the permittivity of the host medium, and En is the component of the
average electric field normal to the boundary.

In another example of the 3D array of scatterers, an additional boundary conditions
requires that

Qnn = 0 (1.210)

where tensor Q̂ includes both quadrupole moment density and magnetic moment
of the unit cell [9].

1.11 Spatial-dispersion-induced birefringence

Useful reading: Landau and Lifshitz [1], par. 105. Agranovich and Ginzburg [5],
par. 8. Paper by Chebykin et al. [10].

Symmetry analysis
We consider a crystal possessing cubic symmetry (i.e. characterized by the

symmetry groups T , Th, Td, O, Oh) and aim to find the restrictions on the structure
of permittivity and permeability tensors ε̂(ω) and µ̂(ω) dictated by symmetry.

First, we notice that the crystal has mirror symmetry with respect to Oxy, Oxz
and Oyz planes. As a consequence, permittivity should be invariant under mirror
reflections including, in particular, the transformation T = diag (1, 1,−1). On the
other hand, by doing this transformation, we see that ε′xz = −εxz. This said, the
off-diagonal components of the permittivity tensor vanish: εxz = 0.

Second, the crystal is invariant under rotation by 90◦ with respect to axes
x, y and z. Consider, for instance, rotation with respect to z axis. Matrix of
transformation is given by

T =

0 −1 0
1 0 0
0 0 1

 (1.211)
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After this transformation, we find that ε′xx = εyy, i.e. εxx = εyy.
The permeability tensor, obviously, shares the same properties. To conclude, if

a crystal has cubic symmetry and is characterized by ε̂(ω) and µ̂(ω) then these
tensors are necessarily isotropic.

However, the experiment shows that some of natural cubic crystals do exhibit
an anisotropy, which is the topic of this paragraph.

General treatment of the problem
To provide simple explanation of anisotropy emerging in cubic crystals, we

consider the expansion of inverse permittivity tensor (η̂ = ε̂−1) of a cubic crystal
with respect to wave vector:

ηik(ω,k) = η0(ω) δik + βiklm kl km . (1.212)

Terms of this expansion linear in k vanish due to the inversion symmetry of the
crystal. Coefficients βiklm are symmetric with respect to the indices i, k (due to
symmetry of permittivity tensor) and also with respect to the indices l and m.
Thus, without any crystal symmetries the 4th rank tensor βiklm has 36 independent
components.

Highlight that generally second-order spatial dispersion effects scale as (a/λ)2.
From Maxwell’s equations we get the equation for the electric displacement vector[

Î/n2 −
(
Î − n⊗ n

)
η̂
]

D = 0 , (1.213)

where n is the refraction index for the direction of wave vector given by the unit
vector n. The operator Î−n⊗n = − (n×)2 simply substracts the part of the vector
which is orthogonal to the direction of n. Electric displacement vector D is always
orthogonal to the direction of n.

The origin of anisotropy
We align z axis parallel to wave vector (i.e. along n). In this case, the dispersion

equation reads:

0 = det
[
δµν/n

2 − ηµν
]

=

(
1
n2 − η11 η12

η21
1
n2 − η22

)
. (1.214)

where the Greek indices µ, ν are equal to 1 or 2. Quite obviously, this equation
is quadratic with respect to 1/n2, and, therefore, it will have two solutions. In the
general case this means birefringence.

Optical axes of cubic crystals
However, so far we have not used the symmetry of the crystal. By using the

group theory, it can be shown that in the structures with cubic symmetry T or Th,
the βiklm tensor has only 4 independent components. In the crystals with Td, O and
Oh symmetry group, the number of independent components is limited to 3.

Consider the crystal with O symmetry group. Calculate the number of independent
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components of βiklm tensor.
Furthermore, with the help of group theory it can be shown that these independent

components are

β1 = βxxxx = βyyyy = βzzzz , (1.215)
β2 = βyyxx = βzzyy = βxxzz = βxxyy = βyyzz = βzzxx , (1.216)

β3 = βxyxy = βyzyz = βzxzx , (1.217)

where the coordinate axes are aligned parallel to the crystallographic axes. The
rest of the coefficients that cannot be obtained from Eqs. (1.215)-(1.217) by the
permutation of the first or second pair of indices are zero.

We analyze now the dispersion equation (1.214) for some specific directions of
propagation. Assume that n is aligned along the z axis. Then η11 = ηxx = η0+β2 k

2,
η22 = ηyy = η0 + β2 k

2, i.e. η11 = η22. η12 = ηxy = 0. Thus, for this direction
of propagation the dispersion equation yields doubly degenerate solution, i.e. the
directions of propagation along the edges of cubic unit cell are the optical axes of
the crystal.

Now assume that n is aligned along the crystallographic direction [1, 1, 1].
Two directions orthogonal to the wave vector are specified by the unit vectors
s1 = [−1,−1, 2]/

√
6 and s2 = [1,−1, 0]/

√
2. ηµν = sµη̂sν . It can be shown that

this direction is also an optical axis.
Verify that the direction [1, 1, 1] is an optical axis of the cubic crystal.
Answer.

ηxx = ηyy = ηzz = η0 + k2/3 (β1 + 2 β2) ,

ηxy = ηxz = off-diagonal components = 2 β3 k
2/3 ,

η11 = η22 = η0 + (β1 + 2 β2 − 2 β3) k
2/3 ,

η12 = 0 .

Thus, the quadratic equation (1.214) yields a doubly degenerate solution.
Cubic crystal has seven optical axes: three of them correspond to the edges

of the cubic unit cell, and four more axes correspond to the diagonals of the
cube.

Quantifying spatial-dispersion-induced birefringence
Now consider the direction of wave vector given by n = [1, 1, 0]/

√
2, which

corresponds to the diagonal of the cube. Straightforward calculation yields

ηxx = ηyy = η0 + (β1 + β2) k
2/2 , (1.218)

ηzz = η0 + β2 k
2 , (1.219)

ηxy = β3 k
2 , (1.220)

ηxz = ηyz = 0 . (1.221)
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Two directions orthogonal to n are chosen as s1 = [0, 0, 1] and s2 = [1,−1, 0]/
√

2.
Then

η11 = ηzz = η0 + β2 k
2 , (1.222)

η22 = (ηxx + ηyy − 2 ηxy) /2 = η0 + (β1 + β2 − 2 β3) k
2/2 , (1.223)

η12 = 0 . (1.224)

Thus, the difference of the refractive indices can be estimated as

∆n = n11̄0 − n001 ≈
n5

0 q
2

4
(β1 − β2 − 2 β3) . (1.225)

It is this quantity that characterizes the magnitude of spatial-dispersion-induced
birefringence.

1.12 Nonlinear susceptibilities

Additional reading: book on nonlinear optics by Boyd [11].
In the previous discussion we assumed that the medium polarization is linear

with respect to the applied field. However, linear approximation of this kind breaks
down once the fields in the medium become strong enough. Physical effects stemming
from the medium nonlinear response are studied by nonlinear optics.

Some of the natural nonlinear media respond to electric field nonlinearly, and
so

Pi(ω) =χ
(1)
ij (ω)Ej(ω) +

∑
ω1+ω2=ω

χ
(2)
ijk(ω;ω1, ω2)Ej(ω1)Ek(ω2)+

+
∑

ω1+ω2+ω3=ω

χ
(3)
ijkl(ω;ω1, ω2, ω3)Ej(ω1)Ek(ω2)El(ω3) + . . . .

(1.226)

The coefficients χ(2), χ(3), etc. comprising this expansion are called nonlinear
susceptibilities. Their values can be calculated analogously to the linear susceptibilities
once the microstructure of the medium is specified. Mention anharmonic oscillator
model here.

Symmetries of nonlinear susceptibilities
The effective susceptibilities χ(2)

ijk(ω;ω1, ω2) (χ(3)
ijkl(ω;ω1, ω2, ω3)) are symmetric

with respect to permutation of the indices j, k (j, k, l) once the frequencies ω1, ω2

(ω1, ω2, ω3) are permuted accordingly:

χ
(2)
ijk(ω;ω1, ω2) = χ

(2)
ikj(ω;ω2, ω1) . (1.227)

Furthermore, the nonlinear susceptibility χ(2) vanishes in the media with inversion
symmetry. Indeed, the tensor Ej Ek is even under inversion, whereas Pi is odd. This
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implies that χ(2) should be odd under inversion. On the other hand, the inversion
symmetry of the system means that the inversion does not change χ(2). Thus,
χ(2) = 0 for inversion-symmetric media.

Additionally, it can be shown that in the absence of losses, the nonlinear
susceptibilities defined by Eq. (1.226) are purely real (see the derivation of anharmonic
oscillator nonlinear susceptibility). In this case, an additional symmetry called full
permutation symmetry holds. For instance,

χ
(2)
ijk(ω;ω1, ω2) = χ

(2)
jki(ω1;−ω2, ω) . (1.228)

− sign in frequency arguments is included in order to ensure that the first argument
is equal to the sum of the rest of frequencies.

If the frequencies of interest are much lower that the frequencies of the medium
resonances ω0i, the dependence of the nonlinear susceptibilities on frequency can be
omitted. As a result, nonlinear susceptibility happens to be symmetric with respect
to all its indices (Kleinman symmetry).

Crystalline symmetries further reduce the number of the independent components
of nonlinear susceptibility. For instance, in the most simple isotropic case χ(2) ≡ 0,
whereas χ(3) has three independent components (see Table 1.5.4 of Boyd [11]):

χ(3)
yyzz = χ(3)

zzyy = χ(3)
zzxx = χ(3)

xxzz = χ(3)
xxyy = χ(3)

yyxx , (1.229)

χ(3)
yzyz = χ(3)

zyzy = χ(3)
zxzx = χ(3)

xzxz = χ(3)
xyxy = χ(3)

yxyx , (1.230)

χ(3)
yzzy = χ(3)

zyyz = χ(3)
zxxz = χ(3)

xzzx = χ(3)
xyyx = χ(3)

yxxy , (1.231)

χ(3)
xxxx = χ(3)

yyyy = χ(3)
zzzz = χ(3)

xxyy + χ(3)
xyxy + χ(3)

xyyx (1.232)

Omit this formulas until the topic of nonlinear self-action.
Wave equation for nolinear optical media

rot E = −1

c

∂H

∂t
, (1.233)

rot H =
1

c

∂D

∂t
. (1.234)

These equations yield that

rot rot E ≡ ∇ (div E)−∆ E = − 1

c2

∂2D

∂t2
. (1.235)

In many cases the term ∇ (div E) is zero or negligibly small. After omitting this
term and substituting

D = ε(1) E + 4πPNL (1.236)
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we get:

∆ E− ε(1)

c2

∂2E

∂t2
=

4π

c2

∂2PNL

∂t2
. (1.237)

This said, the nonlinear polarization of the medium plays the role of the source
term in the wave equation.

If the medium is dispersive, each frequency component of the field should be
considered separately, and we get:

∆ E(ω) +
ε(1)(ω)ω2

c2
E(ω) = −4π ω2

c2
PNL(ω) . (1.238)

1.13 Sum frequency generation

Equations for sum frequency generation
As a first example of nonlinear optical process we consider the medium

characterized by the second-order nonlinearity. For the fixed geometry (i.e. fixed
polarization and fixed propagation direction), it is possible to introduce some
effective nonlinearity such that

P (ω) = 4 deff E(ω1)E(ω2) , (1.239)

where projections on suitable coordinate axes are considered. We assume that the
medium is pumped by the plane waves with the frequencies ω1, ω2, amplitudes A1,
A2 and with the wave vectors k1, k2 directed along z axis, such that E(ω) = A(z) eikz.
We also apply the slowly varying amplitude approximation, neglecting second-
order derivatives d2An/dz

2. With these assumptions we analyze sum harmonic
generation and get the system of equations[

2i k1
dA1

dz
− k2

1 A1 +
ε(1)(ω1)ω

2
1

c2
A1

]
eik1 z = −4π ω2

1

c2
PNL(ω1) =

= −16π ω2
1

c2
deff A3A

∗
2 e

i(k3−k2) z ,

(1.240)

[
2i k2

dA2

dz
− k2

2 A2 +
ε(1)(ω2)ω

2
2

c2
A2

]
eik2 z = −4π ω2

2

c2
PNL(ω2) =

= −16π ω2
2

c2
deff A3A

∗
1 e

i(k3−k1) z ,

(1.241)
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[
2i k3

dA3

dz
− k2

3 A3 +
ε(1)(ω3)ω

2
3

c2
A3

]
eik3 z = −4π ω2

3

c2
PNL(ω3) =

= −16π ω2
3

c2
deff A1A2 e

i(k1+k2) z .

(1.242)

Note that in all three equations the second and the third terms from the left-hand
side mutually cancel. Thus, we get the system of differential equations for the
amplitudes of interacting waves:

dA1

dz
=

8π i ω2
1

k1 c2
deff A3A

∗
2 e
−i∆k z , (1.243)

dA2

dz
=

8π i ω2
2

k2 c2
deff A3A

∗
1 e
−i∆k z , (1.244)

dA3

dz
=

8π i ω2
3

k3 c2
deff A1A2 e

i∆k z , (1.245)

where ∆k = k1 + k2 − k3. Same coupling coefficient due to full permutation
symmetry. Neglect other nonlinear processes.

Phase-matching conditions
Now we analyze the efficiency of sum frequency generation for the fixed

nonlinearity strength deff . For simplicity we employ so-called undepleted pump
approximation assuming that A1 = A2 = const.

A3(L) =
8π i ω2

3

k3 c2
deff A1A2

L∫
0

ei∆k z dz =
8π ω2

3

k3 c2
deff A1A2

ei∆k L − 1

∆k
=

=
8π ω2

3 deff

c2 k3
A1A2 Le

i∆kL/2 sinc (∆k L/2) ,

(1.246)

where sinc x ≡ sinx/x. Thus, the intensity of the sum harmonic signal will be
proportional to sinc2 (∆k L/2). The plot of this function is presented in Fig. 1.5.

Thus, in order to achieve the maximum harmonic generation efficiency, one
needs to ensure that k3 = k1 +k2 which is known as phase-matching condition. We
explore the possibility to realize phase matching on the example of second harmonic
generation. In this case, 2k1 = k3 or 2n(ω)ω/c = n(2ω) 2ω/c, i.e. n(2ω) = n(ω).

In the transparency windows of the medium, the normal dispersion takes place:
n(2ω) > n(ω). The way to circumvent this difficulty is based on on birefringent
crystals for which it is possible to ensure that no(2ω) = ne(ω) or ne(2ω) = no(ω).
Normally, this happens only for some specific propagation directions in the crystal.

The Manley-Rowe relations
For further understanding of the three-wave mixing process, we consider energy

relations for the three propagating waves (ω1, ω2, ω3). The time-averaged energy
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Figure 1.5: Plot of sinc2x function.

flow is given by

I =
c

4π
〈EH〉 =

c

8π
Re [E∗0 H0] =

c n

8π
|E0|2 =

c n

2π
|A|2 =

c2 k

2π ω
|A|2 , (1.247)

where we take into account that the amplitude of the wave is given by E0 = 2|A|.
Therefore,

dI

dz
=

c2 k

2π ω

[
dA

dz
A∗ + A

dA∗

dz

]
. (1.248)

Making use of Eqs. (1.243)-(1.245), we calculate the z derivatives of intensities:

dI1

dz
= 4deff ω1

[
iA3A

∗
2A
∗
1 e
−i∆k z − iA∗3A2A1 e

i∆k z
]
, (1.249)

dI2

dz
= 4deff ω2

[
iA3A

∗
1A
∗
2 e
−i∆k z − iA∗3A1A2 e

i∆k z
]
, (1.250)

dI3

dz
= 4deff ω3

[
iA1A2A

∗
3 e

i∆k z − iA∗1A
∗
2A3 e

−i∆k z
]
. (1.251)

First, we notice that since ω3 = ω1 + ω2

d

dz
[I1 + I2 + I3] = 0 , (1.252)

which simply means the energy conservation in the system (note that we have
assumed zero dissipation above).

Second,
d

dz

(
I1

ω1

)
=

d

dz

(
I2

ω2

)
= − d

dz

(
I3

ω3

)
. (1.253)

Eqs. (1.253) are known as Manley-Rowe relations. Since the energy of a photon
with frequency ω is equal to h̄ ω, Manley-Rowe relations simply indicate that the
emission of each photon with frequency ω3 is accompanied by the absorption of ω1
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and ω2 photons, as illustrated in Fig. 1.6.

ω
1

ω
2

ω
3

Figure 1.6: Illustration of the three-wave mixing process and the Manley-Rowe relations.

1.14 Nonlinear self-action effects

In this paragraph, we examine the nonlinear optical effects which arise at the
frequency of impinging wave. To analyze such effects one has to consider cubic
nonlinearity (ω = ω + ω − ω).

Expression for nonlinear polarization of isotropic medium
Can skip the details and just provide the final expression for the nonlinear

polarization of isotropic medium with χ(3).
We consider an isotropic nonlinear medium. In this case, according to Eq. (1.229)-

(1.232), the only nonzero components of nonlinear susceptibility tensor read (no
summation over the repeated indices here):

χ
(3)
iikk(ω;ω, ω,−ω) = χ

(3)
ikik(ω;ω, ω,−ω) ≡ α(ω)/(8π) , (i 6= k) (1.254)

χ
(3)
ikki(ω;ω, ω,−ω) ≡ β(ω)/(4π) , (i 6= k) (1.255)

χ
(3)
iiii(ω;ω, ω,−ω) = χ

(3)
iikk(ω;ω, ω,−ω) + χ

(3)
ikik(ω;ω, ω,−ω)

+χ
(3)
ikki(ω;ω, ω,−ω) = (α + β) /(4π) , (1.256)

and additionally at low frequencies α(0) = 2β(0) due to Kleimann symmetry. The
nonlinear polarization reads

P
(3)
i (ω) =

∑
j,k,l

χ
(3)
ijklEj Ek E

∗
l =

χ
(3)
iiiiE

2
i E

∗
i +

∑
k 6=i

χ
(3)
iikk EiEk E

∗
k +

∑
k 6=i

χ
(3)
ikik Ek EiE

∗
k +

∑
k 6=i

χ
(3)
ikkiEk Ek E

∗
i

(1.257)
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where all field components are taken at frequency ω and frequency arguments
of nonlinear susceptibilities are given in the order (ω;ω, ω,−ω). Therefore, the
nonlinear contribution to the displacement

D
(3)
i (ω) = 4π P

(3)
i (ω) = (α + β) E2

i E
∗
i +αEi

(
|E|2 − |Ei|2

)
+ β E∗i

(
E2 − E2

i

)
.

(1.258)
Finally in vector form

D(3)(ω) = α(ω) |E|2 E + β(ω) E2 E∗ . (1.259)

Plane-wave solution and self-action
We seek the solution of wave equation in the form of plane wave: E = E0 e

ik·r−iωt

with E0 orthogonal to the direction of wave vector. In the case of linearly and
circularly polarized waves, the electric displacement will be parallel to E:

D =

(
ε+

2 c2

ω2
η |E0|2

)
E , (1.260)

where η = ω2 (α + β)/(2 c2) for the linearly polarized wave and η = ω2 α/(2 c2)
for the circularly polarized wave. Note that such solution satisfies the condition
div E = 0 due to div D = 0. The wave equation yields:

0 = ∆ E +
ω2

c2
D =

[
−k2 + q2 ε+ 2η |E0|2

]
E (1.261)

and, thus, the dispersion equation reads

k2 = q2 ε+ 2η |E0|2 . (1.262)

In other words, the wave experiences the intensity-dependent refractive index

n ≈
√
ε+

η |E0|2

q2
√
ε
, (1.263)

the effect known as the optical Kerr effect.
However, if the wave has finite extent (i.e. differs from the plane wave), an

instability occurs. Here we discuss the origin of this instability only qualitatively.
The wave propagating in the medium modifies the refractive index according to
Eq. (1.263). This self-induced lens causes the wave to deflect from the lower-index
region towards the higher-index region. Therefore, in the case of η > 0 the finite
beam tends to focus; the nonlinearity is called focusing. On the contrary, if η < 0,
the finite-size beam tends to defocus and the nonlinearity is called defocusing.
This reasoning is illustrated in Fig. 1.7. On the other hand, any beam with a finite
radius tends to broaden due to the diffraction (see theory of this effect in the
textbook [12]).
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Figure 1.7: Illustration of (a) self-focusing; (b) self-defocusing processes happening for η > 0 and
η < 0, respectively.

Solitons in the nonlinear medium
Thus, the propagation of the beams in the nonlinear medium is determined

by the combination of the two factors: (i) self-focusing or self-defocusing due to
nonlinearity; (ii) broadening of the beam due to diffraction. It occurs that the effects
of self-focusing and diffraction can be exactly balanced leading to the emergence
of optical soliton.

We seek the solution of the wave equation in the form

E = F (y) ei (k0+κ)x−iω t ez , (1.264)

where k0 = q
√
ε, κ is the parameter of the soliton providing the intensity-

dependent correction to the propagation constant, and F (y) is an unknown real
function. For this ansatz div E = 0, and the wave equation yields

∆Ez +
[
q2 ε+ 2 η |Ez|2

]
Ez = 0 . (1.265)

This gives the differential equation with respect to the unknown function F (y):

−1

2

d2 F

dy2
+ k0 κ F − η F 3 = 0 . (1.266)

Note that this equation is known as the nonlinear Schrödinger equation (also known
as the Gross-Pitaevskii equation and the Ginzburg-Landau equation), and it appears
in the variety of contexts including nonlinear optics, and interacting many-body
quantum systems. In the latter case the canonical form reads:

− h̄2

2m

d2ψ

dy2
+ [V (y)− ε] ψ + g|ψ|2 ψ = 0 . (1.267)

Integration with respect to F gives:

−1

4
(F ′)

2
+ k0 κ

F 2

2
− η F 4

4
= C1 . (1.268)
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Since we look for the solution with F → 0 and F ′ → 0 for y →∞, we set C1 = 0.
Then

dF

dy
= −

√
2k0 κ F 2 − η F 4 , (1.269)

(− sign choice to ensure the decrease of F ). Next we do the substitution F = 1/ψ
and get

dψ

dy
=
√

2k0 κ ψ2 − η (1.270)

which yields

y =
1√

2k0 κ
arch

(√
2k0 κ
η

ψ

)
+ C2 . (1.271)

By omitting the inessential constant (related to the shift of axis origin) we finally
get the expression for the field profile:

F (y) =

√
2k0 κ
η

1

ch
(√

2k0 κ y
) . (1.272)

Equation (1.272) describes the soliton which is the solution of nonlinear Schrödinger
equation and which appears due to the balance of diffraction mechanism and
focusing nonlinearity. The soliton profile is depicted in Fig. 1.8.

1.15 Stimulated Raman scattering

Nonlinear processes described in the previous paragraphs are called parametric
since they are energy-conserving (for instance, two pump photons are transformed
into a single second-harmonic photon). We consider now the non-parametric processes
accompanied by the change of the nonlinear medium state.

One of important processes of this kind is the Raman scattering in which the
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Figure 1.8: Field profile of the soliton in the nonlinear medium with χ(3) nonlinearity.
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(a) (b) (c)

Figure 1.9: (a) A scheme of the Raman scattering process. (b,c) Raman Stokes and anti-Stokes
scattering.

incident light at frequency ω is scattered either into the mode with frequency
ωs = ω − ωv (the Stokes component) or to the component with the frequency
ωa = ω + ωv (the anti-Stokes component) as illustrated in Fig. 1.9. Typically,
ωv � ω.

Microscopically, the Raman scattering originates from the coupling of the molecule
vibrational mode (with frequency ωv) to the light mode. In quantum-mechanical
picture, the origin of the Stokes and anti-Stokes components in Raman signal is
illustrated by Fig. 1.9. From these pictures it is clear that the intensity of the anti-
Stokes component is usually much smaller than that of Stokes component.

Raman effect was discovered independently by the Soviet scientists Mandelstam
and Landsberg in Moscow State University and by the Indian scientist Raman in
Kolkata, both groups made their discoveries in February 1928. However, the Nobel
Prize in Physics for the newly discovered type of scattering was awarded in 1930
to Raman only. Since then, the process has been called “Raman scattering”, while
in Russian literature the term “combination scattering” is used instead.

Two types of the Raman scattering are distinguished: spontaneous and stimulated.
The latter occurs when the medium is pumped by intense laser light which causes
highly efficient Raman scattering. On the contrary, the spontaneous process has
extremely low efficiency.

The importance of the Raman spectroscopy for applications comes from the fact
that the transitions between | n 〉 and | g 〉 are forbidden in dipole approximation.
However, the Raman spectroscopy provides a tool to probe them. Raman signal
provides the information about the molecule vibrational modes, which are considered
as fingerprints of a molecule in spectroscopy. The so-called surface-enhanced Raman
scattering (SERS) is one of important experimental techniques.

Classical analysis of the Raman scattering
The key assumption of this approach is the dependence of the molecule polarizability

on the vibrational coordinate q:

α(q) ≈ α0 +
∂α

∂q
q(t) . (1.273)
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Hence, the polarization of the medium induced by the incident wave is given by

P = nα[q(t)] E e−iω t = n

(
α0 +

∂α

∂q
q(t)

) [
Ae−iω t + A∗ eiω t

]
, (1.274)

where n is a number of molecules per unit volume. The molecule vibration occurs
with the vibrational frequency ωv, i.e. q(t) = q0 e

−iωv t + q∗0 e
iωv t. This gives for the

polarization

P (t) = nα0Ae
−iω t + nα0A

∗ eiω t + n
∂α

∂q

[
Aq0 e

−i (ω+ωv) t + Aq∗0 e
−i (ω−ωv) t

+A∗ q∗0 e
i (ω+ωv) t + A∗ q0 e

i(ω−ωv) t
]
,

(1.275)

which, indeed, explains the origin of Stokes ωs = ω−ωv and anti-Stokes ωa = ω+ωv
components of Raman signal.

Relation to nonlinear susceptibilities
On the other hand, a similar form of nonlinear polarization can be written in

terms of nonlinear susceptibilities:

P (ω1) = 6χ(3)(ω1;ω1, ω,−ω)A1 |A|2 ≡ 6χR(ω1)A1 |A|2 , (1.276)

where A and A1 are the amplitudes of the incident wave and scattered light with
shifted frequency, respectively. To make a comparison of Eqs. (1.275) and (1.276)
and find the Raman susceptibility, we need to calculate the amplitude of molecule
vibrations q0.

The energy of a molecule in the external field is given by

W = −1

2
α
〈
E2
〉

(1.277)

so that the derivative −∂ W/∂ E yields the molecule dipole moment. The force
acting on the molecule reads:

F = −∂W
∂q

=
1

2

∂α

∂q

〈
E2
〉
. (1.278)

The field in the medium is presented as

E = Ae−iω t + A∗ eiω t + A1 e
−iω1 t + A∗1 e

iω1 t (1.279)

and thus the amplitude of the force at frequency ω−ω1 is given by F (ω−ω1) = ∂α
∂q AA

∗
1.

Further, we consider the molecule as a classical oscillator and get the equation

q̈ + 2γ q̇ + ω2
v q = F (ω − ωs) e−i(ω−ω1) t/m+ c.c. , (1.280)
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which has a steady state solution q(t) = q0 e
−i(ω−ω1) t + c.c. with the amplitude q0

given by

q0 =
1

m

∂α

∂q

AA∗1
−(ω − ω1)2 − 2iγ (ω − ω1) + ω2

v

. (1.281)

The polarization at frequency ω1 thus reads

P (ω1) = n
∂α

∂q
q∗0 A =

n

m

∣∣∣∣∂α∂q
∣∣∣∣2 A1 |A|2

[
−(ω − ω1)

2 + 2iγ (ω − ω1) + ω2
v

]−1
,

(1.282)
and the Raman susceptibility is given by

χR(ω1) =
n

6m

∣∣∣∣∂α∂q
∣∣∣∣2 [−(ω − ω1)

2 + 2iγ (ω − ω1) + ω2
v

]−1
. (1.283)

Quite naturally, the Raman susceptibility reaches its maximum at resonance when
ω−ω1 = ωv. The width of the Raman peak is determined by the magnitude of loss
γ.

1.16 Electromagnetic field of a particle moving in the continuous medium

Useful reading: book by Landau and Lifshits [1], paragraph 114
In this paragraph, we aim to calculate the electromagnetic fields created by a

charged particle moving through the medium. First, we discuss the applicability
range of the macroscopic treatment of the medium. If v is a particle velocity, a
is the typical distance from the charged particle to the atom, then the spectrum of
radiation has a maximum at frequencies around v/a. In order to cause ionization of
the atoms, the frequency of radiation should be larger than the frequency of atomic
transitions ω0. The classical treatment will be adequate, provided the discrete energy
spectrum of the atoms can be ignored, i.e. the frequency v/a� ω0. Otherwise (i.e.
in the case of slow particles), one has to treat excitation of the medium quantum-
mechanically.

We consider Maxwell’s equations in non-magnetic medium:

rot H =
1

c

∂D

∂t
+

4π

c
jext , (1.284)

div D = 4π ρext , (1.285)

rot E = −1

c

∂H

∂t
, (1.286)

div H = 0 (1.287)

We assume that the particle moves through this medium with a constant speed v so
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the external charge and current densities are defined as

jext = Qv δ (r− vt) , (1.288)
ρext = Qδ (r− vt) , (1.289)

where Q is the particle charge. We introduce the vector and scalar potentials A and
φ as

H = rot A , (1.290)

E = −1

c

∂A

∂t
−∇φ (1.291)

with an additional gauge condition

div A +
1

c

∂ (ε̂ φ)

∂t
= 0 . (1.292)

Note that we use a special type of gauge here: it is neither the Lorenz gauge nor
the Coulomb one. The nonlocal operator ε̂ used here incorporates the effect of
frequency dispersion as follows:

ε̂ φ =

∫∫
ε(ω)φk(ω) eik·r−iω t

dk dω

(2π)4
(1.293)

and commutes with the derivatives with respect to time or coordinates. With the
definitions Eqs. (1.290)-(1.291) the Eqs. (1.286)-(1.287) are satisfied identically.
The remaining two equations yield:

∆A− ε̂

c2

∂2A

∂t2
= −4π

c
Qv δ (r− vt) . (1.294)

ε̂∆φ− ε̂2

c2

∂2φ

∂t2
= −4π Q δ (r− vt) . (1.295)

Next, we decompose the potentials into Fourier integrals in space (i.e. perform the
plane wave expansion):

A =

∫
Ak e

ik·r dk

(2π)3
,

φ =

∫
φk e

ik·r dk

(2π)3
.

(1.296)

The Fourier transform of the δ-functon reads:∫
δ(r− vt) e−ik·r dr = e−iv·k t . (1.297)
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Thus, we get ordinary differential equations for the Fourier transformed fields:

k2 Ak +
ε̂

c2
Äk =

4π

c
Qv e−iv·k t , (1.298)

k2 ε̂ φk +
ε̂

c2
φ̈k = 4π Qe−iv·k t (1.299)

Equations (1.298)-(1.299) suggest that the Fourier components of potentials oscillate
with the frequency ω = v · k. Stress here that the Fourier components of the fields
are monochromatic. Therefore, the action of the operator ε̂ is equivalent to the
multiplication by ε(ω), and the solutions of Eqs. (1.298)-(1.299) read:

Ak =
4π e−iω t

c

Qv

k2 − ε(ω)ω2/c2
, (1.300)

φk =
4π e−iω t

ε(ω)

Q

k2 − ε(ω)ω2/c2
, (1.301)

where the frequency ω = v ·k. Furthermore, the Fourier components of the electric
and magnetic fields created by the particle read

Ek = iω/cAk − ikφk ,Hk = i [k×Ak] . (1.302)

Thus, magnetic field created by the moving particle is perpendicular to the plane
determined by the vectors k and v, while electric field lies in this plane.

The force acting on the particle is calculated as

F =

∫ (
ρext E +

1

c
[jext ×H]

)
dV = Q

(
E(vt) +

1

c
[v ×H(vt)]

)
=Q

∫ (
Ek +

1

c
[v ×Hk]

)
eik·vt

dk

(2π)3
.

(1.303)

Here, the expression

fk = Ek +
1

c
[k×Hk] = − 4π iQk e−iω t

k2 − ε(ω)ω2/c2

[
1

ε(ω)
− v2

c2

]
. (1.304)

Eventually, this yields the expression for the force acting on the particle:

F = −4π iQ2

∫
ε−1(ω)− v2/c2

k2 − ω2 ε(ω)/c2
k

dk

(2π)3
, (1.305)

where ω = v · k. To simplify the calculations further, we align z axis along the
velocity v and so kz = ω/v. We denote p2 = k2

x + k2
y , and dkx dky → 2π p dp. The

length of wave vector thus reads k2 = p2 + ω2/v2. The force acting on the particle
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is rewritten in a scalar form

F = −iQ
2

π

∞∫
−∞

qmax∫
0

[
1
v2 −

ε(ω)
c2

]
ω p dp dω

ε(ω)
(
p2 + ω2

[
1
v2 −

ε(ω)
c2

]) (1.306)

Generally, there are two physical reasons why the particle slows down. First,
the charged particle excites the atoms of the medium, which transit from the
ground state to the excited state and possibly become ionized. Therefore, such
mechanism of loss is called ionization losses. Macroscopically, this mechanism is
associated with the imaginary part of the medium permittivity. Quite importantly,
this mechanism is active for arbitrary slow particles. Here we skip the detailed
discussion of ionization losses and move to the discussion of the second source of
losses which is Cherenkov radiation.

Note that an alternative way to calculate the radiation from the moving particle
is the evaluation of the Poynting vector in the far-field zone, followed by the
integration over the surface with infinite radius.

1.17 Cherenkov radiation

The Cherenkov radiation (also known as the Vavilov-Cherenkov radiation) is a type
of electromagnetic radiation emitted by the charged particle passing through the
medium, provided that the speed of the particle is larger than the phase velocity of
light in this medium. There are two important features associated with Cherenkov
radiation: (a) it occurs even in the transparent dielectric medium; (b) the intensity
of radiation does not depend on the particle mass, which is in contrast with the
phenomenon of bremsstrahlung (emission of radiation by the decelerating particle).

Historically, the Cherenkov radiation was discovered in 1934 by the Soviet
physicist Pavel Cherenkov supervised by Sergey Vavilov (for that reason, in Russian
literature the effect is called the Vavilov-Cherenkov radiation). Give a remark about
S. Vavilov room at Birzhevaya and mention Nikolay Vavilov. Cherenkov observed
weak radiation emitted by the liquids irradiated by gamma-rays. Based on the
experimental data, Vavilov made a conclusion that the radiation appears due to
the fast electrons released by gamma-rays. In 1937, the Soviet physicists Igor
Tamm and Ilya Frank proposed the theoretical interpretation of the effect. Later,
in 1958, Cherenkov, Tamm and Frank were awarded a Nobel Prize in Physics for
this discovery. Discuss why this effect is so important in high energy physics.

Importantly, the Cherenkov radiation is highly directional. For the particle
moving with the velocity v, radiation is emitted in the direction that forms the
angle θ with the direction of the particle velocity:

cos θ =
c

n v
. (1.307)
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Figure 1.10: Illustration of the emergence of the Cherenkov radiation for the particle moving with
the speed v larger than the phase velocity of light c/n in the medium.

Discuss simple explanation of that based on Hyugens-Fresnel principle.
From the solution of the previous paragraph, we find that electromagnetic fields

of the particle oscillate with the frequency ω = v kx. On the other hand, any wave
propagating in the medium obeys the dispersion equation ω n/c = k. Combining
these two equations, we immediately obtain the same result as given by Eq. (1.307).

However, by using electrodynamic treatment, we can actually go beyond
Eq. (1.307) and calculate the intensity of the Cherenkov radiation. Note that the
poles of expression Eq. (1.306) correspond to the condition

k2 − ε(ω)ω2/c2 = 0

which describes the dispersion of the modes propagating in the medium. Thus, the
contribution from these singularities gives the intensity of Cherenkov radiation.

To evaluate the contribution from the poles, we can use either contour integration
technique or the Sokhotski formula which states:

1

x± iε
= P

1

x
∓ iπδ(x) . (1.308)

The proof of this identity is based on the fact that

b∫
a

f(x) dx

x± iε
=

b∫
a

x∓ iε
x2 + ε2

f(x) dx =

b∫
a

x2

x2 + ε2

f(x)

x
dx∓

∓ iπ
b∫

a

ε

π (x2 + ε2)
f(x) dx

(1.309)

The first term here corresponds to the principal value of the integral since the factor
x2/(x2 + ε2) excludes the vicinity of x = 0 and turns to 1 for x � ε. The second
term yields ∓iπ f(0) because the function ε/(π (x2 + ε2)) acts as a δ-function for
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sufficiently small ε.
We introduce an auxiliary variable ξ = p2 + ω2/v2 − ε(ω)ω2/v2. Since at the

frequencies ω > 0 (ω < 0) permittivity of the medium has some small but nonzero
imaginary part ε′′(ω) > 0 (ε(ω)′′ < 0), this auxiliary variable is written as ξ − i0
(ω > 0) and ξ + i0 (ω < 0).

dF

dω
=− iQ2

2π

(
1

v2 ε(ω)
− 1

c2

) ω ξmax∫
ξmin

dξ

ξ − i0
+ (−ω)

ξmax∫
ξmin

dξ

ξ + i0


=Q2 ω

(
1

v2 ε(ω)
− 1

c2

)
= −Q

2 ω

c2

(
1− c2

n2 v2

)
.

(1.310)

So, the closer the velocity of the particle is to the threshold velocity c/n, the smaller
is the intensity of Cherenkov radiation. Combining Eqs. (1.307) and (1.310), we
can also determine the angular distribution of the radiation.

Ideas for practice: Cherenkov radiation from the moving dipole.
The mechanism of Landau damping is somewhat inverse of the Cherenkov effect.

In plasma, the charged particles are affected by the medium collective modes and
can not only decelerate, but also accelerate.

Quite interestingly, the radiation from the particle moving with superluminal
velocity in vacuum has been calculated by Sommerfeld. However, after the emergence
of special relativity, Sommerfeld solution was considered unphysical, and only later
a similar solution was found for the case of particles moving in the continuous
medium with velocity v > c/n.

Semiclassical interpretation of the Cherenkov radiation
We consider the emission of a single photon of the Cherenkov radiation, using

the conservation laws:

E(p) = E(p′) + h̄ ω , (1.311)
p = p′ + h̄k . (1.312)

Then

h̄ ω = E(p)− E(p′) = E(p)− E (p− h̄k) ≈ ∂E

∂p
· h̄k = v · k h̄ . (1.313)

As a consequence, we get the result ω = v · k, which we obtained previously from
the classical treatment.
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1.18 Transition radiation

A related phenomenon of radiation from the charged particle in rectilinear motion
is the transition radiation which occurs when the particle passes from one medium
to another. The theory of the transition radiation was developed by the Soviet
physicists Ginzburg and Frank in 1945. Here we discuss the calculation of the
transition radiation within the frame of classical electrodynamics, specifically, we
aim to calculate spectral and angular distribution of the transition radiation.

1 2

x

ε
1
=1 ε ε

2
=

Figure 1.11: Transition radiation from the particle moving from vacuum to the continuous medium
with permittivity ε. Geometry of the problem.

Electromagnetic field from the particle
Since the medium is non-homogeneous, we have to calculate the fields produced

by the particle once again. We start from the equations

∆Ã− ε̂

c2

∂2Ã

∂t2
= −4π

c
Qv δ(r− vt) , (1.314)

ε̂

[
∆φ̃− ε̂

c2

∂2φ̃

∂t2

]
= −4π Q δ(r− vt) . (1.315)

The solution of these equations is presented by the sum of particular solution
of inhomogeneous equations (φ(e), A(e)) and general solution of homogeneous
equations (φ(r), A(r)). We perform the Fourier transform of the fields as follows:

φ̃ =

∫
φωk(x) eip·r⊥−iω t

dω d2p

(2π)3
. (1.316)

1. Note that we do Fourier transform differently from the analysis in the previous
paragraphs. 2. Provide direct and inverse transformation. The Fourier transform
of the δ-function reads:∫∫

δ(r− vt) e−ip·r⊥+iω t d2r⊥ dt =

∫∫
δ(x− vt) δ(r⊥) e−ip·r⊥ eiω td2r⊥ dt

=
1

v

∫
δ(x− ξ) eiω ξ/v dξ =

1

v
eiω x/v .

(1.317)
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Therefore, the equations for the Fourier-transformed fields read:

d2A

dx2
− p2A+

ε(ω)ω2

c2
A = −4π v

c v
Q eiω x/v , (1.318)

d2 φ

dx2
− p2 φ+

ε(ω)ω2

c2
φ = − 4π Q

ε(ω) v
eiω x/v . (1.319)

The particular solutions of the inhomogeneous equations read:

φ(e) =
4π Q

ε(ω) v
eiω x/v

[
p2 +

ω2

v2
− ω2

c2
ε(ω)

]−1

, (1.320)

A =
ε(ω) v

c
φ . (1.321)

The electric field is defined as

Ẽ = −1

c

∂Ã

∂t
−∇ φ̃ , (1.322)

i.e. the electric field corresponding to the inhomogeneous solution is

E(e) = i
ω

c
A(e) − ipφ(e) − ∂φ(e)

∂x
ex = i

[
ω v

(
ε(ω)

c2
− 1

v2

)
− p

]
φ(e) . (1.323)

The solutions of the homogeneous for potentials are simply the plane waves.
Accordingly, we assume that E

(r)
x = i a e±ikx x, where a is some constant,

kx =
√
ε(ω)ω2/c2 − p2 is the wave vector along x and + or − sign are chosen

for the domains with x > 0 and x < 0, respectively. This solution of homogeneous
equations describes simply the waves reflected from the boundary between the
media.

The transverse component of E(r) is determined from the condition div D = 0
(E(e) already satisfies this), i.e. ε(ω) (p± kx ex) ·E = 0. This yields the transverse
component of the field (parallel to p):

E
(r)
⊥ = ∓ia

p
kx , (1.324)

and thus

E(r) = ia

[
ex ∓

p

p2
kx

]
e±ikx x . (1.325)

Finally, we get the following expression for the electric field E = E(e) + E(r) in
media 1 and 2:

E1,2 = i

[
ω v

(
ε1,2

c2
− 1

v2

)
− p

]
φ1,2 + ia1,2

[
ex ∓

p

p2
k(1,2)
x

]
e±ik

(1,2)
x x . (1.326)
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Specifically, if the medium 1 is vacuum, the electric field reads:

E1 = i

[
ω v

(
1

c2
− 1

v2

)
− p

]
φ1 + ia1

[
ex +

p

p2
kx

]
e−ikx x . (1.327)

Spectral and angular distribution of the transition radiation
The energy emitted by the particle when crossing the boundary of the two media

can be evaluated as

U =
1

4π

∫
dy dz

∞∫
−∞

dx
(
Ẽ

(r)
1 (r, t)

)2

, (1.328)

when the charged particle has already penetrated sufficiently far into the medium
2. We also take into account that in the far zone the electric and magnetic fields are
equal. Now we substitute the expression for the electric field in terms of its Fourier
components

U =
1

4π

∫
dx dy dz

dω dω′ dp dp′

(2π)6
Eωp(x) · E∗ω′p′(x) ei(p−p

′)·r⊥−i(ω−ω′)t =

(1.329)

=
1

4π

∫
dx

dω dω′ dp dp′

(2π)4
Eωp(x) · E∗ω′p′(x)δ(p− p′) e−i (ω−ω′)t = (1.330)

=
1

4π

∫
dx

dω dω′ dp

(2π)4
Eωp(x) · E∗ω′p(x) e−i (ω−ω′)t = (1.331)

=
1

4π

∫
dx

dω dω′ dp

(2π)4
|a1|2

[
1 +

kx k
′
x

p2

]
ei(k

′
x−kx)x e−i (ω−ω′)t = (1.332)

=
1

2

∫
dω dω′ dp

(2π)4
|a1|2

[
1 +

kx k
′
x

p2

]
δ(k′x − kx) e−i (ω−ω′)t . (1.333)

Here, k2
x = ω2/c2 − p2. Therefore, if kx = k′x, 1 + k2

x/p
2 = ω2/(c2 p2). To evaluate

the δ-function, we use the property

δ(f(x)) =
∑
s

δ(x− xs)
|f ′(xs)|

(1.334)

which guarantees that

δ(k′x − kx) = δ(ω′ − ω)
c2
√
ω2/c2 − p2

ω
= c

√
1− p2 c2

ω2
δ(ω′ − ω) . (1.335)

Thus,

U =
1

2

∫
dω dp

(2π)4
|a1|2

ω2

c p2

√
1− p2 c2

ω2
. (1.336)
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Next, we introduce angle θ that characterizes the direction of emission: p = ω/c sin θ
and

d2p = 2πp dp = 2π
ω2

c2
sin θ cos θ dθ = dΩ

ω2

c2
cos θ . (1.337)

Then

U =
1

2

∫
dΩ

∞∫
−∞

dω
ω2/c2 cos θ

(2π)4
|a1|2

c

sin2 θ
cos θ = (1.338)

=
1

c (2π)4

∫
dΩ

∞∫
0

dω ω2 |a1|2 ctg2θ . (1.339)

Finally, we recast the expression for the radiated energy in the form

U =

∫
dΩ

∞∫
0

dω U(ω, θ) , (1.340)

U(ω, θ) =
ω2

c (2π)4
|a1|2 ctg2θ . (1.341)

The function U(ω, θ) characterizes the energy emitted into unit solid angle in the
direction specified by θ and in the unit interval of frequencies around the frequency
ω, i.e. it gives the spectral and angular distribution of the transition radiation.
Here we consider the angles θ from 0 to π/2 (radiation emitted into the vacuum).
Proceeding in a similar way, one can also calculate the radiation emitted into the
medium 2, but then one has to evaluate the fields in the medium 2.

Boundary conditions and calculation of the coefficient a1
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Figure 1.12: Angular dependence of the transition radiation for the particle entering into perfect
electric conductor from vacuum.

To obtain the final closed-form solution for the transition radiation, we need to
determine the coefficients a1 and a2. This can be done by applying the standard
boundary conditions: continuity of the tangential components of electric field and
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continuity of the normal components of the electric displacement. The derivation
in the general case appears very cumbersome, and here we do the calculation
for the specific case when the medium 1 is vacuum and medium 2 is a perfect
electric conductor. The perfect electric conductor is characterized by the vanishing
tangential component of electric field. Using Eq. (1.327), we get

0 = Etot
τ = −ip φ1 + ia1 kx/p . (1.342)

Thus,

a1 =
p2 φ1

kx
=

4π Qp2

v

[
p2 +

ω2

v2
− ω2

c2

]−1 [
ω2

c2
− p2

]−1/2

= (1.343)

=
4π Qβ sin2 θ

ω cos θ [1− β2 cos2 θ]
. (1.344)

With this expression for a1 coefficient, we obtain the spectral and angular distribution
of the transition radiation:

U(ω, θ) =
Q2 β2

π2 c

sin2 θ

(1− β2 cos2 θ)2
. (1.345)

In the case of the perfect electric conductor, the spectral distribution of the transition
radiation is uniform, whereas the angular distribution is illustrated in Fig. 1.12.
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CHAPTER 2

Nanophotonics and metamaterials

2.1 Light propagation in planar stratified media: transfer matrix method

In this section, we consider the problem of light propagation in a stratified
medium with permittivity which depends on a single Cartesian coordinate, ε(x).
While general treatment of this problem can be found in Ref. [13], we analyze here
the most practical case when ε(x) is a piecewise-constant function, i.e. the medium
consists of layers with constant permittivities εn. For clarity, we consider the case
of isotropic permittivity tensor.

(a) (b)

E
H k

y

x

z

TE

E
H

k

y

x

z

TM

Figure 2.1: Two possible polarizations of the wave propagating in a stratified medium.

Without loss of generality, we assume that the wave vector of the incident wave
lies in Oxy plane. Within a single layer, the solutions of Maxwell’s equations can
be presented as a superposition of plane waves. Boundary conditions fix the values
of ky and kz = 0, and only kx component of the wave vector varies from one layer
to the other. Our goal here is to derive the link between the tangential components
of the fields at two interfaces of a given layer with the thickness d. The matrix
which relates these two sets of fields is called the transfer matrix.

TE-polarized waves
We consider first TE-polarized waves defining the transfer matrix as(

Ez(d)
Hy(d)

)
= MTE(d)

(
Ez(0)
Hy(0)

)
(2.1)

For TE-polarized plane wave, the link between the tangential components of electric
and magnetic fields is given by

Hy = −kx/q Ez . (2.2)
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Hence,

Ez(0) = E+ + E− , (2.3)

Hy(0) = −kx
q
E+ +

kx
q
E− , (2.4)

Ez(d) = E+ e
ikx d + E− e

−ikx d , (2.5)

Hy(d) = −kx
q
eikx dE+ +

kx
q
e−ikx dE− . (2.6)

Here, kx =
√
q2 ε− k2

y due to the dispersion law of plane waves in a homogeneous

medium. Excluding the unknown amplitudes E+ and E−, we arrive to the equation
Eq. (2.1) with transfer matrix

MTE(d) =

(
cos kx d − iq

kx
sin kx d

− ikx
q sin kx d cos kx d

)
. (2.7)

Note that the determinant of this matrix is equal to 1, while its inverse is obtained
by replacing x by −x.

The rest of this topic is intended for self-study.

2.2 Image method in electrodynamics

In this section, we analyze the fields produced by the point dipole placed over
perfectly conducting plane. The solution of the respective electrostatic problem is
well-known, however, it is not immediately obvious that the similar approach is
applicable for the time-varying fields.

Below, we show that replacing the field produced by the polarized plane by
the mirror image of the dipole (Fig. 2.2) we can fulfill the standard PEC boundary
conditions which require that [n× E] = 0.
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P
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e

e’

A

B
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Figure 2.2: Illustration of image method in electrodynamics.



64

For the derivation below it is important that the dyadic Green’s functions can be
presented in the following form: Ĝee = A(r) Î + B(r) n⊗ n and Ĝem = C(r) n×,
where unit vector n points towards the observation point.

In geometry Fig. 2.2(a) the electric field at some point P at the surface of
conducting plane

E(P ) = Ĝee(AP ) d|| − Ĝee(BP ) d|| = B(r)
[
e (e · d||)− e′ (e′ · d||)

]
=B(r) (e · d||) (e− e′) .

(2.8)

Since e− e′ is normal to the plane, the field E(P ) is also orthogonal to the plane.
In geometry Fig. 2.2(b) similar calculation yields:

E(P ) = Ĝee(AP ) d⊥ + Ĝee(BP ) d⊥ = 2A(r) d⊥ +B(r) [(e · d⊥) e + (e′ · d⊥) e′]

= 2A(r) d⊥ +B(r) (e · d⊥) (e− e′) .
(2.9)

Both of these terms are orthogonal to the plane, which means that the standard
boundary conditions are again fulfilled.

Note that the mirror image of magnetic dipole is constructed in a different way
as shown in Figs. 2.2(c,d). Provide a simple explanation for that. Specifically, for
the case shown in Fig. 2.2(c)

E(P ) = Ĝem(AP ) m|| + Ĝem(BP ) m|| = C(r) (e + e′)×m|| . (2.10)

The latter vector product is parallel to n and hence the field is normal to the surface.
In turn, in geometry of Fig. 2.2(d) the electric field

E(P ) = Ĝem(AP ) m⊥ − Ĝem(BP ) m⊥ = C(r) (e− e′)×m⊥ . (2.11)

The latter vector product vanishes since both vectors are normal to the plane.
Thus, the method of images summarized in Fig. 2.2 captures the fields of

electric and magnetic dipoles in the general electrodynamic case. As a follow-up,
this approach can be generalized for higher-order multipoles as well.

2.3 Substrate-induced bianisotropy (practice material)

Useful reading: Ref. [14].
In this paragraph we investigate effective bianisotropic response of particles

induced by the presence of substrate. Using Green’s functions method, we derive
the effective polarizabilities of the particle renormalized due to substrate and analyze
in detail the origin of the effective magneto-electric coupling. Provide an intuitive
picture of substrate-induced bianisotropy.

We consider the particle illuminated by the incident wave with electric and
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magnetic fields E0 and H0. The incident field induces electric d and magnetic m
dipole moments of the particle. The field radiated by the dipole moments is in turn
reflected from the substrate. Hence, the total field acting on the particle

E = E0 + E
(d)
ref + E

(m)
ref , (2.12)

H = H0 + H
(d)
ref + H

(m)
ref , (2.13)

where the reflected fields are defined in terms of the dyadic Green’s function for
the reflected field as follows:

E
(d)
ref = Ĝee

ref d , E
(m)
ref = Ĝem

ref m , (2.14)

H
(d)
ref = Ĝme

ref d , H
(m)
ref = Ĝmm

ref m . (2.15)

The particle responds to the total field as

d = αe0 E , (2.16)
m = αm0 H . (2.17)

We would like to rearrange Eqs. (2.16)-(2.17) excluding the reflected fields as
follows:

d = α̂ee E0 + α̂em H0 , (2.18)
m = α̂me E0 + α̂mm H0 , (2.19)

where α̂ee, α̂em, α̂me and α̂mm are the effective polarizabilities which determine the
response of the particle to the incident field and which incorporate the effect of
substrate.

To evaluate the effective polarizabilities, we use Eqs. (2.16), (2.17) combining
them with Eqs. (2.14), (2.15), which yield the system of equations[

Î − αe0 Ĝee
ref

]
d− αe0 Ĝem

ref m = αe0 E0 , (2.20)

−αm0 Ĝme
ref d +

[
Î − αm0 Ĝmm

ref

]
m = αm0 H0 . (2.21)

Solving the system of equations Eqs. (2.20), (2.21) with respect to the unknown d
and m, we extract the effective polarizabilities Eqs. (2.18), (2.19).

Note that the effective polarizabilities can be presented in the form [14]:

α̂ee = N̂−1
e αe0 , α̂

mm = N̂−1
m αm0 , (2.22)

α̂em = N̂−1
e αe0 Ĝ

em
ref

[
Î − αm0 Ĝmm

ref

]−1

αm0 , (2.23)

α̂me = N̂−1
m αm0 Ĝ

me
ref

[
Î − αe0 Ĝee

ref

]−1

αe0 , (2.24)
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where

N̂e = Î − αe0 Ĝee
ref − αe0 Ĝem

ref

[
Î − αm0 Ĝmm

ref

]−1

αm0 Ĝ
me
ref ,

N̂m = Î − αm0 Ĝmm
ref − αm0 Ĝme

ref

[
Î − αe0 Ĝee

ref

]−1

αe0 Ĝ
em
ref .

Still, Eqs. (2.20), (2.21) are better suited for calculations than the cumbersome
expressions Eqs. (2.22)-(2.24).

As a specific example, we consider a spherical particle placed at distance z0

over perfectly conducting plane. In such case, effective bianisotropic response can
be evaluated analytically, since the dyadic Green’s function of the reflected light
corresponds just to the image dipole:

Ĝee
ref =

−A 0 0
0 −A 0
0 0 A+B

 , Ĝmm
ref =

A 0 0
0 A 0
0 0 −A−B

 , (2.25)

Ĝem
ref = Ĝme

ref =

0 −C 0
C 0 0
0 0 0

 , (2.26)

where the scalar coefficients A, B and C are defined as

A(r) =
eiqr

r3

[
−1 + iqr + q2 r2

]
, (2.27)

B(r) =
eiqr

r3

[
3− 3 iqr − q2 r2

]
, (2.28)

C(r) =
eiqr

r3

[
−iqr − q2 r2

]
, (2.29)

and the argument of these functions is r = 2 z0, i.e. the distance between the dipole
and its image.

With these expressions for the Green’s function of the reflected field, we return
to the system Eqs. (2.20), (2.21) and extract the associated effective polarizabilities:

α̂ee =

αee|| 0 0

0 αee|| 0

0 0 αee⊥

 , α̂mm =

αmm|| 0 0

0 αmm|| 0

0 0 αmm⊥

 , (2.30)

α̂em = α̂me =

 0 −αemyx 0
αemyx 0 0

0 0 0

 , (2.31)
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where

αee⊥ =
αe0

1− αe0 (A+B)
, αmm⊥ =

αm0
1 + αm0 (A+B)

, (2.32)

αee|| = αe0
1− αm0 A

1 + (αe0 − αm0 )A+ (C2 − A2)αe0 α
m
0

,

αmm|| = αm0
1 + αe0A

1 + (αe0 − αm0 )A+ (C2 − A2)αe0 α
m
0

, (2.33)

αemyx =
C αe0 α

m
0

1 + (αe0 − αm0 )A+ (C2 − A2)αe0 α
m
0

. (2.34)

Importantly, for the emergence of the nonzero effective bianisotropy the particle
should possess overlapping electric and magnetic dipole resonances which ensure
sizeable magnitudes of αe0 and αm0 . Equation (2.34) shows also that magneto-electric
coupling is proportional to the factor C(2z0), which describes the magnetic field
produced by the electric dipole and electric field produced by the magnetic dipole.
In fact, effective bianisotropy arises due to electric field produced by magnetic
image-dipole and due to magnetic field produced by electric image-dipole.

2.4 General expression for the Purcell factor

Useful reading: chap. 10 of the book by Novotny and Hecht [12].
We consider an electric dipole radiating in some arbitrary linear environment.

Our goal here is to express the power radiated by the dipole in terms of its dyadic
Green’s function.

To this end, we make use of the energy conservation law:

P = −
∫
〈j · E〉 = −

〈
ḋ · E

〉
= P0 −

〈
ḋ · Es

〉
= P0 +

ω

2
Im (d∗ · Es) = P0 +

ω

2
Im
(
d∗i G

(ref)
ik (0) dk

)
, (2.35)

where the full field E is represented as a sum of vacuum dipole field E0 and the
field scattered by the structure Es. P0 is power radiated by the dipole in vacuum.
Note that we use the following averaging formula:

〈ȧ′(t) b′(t)〉 = −ω
2

Im (a∗ b) , (2.36)

where a and b are the complex amplitudes of a′(t) and b′(t). Further we note that
power radiated by the dipole oscillating with the frequency ω in vacuum is given
by

P0 =
ω4

3 c3
|d|2 . (2.37)
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Prove Eq. (2.37) by calculating the quantity P0 = ω/2 (d∗ · E0). Use the
representation of the Green’s function

Ĝ0(r) = A(r, q) Î +B(r, q)n⊗ n ,

A(r, q) = eiqr/r3
[
−1 + iqr + q2 r2

]
,

B(r, q) = eiqr/r3
[
3− 3iqr − q2 r2

]
.

Finally, we obtain the expression for the Purcell factor:

F =
P

P0
= 1 +

3

2 q3
Im
[
n∗i G

(ref)
ik nk

]
, (2.38)

where nk = dk/|d|. Thus, in order to evaluate the Purcell factor, one only needs
the reflected field in the point of dipole location.

2.5 Purcell factor for the dipole above the layered structure

Useful reading: chap. 10 of the textbook by Novotny and Hecht [12].
The idea of this calculation is as follows: we expand the field of the dipole into

an infinite series of plane waves. Further we separate the s- and p-polarized plane
waves. For each of the polarizations, we calculate the reflection coefficients using
Fresnel’s formulas. Sum of the reflected plane waves yields the reflected field.
Finally, we calculate the Purcell factor using Eq. (2.38).

Expanding dipole field into plane waves
To decompose the field of the dipole into plane waves, we use the so-called

Weyl identity:

eiqr

r
=

i

2π

∫∫
exp (ikx x+ iky y + ikz |z|)

kz
dkx dky , (2.39)

where kz =
√
q2 − k2

x − k2
y . The sign of the square root is chosen such that

Im kz > 0 for k|| > q (k2
|| = k2

x + k2
y) and Re kz > 0 for k|| < q.

Next, we use the definition of the dyadic Green’s function in vacuum:

Ĝ0(r) =
(
∇⊗∇+ q2 Î

)[eiqr
r

]
=

=
(
∇⊗∇+ q2 Î

) i

2π

∫∫
exp (ikx x+ iky y + ikz|z|)

kz
dkx dky

=
i

2π

∫∫
q2 Î − k⊗ k

kz
exp (ikx x+ iky y + ikz |z|) dkx dky , (2.40)
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where k = (kx, ky,±kz) (± corresponds to the sign of z). Assuming that the dipole
is placed in the point r0 = (0, 0, z0), we obtain the field of the dipole in the form:

E0(r− r0) = Ĝ0(r− r0) d =
i

2π

∫∫
M̂ d exp (ikx x+ iky y + ikz |z − z0|) ,

(2.41)
where matrix M̂ is defined by

M̂ =
1

kz

(
q2 Î − k⊗ k

)
=

1

kz

q2 − k2
x −kx ky ∓kx kz

−kx ky q2 − k2
y ∓ky kz

∓kx kz ∓ky kz q2 − k2
z

 . (2.42)

The upper (lower) sign is chosen if z > z0 (z < z0). Note that the matrix M̂
projects the dipole moment onto the plane orthogonal to k. This means that all the
plane waves in expansion Eq. (2.41) are transverse.

Substracting the s- and p-polarized contributions
In our geometry, the plane of incidence is determined by the vectors k and ez.

The unit vector
τ = [ez × k]/k|| = (−ky/k||, kx/k||, 0) (2.43)

is orthogonal to the plane of incidence. Thus, in the case of s-polarized wave, the
electric field should be directed along τ . Matrix M̂ is decomposed as M̂ = M̂ (s)+M̂ (p)

with:

M̂ (s) = τ ⊗ τM̂ =
q2

kz k2
||

 k2
y −kx ky 0

−kx ky k2
x 0

0 0 0

 , (2.44)

M̂ (p) = M̂ − M̂ (s) =
1

k2
||

 k2
x kz kx ky kz ∓kx k2

||
kx ky kz k2

y kz ∓ky k2
||

∓kx k2
|| ∓ky k2

|| k4
||/kz

 . (2.45)

Reflection of the s- and p-polarized waves is described by the formulas

Ẽ(s)
r (k) = r(s)(kx, ky) Ẽ

(s)
in (k) , (2.46)

Ẽ(p)
r (k) = r(p)(kx, ky) diag (−1,−1, 1) Ẽ

(p)
in (k) , (2.47)

where the Fresnel reflection coefficients read:

r(s)(kx, ky) =
µ2 kz1 − µ1 kz2
µ2 kz1 + µ1 kz2

, (2.48)

r(p)(kx, ky) =
ε2 kz1 − ε1 kz2
ε2 kz1 + ε1 kz2

, (2.49)
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With these expressions, we deduce that

M̂
(s)
ref =

r(s)(k) q2

kz k2
||

 k2
y −kx ky 0

−kx ky k2
x 0

0 0 0

 , (2.50)

M̂ (p) = −r
(p)(k)

k2
||

 k2
x kz kx ky kz kx k

2
||

kx ky kz k2
y kz ky k

2
||

−kx k2
|| −ky k2

|| −k4
||/kz

 , (2.51)

Here we used the fact that in the point of reflection 0 = z < z0. The total reflected
field

Eref(r) =
i

2π

∫∫ [
M̂

(s)
ref + M̂

(p)
ref

]
d exp (ikx x+ iky y + ikz (z + z0)) dkx dky .

(2.52)
Purcell factor calculation
The reflected field acting on the scatterer reads

Eref(r0) =
i

2π

∫∫ [
M̂

(s)
ref + M̂

(p)
ref

]
d e2ikz z0 dkx dky (2.53)

=
i

2π

∞∫
0

2π∫
0

[
M̂

(s)
ref + M̂

(p)
ref

]
d e2ikz z0 k|| dk|| dϕ (2.54)

= i

∞∫
0

[〈
M̂

(s)
ref

〉
+
〈
M̂

(p)
ref

〉]
d e2ikz z0 k|| dk|| . (2.55)

Here, ϕ is the angle between the wave vector and x axis, and < .. > means
averaging over the angle. Specifically,

〈
M̂

(s)
ref

〉
=
r(s)(k||) q

2

kz

1/2 0 0
0 1/2 0
0 0 0

 ,

〈
M̂

(p)
ref

〉
= −r

(p)

kz

k2
z/2 0 0
0 k2

z/2 0
0 0 −k2

||

 (2.56)
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Thus, the expression for the Purcell factor reads:

F = 1 +
3

2 q3 |d|2
Im [d∗ · Eref(r0)] =

= 1 +
3

2 q3 |d|2
Im

 ∞∫
0

d∗
(〈
M

(s)
ref

〉
+
〈
M

(s)
ref

〉)
d e2ikz z0 k|| dk||

 . (2.57)

Finally, using expressions for
〈
M

(s,p)
ref

〉
and making the substitutions s = k||/q and

sz = kz/q =
√

1− s2, we get:

F = 1 +
3

4

|dx|2 + |dy|2

|d|2
Re

∞∫
0

(
r(s) − r(p) s2

z

)
s

sz
e2iq z0 sz ds+

+
3

2

|dz|2

|d|2
Re

∞∫
0

r(p) s3

sz
e2iq z0 sz ds .

(2.58)

2.6 Discrete dipole model and lattice summation techniques

Poisson summation formula
One of the powerful tools in lattice sums evaluation is provided by the Poisson

summation formula. It allows one to replace the summation in the real space by
the summation in reciprocal space, which in many cases greatly improves the
convergence of the series.

We consider a function φ(x) =
∞∑

n=−∞
δ(x− na). Since this function is periodic

with the period a, it can be expanded in the Fourier series:

φ(x) =
∞∑

n=−∞
φn e

inbx , (2.59)

where b = 2π/a and the coefficients of the Fourier expansion read

φn =
1

a

a/2∫
−a/2

φ(x) e−inbx dx =
1

a

∞∑
m=−∞

a/2∫
−a/2

δ(x−ma) e−inbx dx =
1

a
(2.60)

since only one of the δ-functions is nonzero in the interval of integration [−a/2, a/2].
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Thus, we obtain an important identity:

φ(x) =
∞∑

n=−∞
δ(x− na) =

1

a

∞∑
n=−∞

einbx ≡ 1

a

∞∑
n=−∞

e−inbx , (2.61)

where b = 2π/a.
Next, we consider the sum

∞∑
n=−∞

f(n a) =
∞∑

n=−∞

∞∫
−∞

δ(x− na) f(x) dx =

∞∫
−∞

∞∑
n=−∞

δ(x− na) f(x) dx

(2.62)

=
1

a

∞∫
−∞

∞∑
n=−∞

e−inbx f(x) dx =
1

a

∞∑
n=−∞

∞∫
−∞

e−inbx f(x) dx =
1

a

∞∑
n=−∞

f̃(nb)

(2.63)

where b = 2π/a, and the Fourier transform of the function is defined as

f̃(p) ≡
∞∫

−∞

f(x) e−ipx dx . (2.64)

Thus, we finally get the Poisson summation formula:

∞∑
n=−∞

f(na) =
1

a

∞∑
n=−∞

f̃(nb) , (2.65)

which converts the sum in the real space into the sum in reciprocal space, provided
that the Fourier transform of f(x) is well defined for all xn = n a. Note that the
Poisson summation formula can be applied also to the double and triple sums.

Properties of the Fourier transform

Fx→p [f(x)] ≡
∞∫

−∞

f(x) e−ipx dx , (2.66)

Fx→p [f(x+ a)] = eipa Fx→p [f(x)] , (2.67)

Fx→p
[
f(x) e−ikx

]
= Fx→(p+k) [f(x)] , (2.68)

Fx→p [f ′(x)] = ipFx→p [f(x)] , (2.69)
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(2.70)

Fx→p,y→s

[
eiq
√
x2+y2+z2√

x2 + y2 + z2

]
= 2π i

ei|z|t

t
, t =

√
q2 − p2 − s2, Im t > 0 . (2.71)

Fy→p

[
H

(1)
0 (κ

√
x2 + y2)

]
= 2

eitx

t
, t =

√
κ2 − p2, Im t > 0 . (2.72)

Exercise Using the Poisson summation formula, evaluate the sum

S =
∞∑
n=1

1

n2 + a2
,

where a is some positive parameter. How many terms are needed in order to
evaluate the sum with the precision 10−4 with (a) direct summation; (b) summation
in reciprocal space?

Answer. The Fourier transform of the function f(x) = 1/(x2 + a2) is equal to
f̃(p) = π e−|p|a/a. Now the series has exponential convergence.
S = π coth(π a)/(2 a) − 1/(2 a2). In the limiting cases, we can derive the sums
∞∑
n=1

1/n2 = π2/6 and
∞∑
n=1

1/n4 = π4/90.

Dyadic Green’s function.
Next, we apply the Poisson summation formula to investigate the fields created

by the periodic arrays of scatterers. To write down the field of a single scatterer,
we use the dyadic Green’s functions, which are defined as

E(r) = Ĝee(r) d + Ĝem(r) m , (2.73)

H(r) = −Ĝem(r) d + Ĝee(r) m , (2.74)

where d and m are the electric and magnetic dipole moments of the particle located
in the coordinate origin, and Ĝee and Ĝem are the tensors defined as follows:

Ĝee(r) =
[
∇⊗∇+ q2 Î

] (eiqr
r

)
, (2.75)

Ĝem(r) = iq∇X

(
eiqr

r

)
. (2.76)

In the framework of Green’s functions, in the following we examine the response
of two-dimensional periodic array.

Floquet expansion. Grid of electric dipoles.
As an illustration of Poisson summation formula, we consider now the field

from the discrete array of scatterers and expand it into the so-called Floquet
harmonics. The terms of this Floquet expansion include a propagating wave, possible
diffracted waves and a whole set of evanescent waves.
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We analyze first the contribution from electric dipole moments of the particles.
The particles are located at the sites of rectangular lattice in Oxy plane. We assume
the following distribution of the dipole moments:

dmn = d eik·rmn , (2.77)

where k is the Bloch wave vector with x and y components. The field from the
grid reads:

E =
∑
l,n

Ĝ(r− rln) d eik·rln =
∑
l,n

Ĝ(r + rln) e
−ik·rln d

=
∑
l,n

[
∇⊗∇+ q2 Î

] ( eiq|r+rln|

|r + rln|

)
e−ik·rln d

=
1

a b

∑
l,n

Fx̃→2π l/a,ỹ→2π n/b

[(
∇⊗∇+ q2 Î

) (eiq|r+r̃|

|r + r̃|

)
e−ik·̃r

]
d

=
1

a b

∑
l,n

Fx̃→(2π l/a+kx),ỹ→(2π n/b+ky)

[(
∇⊗∇+ q2 Î

) (eiq|r+r̃|

|r + r̃|

)]
d

=
1

a b

[
∇⊗∇+ q2 Î

] ∑
l,n

Fx̃→kxl ,ỹ→k
y
n

[
eiq|̃r+z ez|

|̃r + z ez|

]
eik

x
l x+ikyn y d

=
2π i

a b

(
∇⊗∇+ q2 Î

) ∑
l,n

e±ik
z
ln z

kzln
eik

x
l x+ikyn y d

=
2π i

a b

∑
l,n

[
−k

(±)
ln ⊗ k

(±)
ln + q2

] eik(±)
ln ·r

kzln
d (2.78)

r

x

y

z

Figure 2.3: Calculation of the fields from the two-dimensional discrete array.
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Thus, the electric field from the grid of electric dipoles reads:

E =
2π i

a b

∑
l,n

[
−k

(±)
ln ⊗ k

(±)
ln + q2

] eik(±)
ln ·r

kzln
d , (2.79)

where d is the amplitude of the dipole moment of the particles in the grid, a and
b are the periods of the grid, q = ω/c, k

(±)
ln = (kxl , k

y
n,±kzln)T , kxl = kx + 2π l/a,

kyn = ky + 2π n/b, kzln =
√
q2 − (kxl )2 − (kyn)2 with the sign of the square root

chosen such that Im kzln ≥ 0. In case if kzln is purely real, we choose the branch
with the positive real part. ± sign choice in the expression for k(±)

ln is determined
by the choice of the observation point (z > 0 or z < 0). The summation includes
all integer values of indices l and n.

To get some insight on the Floquet expansion, we inspect the Floquet harmonic
l = n = 0 more closely. We denote k

(±)
00 = p(±):

E00 =
2π i q2

pz

[
1− p(±) ⊗ p(±)/q2

]
P eip

(±)·r , (2.80)

where P is the average polarization of the metasurface. But this expression actually
represents the electric field of the sheet with the continuous polarization distribution.
Such an expression can be derived, for example, by matching the plane wave
solutions at the boundary of the metasurface or by using the solution of Maxwell’s
equations via retarded potentials. Operator in the square brackets in Eq. (2.80)
simply projects the polarization on the plane orthogonal to the wave vector.

Field from the grid of magnetic dipoles
Quite analogously, we can also compute the electric field radiated by the grid

of magnetic dipoles oscillating with the frequency ω, located in Oxy plane, with
the amplitude m.

E =
∑
l,n

Ĝem(r− rln) m eik·rln =
∑
l,n

Ĝem(r + rln) e
−ik·rln m (2.81)

=
∑
l,n

iq∇X

(
eiq|r+rln|

|r + rln|

)
e−ik·rln m (2.82)

=
iq

a b

∑
l,n

Fx̃→2π l/a,ỹ→2π n/b

[
∇X

(
eiq|r+r̃|

|r + r̃|

)
e−ik·̃r

]
m (2.83)
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=
iq

a b
∇X

∑
l,n

Fx̃→kxl ,ỹ→k
y
n

[
eiq|r+r̃|

|r + r̃|

]
m (2.84)

=
iq

a b
∇X

∑
l,n

ei k
x
l x+i kyn y Fx̃→kxl ,ỹ→k

y
n

[
eiq |̃r+z ez|

|̃r + z ez|

]
m (2.85)

= −2π q

a b
∇X

∑
l,n

ei k
x
l +i kyn y

e±ik
z
ln z

kzln
m (2.86)

= −2π i q

a b

∑
l,n

eik
(±)
ln ·r

kzln

[
k

(±)
ln ×m

]
. (2.87)

Finally, we get the following result for the field from the grid of magnetic dipoles:

E = −2π i q

a b

∑
l,n

eik
(±)
ln ·r

kzln

[
k

(±)
ln ×m

]
. (2.88)

If the particles of the array simultaneously have nonzero electric and magnetic
moments, the full electric field from the grid reads:

Etot = −2π i

a b

∑
l,n

{
k

(±)
ln

(
k

(±)
ln · d

)
− q2 d + q

[
k

(±)
ln ×m

]} eik
(±)
ln ·r

kzln
(2.89)

Again, we inspect the Floquet harmonic with the indices (0, 0) more closely:

E00 = − 2π i

pz a b

{
p(±)

(
p(±) · d

)
− q2 d + q

[
p(±) ×m

]}
eip

(±)·r . (2.90)

From Maxwell’s equations (namely, using that rot E = iqB) we can immediately
calculate also the magnetic field of the mode:

H00 = − 2π i

pz a b

{
p(±)

(
p(±) ·m

)
− q2 m− q

[
p(±) × d

]}
eip·r . (2.91)

Note the dual symmetry of the Eqs. (2.90) and (2.91).
Huygens’ metasurface
It turns out that by combining the electric and magnetic responses, one can

fully suppress the reflection from the metasurface or, alternatively, suppress the
transmission. Note that the full suppression of transmission is prohibited by the
optical theorem, which relates forward scattering with the total scattering cross-
section. The underlying mechanism is the so-called Kerker effect (unidirectional
scattering by the single particle with mutually orthogonal electric and magnetic
dipole moments).
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For simplicity, we assume normal incidence of light at the metasurface. Analyzing
Eq. (2.90), we deduce that: (i) if my = −dx, the transmitted field is suppressed.
Note that since electric and magnetic polarizability of passive structure both have
positive imaginary part, it is impossible to fulfill this condition exactly. (ii) if
my = dx, the reflected field is suppressed.

Floquet expansion: grid of wires

r

x

y

z

b

Figure 2.4: To the calculation of the fields from the grid of parallel wires.

Now we consider a somewhat different problem of the field calculation for the
grid of parallel wires of negligibly small cross-section. The field of the individual
wire with a negligibly small cross-section reads:

Ez = −π κ
2

q c
I0H

(1)
0 (κ

√
x2 + y2) eik

z z , (2.92)

where q = ω/c, κ =
√
q2 − (kz)2 and H(1)

0 (κρ) is the Hankel function of the first
kind. Therefore, the field from the entire grid is represented as

Ez = −π κ
2

q c
I0

∞∑
n=−∞

H
(1)
0 (κ

√
x2 + (y − nb)2) eik

z z+iky n b , (2.93)

where we assume that the amplitudes of the current in the wires of the grid are
modulated as In = I0 e

iky n b. To evaluate the sum Eq. (2.93), we change the
summation index n → −n and apply again the same procedure based on the
Poisson summation formula.

Ez = −π κ
2

q c
I0 e

ikz z
∞∑

n=−∞
H

(1)
0 (κ

√
x2 + (y + nb)2) e−ik

y n b (2.94)

= −π κ
2

q c b
I0 e

ikz z
∞∑

n=−∞
Fy→2π n/b

[
H

(1)
0 (κ

√
x2 + (y + nb)2) e−ik

y n b
]

(2.95)
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= −π κ
2

q c b
I0 e

iky y+ikz z
∞∑

n=−∞
Fy→(2π n/b+ky)

[
H

(1)
0 (κ

√
x2 + n2 b2)

]
(2.96)

= −2π κ2

q c b
I0 e

iky y+ikz z
∞∑

n=−∞

e±ik
x
n x

kxn
, (2.97)

where the sign choice corresponds to the sign of x coordinate. Thus, we get the
result

Ez = −2π κ2

q c b
I0

∞∑
n=−∞

eik
(±)
n ·r

kxn
, (2.98)

where k
(±)
n = (±kxn, kyn, kz)

T , kxn =
√
κ2 − (kyn)2 =

√
q2 − (kyn)2 − k2

z ,
kyn = 2π n/b+ ky and the sign of the square root is chosen such that Im kxn > 0.

Based on Eq. (2.98), we again inspect the zeroth order Floquet harmonics,
taking into account that the current amplitude is related to the average polarization
of the grid as I0 = −iωP b. We also denote p(±) ≡ k

(±)
0 . Then

Ez
0 =

2π i q2

px

(
1− p2

z

q2

)
eip

±·r . (2.99)

Comparing this result with Eq. (2.80), we conclude that the expression for the
zeroth Floquet harmonic stays essentially the same, being determined only by
the average polarization of the metasurface. The details about the structure of
the metasurface are only manifested in higher-order Floquet harmonics, which (in
metasurface regime) exponentially decay with the distance.

2.7 Dielectric slab waveguide

Equations for TE and TM modes
In this section, we consider wave propagation in dielectric waveguides

characterized by the refractive index exceeding that of the surrounding medium.
We analyze the geometry depicted in Fig. 2.5 assuming that ε2 > ε3 > ε1.

ε
1

x

ε
3

y

a

-a

z

ε
2

Figure 2.5: A scheme of a planar waveguide. a is half-thickness of the waveguide.

We seek the solution of Maxwell’s equations in the form
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E,H(r, t) ∝ E,H(x) eikz−iω t, where k is the propagation constant and q = ω/c is
the normalized frequency. In this geometry, Maxwell’s equations

rot E = i qH , (2.100)
rot H = −iq ε(x) E . (2.101)

split into two sets of independent equations:

−ik Ey = iq Hx , (2.102)

ik Hx −
∂Hz

∂x
= −iq ε(x)Ey , (2.103)

∂Ey

∂x
= iq Hz , (2.104)

which correspond to TE waves (Hy = 0) and

ik Hy = iq ε(x)Ex , (2.105)

ik Ex −
∂Ez

∂x
= iq Hy , (2.106)

∂Hy

∂x
= −iq ε(x)Ez , (2.107)

which correspond to TM waves (Ey = 0).
To summarize, in the case of TE waves all fields are expressed through Ey:

Hx = −k Ey/q and Hz = −i/q dEy/dx. In turn, Ey satisfies the equation

d2Ey

dx2
+
(
q2 ε(x)− k2

)
Ey = 0 . (2.108)

In the case of TM waves, all fields are expressed via Hy: Ex = k/(q ε(x))Hy and
Ez = i/(q ε(x)) dHy/dx, whereas Hy satisfies the equation:

d

dx

[
1

ε(x)

dHy

dx

]
+

[
q2 − k2

ε(x)

]
Hy = 0 . (2.109)

In Eqs. (2.108), (2.109) ε(x) is a piecewise function: ε(x) = ε1 for x ≥ a, ε(x) = ε2

for −a ≤ x ≤ a and ε(x) = ε3 for x < −a.

Solution for TE modes
The solution of Eq. (2.108) can be presented in the form

Ey =


A cos(u− ϕ) e−w

′(x−a)/a , x ≥ a ,

A cos(ux/a− ϕ) , −a ≤ x ≤ a ,

A cos(u+ ϕ) ew(x+a)/a , x ≥ −a ,
(2.110)
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with the continuity of Ey at x = ±a fulfilled automatically. Here,

w = a
√
k2 − q2 ε3 , w

′ = a
√
k2 − q2 ε1 , u = a

√
q2 ε2 − k2 . (2.111)

Additionally, the continuity of Hz should be ensured: Hz = −i/q dEy/dx. This
yields the set of two equations:

tan(u+ ϕ) =
w

u
, (2.112)

tan(u− ϕ) =
w′

u
. (2.113)

Excluding ϕ from this system, we derive:

u =
πm

2
+

1

2
arctan

(w
u

)
+

1

2
arctan

(
w′

u

)
, (2.114)

where m = 0, 1, 2, . . . Besides that, Eq. (2.111) imposes a constraint on variables
w and u:

u2 + w2 = v2 ≡ q2 a2 (ε2 − ε3) . (2.115)

We also introduce a variable γ that characterizes the asymmetry of the cladding:

γ =
ε3 − ε1

ε2 − ε3
(2.116)

and the dimensionless parameter characterizing the dispersion of the waveguide
mode:

b =
k2/q2 − ε3

ε2 − ε3
. (2.117)

Note that the borderline between the waveguide modes and the leaky modes is
defined by the condition b = 0. With these designations, w = v

√
b, u = v

√
1− b,

w′ = v
√
b+ γ, while Eq. (2.114) takes the form:

v
√

1− b =
πm

2
+

1

2
arctan

√
b

1− b
+

1

2
arctan

√
b+ γ

1− b
. (2.118)

To determine the dispersion of the waveguide mode, one has to solve Eq. (2.118)
numerically with respect to the unknown b for the given frequency and given
mode order m. The cutoff frequency of the waveguide mode is determined by
the condition

vc =
πm

2
+

1

2
arctan

√
γ . (2.119)

Solution for TM modes
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Figure 2.6: Modes in slab waveguide depicted in Fig. 2.5 calculated for n1 = 1, n2 = 3.4799 and
n3 = 1.4446, neglecting the frequency dispersion of permittivity.

In a similar manner we present the solutions of Eq. (2.109) in the form

Hy =


A cos(u− ϕ) e−w

′(x−a)/a , x ≥ a ,

A cos(ux/a− ϕ) , −a ≤ x ≤ a ,

A cos(u+ ϕ) ew(x+a)/a ,

(2.120)

with the same formulas Eq. (2.111) for u, w and w′. Solution (2.120) automatically
fulfills the continuity of magnetic field Hy, whereas the continuity of
Ez = i/(q ε(x)) dHy/dx has to be checked. This yields the set of two equations:

tan(u− ϕ) =
w′ ε2

u ε1
, (2.121)

tan(u+ ϕ) =
w ε2

u ε3
, (2.122)

which can be combined into a single equation for u variable:

u =
πm

2
+

1

2
arctan

(
ε2w

ε3 u

)
+

1

2
arctan

(
ε2w

′

ε1 u

)
(2.123)

Converting Eq. (2.123) into the dimensionless units, we derive:

v
√

1− b =
πm

2
+

1

2
arctan

(
ε2

ε3

√
b

1− b

)
+

1

2
arctan

(
ε2

ε1

√
b+ γ

1− b

)
. (2.124)
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In particular, it is seen that the cutoff frequency for TM modes is a bit different
from TE case:

vc =
πm

2
+

1

2
arctan

(
ε2

ε1

√
γ

)
. (2.125)

To illustrate the dispersion of the modes in a slab waveguide, we consider the case
when n1 = 1 (air), n2 = 3.4799 (crystalline silicon at 1.5 um) and n3 = 1.4446
(fused silica at 1.5 um). Calculated modes are presented in Fig. 2.6.

To conclude, Eqs. (2.118) and (2.124) are also valid for the case of dispersive
media when ε1, ε2 and ε3 depend on frequency. Still, the numerical solution for the
mode dispersion can be readily obtained.

2.8 Elements of semiconductor physics. Excitons. Polaritons

Semiconductors. Energy bands. Excitons: Brief overview
The properties of solids are usually described within the so-called single-particle

approximation: to calculate the energy bands of a solid, one considers the motion
of a single electron in a field created by the lattice of ions and the rest of electrons.
For a wide class of problems this description is sufficient.

Within this single-particle scheme, each solid is characterized by the set of
energy bands parametrized by the electron wave vector. Comment on the distinction
between semiconductors and dielectrics, 3 eV bandgap.

However, there is a number of physical phenomena which lies beyond such a
simplified treatment of electronic states. An example of this kind is the correlated
pair of electron and hole termed exciton. The limiting cases of strongly (weakly)
bound electron-hole pair are called the Frenkel (the Wannier-Mott) excitons. In
experiment, excitons were observed by examining the absorption spectra of Cu2O
and detecting the series of peaks described by the formula ω = ω0 − R/n2 [1952,
Gross and Karriev].

The theoretical interpretation of those peaks is based on the assumption of
bound electron-hole pairs emergence with the energies given by the formula similar
to that of hydrogen atom.

Later, the microscopic theory of excitons was developed, and the impact of
excitons on electromagnetic properties of solids was investigated. Specifically, it
occurs that exciton resonances in solids give rise to spatial dispersion effects (which
we discussed earlier in our course).

In this lecture we will mostly focus on another interesting phenomenon, namely,
the hybridization of excitons with light and formation of polaritons.

Exciton-polaritons and their dispersion
We consider light absorption by excitons. In the two-particle scheme, absorption

means photon conversion into the exciton. Therefore, momentum and energy
conservation require that the absorption process can happen only for the particular
energies and momenta when the photon and exciton dispersions cross. At this
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degeneracy point, even a small coupling between photons and excitons leads to
their hybridization in the resulting stationary states. Such mixed states of exciton
and photon are called exciton-polaritons.

Below, we deduce the dispersion of exciton-polaritons, adopting a simplified
model for excitons and describing light-matter interaction semiclassically.

We describe the matter degrees of freedom with the Schrödinger equation

ih̄
∂ | ψ 〉
∂t

= Ĥ | ψ 〉 , (2.126)

where system Hamiltonian is the sum of exciton Hamiltonian and the interaction
term describing the coupling of light to excitons:

Ĥ =

(
εexc +

h̄2 k2

2M

)
ĉ† ĉ−

[
d̂ · E(+) e−iω t + H.c.

]
. (2.127)

Electric field E introduced here is considered a classical one, which is the basis of
semiclassical description of light-matter interaction. | ψ 〉 is the wave function of
the system:

| ψ 〉 = N | 0 〉+
∑
α

Cα | exc, α 〉 , (2.128)

where | 0 〉 describes the ground state of the system (no excitons) and | exc, α 〉 is
the exciton wave function with the dipole moment of the exciton aligned parallel
to xα axis. We assume that the exciton wave function oscillates with frequency ω
so that ih̄ ∂ | ψ 〉 /∂t = h̄ω | ψ 〉. With these assumptions, the Schrödinger equation
yields:

h̄ ω Cα =

(
εexc +

h̄2 k2

2M

)
Cα − dE(+)

α . (2.129)

In the adopted semiclassical framework, we describe electromagnetic degrees
of freedom with Maxwell’s equations. This yields wave equation

∆ E− εb
c2

∂2E

∂t2
=

4π

c2

∂2P

∂t2
, (2.130)

where εb describes the response of the medium without the exciton contribution,
whereas P term on the right-hand side describes the medium polarization due to
excitons: Pα = Cα d. Therefore, we get(

−k2 + εb ω
2/c2

)
E(+)
α = −4πω2/c2 dCα . (2.131)

Eventually, Eqs. (2.129), (2.131) yield the system of two equations with two
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unknowns, Cα and E(+)
α :(
εexc +

h̄2 k2

2M
− h̄ ω

)
Cα − dE(+)

α = 0 , (2.132)

4π
ω2

c2
dCα +

(
ω2

c2
εb − k2

)
E(+)
α = 0 , (2.133)

which yield the following dispersion law:
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Figure 2.7: Schematic representation of the polariton dispersion.

(
εexc +

h̄2 k2

2M
− h̄ ω

) (
ω2

c2
εb − k2

)
+ 4π

ω2

c2
d2 = 0 . (2.134)

Note that h̄ω = εexc+h̄ k
2/(2M) is the pure exciton dispersion, while ω2/c2 εb = k2

is the pure photon dispersion. Light-matter coupling proportional to the square of
exciton dipole moment gives rise to anticrossing behavior schematically illustrated
in Fig. 2.7. Hybridization of the heavy exciton and light photon dispersions gives
rise to two polariton states, namely, the lower and upper polariton branches. The
states described by these dispersions are the superpositions of a photon and an
exciton.
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CHAPTER 3

Scattering on spherical and cylindrical particles

In the theory of scattering of electromagnetic waves, there are two important
problems that can be solved analytically. They are related to the scattering of waves
on a spherical particle and on the infinite cylinder. The solution of these problems
provides valuable insights into the properties of Mie-resonant nanoparticles as well
as metamaterials and metasurfaces composed of them.

3.1 Scalar spherical harmonics: brief summary

Useful reading: [3] on general derivation of multipole expansion, multipole
coefficients and Mie theory. Definition of electric and magnetic dipole moments for
current distribution which is not subwavelength can be found in [15] and in the
further papers from the same group. Comprehensive textbook on scattering from
small particles [16].

Separation of variables in a scalar wave equation
The Helmholtz equation (the wave equation for monochromatic waves):

∆ψ + k2 ψ = 0 , k = ω/c , (3.1)

separation of variables in spherical coordinates:

ψ(r, θ, ϕ) = R(r)Y (θ, ϕ) , (3.2)

where the Laplacian

∆ =
1

r

∂2

∂r2
(r.) +

1

r2
∆θ,ϕ , (3.3)

∆θ,ϕ =
1

sin θ

∂

∂θ

(
sin θ

∂.

∂θ

)
+

1

sin2 θ

∂2.

∂ϕ2
. (3.4)

Hence, we get independent equations for angular and radial parts:

∆θ,ϕ Y (θ, ϕ) + l(l + 1)Y (θ, ϕ) = 0 , l = 0, 1, 2, . . . (3.5)

1

r

d2

dr2
(rR) +

[
k2 − l(l + 1)

r2

]
R = 0 . (3.6)

Radial functions
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• Spherical Bessel function

jl(x) =

√
π

2x
Jl+1/2(x) = (−x)l

(
1

x

d

dx

)l [
sinx

x

]
. (3.7)

For x → 0 jl(x) ≈ xl/(2l + 1)!!, i.e. it is regular at coordinate origin. For
x → ∞ jl(x) ≈ sin(x − lπ/2)/x, i.e. it shows a decaying and oscillatory
behavior at large distances.

• Spherical Neumann function

nl(x) =

√
π

2x
Nl+1/2(x) = −(−x)l

(
1

x

d

dx

)l [cosx

x

]
. (3.8)

For x→ 0 this function is singular nl(x) ≈ −(2l−1)!!/xl+1. For x→∞ this
function also has oscillatory decaying behavior nl(x) = − cos(x− lπ/2)/x.

• Spherical Hankel functions

h
(1,2)
l (x) = jl(x)± inl(x) = ∓i(−x)l

(
1

x

d

dx

)l [
e±ix

x

]
. (3.9)

If we use e−iωt time convention, h(1)
l (x) describes outgoing spherical waves, while

h
(2)
l (x) describes incoming waves. For x→∞ h

(1,2)
l (x) ≈ (∓i)l+1 e±ix/x.

Recurrent formulas for radial functions:

j′l(x) = jl−1(x)− l + 1

x
jl(x) =

ljl(x)

x
− jl+1(x) , (3.10)

jl−1(x) + jl+1(x) =
2l + 1

x
jl(x) . (3.11)

Integral representation of Bessel functions:

Jn(x) =
1

2π

π∫
−π

e−ix sinϕ+inϕ dϕ (3.12)

e−ix sinϕ =
∞∑
−∞

Jn(x) e−inϕ . (3.13)

Angular part: spherical harmonics
Orthogonality property:

∫
Yl,m(θ, ϕ)Y ∗l′,m′(θ, ϕ)dΩ = δll′ δmm′. Additionally,

Yl,−m(θ, ϕ) = (−1)m Y ∗lm(θ, ϕ).
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“Addition theorem” for spherical harmonics:

Pl(cos γ) =
4π

2l + 1

l∑
m=−l

Ylm(θ, ϕ)Y ∗lm(θ′, ϕ′) , (3.14)

where cos γ = cos θ cos θ′ + sin θ sin θ′ cos(ϕ− ϕ′).
Angular momentum operator
Quite a useful technique to deal with spherical harmonics is provided by the

angular momentum operator defined as L̂k = eklmx̂l p̂m, where p̂m = −i∂m. In
these definitions, Cartesian components are considered.

It is straightforward to verify the following commutation relations:

[x̂j, p̂k] = iδjk ,
[
L̂j, p̂k

]
= iejkm p̂m , (3.15)[

L̂j, x̂k

]
= i ejkl x̂l ,

[
L̂j, L̂k

]
= iejkm L̂m , (3.16)[

L2, Lk
]

= 0 . (3.17)

Note that in spherical coordinates

L̂z = −i ∂
∂ϕ

, (3.18)

L̂± = L̂x ± i L̂y = e±iϕ
(
± ∂

∂θ
+ i cot θ

∂

∂ϕ

)
, (3.19)

L̂2 = −∆θ,ϕ . (3.20)

Thus, spherical harmonics Ylm(θ, ϕ) can be viewed as the system of eigenfunctions
of two Hermitian operators L̂z and L̂2, which is widely used in quantum mechanics:

L̂2 Ylm = l(l + 1)Ylm , (3.21)

L̂z Ylm = mYlm . (3.22)

Additionally, it can be checked that
[
L̂z, L̂±

]
= ±L̂±. Using this commutation

relation in combination with Eqs. (3.21) and (3.22), we extract the following
relations for scalar spherical harmonics:

L̂+ Ylm =
√

(l −m)(l +m+ 1)Yl,m+1 , (3.23)

L̂− Ylm =
√

(l −m+ 1)(l +m)Yl,m−1 . (3.24)

Using Eqs. (3.23), (3.24) and definition of these operators in spherical coordinates,
calculate all spherical harmonics with l = 1. Use the fact that Ylm(θ, ϕ) ∝ eimϕ.
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3.2 Vector spherical harmonics. Multipole expansion

Our goal now is to construct the vector solutions of the Helmholtz equation,
since electromagnetic field is a vector one. We assume that ψ(r) is a solution of
the scalar Helmholtz equation:

∆ψ + k2 ψ = 0 , (3.25)

where k = ω/c. First, we show that M = rot (ψ r) is a solution of the vector
Helmholtz equation. We use two vector identities:

rot(a · b) = a div b− b div a + (b∇)a− (a∇)b , (3.26)
∇(a · b) = a× rot b + b× rot a + (a∇)b + (b∇)a . (3.27)

∆M + k2 M = ∇(div M)− rot rot M + k2 M = rot
[
− rot rot(ψr) + k2 ψ r

]
=

= rot
[
−∇ψ + r∆ψ −∇(r · ∇ψ) + k2 ψ r

]
= rot

[
r (∆ψ + k2 ψ)

]
= 0 . (3.28)

Thus, M is a vector solution of the Helmholtz equation.
Similarly, we can construct two other vector solutions of Helmholtz equation:

N = rot M and P = ∇ψ with rot N = rot rot M = ∇(div M)−∆M = k2 M.
In turn, any solution of scalar Helmholtz equation can be represented as a series:

ψ(r) =
∞∑
l=0

l∑
m=−l

flm ψlm(r) (3.29)

with some constant coefficients flm. Analogously, vector solutions can be presented
in the form

A =
∞∑
l=0

l∑
m=−l

[alm Mlm + blm Nlm + clm Plm] , (3.30)

where we assume the Lorenz gauge div A + 1
c
∂ϕ
∂t = 0. Hence, the scalar potential

can be written as

ϕ = − i
k

div A = − i
k

∑
l,m

clm div Plm = − i
k

∑
l,m

clm ∆ψlm = ik
∑
l,m

clm ψlm .

(3.31)
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Therefore, the expressions for the electric and magnetic fields take the form:

B = rot A =
∑
l,m

[alm rot Mlm + blm rot Nlm + clm rot Plm] =

=
∑
l,m

[
alm Nlm + k2 blm Mlm

]
, (3.32)

E = −∇ϕ− 1

c

∂A

∂t
= −ik

∑
l,m

clm Plm + ik
∑
l,m

[alm Mlm + blm Nlm + clm Plm] =

= ik
∑
l,m

[alm Mlm + blm Nlm] . (3.33)

Thus, only vector harmonics Mlm and Nlm are included in the expressions for
the fields. The terms with Plm are omitted out. Next, we examine the angular
dependence of vector spherical harmonics:

M = rot (ψ r) = −r×∇ψ = −iL̂ψ = −if(r) L̂Y (θ, ϕ). (3.34)

Hence, angular dependence of M harmonics is given by L̂Y (θ, ϕ), while M
harmonics themselves do not contain the radial component of the field.

After making the normalization of L̂Y , using the Cartesian components of L̂
operator and Eqs. (3.23), (3.24), we get the following normalized vector spherical
harmonics:

Xlm =
1√

l (l + 1)
L̂Ylm(θ, ϕ) , (3.35)

where L̂ = ( L̂++L̂−
2 , L̂+−L̂−

2i , L̂z), and which satisfy the condition∫
Xlm(θ, ϕ) ·X∗l′m′(θ, ϕ) dΩ = δll′ δmm′ . (3.36)

Note that the spherically symmetric solutions of Maxwell’s equations described by
X00 exist only in the static case. Thus, Mlm = fl(kr) Xlm, Nlm = rot [fl(kr) Xlm].
Redefining the coefficients alm = i aM(l,m)/k and blm = aE(l,m)/k2, we arrive
at the following multipole expansion:

E =
∞∑
l=1

l∑
m=−l

[
i

k
aE(l,m) rot [fl(kr) Xlm]− aM(l,m) gl(kr) Xlm

]
, (3.37)

B =
∞∑
l=1

l∑
m=−l

[
aE(l,m) fl(kr) Xlm +

i

k
aM(l,m) rot [gl(kr) Xlm]

]
. (3.38)

Here, functions fl(kr) and gl(kr) are spherical Bessel/Neumann/Hankel functions
and their combinations, which are the radial solutions of scalar Helmholtz equation.
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aE(l,m) and aM(l,m) are known as multipole coefficients for electric and magnetic
multipoles. “Electric” multipoles correspond to Br = 0, “magnetic” multipoles –
Er = 0.

The form of the multipole expansion, Eqs. (3.37)-(3.38), reflects the dual symmetry
of electrodynamics in vacuum.

∇ = n
∂

∂r
+

1

r
∇θ,ϕ , (3.39)

X =
L̂Y√
l(l + 1)

= −i n×∇θ,ϕY√
l(l + 1)

, (3.40)

Z = n×X =
i∇θ,ϕY√
l(l + 1)

. (3.41)

Clearly, Zlm harmonics are also normalized to unity as
∫

Zlm ·Z∗l′m′ dΩ = δll′ δmm′.
Finally, we note useful auxiliary expression:

i rot L̂ = r ∆−∇
(

1 + r
∂.

∂r

)
. (3.42)

With this, we can compute rot [f(kr) X].

rot [f(kr) X] = ∇(f(kr))×X + f(kr) rot X =

=
d

dr
f(kr) [n×X] +

f(kr)√
l(l + 1)

rot L̂Y =

=
df(kr)

r
Z +

f(kr)√
l(l + 1)

(−ir∆Y + i∇Y ) =

=
df(kr)

dr
Z +

f(kr)

r
√
l(l + 1)

(−in∆θ,ϕY + i∇θ,ϕY ) .

Eventually,

rot [f(kr) X] =
1

r

d

dr
[rf(kr)] Z + i

√
l(l + 1)

f(kr)

r
nY . (3.43)

Example: finding the eigenmodes of a spherical cavity
To give a simple application of multipole expansion, we find the eigenmodes

of a spherical cavity with perfectly conducting walls. In this case fl(kr) and gl(kr)
correspond to the spherical Bessel function jl(kr), which is the only radial function
regular in the coordinate origin. The boundary condition at the cavity wall reads:
n× E = 0.
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Hence, for “electric” (or TM-like) modes we get:

d

dr
[rjl(kr)]

∣∣∣∣
r=a

= 0 . (3.44)

For “magnetic” (or TE-like) modes we get:

jl(kr) = 0 . (3.45)

Hence, the eigenmodes are parametrized by the two indices: multipolar index l of
the mode and number n of solution: ω(n)

l . Note that the modes are degenerate in m
(since the sphere is rotationally-invariant) and the index l runs from 1 to infinity.

Below, we provide the values of dimensionless parameter x = q a for the lowest
eigenmodes. For TE-type modes: x(1)

1 = 4.4934, x(1)
2 = 5.7635, x(1)

3 = 6.9879,
x

(2)
1 = 7.7253,... For TM-type modes: x(1)

1 = 2.7437, x(1)
2 = 3.8702, x(1)

3 = 4.9734,
x

(1)
4 = 6.0620, x(2)

1 = 6.1168 ...
The lowest frequency TM eigenmode (l = 1, n = 1) has λTM

11 = 2.29 a. The
lowest frequency TE mode has λTE

11 = 1.40 a.
Multipole expansion in a homogeneous medium
Let’s assume now that we want to make a multipole expansion in some

homogeneous medium with ε and µ. Our goal is to find out how Eqs. (3.37),
(3.38) should be modified.

Maxwell’s equations for monochromatic field in an isotropic homogeneous
medium have the form:

∇× E = iq µH , (3.46)
∇×H = −iq εE , (3.47)

where q = ω/c. We do the transformation E = E′/
√
ε, H = H′/

√
µ, r = r′/

√
ε µ.

Accordingly, nabla operator is transformed as ∇ = ∇′√ε µ. Note that this
transformation changes the distances but does not change the angles between
radius-vectors. Furthermore, the transformed fields satisfy Maxwell’s equations in
the vacuum:

∇′ × E′ = iqH′ , (3.48)
∇′ ×H′ = −iqE′ . (3.49)
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Hence, the transformed fields can be written as follows:

E′ =
∞∑
l=1

l∑
m=−l

[
i

q
aE(l,m)∇′ × [fl(qr

′) Xlm]− aM(l,m) gl(qr
′) Xlm

]
, (3.50)

H′ =
∞∑
l=1

l∑
m=−l

[
aE(l,m) fl(qr

′) Xlm +
i

q
aM(l,m)∇′ × [gl(qr

′) Xlm]

]
, (3.51)

where the radial part is transformed, whereas the angular part stays the same. We
denote k = q

√
ε µ and get

E =
1√
ε

∞∑
l=1

l∑
m=−l

[
i

k
aE(l,m)∇× [fl(kr) Xlm]− aM(l,m) gl(kr) Xlm

]
,

(3.52)

H =
1
√
µ

∞∑
l=1

l∑
m=−l

[
aE(l,m) fl(kr) Xlm +

i

k
aM(l,m)∇× [gl(kr) Xlm]

]
,

(3.53)

3.3 Fields of multipoles. Link between multipole coefficients and multipole
moments

Near fields of multipoles
Employing the general multipole expansion Eq. (3.37), we now evaluate the

fields in the near zone of the source, i.e. for qr � 1. We choose fl(qr) = gl(qr) = h
(1)
l (qr)

for a finite distribution of charges, replacing the latter function by the leading term
−i (2l − 1)!!/(qr)l+1. For simplicity, we consider only the electric multipoles.

E =
∞∑
l=1

l∑
m=−l

i

q
aE(l,m) rot

[
h

(1)
l (qr) Xlm

]
=

∞∑
l=1

l∑
m=−l

aE(l,m)

ql+2

(2l − 1)!!√
l(l + 1)

rot L̂
Ylm
rl+1

.

(3.54)

Next we use the identity rot L̂ = −ir ∆ + i∇
(
1 + r ∂.

∂r

)
. ∆(Ylm/r

l+1) = 0, since
this function is one of the solutions of the scalar Laplace equation. Finally, we get:

E = −∇

∑
l,m

i aE(l,m)

√
l

l + 1

(2l − 1)!!

ql+2

Ylm(θ, ϕ)

rl+1

 , (3.55)
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so that the expression in the brackets yields the scalar potential of electrostatic
field. On the other hand, the scalar potential of electrostatic field can be written in
the form [see e.g. LL II]:

ϕ =
d · n
r2

+
Qij ni nj

2 r3
+ . . . , (3.56)

where d is the dipole moment, Qij is the tensor of quadrupole moment, etc..
Comparing Eqs. (3.55) and (3.56), we immediately find out that

i√
2 q3

1∑
m=−1

aE(1,m)Y1m = d · n , (3.57)

i
√

6

q4

2∑
m=−2

aE(2,m)Y2m =
1

2
Qij ni nj . (3.58)

A similar identification holds for the magnetic multipole moments:

i√
2 q3

1∑
m=−1

aM(1,m)Y1m = m · n , (3.59)

i
√

6

q4

2∑
m=−2

aM(2,m)Y2m =
1

2
QM
ij ni nj . (3.60)

To establish Eqs. (3.57)-(3.60), we used the well-known definitions of multipole
moments in the static case. Now, turning our attention to the dynamic case, we
define multipole moments via multipole coefficients as specified by Eqs. (3.57)
and (3.58).

Using an explicit expression for the first scalar spherical harmonics:

Y11 = −
√

3/(8π) sin θ ei ϕ , (3.61)

Y10 =
√

3/(4π) cos θ , (3.62)

Y1,−1 =
√

3/(8π) sin θ e−iϕ , (3.63)

and taking the expression for the unit vector n = (sin θ cosϕ, sin θ sinϕ, cos θ),
we can now deduce the explicit expressions for the multipole coefficients aE(1,m)
and aM(1,m) in terms of dipole moments:

aE(1, 1) = iq3
√

4π/3 (dx − i dy) , aE(1, 0) = −iq3
√

8π/3 dz ,

aE(1,−1) = −iq3
√

4π/3 (dx + i dy) ,
(3.64)

and the similar relations hold for aM(1,m) and the components of magnetic dipole
moment. This said, aE(1, 0) is related to the radiation of z-oriented electric dipole,
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whereas aE(1,±1) describe the radiation from the dipole rotating in the plane Oxy
clockwise [aE(1,−1)] or counter-clockwise [aE(1, 1)].

Expressions for the fields of oscillating electric and magnetic dipoles
Having the definitions of multipole moments, we are ready now to compute the

fields produced by the oscillating electric and magnetic dipoles. Specifically, we
focus on electric field from magnetic dipole.

E = −
1∑

m=−1

aM(1,m)h
(1)
1 (qr)

1√
2

L̂Y1m =

= −
1∑

m=−1

aM(1,m)
i

q2

d

dr

(
eiqr

r

)
1√
2

L̂Y1m =

= −q d
dr

(
eiqr

r

)
L̂

1∑
m=−1

i√
2 q3

aM(1,m)Y1m =

= −q d
dr

(
eiqr

r

)
L̂ (m · n) =

= −q
r

d

dr

(
eiqr

r

)
L̂ (m · r) . (3.65)

Next, we analyze the expression L̂(m·n) using the properties of angular momentum
operator:

L̂j (xlml) =
[
L̂j, xl

]
ml + xl L̂jml = iejln xnml (3.66)

Therefore,

Ej = q
d

dr

(
eiqr

r

)
i ejnl

xn
r
ml = ik

d

dr

(
eiqr

r

)
[n×m]j . (3.67)

Finally, we find that

E = iq∇
(
eiqr

r

)
×m . (3.68)

Magnetic field, in turn, reads:

H = − i
q

rot E = ∇× (∇f ×m) = −m ∆f + (m · ∇)∇f =

= q2 f m + (m · ∇)∇f =
[
∇⊗∇+ q2 Î

](eiqr
r

)
m , (3.69)

where f = eiqr/r. Field of the electric dipole can be calculated analogously, taking
dual symmetry into account. Finally, we write the fields from the electric and



95

magnetic dipoles in the following form:

E = Ĝee(r) d + Ĝem(r) m , (3.70)

H = −Ĝem(r) d + Ĝee(r) m . (3.71)

The matrices introduced here are known as dyadic Green’s functions:

Ĝee =
[
∇⊗∇+ q2 Î

] (eiqr
r

)
= ��∇ f , (3.72)

Ĝem = iq∇× f , (3.73)

where we introduced f = eiqr/r which is the solution of scalar Helmgoltz equation,
��∇ik = ∇i∇k + q2 δik and ∇×ik = eijk∇j.

Fields of electric and magnetic quadrupoles
In a similar way we evaluate the fields produced by the oscillating electric or

magnetic quadrupole. To this end we consider the magnetic field produced by the
oscillating electric quadrupole:

H =
2∑

m=−2

aE(2,m)h
(1)
2 (qr)

1√
6

L̂Y2m =
1√
6
h

(1)
2 (qr) L̂

2∑
m=−2

aE(2,m)Y2m
Eq. (3.58)

=

= − ir2

√
6 q3

(
1

r

d

dr

)2

f L̂
q4

2
√

6 i
Qjk xj xk/r

2 = − q

12

(
1

r

d

dr

)2

f Qjk L̂xj xk

(3.74)

Using the properties of angular momentum operator, we calculate

L̂i x̂j x̂k = [L̂i, x̂j] x̂k + x̂j L̂i x̂k = ieijl x̂l x̂k + x̂j ieikl x̂l = −ix×ij x̂k − ix×ik x̂j .
(3.75)

Hence, the magnetic field of a quadrupole can be presented in the form

Hi = Gmeq
ijk Qjk ,

where

Gmeq
ijk =

iq

12

[
x×ij xk + x×ik xj

] (1

r

d

dr

)2

f .

Taking into account that

∇i f(r) =
xi
r

df

dr
, (3.76)

we present the Green’s function in the form

Gmeq
ijk =

iq

12

(
∇×ij∇k +∇×ik∇j

)
f . (3.77)
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Electric field from the quadrupole can be evaluated as

Ei =
i

q
∇×inHn =

i

q
∇×inG

meq
njkQjk , (3.78)

which means that the Green’s function for electric field is equal to
Geeq
ijk = i/q∇×inG

meq
njk . Next we take into account that

∇×in∇×nj = ∇i∇j − δij∇2 = ��∇ij , (3.79)

since ∇2 f = −q2 f . Therefore,

Geeq
ijk = − 1

12

(
��∇ij∇k +��∇ik∇j

)
f . (3.80)

Equations Eqs. (3.80) and (3.77) provide electric and magnetic fields produced by
the arbitrary electric quadrupole moment Qij. The solution for magnetic quadrupole
moment is immediately recovered from duality:

Ei = Geeq
ijk Qjk +Gemq

ijk Q
M
jk , (3.81)

Hi = Gmeq
ijk Qjk +Gmmq

ijk QM
jk , (3.82)

where Gemq
ijk = −Gmeq

ijk and Gmmq
ijk = Geeq

ijk . Using expressions for the Green’s
functions Eqs. (3.80), (3.77), it is straightforward to obtain near and far fields
produced by quadrupoles. For example, in the far-field zone ∇ operators should be
replaced by

∇k → iq nk , (3.83)
∇×ik → iq n×ik , (3.84)

��∇ik ≡ ∇×ij∇×jk = −q2 n×ij n
×
jk . (3.85)

3.4 Radiation of multipoles

In this paragraph, we consider the fields produced by some finite distribution of
currents and charges at distances much larger than the wavelength (kr � 1). In this
far-field zone the Hankel functions can be replaced by h(1)

l (kr) ≈ (−i)l+1 eikr/(kr).
In turn,

rot
[
h

(1)
l (kr) Xlm

]
Eq. (3.43)

=
1

r

d

dr

(
r h

(1)
l (kr)

)
Zlm + i

√
l(l + 1)

h
(1)
l (kr)

r
nYlm

≈ i (−i)l+1 e
ikr

r
Zlm .

(3.86)
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Therefore, the far-field asymptotics of the multipole expansion reads:

E = −e
ikr

kr

∞∑
l=1

l∑
m=−l

(−i)l+1 [aE(l,m) Zlm + aM(l,m) Xlm] , (3.87)

H =
eikr

kr

∞∑
l=1

l∑
m=−l

(−i)l+1 [aE(l,m) Xlm − aM(l,m) Zlm] . (3.88)

It is straightforward to verify that H = n×E, which means that the far-field has a
local structure of a plane wave. Energy flux is then calculated as

dP

dΩ
= r2 Sr = r2 c

8π
|E|2 . (3.89)

Consider first the angular distribution of radiation for a single multipole:

dPlm
dΩ

=
c

8π k2
|Xlm|2

[
|aE(l,m)|2 + |aM(l,m)|2

]
=

=
c

16π k2 l(l + 1)

[
|aE(l,m)|2 + |aM(l,m)|2

]
×
[
(l −m)(l +m+ 1) |Yl,m+1|2

+(l +m)(l −m+ 1) |Yl,m−1|2 + 2m2 |Ylm|2
]
.

(3.90)

This said, the radiation from the electric and magnetic multipoles simply adds up
because of their mutually orthogonal polarization. Equation (3.90) determines the
radiation pattern of a single multipole. Note that it depends on the angle θ being
independent of ϕ. To calculate the full intensity of radiation, we take into account
orthogonality of vector spherical harmonics and integrate Eq. (3.90) over 4π solid
angle. As a result, we get:

P =
c

8π k2

∞∑
l=1

l∑
m=−l

[
|aE(l,m)|2 + |aM(l,m)|2

]
(3.91)

It is important to stress that after obtaining this general result, we can immediately
calculate the power emitted by dipoles, quadrupoles, etc. To do this, we only need
the identification of multipole moments previously made in Sec. 3.3. Additionally,
we take into account two important identities:

〈ni nk〉 =
1

3
δik , (3.92)

〈ni nj nk nl〉 =
1

15
[δij δkl + δik δjl + δil δjk] , (3.93)
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where < .. > operator means the integration over full 4π solid angle and division
of the result by 4π.

We start from the definition of dipole moment

i√
2 q3

1∑
m=−1

aE(1,m)Y1m = dj nj

1

2 q6

∑
m,m′

∫
aE(1,m) a∗E(1,m′)Y1m Y

∗
1m′ dΩ =

∫
dj nj d

∗
k nk dΩ

1

2 q6

1∑
m=−1

|aE(1,m)|2 =
4π

3
dj d

∗
k δjk

1∑
m=−1

|aE(1,m)|2 =
8π q6

3
|d|2 . (3.94)

In an analogous way, taking into account that Qij = Qji, Qii = 0 (the tensor of
quadrupole moment is symmetric and traceless), we find that

2∑
m=−2

|aE(2,m)| = π q8

45
|Qij|2 , (3.95)

where the summation is performed over all indices i and j (sum of squares of
elements of quadrupole moment tensor). With Eqs. (3.94) and (3.95), we derive
that

P =
c q4

3

(
|d|2 + |m|2

)
+
c q6

360

∑
i,j

(
|QE

ij|2 + |QM
ij |2
)
. (3.96)

3.5 Eigenmodes of a spherical particle

As a next application of multipole expansion, we consider a particle made of
dielectric material with permittivity ε = n2 placed in vacuum and analyze the
eigenmodes supported by such particle. The fields inside and outside of the particle
read

Ein =
1

n

∑
l,m

{
i

qn
ain
E(l,m) rot [jl(qnr) Xlm]− ain

M(l,m) jl(qnr) Xlm

}
, (3.97)

Hin =
∑
l,m

{
ain
E(l,m) jl(qnr) Xlm +

i

qn
ain
M rot [jl(qnr) Xlm]

}
, (3.98)
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Eout =
∑
l,m

{
i

q
aout
E rot [hl(qr) Xlm]− aout

M hl(qr) Xlm

}
, (3.99)

Hout =
∑
l,m

{
aout
E hl(qr) Xlm +

i

q
aout
M rot [hl(qr) Xlm]

}
. (3.100)

Unknown multipole coefficients are found by matching the fields inside and outside
of the particle. In monochromatic case, it is sufficient to consider only the conditions
for the tangential components of E and H. The conditions for the normal components
of B and D are then fulfilled automatically. Boundary conditions yield:

i

qn2
ain
E(l,m)

1

a

d

dr
[r jl(qnr)]

∣∣∣∣
r=a

=
i

q
aout
E (l,m)

1

a

d

dr
[r hl(qr)]|r=a , (3.101)

1

n
ain
M(l,m) jl(qna) = aout

M (l,m)hl(qa) , (3.102)

ain
E(l,m) jl(qna) = aout

E (l,m)hl(qa) , (3.103)
i

qn
ain
M(l,m)

1

a

d

dr
[r jl(qnr)]|r=a =

i

qn
aout
M

1

a

d

dr
[r hl(qr)]|r=a . (3.104)

Here, hl(qr) ≡ h
(1)
l (qr). Quite importantly, the equations for the electric and

magnetic multipoles of different order appear to be independent. Therefore, each of
multipoles has its own set of eigenmodes:

d
dr [r hl(qr)]|r=a

hl(qa)
=

1

n2

d
dr [r jl(qnr)]|r=a

jl(qna)
, electric multipole of the order l

(3.105)
d
dr [r hl(qr)]|r=a

hl(qa)
=

d
dr [r jl(qnr)]|r=a

jl(qna)
, magnetic multipole of the order l .

(3.106)

The degeneracy of the modes with respect to m is due to the spherical symmetry
of the particle. Taking the limit n → ∞ (or just imposing boundary conditions
corresponding to the perfect conductor), we derive the boundary conditions for the
ideally conducting sphere:

d

dr
[r hl(qr)]|r=a = 0 , electric multipole of the order l (3.107)

hl(qa) = 0 , magnetic multipole of the order l (3.108)

Note that since the Hankel function is complex, the modes of a spherical particle are
also complex. The imaginary part of the mode frequency is associated with losses
(ωln = ω′ln − iω′′ln with ω′′ln > 0). Therefore, solving the equations with respect to
the mode frequency, we consider only the solutions with negative imaginary part
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of frequency.
It can be shown that the solutions for magnetic modes of PEC sphere are purely

imaginary, whereas the solutions for electric modes have some nonzero real part.

3.6 Mie theory: scattering of a plane wave on a spherical particle

Decomposition of a plane wave into the spherical ones
A scalar plane wave can be decomposed in terms of scalar spherical harmonics

in the following way:

eikr cos θ =
∞∑
l=0

il (2l + 1) jl(kr)Pl(cos θ) =
∞∑
l=0

il
√

4π (2l + 1) jl(kr)Yl0(θ, ϕ) .

(3.109)
Based on this expression, we now derive the expansion of a plane wave propagating
along z axis with electric field

E = (ex ± iey) eikz ≡ e+ e
ikz , (3.110)

H = ez × E = ∓iE . (3.111)

Since vector spherical harmonics form a complete basis, and the field of a plane
wave is regular in the coordinate origin, the general expression for expansion of
this kind is

E =
∞∑
l=1

l∑
m=−l

[
i

k
a±(l,m) rot [jl(kr) Xlm]− b±(l,m) jl(kr) Xlm

]
, (3.112)

H =
∞∑
l=1

l∑
m=−l

[
a±(l,m) jl(kr) Xlm +

i

k
b±(l,m) rot [jl(kr) Xlm]

]
. (3.113)

Since H = ∓iE, a±(l,m) = ±ib±(l,m). In turn, b±(l,m) can be calculated by
projecting E onto the vector spherical harmonics:

b±(l,m) jl(kr) = −
∫

E ·X∗lm dΩ = −
∫

eikz (ex ± iey) ·
L̂∗√
l (l + 1)

Y ∗lm dΩ =

= −
∫

eikz
1√

l(l + 1)

(
L̂∗x ± iL̂∗y

)
Y ∗lm dΩ =

= − 1√
l(l + 1)

∫
eikz (L̂∓Ylm)∗ dΩ =
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= −

√
(l ±m)(l ∓m+ 1)

l(l + 1)

∫
eikr cos θ (Yl,m∓1)

∗ dΩ
(3.109)

= (3.114)

= −

√
(l ±m)(l ∓m+ 1)

l(l + 1)
δm,±1 i

l
√

4π (2l + 1) jl(kr) . (3.115)

This yields

b±(l,m) = −δm,±1 i
l
√

4π (2l + 1) , a±(l,m) = ∓δm,±1 i
l+1
√

4π (2l + 1) .
(3.116)

As a result, the decomposition of the incident plane wave into the spherical ones
takes the form (q = ω/c):

E0 =
∞∑
l=1

il
√

4π (2l + 1)

{
±1

q
rot [jl(qr) Xl,±1] + jl(qr) Xl,±1

}
,

H0 =
∞∑
l=1

il
√

4π (2l + 1)

{
∓ijl(qr) Xl,±1 −

i

q
rot [jl(qr) Xl,±1]

}
. (3.117)

Decomposition of the fields inside and outside the sphere
The field outside the sphere (r > a) Eout = E0 + Es, where Es denotes the

scattered field, which can be also expanded into the spherical harmonics as follows:

Es =
∞∑
l=1

il
√

4π (2l + 1)

[
∓a±(l)

q
rot
[
h

(1)
l (qr) Xl,±1

]
− b±(l)h

(1)
l (qr) Xl,±1

]
,

Hs =
∞∑
l=1

il
√

4π (2l + 1)

[
±i a±(l)h

(1)
l (qr) Xl,±1 +

ib±(l)

q
rot
[
h

(1)
l (qr) Xl,±1

]]
,

(3.118)

where we introduce expansion coefficients a±(l) and b±(l) linked to the standard
multipole coefficients as follows:

aE(l,m) = ∓ il−1
√

4π (2l + 1) a±(l) δm,±1 , (3.119)

aM(l,m) = −il
√

4 π (2l + 1) b±(l) δm,±1 . (3.120)

The fields inside the sphere (r < a, k = q n), according to Sec. 3.2, can be
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expanded as

Ein =
1

n

∞∑
l=1

il
√

4π (2l + 1)

[
∓ ã±(l)

k
rot [jl(kr) Xl,±1]− b̃±(l) jl(kr) Xl,±1

]
,

(3.121)

Hin =
∞∑
l=1

il
√

4π (2l + 1)

[
±iã±(l) jl(kr) Xl,±1 +

i b̃±(l)

k
rot [jl(kr) Xl,±1]

]
.

(3.122)

The boundary conditions (the continuity of the tangential components of the electric
and magnetic fields) yield the following set of equations:

−1

n
b̃±(l) jl(qna) =jl(qa)− b±(l)h

(1)
l (qa) (E,Xl,±1) , (3.123)

i b̃±(l)

qna

d

dr
[r jl(qnr)]|r=a =− i

qa

d

dr
[rjl(qr)]|r=a +

+
i b±(l)

qa

d

dr

[
r h

(1)
l (qr)

]∣∣∣
r=a

(H,Zl,±1) , (3.124)

±iã±(l) jl(qna) =∓ ijl(qa)± ia±(l)h
(1)
l (qa) (H,Xl,±1) , (3.125)

± ã±(l)

qn2 a

d

dr
[r jl(qnr)]|r=a =± 1

qa

d

dr
[r jl(qr)]|r=a∓

∓ a±(l)

qa

[
r h

(1)
l (qr)

]∣∣∣
r=a

(E,Zl,±1) . (3.126)

Hence, the Mie coefficients a±(l) and b±(l) are defined as follows:

a±(l) =
jl(qa) [rjl(qnr)]

′ − n2 jl(qna) [rjl(qr)]
′

h
(1)
l (qa) [rjl(qnr)]′ − n2 jl(qna) [rh

(1)
l (qr)]′

,

b±(l) =
jl(qa) [rjl(qnr)]

′ − jl(qna) [rjl(qr)]
′

h
(1)
l (qa) [rjl(qnr)]′ − jl(qna) [rh

(1)
l (qr)]′

,

(3.127)

where the derivatives comprising this expression are evaluated for r = a. Note also
that a+(l) = a−(l) and b+(l) = b−(l), therefore from now on we omit ± subscript.
The coefficients a(l) and b(l) describe the contribution of electric and magnetic
multipoles, respectively. Therefore, they have poles at complex frequencies
corresponding to electric and magnetic multipolar modes, respectively
[cf. Eqs. (3.106), (3.105)]. Note that these designations are consistent with those of
Bohren-Huffman book.

Results for multipole radiation
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Using the results from Sec. 3.4, we find the scattering pattern of the multipoles
excited in the sphere:

dPl,±1

dΩ
=
c |E|2(2l + 1)

8 q2 l(l + 1)

[
|a(l)|2 + |b(l)|2

] [
l (l + 1) |Yl0|2 + 2 |Yl1|2+

+(l − 1) (l + 2) |Yl2|2
]
. (3.128)

Total power scattered by the sphere

Psc =
c |E|2

4 q2

∞∑
l=1

(2l + 1)
[
|a(l)|2 + |b(l)|2

]
. (3.129)

The scattering cross-section defined as the ratio Psc/Sin reads:

σsc =
2 π

q2

∞∑
l=1

(2l + 1)
[
|a(l)|2 + |b(l)|2

]
. (3.130)

Additionally, it can be noticed that a(l) = (1− e2iδl)/2 and b(l) = (1− e2iδ′l)/2,
where the phase shifts δl and δ′l are defined as

e2iδl = −
h

(2)
l (qa) [rjl(qnr)]

′ − n2 jl(qna) [rh
(2)
l (qr)]′

h
(1)
l (qa)[rjl(qnr)]′ − n2 jl(qna) [rh

(1)
l (qr)]

, (3.131)

e2iδ′l = −
h

(2)
l (qa) [rjl(qnr)]

′ − jl(qna) [rh
(2)
l (qr)]′

h
(1)
l (qa)[rjl(qnr)]′ − jl(qna) [rh

(1)
l (qr)]′

. (3.132)

With such definitions, the scattering cross-section can be expressed via the phase
shifts as follows:

σsc =
2π

q2

∞∑
l=1

(2l + 1)
[
sin2 δl + sin2 δ′l

]
, (3.133)

which is analogous to the formula for the scattering cross-section in quantum
mechanics.

Extinction cross-section
Above, we have evaluated the incident power scattered by the sphere and

calculated the scattering cross-section. However, some part of the incident power
can also be absorbed inside the particle. To take into account both of these mechanisms
leading to the loss of incident energy, it is convenient to introduce extinction
Pext = Pabs + Psc.

Electric and magnetic fields are presented as a sum of the incident and scattered
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waves: E = E0 + Es, H = H0 + Hs. Hence, the time-averaged Poynting vector

S =
c

8 π
Re [E×H∗]

=
c

8 π
Re [E0 ×H∗0]︸ ︷︷ ︸

S0

+
c

8 π
Re [Es ×H∗s ]︸ ︷︷ ︸

Ss

+
c

8π
Re [E0 ×H∗s + Es ×H∗0]︸ ︷︷ ︸

Sext

.

(3.134)

Next we integrate Eq. (3.134) over the closed surface placed in the far field of
the scattering object and surrounding it. Taking into account that the energy of the
incident field is conserved without an object, i.e.

∮
S0 · n df = 0, we get

Pabs ≡ −
∮

S · n df = −
∮

Ss · n df︸ ︷︷ ︸
−Ps

−
∮

Sext · n df . (3.135)

Identifying −
∮

S · n df with absorbed power and
∮

Ss · n df with the scattered
power, we deduce that extinction is given by

Pext ≡ Pabs + Psc = −
∮

Sext · n df = −
∮

c

8π
Re [E0 ×H∗s + Es ×H∗0] · n df ,

(3.136)
where, in our case, the incident field is given by Eq. (3.117), and the scattered field
is given by Eq. (3.118). In these expressions, we apply Eq. (3.43) and omit the
radial components of the fields, which are negligible in the far-field zone. In fact,
we do not even need to use the far-field asymptotics for the spherical Bessel and
Hankel functions, since

jl(x)
[
xh

(1)
l (x)

]′
− h(1)

l (x) [x jl(x)]′ = i (3.137)

Using this identity and orthogonality of vector spherical harmonics, we deduce that

Pext =
c

2 q2

∞∑
l=1

(2l + 1) Re [a(l) + b(l)] , (3.138)

and, since S0 = c/(4π), the extinction cross-section is equal to

σext =
2 π

q2

∑
l=1

(2l + 1) Re [a(l) + b(l)] . (3.139)

Clearly, in the lossless case the extinction cross-section is equal to the scattering
cross-section, which yields an identity Re a(l) = |a(l)|2 or, equivalently,
Re a−1(l) = 1, which is also straightforward to see from the expressions for Mie
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coefficients Eqs. (3.127).
Evaluation of sphere polarizability
Let’s assume that the incident wave has polarization E = ex+i ey. Then it would

excite the dipole moment with dy = i dx rotating in Oxy plane counter-clockwise,
which is associated with the multipole coefficient aE(1, 1) = −

√
12π a(1). On the

other hand, the same multipole coefficient is defined via the dipole moment of the
particle as follows [Eq. (3.64)]: aE(1, 1) = iq3

√
4π/3 (dx−i dy) = 2iq3

√
4π/3 dx.

Since the strength of the field Ex is equal to 1, dx is equal to the particle polarizability.
Thus, we derive the following result for the particle polarizabilities:

αE =
3i

2 q3
a(1) ,

αM =
3i

2 q3
b(1) .

(3.140)

This said, the polarizabilities of the sphere are related to a(1) and b(1) coefficients
in Mie series. Clearly, the polarizability tensor of the sphere is isotropic, which is
fully consistent with the symmetry of the particle.

Equation (3.140) yields an important identity for the imaginary part of inverse
polarizability:

α−1
E = −2iq3

3
a−1(1) = −2iq3

3

h
(1)
l (qa) [rjl(qnr)]

′ − n2 jl(qna) [rh
(1)
l (qr)]′

jl(qa) [rjl(qnr)]′ − n2 jl(qna) [rjl(qr)]′
.

(3.141)

Here, h(1)
l = jl + i nl, where both jl and nl are purely real functions. Hence, for

any l Re a−1(l) = 1 and similarly Re b−1(l) = 1, and thus

Im α−1
E = −2 q3

3
,

Im α−1
M = −2 q3

3
.

(3.142)

Equation (3.142) is known as Sipe-Kranendonk condition, and it is valid not only
for spherical particles, but also for any lossless dipole scatterer. This imaginary
correction to polarizability is associated with the radiation losses.

In turn, the real part of the inverse polarizability of a small dielectric particle
can be expanded in series with respect to the parameter ξ = qa. The leading-order
terms read:

Re α−1
E =

1

a3

ε+ 2

ε− 1
− 3 ξ2

5 a3

ε− 2

ε− 1
, (3.143)
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Re α−1
M =

1

ξ2 a3

30

ε− 1
− 10

7 a3

2ε− 5

ε− 1
. (3.144)

Quite obviously, in the low-frequency limit ξ � 1 only the electric polarizability
remains, whereas the magnitude of the magnetic polarizability is proportional to
the square of frequency.

Quadrupole polarizability of the sphere
In a similar way, we can also calculate the quadrupole moment of the sphere

induced by the gradient of the external field. We define the quadrupole polarizability
as

QE
ij = αEQ (∂iEj + ∂j Ei) , (3.145)

QM
ij = αMQ (∂iHj + ∂jHi) . (3.146)

Scalar form of the quadrupole polarizability is dictated by the full rotational
symmetry of the sphere. Note that quadrupole polarizability of a less symmetric
object will have a more complicated tensorial form. The derivatives of the field
here are calculated at the center of the sphere. Below, we calculate the electric
quadrupole polarizability, whereas the calculation for the magnetic polarizability is
fully analogous.

Assume that the incident wave has the field profile E = (ex + i ey) e
iqz. Then

the only nonzero components of the quadrupole moment are:

QE
13 = QE

31 = αEQ

(
∂Ex

∂z
+
∂Ez

∂x

)
= iq αEQ , (3.147)

QE
23 = QE

32 = αEQ

(
∂Ey

∂z
+
∂Ez

∂y

)
= i QE

13 . (3.148)

On the other hand, we have the relation between the multipole coefficients and
the multipole moments, Eq. (3.58):

i
√

6

q4

2∑
m=−2

aE(2,m)Y2m =
1

2
Qij ni nj . (3.149)

Next, due to the form of Mie solution Eq. (3.119), for the given wave polarization
only aE(2, 1) is nonzero. Scalar spherical harmonic

Y21 = −
√

15

8 π
sin θ cos θ eiϕ = −

√
15

8 π
n3 (n1 + i n2) . (3.150)
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Therefore, Eq. (3.149) yields:

i
√

6

q4

(
−i
√

20π a(2)
) (
−
√

15

8π
n3 (n1 + i n2)

)
= iq αEQ n3 (n1 + i n2) . (3.151)

Finally, we derive:

αEQ =
15 i

q5
a(2) ,

αMQ =
15 i

q5
b(2) .

(3.152)

Since in the lossless case for all Mie coefficients Re a−1(n) = Re b−1(n) = 1,
imaginary correction to quadrupole polarizabilities reads:

Im α−1
EQ = Im α−1

MQ = −i q
5

15
. (3.153)

The latter condition can be associated with energy conservation for the quadrupole
source. In the limit q a� 1, the quadrupole polarizabilities are given by

αEQ ≈
ε− 1

2ε+ 3
a5 ,

αMQ ≈
ε− 1

105
q2 a7 .

(3.154)

Note that Eq. (3.154) agrees with the solution of electrostatic problem for the sphere
placed in the field of a point charge, see the book by Stratton for details.

Most importantly, even though the dipole and quadrupole polarizabilities were
extracted from the Mie solution describing the scattering of a plane wave, they can
be applied to arbitrary arrays of spheres interacting with each other via their near
and far fields.
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