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 I. Analytical models of femtosecond pulses dynamics in optical media 

Laser technology has gone a long way of improvements since the first laser was developed over 60 

years ago. Not only did the size of laser setups themselves change significantly, from full-table sized 

systems to those of a fingertip size, but also the time scaling, from microseconds to femtosecond (1 fs 

= 10
-15

 s) [1,2] and even attosecond (1 as = 10
-18

 s) [3] values currently common.  

Switch to femtosecond mode allowed an important increase of radiation intensity, without any  

medium destruction [4]. This gave rise to a study of new nonlinear phenomena, impossible to observe 

using pulses of longer duration. One example of such an effect is ultrabroadening of the radiation 

spectrum (supercontinuum generation), when the width of the latter becomes commensurate with its 

central frequency [5]. The phenomenon can be observed in most transparent materials when working 

in femtosecond mode and is usually accompanied by other nonlinear effects, e.g., self-action and self-

focusing [6–13].  

Another common phenomenon observed in femtosecond range, apart from the supercontinuum 

generation, is generation of light pulses characterized by few field oscillations [14–16]. The term 

―extremely short‖, used to denote such pulses, does not refer to their duration but to the number of 

cycles involved. For example, such pulses can be obtained in picosecond range, when the spectrum 

occupies the far IR spectral range [17,18], while their duration would reach attosecond values for UV 

spectrum [3,16,19,20]. Regarding visible and near IR ranges, pulses of 20-30 fs obtained by 

commercially available lasers (e.g. the Ti:Sapphire) include ca. 10 electromagnetic field oscillations.  

For an analytical description of nonlinear optical processes, the technique of a slowly varying 

envelope is used, supposing the radiation is quasi-monochromatic. However, there are additional 

limitations to be imposed to correctly describe extremely short pulses, which makes the mathematical 

model very cumbersome [1,21]. Both the modification of the method and a search of another 

theoretical model have been amply described [7,16,21–25]. Among them there is the field approach, 

featuring the pulse field rather than its envelope. The course suggested below considers the 

application of the latter approach for a mathematic description of nonlinear processes and phenomena 

resulting from the interaction between high-intensity femtosecond pulses and transparent dielectric 

media.  

I.1. Principles for construction of femtosecond pulses dynamic equations 

In this section the basics of the equations construction for transversely homogeneous plane waves are 

described in accordance with the field approach. The corresponding assumption is valid to describe 

the behavior of femtosecond pulses propagating through waveguides. In this case, it is possible to 

neglect the longitudinal field component for the power values below critical [10]. Taking it into 

consideration, Maxwell’s equation can be reduced to the form corresponding to that for non-magnetic 

dielectric media [26]:  

 ,  (I.1.1) 



 
 

 5 
 

where E stands for the electric field of the light wave, PL for the linear (relative to the field) 

polarization response of the medium, PNL for the nonlinear polarization response, z for the spatial 

coordinate along which the radiation propagates, t for time, c for the light velocity in vacuum. 

The dispersion of both linear and nonlinear parts of the polarization response is the crucial parameter 

to precisely describe the propagation of femtosecond pulses in transparent optical media. The reason 

to it lies in the fact that the spectrum of such short pulses can be very wide due to the self-action 

processes. Let us now refer to the way the equation (I.1.1) can be modified to describe accurately the 

propagation of the pulse having a wide spectrum in the media without nonlinearity (PNL = 0). The 

dependence of the isotropic optical media linear refractive index n on the light frequency ω, which 

lies in the media transparency window, can be described by the following equation to arbitrary 

precision [27]:  

,  (I.1.2) 

where N0, a, a1, ... , b, b1, ... are the empirical constants of the medium dispersion. The wave equation 

can be expressed as follows [28] for the dispersion relation (I.1.2):  

.  (I.1.3) 

The validity of the statement can be proved by partial solution of the equation (I.1.3) for the 

monochromatic radiation of the form:  

 ,  (I.1.4) 

where  is the amplitude of spectral components of radiation, k(ω) is the wavenumber. Thus, if the 

refractive index  dependence on the frequency has the form of (I.1.2),  the relation 

(I.1.4) is the solution of the equation (I.1.3).  

The equation (I.1.3) describes pulse propagation both forward and backward along the z-axis. To 

concentrate on the pulse dynamics analysis in one direction only, the switch to new variables is 

convenient , z' = z. The relation (I.1.3) is then reduced to:  

.   

 (I.1.5) 

Slowly varying envelope approximation [26] frequently used for acoustic waves (i.e. assuming the 

pulse profile changes less than central wavelength value) allows to neglect term  in (I.1.5). 

Consequently, one can easily integrate the equation (I.1.5) over the time variable τ to simplify it to the 

form: 

.  (I.1.6) 

Contracted (to the first order derivative of z') version of the wave equation (I.1.6) corresponds to the 

following dispersion relation:  

.   (I.1.7)  
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This shows that the slowly varying envelope approximation leads to the substitution of in the 

expression (I.1.2) for Expression (I.1.7) allows to describe with high precision the 

refractive index dispersion of optical materials in the transparency window [27]. This justifies using 

slowly varying envelope approximation not only for acoustics but for optics as well (if the medium is 

transparent). It is important that expression (I.1.6) helps to describe the dynamics of both a plane 

transversely uniform wave and a non-uniform mode in a waveguide [29].  For example, when 

capillary waveguide is filled with gas with a normal group dispersion, the combination of the 

dispersion and waveguide contribution allows to observe the anomalous group velocity dispersion 

(GVD) as well [29,30].  

A comparative analysis of the equations (I.1.1) and (I.1.3), can easily bring about the form of a 

generalized equation (I.1.3) for the case of a nonlinear medium:   

.   

 (I.1.8) 

A physical interpretation of slowly varying approximation is known to imply that light propagates in 

one direction only. In this regard, the nonlinearity of polarization response does not suggest there is 

also a backward wave, and equation (I.1.8) can be written in the following truncated form:  

.  (I.1.9) 

Thus, an analysis of the wave equation (I.1.9) in combination with material equations for the 

nonlinear polarization response  makes it possible to estimate the dependences of femtosecond 

pulses propagation on the initial energy, polarization, and their spectral and temporal characteristics. 

However, it is necessary to refer to the features of nonlinear material equations construction and their 

requirements before proceeding with the aforementioned problem analysis.  

I.2. Nonlinear dynamics of plane waves field equations 

The mathematical model describing field dynamics of femtosecond pulses propagating in transparent 

optical media (I.1.9) is quite general. There are ways to considerably simplify it for most practical 

cases. For example, provided the mode of radiation propagation is linear, the first, the second and the 

fourth terms of equation (I.1.9) are sufficient to describe the field dynamics to a high precision. When 

dealing with such a widespread material as fused silica, the dependence (I.1.7) reduced to the form 

containing the first, the second and the fourth terms only corresponds to the data obtained 

experimentally up to the third decimal for the spectral range from 460 to 1800 nm [31]. The given 

range comprises the larger part of the normal GVD region (limited by two-photon resonance in the 

UV range) and the entire anomalous GVD region lying within the medium transparency window. Due 

to the electronic nonlinearity of non-resonant origin in the spectral range mentioned, the dispersion of 

nonlinear refractive index coefficient of electronic nature can be neglected. Moreover, owing to the 
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short duration of the femtosecond radiation, one can eliminate the nonlinearity electron–phonon 

mechanism as well [32,33].  

The inferences mentioned justify the simplification of the expression (I.1.9) for the case when linearly 

polarized radiation is propagating in the dielectric medium of a wide transparency window. The 

simplified expression has the form  of [32]:  

,   (I.2.1)  

where . 

The expression (I.2.1) is sufficient to describe the nonlinear dynamics of ultrashort pulses even though 

they are of wide spectrum and imply few oscillations. In view of the above, the expression can be 

considered as that on a par with the cubic Schrödinger equation [1,21], widely employed for ultrashort 

quasi-monochromatic pulse dynamics description. Thus, all assumptions and approximations 

considered, the equation still addresses all the physical parameters needed to describe the dynamics 

(linear dispersion and inertialess nonlinearity) of ultrashort pulses propagating in dielectric media to a 

high precision.   

Much attention (e.g. [1,21]) has been focused on various modifications of the Schrödinger equation 

aimed at the description of ultrashort pulse dynamics giving an accurate consideration of the cases of 

their different polarizations, spectral compositions, and other input parameters of both radiation and 

propagation media. The equation (I.2.1) can also be modified according to the same principles.  

If the light is polarized not linearly, the equation (I.2.1) transforms to [34,35]:  

, (I.2.2) 

where h, akin g, denotes inertialess nonlinearity of the medium polarization response. A vector 

equation, similar to the one above, was derived in [36,37] for the two-level medium assumption, 

which suggests , . 

The equation (I.1.9) can also be modified to address the inertial electron–vibrational nonlinearity 

contribution to the ultrashort pulse dynamics. Thus, it takes the form of [28,38]: 

.   (I.2.3) 

It is obvious that apart from the terms describing linear dispersion and inertialess nonlinearity, the 

expression (I.2.3) also contains Raman scattering and two-photon absorption, which makes it different 

from the expression (I.2.1). The authors in [39,40] suggest a similar mathematical model allowing to 

describe ultrashort pulse self-action in Raman-active media. The model considers more profoundly the 

contribution to nonlinearity occurring due to the change in the population of vibrational states, 

however, ignoring the linear medium dispersion.  

However, the nonlinear medium inertia of electronic nature cannot be neglected in some situations. 

One example here is the case of the radiation spectrum lying in the high-frequency range, which 
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results in a two-photon electronic resonant nonlinearity [41]. Thus, the expression (I.2.1) is to be 

changed to the following form [28,29]:  

,   (I.2.4) 

where characterizes the inertialess contribution of excited electronic states mismatching the two-

photon resonance condition. The expression (I.2.4) may be employed to describe the contribution to 

pulse self-action from the dispersion of non-resonant electronic nonlinearity when its spectral 

components are far from the two-photon resonances. The authors in [42] were the first to analyze the 

way the refractive index nonresonant nonlinearity dispersion of electronic nature influences the 

dynamics of femtosecond pulses featuring ultrawide spectrum, utilizing a mathematical model (I.1.9).  

When ultrashort pulses propagate in a dielectric medium with wide bandgap and activator centers, in 

the case of one-photon resonance the expression (I.2.1) takes the following form:  

,   (I.2.5) 

where , ,  and  are the parameters of linear dispersion and inertialess nonlinearity of the 

dielectric matrix, and  is the term added to the polarization response nonlinearity caused by the 

presence of impurities in dielectric medium, , , ,  and  characterize the activator centers 

contributing to the latter process.  

Linear absorption can be considered by rewriting the expression (I.2.1) as follows [28,29]: 

.  (I.2.6) 

The refractive index then becomes complex , whereas the absorption coefficient 

dispersion takes the form of:  

.   (I.2.7)  

This section has developed the ideas describing the derivation of a field dynamics equation for 

ultrashort pulses featuring wide spectrum propagating in various optical media under the assumption 

of plane transversely homogeneous waves. The next step is to consider a more sophisticated case of 

paraxial wave packets with weak transverse inhomogeneity.   



 
 

 9 
 

I.3. Nonlinear dynamics of paraxial waves field equations  

The expression describing the radiation electric field dynamics in the case of arbitrary spatial field 

distribution when radiation propagates in dielectric nonmagnetic media, similar to that from Section 

I.2, can be written as [26]:  

,   (I.3.1)  

where E stands for the electric field applied, D characterizes the electric induction, t stands for time, 

and c is the speed of light in vacuum. Equation (I.3.1) can be easily transformed to equation (I.1.1) 

assuming waves are plane.  

If the light field is time-limited, the expression (I.3.1) immediately becomes consistent with 

Maxwell’s equation:   

.   (I.3.2)  

The first step is to consider the case of nonresonant interaction between light and dielectric media, 

their spectrum lying in the transparency window. If the medium is homogeneous and isotropic, its 

response to the incident radiation can be expressed in the form of [43]:   

,   (I.3.3)  

The first term of (I.3.3) is responsible for the electric induction inertialess linear part, the second  one 

deals with its inertial linear part, whereas the third one describes the nonlinear part of the medium 

response. The constant  in the expression (I.3.3) may be addressed as the medium dielectric 

permittivity at the radiation central frequency.  

Thus, considering the expression (I.3.3), the equation (I.3.2) is transformed to:  

.   (I.3.4) 

Considering the expression (I.3.4) and employing the vector relation , the 

equation (I.3.1) can be rewritten as [44,45]: 

. (I.3.5) 

The terms in (I.3.3) are related as:  

.  (I.3.6)  

Therefore, the expression above determines the possibility to represent the nonresonant light and 

matter interaction. As follows from the expression (I.3.6), the first two first are only sufficient to 

describe the field dynamics in the expression (I.3.5). The other terms represent the effects of 

dispersion, self-action, and are close in value. 

This section is devoted to the analysis of light beams dynamics having no transverse inhomogeneities 

and featuring transverse sizes much greater than the radiation central wavelength and small 

longitudinal field component. It seems to be evident that if the conditions are met, the two final terms 

of (I.3.5) are much lower than the third and the fourth ones, let alone the first two. For example, for a 

pulse propagating at an arbitrary point inside a medium, accompanied by electric induction 

oscillations, the following expression is true: 
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,  (I.3.7)  

where  stands for the maximum values of , and  describes the average oscillation 

period. Alongside that, the following expression is valid for the vectors , components in the 

Cartesian coordinate system: 

,  (I.3.8)  

where  is propagation direction; ,  are transverse coordinates; . For a light 

beam considered as short, the following expression is always true:  

,  (I.3.9) 

when , the relation (I.3.5) can be transformed to the form below: 

.  (I.3.10) 

It is sufficient though not necessary for the transverse size of the beam to be much greater than the 

central wavelength value in order to (I.3.5) to switch (I.3.10). For example, the two last terms in 

(I.3.5) are eliminated for two-dimensional linearly polarized TE-wave. Self-action of such pulses 

containing few field oscillations with the transverse sizes being significantly greater than was 

studied in [45], commensurate with  in [46], and for the non-paraxial monochromatic radiation in 

[47].  

The dependence of the dielectric permittivity linear part on the radiation frequency  , the form of 

the polinom, as well as the refractive index  linear part, is described by the expression derived 

according to (I.1.2): 

,  (I.3.11) 

This expression is consistent with Zelmeyer’s formula, as mentioned in section I.1, assuming all the 

spectral components of the pulse are much higher than the lattice oscillation frequencies and much 

lower than the electronic subsystem oscillation frequencies. The empirical constants ,  and from 

the expression (I.3.11) allows to describe the dispersion of the nonresonant part of the medium 

transparency window and takes account of the waveguide dispersion contribution with high accuracy 

if accurately chosen [29,30]. 

The transparent isotropic medium nonresonant nonlinear response of electronic nature occurring when 

exposed to the field of ultrashort pulses, the spectrum of which lies in the medium transparency 

window, can be roughly described as [28,41]:  

.   (I.3.12)  

represents the nonlinear dielectric permittivity coefficient for the linearly polarized radiation and is 

related to the nonlinear refractive index coefficient  in the following way:  

.   (I.3.13)  

The electronic-vibrational medium nonlinearity is not considered in this section. [48] shows that its 

contribution brings a negligibly small change in the result when the ultrawide spectrum pulses 

propagate in silica fibers. If the nonlinearity mentioned is not overlooked, the expression (I.2.3) can be 
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employed. A more sophisticated treatment of the way the nonlinearity of the electronic-vibrational 

nature influences self-action of ultrashort pulses is provided in section I.8. Besides, plasma 

nonlinearity is disregarded here as well [16]. Importantly, the latter does change the dynamics of the 

pulse tail quite significantly [49], resulting in filamentation [50,51], temporal pulse compression [52], 

and optical breakdown [53], when dealing with high-intensity femtosecond pulses.  

To characterize the nonlinear spatio-temporal dynamics of the radiation field for the paraxial case, the 

expression (I.3.10) featuring the electric induction linear part corresponding to the dispersion 

description (I.3.11), and the induction nonlinear part (I.3.12) takes the following form:  

.    (1.3.14) 

When solving the linearized equation (I.3.14) regarding monochromatic waves, it can be noted that 

the equation of field dynamics (I.3.14) considers the medium linear dispersion according to (I.3.11):  

,   (I.3.15)  

where describes the spectral radiation component amplitude, the radiation being linearly polarized 

along the  vector (I.3.15),  is the wavenumber. If the refractive index linear part dispersion can 

be written as  (as in (I.3.11)), the expression (I.3.15) represents the solution to the 

equation (I.3.14).   

Employing the slowly varying envelope approximation and considering radiation propagating in one 

direction (as described in I.1), expression (I.3.14) can be reconstructed to the form:  

.  (I.3.16) 

Here , z stands for the propagation direction,   denotes the transverse Laplacian. It can be 

shown that the simplified equation (I.3.16) conforms with the full refractive index dispersion of the 

medium expressed below when (I.3.15) is substituted into it:  

,   (I.3.17)  

where by the expression (I.1.7) 

,   (I.3.18) 

 .  (I.3.19) 

For the dispersion expressed as (I.3.17), the initial assumption of resonancelessness (I.3.6) can be 

rewritten as: 

.   (I.3.20) 

The expression (I.3.20) is in agreement with the experimental data obtained for self-focusing 

ultrashort pulses in transparent media, intensity reaching the values up to 10
14

 W/cm
2
. Thus, utilizing 
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Ti:sapphire laser as a source of radiation and fused silica as a medium,  equals for 

the intensity value I = 5·10
14

 W/cm
2
 

Assuming the slowly varying envelope approximation the dispersion dependence for (I.3.16) is 

simplified to the form:  

.   (I.3.21) 

The validity of the expression immediately follows from (I.3.20): 

As mentioned above, the expression (I.3.16) describes the electric field dynamics featuring arbitrary 

polarization. It can be simplified in the following way considering linearly polarized radiation:  

.   (I.3.22) 

Assuming  in (I.3.22), the resulting equation will describe the radiation diffraction 

in vacuum, as shown in [54].  [32] was the first to suggest the expression (I.3.22), considering the 

effects of diffraction, dispersion and nonlinearity, which was obtained through simplification of the 

wave equation and material equations characterizing polarization of electronic and vibrational nature.  

The expression (I.3.16) was first mentioned in  [34,55].  

To simplify numerical simulation for rapid estimations of the peculiarities of ultrashort pulse 

propagation employing the expression (I.3.22), the latter is to be normalized. It is also necessary 

switch to the moving coordinate system  , and introduce new variables: , 

, , , , where  denotes the maximal incident pulse field amplitude,  

is the field central frequency, and  its transverse coordinate. After substitutions, the expression 

(I.3.22) transforms to [44,45]: 

.   (I.3.23) 

The sign  is omitted in the expression (I.3.23). , denotes the radiation 

frequency, which corresponds to the medium GVD equal to zero. ,  is the 

additional nonlinear term of the medium full refractive index, which is caused by the external field of 

the amplitude .  is a linear dispersion term, and . The values of  

and variables depend on the media characteristics and the incident radiation parameters. The fact 

that one of them is stronger than the others describes the effect dominating during the propagation: 

normal (or anomalous) GVD, self-action or diffraction. 

I.4. Femtosecond pulses field dynamics equations based on the envelope approach 

Importantly, the expression (I.3.22) is more general compared to the widely used envelope dynamics 

approach to ultrashort pulse analysis [1,21], and, therefore, contains it as a particular case. One 

example is the equation modification for few-cycle pulse description [16,22]. The following 

substitution are applied to (I.3.22) to switch from field to envelope approach:   

  (I.4.1) 
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Here  denotes arbitrary frequency, , where is given by the expression (I.3.17), 

 is a new variable. The expression (I.3.22) takes the following form after the substitution:   

,  (I.4.2) 

where 

, , , , .  

To analyze the dynamics of a quasi-monochromatic pulse in nonlinear media it is reasonable to 

assume that features the carrier frequency in the expression (I.4.2) and  , on the other hand, 

describes the pulse envelope. Supposing the third and the fourth terms from the expression (I.4.2) are 

sufficient to precisely describe the medium dispersion, while the last one, featuring the harmonics 

generation, is neglected, the diffraction term is transformed to the form of [44,45]:  

,  

 (I.4.3) 

 

The latter expression can be obtained by means of partial integration of the first term of the right part 

in expression (I.4.2). Then the known nonlinear equation of ultrashort pulse dynamics can be obtained 

[1,21]:  

.   (I.4.4) 

For an accurate description of the k(ω) dependence in a wide spectral range, intrinsic to few-cycle 

pulses, the number of dispersion orders accounted in the equation (I.4.2) can be increased preserving 

the integrator responsible for diffraction. However, this term can be represented in a different form, 

for example, as in [22]:    

.   (1.4.5) 

The expression (I.4.5) validity can be easily checked by the operator  applied to the left and 

right parts of the equation.  

The last term of the left part in the equation (I.4.2) is neglected when working with envelopes. This 

results from the fact that the approach does not account for the ―fast‖ field oscillation dynamics. 

Therefore, despite the complete equivalence of the linearized equations (I.3.22) and (I.4.2) regarding 

nonlinearity, the latter does not consider generation of high harmonics and interaction between them 

and the input radiation (if no extra equations are introduced to the system), unlike the former. 

Moreover, advantages the envelope approach has over the work with a set of separate oscillations 
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almost disappear when applied to few-cycle pulses. This is explained by the fact that such pulses 

contain only a little more than one period of oscillation. The envelope thus loses its physical meaning, 

which also results in the expression (I.4.2) overcomplicated in comparison with (I.4.4) and field 

equation (I.3.22). 

Consequently, the equation (I.3.22) transforms to the cubic nonlinear Schrödinger equation for the 

pulse envelope modified to take into account high orders of dispersion in the extreme case of quasi-

monochromatic pulses. Thus, the equation (I.3.22) is more general than the fundamental equation of 

ultrashort pulse nonlinear optics. Similarly, it can be shown that expressions (I.2.2) and (I.2.3) can be 

converted to the Schrödinger equation in the extreme case mentioned, which is shown in [34] and 

[56].  

As follows from the analysis above, light pulse dynamics is usually considered in the perspective of 

slowly varying envelope approximation. Regarding the linear propagation mode with no diffraction 

effect, using such equations has no advantages over the envelope approach. However, the field 

equation potentials for an accurate description of the diffraction contribution for the case of single-

direction pulse propagation and nonlinear processes of the femtosecond pulse wide spectrum 

components generation and cross-modulation makes them a convenient tool for analyzing such pulses.    

The next section addresses the spectral approach to the propagation dynamics description of pulses 

featuring wide spectra (both spatial and temporal). This approach allows to accurately describe 

femtosecond pulse dynamics even when slowly varying envelope approximation is inapplicable. 

However, there are ways to modify the spectral approach to meet this assumption. One important 

difference of the spectral approach from field equations is a significant simplification of the non-

paraxial diffraction description. Its advantages are meaningful even in the field of linear optics.  

I.5. Linear equations of the spectral dynamics of non-paraxial waves  

First, diffraction of monochromatic radiation (i.e. pulses featuring narrow temporal, but wide spatial 

spectra) is to be analyzed. For simplicity, a dielectric, nonmagnetic, isotropic and homogeneous 

medium is considered. For such case, the fundamental equations of classical optics, e.g. Maxwell 

equations, take the form [26]:  

,   (I.5.1 a, b)  

where  and  denote the amplitudes of the full electric  and magnetic 

 fields correspondingly,  is the frequency of  radiation,  is dielectric 

permittivity of the medium at this frequency,  is the light velocity in vacuum. The two terms left, 

describing the solenoidity of vectors  and  (i.e. that their divergence is equal to 0), are easily 

derived from (I.5.1a) and thus are omitted. For convenience in operation, only the dynamics of the 

electric field is considered. For this purpose, the operator  should be applied to both left and right 

parts of the equation (I.5.1a). Then, substituting  with the right part of the equation (I.5.1b)  

right part and considering the electric field is solenoid, a simplified Helmholtz equation for E can be 

obtained [26]:  
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,   (I.5.2) 

where  is the wavenumber. Due to the equation (I.5.2) linearity and  scalarity, the field 

dynamics can be analysed for each of the Cartesian components separately solving the scalar 

Helmholtz equation with different boundary conditions considered for each of them.  

Supposing that  and  at , i.e. the radiation propagates along z axis, the 

spatial spectrum can be written as:    

,   (I.5.3) 

with ,  referring to spatial frequencies. Using (I.5.3), Helmholtz equation can be rewrittebto 

obtain [57]:   

.   (I.5.4) 

The equation (I.5.4) is a second order ordinary differential equation with the solution of the following 

form:  

,  (I. 5.5) 

where arbitrary constants  and are defined according to the boundary conditions.  

The solution (I.5.5) has two terms, the first one describing the wave diffraction along the propagation 

direction, and the second one referring to the backward diffraction. As follows from the (I.5.5), the 

equation (I.5.4) can be simplified to the form below considering the diffraction along the propagation 

direction only (i.e.  

.   (I.5.6) 

For a wide input pulse (i.e. at ) changing smoothly in transverse coordinate, its spectrum is 

narrow. In this case, the following equation is valid for all the components of the spectrum:  

,   (I.5.7) 

and thus, the expression (I.5.6) can be reconstructed to [58]:  

.   (I.5.8) 

The expressions obtained for the case of unidirectional propagation (I.5.6) and (I.5.8) represents the 

known non-paraxial and paraxial diffraction equations correspondingly. Performing their Fourier 

transform   

,   (I.5.9) 

one can get their field equivalents.  
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For example, accounting for the expressions (I.5.8) and (I.5.9), the paraxial field evolution equation is 

[58]:  

.  (I.5.10) 

Introducing the following substitution  

   (I.5.11) 

and considering the expression (I.5.10) terms with the transverse coordinate derivatives lower than the 

second order, the equation can be reconstructed to a parabolic one:  

.   (I.5.12) 

Equation (I.5.12) represents the Fresnel diffraction widely known and used in linear optics. The 

equation (I.5.12) can be derived from the Helmholtz equation under the approximation of slowly 

varying amplitude with substitution of (I.5.11) [26]:  

.   (I.5.13) 

Thus, slowly varying amplitude approximation (I.5.13) is similar to paraxial approximation in linear 

optics.  

Regarding non-paraxial diffraction, the expression (I.5.6) has a field equivalent [59]:  

,   (I.5.14) 

where [60] 

, 

 is the Hankel function. 

Derived significantly later than (I.5.12), the equation (I.5.14) is rarely quoted. There is instead a more 

common equivalent of (I.5.5) for the unidirectional propagation (i.e. ):) : 

.  

 (I.5.15) 

Here ,  refer to the spatial coordinates at . The equation (I.5.15) represents the analytical 

expression of Huygens–Fresnel principle [41] if . 

Consequently, expression (I.5.5) and differential equations (I.5.6) and (I.5.8) obtained by the spectral 

approach, have very cumbersome analogous (I.5.14) and (I.5.10) equivalents as well as (I.5.15). 

Therefore, numerical simulation and analysis of the diffraction are conducted significantly easier 

employing spectral approach, considering there is a wide range of mathematical software to perform 

fast Fourier transform [61]. The latter is crucial, especially for wide spatial spectrum radiation.   
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It is important that few Helmholtz equation (I.5.2) solutions solve the initial Maxwell’s equations 

(I.5.1) as well. Thus, (I.5.2) satisfies them only in the case of linearly polarized pulses featuring wide 

spatial spectrum. Then, for example, the solution along x axis can take the form of (I.5.5), being equal 

to zero along y and z axes.  However, one characteristic of such pulses is their divergence during 

propagation, which conflicts with the equation (I.5.1). In this case, the solenoidal field condition can 

be employed to simplify the Helmholtz equation solution for the field transverse components  and 

 and the longitudinal component :  

.  (I.5.16) 

For the spatial spectrum, equation (I.5.3) can be written as follows [59]:  

.   (I.5.17) 

Considering the case of unidirectional propagation and the expression (I.5.6), (I.5.17) can be rewritten 

as:   

.   (I.5.18) 

Obviously, the expression (I.5.18) is crucial when working with light fields of wide spatial spectrum. 

In can then be concluded that some studies of non-paraxial diffraction by means of Helmholtz (in the 

case of monochromatic radiation) or wave equations (if pulses are ultrashort) solve Maxwell’s 

equations only partially [62,63]. Such solutions can be obtained as described above, but also through 

some other approaches.  [63] suggests that the solution takes the form of a vector rotor, basing on the 

field scalar projections on Cartesian coordinates. The solution mentioned represents the that of the 

wave equation (and Helmholtz equation as well if the radiation is considered as monochromatic).  

Now the radiation of an infinitely narrow spatial, but ultrawide temporal spectra is addressed.  The 

case obviously denotes transversely homogeneous plane wave dispersion. The medium of propagation 

is still considered as dielectric, non-magnetic, homogeneous and isotropic. Maxwell’s equations can 

then be reduced to [26]:  

,   (I.5.19) 

where z is the propagation direction. Electric induction  is expressed as follows if there is no spatial 

dispersion present: 

,   (I.5.20) 

where  is a function of the medium inertia response.  

Here, the equation (I.5.19) solution written in the form of a transverse wave satisfies the Maxwell’s 

equations as well.  

Each transverse coordinate (  and ) temporal spectrum can be represented as:  

.   (I.5.21) 
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where  is the frequency variable. Using the expressions (I.5.20) and (I.5.21), the equation (I.5.9) can 

be rewritten to describe the spectrum:  

.   (I.5.22) 

Here  denote the medium refractive index in case of monochromatic radiation of frequency , 

given by . 

The differential equation (I.5.22) solution can be written as:  

,    (I.5.23) 

where values of  and  are defined according to the given boundary conditions. Like in (I.5.5), the 

first term in (I.5.23) characterizes the wave dispersion propagating forward along the z axis and the 

second one - backward.  

Thus, with  = 0 the equation (I.5.23) characterizes the case of unidirectional propagation, described 

by the following form of the expression (I.5.22):  

.   (I.5.24) 

The equation (I.5.24) makes it possible to analyze the radiation dynamics for propagation in media 

with arbitrary dispersion even of a compound form, for example, given by Zelmeyer’s formula [27]. 

However, regarding the main and most common case of the radiation, featuring spectrum that lies 

entirely in the media transparency window, the dispersion dependence can be described by the series 

(I.1.7).    

The equation (I.5.24) field equivalent can be characterized by the following integro-differential 

equation:   

,   (I.5.25) 

where  describes the medium response inertia.   

In view of the above, the refractive index dispersion can be written in the series form (I.1.7), the 

expression (I.5.25) for dielectrics will take the form (I.1.6), where  

. 

The equation (I.1.6) is derived from (I.5.24) under the assumption of  at . 

Employing the substitution (I.4.1), where  is described by the equation (I.1.7), and denotes the 

frequency corresponding to the expression (I.1.7), it becomes possible to express the complex 

amplitude  in the form of:  

.   (I.5.26) 

Here 
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,  .  

The requirement for the variable  from (I.5.26) to characterize the pulse complex envelope is  

being the incident radiation central frequency. To reduce (I.5.26) for the calculation simplicity, it is 

not the (I.1.7) but the positive power of  series that is to be used to approximate the dependence  

. However, this results in the reduction of the dispersion dependence accuracy compared to the 

(I.1.7), the number of terms being the same.  

Both (I.1.6) and (I.5.26) can be obtained directly from (I.5.19), using the approximation of slowly 

varying pulse envelope  (like in I.1 and I.4). The approximation validity for weak dispersion media 

case is obvious. Moreover, such requirement to the dispersion magnitude is needed only for the 

frequency range coinciding with the pulse spectrum. Consequently, slowly varying envelope 

approximation can describe the dynamics of wide spectrum pulses quite accurately for linear 

propagation in dielectrics featuring wide transparency window, contrary to a wide-spread presumption 

[1,21]. For this purpose, the pulse spectrum is to lie in the range complying with (I.3.20) and the 

dependences  or  to be sufficiently characterized by small number of power series terms. 

Thus, if the conditions are met correctly, the slowly varying envelope approximation can be employed 

even to accurately describe the supercontinuum generation process [10,64].         

Hence, the differential spectral equation (I.5.24) has its simple field equivalents (I.1.6) and (I.5.26) (in 

contrast to the integral-differential equation (I.5.25)) if the medium dispersion can be well 

approximated by a small number of power series terms throughout the entire pulse spectrum range. 

However, it is difficult to meet the requirements mentioned when working with radiation featuring 

wide spectrum, the dynamics of which is the focus of this work.  

Concluding the section, a generalization of the simplified dynamics equations of spatial (I.5.6), 

(I.5.18) and temporal (I.5.24) spectra, which can be quite wide in an arbitrary case, can be given:  

.   (I.5.27) 

Here 

               

denote the spatio-temporal spectra of the field components  where  are Cartesian 

coordinates.  

I.6. Nonlinear equations of the spectrum dynamics of non-paraxial waves  

To demonstrate the prospects of the spatio-temporal spectra dynamics equations in case of 

propagation in nonlinear media, a scalar analysis of the self-action between two-dimensional waves 

featuring linear TE-polarization can be made to generalize the spectral approach. It is also supposed 

that z is the radiation propagation direction, x denotes the transverse coordinate, and y is the radiation 

polarization direction. The propagation medium is considered as isotropic and homogeneous and has 
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arbitrary dispersion dependence . The medium electric induction nonlinear part can be 

represented in a simple form, i.e. . In this case,   describes the nonlinear 

permittivity with  denoting the medium nonlinear susceptibility. As mentioned above, such 

assumption for the nonlinear response can be taken as valid, with nonresonant nonlinearity of 

electronic nature. Almost inertialess nonresonant nonlinearity of dielectrics in the field of ultrashort 

pulses is justified by their weak nonlinear refractive index coefficient dispersion throughout almost 

entire transparency window [43]. 

Considering the above assumptions, the expression for the radiation temporal spectrum dynamics in 

dielectric media (I.3.1)  

  

can be rewritten as [46] 

. (I.6.1) 

The equation (I.6.1), in turn, can be rewritten for spatio-temporal spectrum  

  

in the following form: 

.   (I.6.2) 

To change from (I.6.1) to (I.6.2) the following expression is employed:  

. 

Expressions (I.6.1) and (I.6.2) characterize light propagation in both directions along the z axis and 

their interaction due to the medium nonlinearity.  

The following expression represents the solution of (I.6.2):  

,  

 (I.6.3) 

with and being the parameters of integration. Similarly to the above solutions, the first term in 

(I.6.3) characterizes propagation in positive z-direction, whereas the second one refers to the negative 

one. The expression (I.6.3) demonstrates that if propagation is unidirectional ( ), the non-

paraxial diffraction can be described as follows, within linear mode:  

.   (I.6.4) 

The expression (I.6.4) generally relates to linear radiation propagation modes. Its nonlinear equivalent 

is given by: 

,   (I.6.5) 
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where  denotes the undefined nonlinear parameter.  

As discussed in detail in section I.5, the physical meaning of (I.6.2) to (I.6.4) change is switching to 

unidirectional radiation propagation analysis. Obviously, the equation (I.6.4) solution only partially 

solves (I.6.2). As soon as the fact the solution of (I.6.5) solves (I.6.2) as well, it becomes possible to 

find the value of the nonlinear parameter  . To achieve it, the idea from [65] will help 

differentiate the expression (I.6.5) over  to then express  in terms of :  

.  (I.6.6) 

The following expression for  is obtained through comparison between (I.6.6) and (I.6.2):   

.   (I.6.7) 

Then,  can be written as:   

,   (I.6.8) 

where  denotes a yet unknown function. In order to define it, the following 

equations are required to be processed with high accuracy:  

,  

,  

,  (I.6.9) 

Equations (I.6.7) and (I.6.8) together provide then:  

, 

where 

.  (I.6.10) 
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Thus, the reduced nonlinear equation characterizing the spatial spectrum non-paraxial dynamics in 

case of unidirectional propagation can be represented as [46]:    

,  (I.6.11) 

with  obtained from the expression (I.6.10). 

Applying the substitution (I.6.6) and the equations (I.6.7)–(I.6.10), it is easy to show that the equation 

(I.6.11) can be transformed to the form (I.6.2) with an accuracy up to the fifth order in g. 

The expression obtained (I.6.11) is general enough allowing to analyze the wide (both spatial and 

temporal) spectrum radiation nonlinear dynamics. Using the equation (I.6.11), it becomes possible to 

accurately describe the phenomenon of spectral supercontinuum generation, as the expression (I.6.11) 

considers the refractive index linear part dispersion as arbitrary and there is almost no electrically 

induced nonlinear refractive index dispersion for the spectral range lying in transparency window of 

many dielectrics [41]. Another way to describe the radiation spatial spectrum broadening (i.e. 

occurring due to the self-focusing effect) is employing the equation (I.6.11) under the condition that 

the width is commensurate with the wavenumber. For the spatial frequency spectrum containing  

values over the wavenumber, the second term in (I.6.11) is real. Such components correspond to the 

spatial spectrum, which varies along the z-direction similarly to the field change in case of total 

internal reflection. To correctly analyze propagation of radiation, featuring ultrawide spatial spectrum, 

the backwardly propagating wave generation needs to be considered.  

Importantly, the pulse spectrum non-paraxial dynamics equation (I.6.11) can be easily generalized for 

the case of the medium featuring inertia nonlinearity of the response. For example, in  [66] the 

spectral equation nonlinear term considers both Raman and inertialess electric nonlinearities. The 

spectral approach is supposed to be further developed nonlinearly generalizing the equation (I.5.27) 

[67]. The authors in [68,69] discuss the importance of the longitudinal field component consideration 

in case of the non-paraxial radiation self-focusing, however, considering only quasi-monochromatic 

radiation.  

There is an advantage of the spectral approach over that addressing field when constructing the 

nonlinear dynamics equations that would be worth mentioning. It is easy to obtain iterative solutions 

in case of the spectral approach as the linearized equation usually has a rather simple form. It can be 

used as the initial iterative solution. An approximate solution of (I.6.11) can show it. 

Substitution below is used 

,   (I.6.12) 

which is the linearized equation (I.6.11) solution when . Further applying Pickard’s 

successive approximation method [70] the following expression can be obtained after the first 

interaction for the spectrum (I.6.12) complex amplitude [65] 
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,  (I.6.13) 

where  

,   (I.6.14) 

where  stands for the spatio-temporal spectrum of the incident radiation (i.e. ).   

For the value of  

  

the expression below becomes valid:  

. 

If  (as implied by the equation (I.6.11)), then  as well. For  the following 

expression is fulfilled:  

. 

I.7. Spectral approach for femtosecond pulse reduction to the field equations of 

pulse dynamics 

The nonlinear spectral equation (I.6.11) characterizing non-paraxial ultrawide temporal spectrum 

pulse dynamics includes both the particular case and the spectral and field equations quoted above 

[58].  

Supposing radiation being monochromatic and featuring frequency , that implies  

,   (I.7.1) 

the expression (I.6.11) can be rewritten in the form of a non-paraxial monochromatic radiation self-

focusing equation, neglecting harmonic generation [47]: 

. (I.7.2) 

Obviously, regarding the extreme case of a plane wave propagation along the -axis, the following 

expression is valid: 

,   (I.7.3) 

which means the equation (I.6.11) takes the form of:  
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. (I.7.4) 

The equation (I.7.4) describes spectral supercontinuum generation in a strong-dispersion waveguide. 

This equation was first obtained in [30]. The work suggests a technique to transform the expression 

(I.7.4) for weak dispersion as well. It takes the form of a known nonlinear field equation (I.2.1), which 

can be derived using slowly varying envelope approximation [32].    

The equation (I.6.11) can be reduced to the following form assuming paraxial radiation and 1 weak 

dispersion of medium features [58]:  

.  (I.7.5) 

The equation above is the spectral equivalent of the field equation:  

,   (I.7.6) 

The expression (I.7.6) represents a two-dimensional version of the equation (I.3.22). The refractive 

index dispersion dependence (I.1.7) is limited by the first frequency-dependent term only when 

writing the equation (I.7.6).  

To conclude, it was previously shown that the spectral approach is significantly more convenient than 

the one using fields when radiation features ultrawide temporal and spatial spectra. The fact was first 

proven for linear optics, by comparing the integro-differential and partial-derivative field dynamics 

equations with their spectral analogues, that are ordinary differential equations. It was shown then that 

this advantage in spectral equation construction simplicity can be employed to serve the nonlinear 

optics frequirements as well. A way to generalize the reduced spectral equations of linear optics in 

case of ultrashort pulse nonlinear propagation (both temporal and spatial spectra being ultrawide) has 

been introduced. Regarding the extreme cases, the spectral equations take the form of already known 

equations, i.e. non-paraxial monochromatic radiation self-focusing or spectral supercontinuum 

generation in waveguides. It has also been demonstrated that their field equivalents are relatively 

simple only under assumptions of paraxial radiation and weak medium dispersion, which are valid for 

multiple practical cases. Spectral approach is still highly useful in such cases as it helps to understand 

the limits for field approach applicability. 

The field and spectral equations discussed earlier in this section allow to analytically describe multiple 

effects of ultrashort pulse nonlinear optics. To proceed, it would be logical to discuss the nonlinear 

dynamics in optical waveguides fitting the transversely homogeneous plane wave assumption 

(described in section I.1).  

I.8. Femtosecond pulses self-action in waveguides  

The section focuses on the self-action of high-intensity femtosecond pulses featuring few oscillations. 

For example, the widely used Ti:sapphire laser generates pulses of 20-30 fs, which corresponds to ca. 

10 full electromagnetic field oscillation cycles. Exposed to such pulses, nonlinear media appear to 

show new features, since their short duration allows to use higher intensity without damaging or 

destroying the medium. This propels the study of well-known nonlinear effects and light-matter 
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interaction to the next level. For example, it results in elf-phase and cross-phase modulation leading to 

spectral supercontinuum generation, which inevitably destroys the medium if the pulses have longer 

duration. The previously discussed field and spectral approaches can be employed to describe the 

process of generating such ultrawide spectrum radiation.  

First, the basics of few-cycle pulse propagation laws will be considered provided the radiation is   of 

low-intensity.  

I.8.1. Femtosecond pulses dispersion broadening  

The nonlinear term can be omitted from the wave equation (I.2.1), provided the radiation is of low-

intensity. It can be then written as follows:     

.   (I.8.1) 

Figures I.1–I.3 demonstrate the solution for the equation above. Broadening the dispersion influences 

the pulse as 

,  (I.8.2)  

during its propagation. Here denotes the incident field amplitude maximum, is the pulse duration 

at full width half maximum, and is the radiation central frequency [22]. Suppose that  with 

. This implies that the pulse contains two full field oscillations at the input of the medium.  

 
Fig. I.1. Few-cycle femtosecond pulse dispersion broadening in fused silica. The radiation spectrum 

lies in normal GVD range. 

Figure I.1 demonstrates dispersion broadening of a pulse, the spectrum of which lies in the fiber 

normal group dispersion range under the assumption of  with  denoting the 

zero group velocity dispersion frequency (i.e.   in (I.1.7)). The latter relation corresponds to 

the wavelength value of  at  for fused silica [21]. Figure I.1 

shows that the pulse featuring spectrum lying in the normal GVD range broadens during propagation 
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in the medium, with shorter oscillation period in its tail part relatively to the front, meaning a linear 

frequency modulation takes place.  

Figure I.2 illustrates few-cycle femtosecond pulse field dynamics in fused silica at  (i.e. 

), its spectrum then lies in the medium anomalous GVD region. It shows that broadening 

is a backward process as referred to the case in Figure I.1, as the pulse oscillation period is longer in 

its tail than in its front.  

 
Fig. I.2. Few-cycle femtosecond pulse dispersion broadening in fused silica. The radiation spectrum 

lies within the anomalous GVD range. 

Figure I.3 illustrates pulse dynamics in the dispersion medium, the spectrum center of which 

corresponds to zero GVD frequency. i.e. . The results are obvious to differ significantly 

from those in Figures I.1 and I.2. Firstly, for the given parameters, the dispersion broadening proceeds 

much slower. Secondly, single-cycle subpulse separation takes place during the propagation. Such 

subpulses have a time delay from the main pulse and a phase shift relative to each other. 

 
Fig. I.3 Few-cycle femtosecond pulse dispersion broadening in fused silica. The radiation spectrum 

lies within the zero GVD range. 

In the case of high-intensity few-cycle pulses, and longer pulses as well [1,10], their propagation 

dynamics differs significantly depending on the GVD region of the pulse spectrum.   
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I.8.2. Femtosecond pulses temporal spectrum ultrabroadening  

If the incident radiation spectrum is within the range of normal GVD, the third term from the 

expression (I.2.1) can be ignored. (I.2.1) then transforms to the modified Korteweg-de Vries equation 

form:  

.   (I.8.3)  

As the  and coefficients from (I.8.3) take positive values, such equation cannot be solved in a 

solitary wave form [71]. This expression characterizes pulse dispersion broadening amplified due to 

the nonlinear refraction.  

Figure I.4 represents numerical simulation results [38] for Ti:sapphire laser radiation (featuring the 

energy value of  and central wavelength corresponding to the normal GVD of the 

medium, which is , and the pulse duration ) propagating in a silica optical 

fiber with the core radius of . This fiber has the following dispersion parameters: 

. The parameters allow to describe the refractive index 

dispersion dependence with an accuracy of down to   [72] using the formula (I.1.7) in the range 

of 550–1100 nm. The nonlinear refractive index coefficient is  for fused 

silica.  

 
 

Fig. I.4 Few-cycle femtosecond pulse evolution when propagating in silica fiber in the case of normal 

GVD for the following input pulse parameters: . 

(a) radiation electric field dynamics; (b) instantaneous frequency  normalized by the input 

radiation central frequency value  change; (c) radiation power-density spectrum, where the dashed 

line refers to the electronic-vibrational nonlinearity whereas  the solid line does not.  

Figure I.4a shows that the nonlinear pulse broadening occurs during the propagation process. 

Moreover, linear phase modulation takes place, implying that the instantaneous pulse period  

grows linearly from its front to the tail. It is proved by the instantaneous frequency  

dynamics depicted in Fig. I.4b. 

High-intensity few-cycle femtosecond radiation spectrum dynamics in the case of propagation in 

silica fiber is shown in Fig. I.4c. Strong asymmetric spectrum broadening is witnessed in the range of 

450–1500 nm at the propagation distance . The ratio of the spectrum half-width  to 
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the central frequency , denoted as , increases 5 times and takes the value of 0.3. 

Propagating farther in space, there is not further spectral broadening, which occurs because of the 

pulse temporal broadening resulting in the intensity decrease and thus lessening the nonlinearity 

impact.  

Fused silica, a widely used material for optical fiber production, is a Raman-active medium. Thus, it is 

not appropriate to employ either the modified Korteweg–de Vries equation (I.8.3) to describe pulse 

dynamics in such media, or the expression (I.2.1). To correctly address Raman nonlinearity 

mathematically, a nonlinear equation system (I.2.3) has to be used. Figure I.4 [73,74] shows the 

differences between the radiation spectra whether considering the electronic-vibrational (i.e. Raman) 

nonlinearity or not. The following parameters are used in this case [21,41]:   

. 

As shown in Fig. I.4, consideration of electronic-vibrational nonlinearity introduces minor changes to 

the femtosecond radiation propagating in nonlinear medium spectrum only. Besides, the contribution 

suppresses the spectrum broadening, the difference between the input and output spectra widths 

reaching 10%. The magnitude of the spectra Stokes shift caused by the electronic-vibrational 

nonlinearity leads to a decrease in the radiation frequency total shift to higher values.  

Figure 1.4b shows that the instantaneous frequency dependence becomes quasilinear during the pulse 

broadening (both its temporal shape and spectrum) when it propagates in fused silica. The statement is 

general and follows from the modified Korteweg–de Vries equation (I.8.3) asymptotical solutions 

featuring positive  and  values [75]. Such simple phase modulation dependence is useful for the 

efficient temporal pulse compression. Employing special pulse compressors allowing to phase-match 

light pulse spectral components, it is possible to obtain a pulse of a duration inversely proportional to 

its spectrum width.  

I.9. Self-focusing of femtosecond pulses in bulk media  

The few-cycle femtosecond pulse transverse structure change, occurring due to self-focusing in bulk 

media, as well as in waveguides, is accompanied by spectral supercontinuum generation [76–80].  The 

phenomena (3+1)-dimensional theory is based on the equations characterizing spectral and temporal 

dynamics of the envelope [76–80], even in the case of ultrashort pulses, the spectra of which are 

subjected to ultra-broadening. However, as already discussed in section I.4, the method using 

envelope approach loses its advantage for few-cycle pulse description, that is, the absence of necessity 

to analyze each single oscillation of the pulse separately. This happens due to the fact that such pulses 

have the duration commensurate to a single oscillation. Moreover, the loss of the physical meaning of 

ultrashort pulse envelope is significantly complicates envelope dynamics equations. Most importantly, 

the approach implying pulse envelope concept does not allow to address effects related to 

considerable envelope shape modifications, e.g. shockwave breaking, whereas the field approach is 

free of the above drawbacks.  
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The few-cycle pulse self-focusing process is analyzed considering the results presented in [44] using 

the field equation (I.3.23) numerical solution. The input field is axially symmetric and is represented 

by:  

,  (I.9.1) 

featuring the central wavelength value of , which corresponds to the 

Ti:sapphire laser radiation. The pulse duration and transverse size are assumed to be  and 

 correspondingly. The propagation nonlinear medium is fused silica featuring the 

following parameters:  and 

 ( ). 

Figures I.5–I.6 represent the results of few-cycle pulse propagation numerical simulation for various 

peak intensity values ( ), the propagation medium being fused 

silica. Figures I.5–I.6a–e depict three-dimensional axonometric visualization of the pulse field , 

normalized by the maximal output value  dependence on the transverse coordinate , normalized 

by the central wavelength value, and on the time . Since the field negative values are symmetric to 

the positive ones, they are omitted for convenience of representation. Figures I.5–I.6f–j, in their turn, 

demonstrate the inplane spatial and temporal field distribution images, with red peaks corresponding 

to the positive maximum field values and blue ones - to the negative. Analysis of such cross-section 

allows to follow the pulse phase changes occurring during its propagation in the medium.  

Figure I.5 demonstrates the few-cycle femtosecond pulse field dynamics, with the input field intensity 

of   ( ). This intensity value is clearly not enough to result in any 

significant medium nonlinearity contribution to the pulse dynamics. Consequently, the pulse is 

subjected to the diffraction (spatial broadening) and dispersion (temporal broadening) while 

propagating, which is accompanied by its wavefront curvature, typical for normal GVD. 
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Fig. I.5. Few-cycle femtosecond pulse electric field spatio-temporal dynamics for the following input 

parameters:  in fused silica: 

. 

Figure I.6 shows few-cycle femtosecond pulse electric field spatio-temporal dynamics for the 

maximum input intensity value , when propagating in fused silica. For the 

major part of wave packet the spatial self-focusing is seen to be dominating at the first stage of its 

propagation, resulting in a rise of the field amplitude on the axis where the central part is located (Fig. 

I.6b). Besides, there is a phase shift on the axis, which is significantly larger compared with the values 

at the periphery, i.e. by  in Fig. I.6g, and by more than  in Fig. I.6h. 

The on-axis field amplitude increase leads to the rise in the nonlinear contribution to pulse dispersion 

broadening (Fig. I.6c, h). An asymmetric dumbbell-like field distribution is then formed. This field 

front has longer oscillation period and low-frequency components, whereas its tail features shorter 

oscillation period and high frequencies. A high-intensity ―bridge‖ is likely to connect the two pulses, 

separated in space and featuring different spectral components. The ―bridge‖ itself is wrapped in a 

light-―cloud‖ featuring a slightly different frequency.  [81], represents a study of the ultrashort pulse 

self-action dynamics in terms of the generalized nonlinear Schrödinger equation for their envelopes 

numerical solutions, such a dumbbell-like field distribution is a butterfly-shaped structure. Regarding 

few-cycle pulses, the effect described is similar to the well-known effect of a longer femtosecond 

pulse splitting into two shorter ones [23].  
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Fig. I.6. Few-cycle femtosecond pulse electric field spatio-temporal dynamics for the following input 

parameters:  in fused silica: 

. 

A further electric field amplitude decrease, occurring due to the pulse nonlinear dispersion 

broadening, results in the intensity reduction and following diffraction-dispersion broadening of a 

quasi-linear dumbbell-like structure (Fig. I.6d, i).  

The femtosecond pulse self-focusing critical power estimation is further considered. The ratio of the 

normalized constants  from the field equation (I.3.23) is equal to the ratio of the radiation power 

to self-focusing power  up to a numeric constant [82]. In this case, the monochromatic pulse, 

featuring transverse Gaussian profile at its near-axial part, is transversely self-focused due to the 

medium nonlinearity, considering its power  and the aberrationless approximation [26,82]. 

Thus, the ratio  is a crucial parameter of the pulse transverse dynamics when it propagates in 

transparent nonlinear media including few-cycle femtosecond pulses [78,83]. However, the ratio  

 alone is not enough to predict the behaviour of the few-cycle pulse transverse dynamics [84].  

For the axially symmetric femtosecond pulse given by (I.9.1) featuring the input peak intensity value 

of , transverse width of and central wavelength 

  (corresponding to the Ti:sapphire laser radiation) propagating in bulk fused 
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silica, the normalized coefficients from (I.3.23) take the following values: ,  

and  [84]. 

The next step is to analyze of the self-focusing nature regarding the parameters mentioned for pulses 

of various duration.  

Figures I.7 and I.8 illustrate the few-cycle pulse propagation numerical simulation results for various 

duration values, which make one and a half ( , Fig. I.7a–e), three ( , Fig. I.7f–j) 

and six ( , Fig. I.7k–o) cycles, considering  [84]. Figure I.7 represents 

the few-cycle pulse electric field module  spatial and temporal dynamics for radiation 

propagating in nonlinear media at various distances z. This shows pulse spatio-temporal structure 

characteristic features, pulse phase front dynamics, allowing to estimate the changes occurring during 

propagation. Figure I.8 describes the on-axis pulse normalized temporal profile for 

various propagation distance z values. These graphs provide  information about the pulse field 

dynamics on the axis of propagation. Figure I.9 shows the on-axis pulse spectrum dynamics 

. 

 
Fig. I.7a. Femtosecond pulse electric field spatio-temporal dynamics for the following input 

parameters: ; ;  in fused silica ( ; 

; ) for various duration values: a–e) ;  f–j) ,  k–o – 

 at various distances, a, f, k – , b, g, l – , c, h, m – , d, i, n 

– , e, j, o – .  
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Fig. I.8. Pulse electric field paraxial dynamics  ( ) in terms of its duration: a – ; b – 

; c – . Propagation parameters correspond to those used in Fig. I.7. 

 
Fig. I.9. Cn-axis pulse spectrum module dynamics ( ) for radiation propagating in fused silica 

for the parameters corresponding to those used in Fig. I.7 and following pulse duration values: 

 (red solid curve);  (blue dashed curve);  (black dotted curve). 

This self-focusing corresponds to the dumbbell-like temporal structures described above. The figures 

show that initial-stage field dynamics is defined by transverse compression, together with the pulse 

duration increase, occurring due to temporal profile nonlinear broadening and silica normal GVD in 

this spectral range. The pulse duration increase results in the electric field strength decrease compared 

to the dispersionless propagation case, and, therefore, nonlinear effect weakening. This self-action 

mode has a self-focusing limit, implusing the formation of a spatio-temporal structure of minimal 

transverse size in the ―bridge‖ area (referred to as ―nonlinear focus‖ in [84]). Regarding the extreme 

case, the amplitude increase is under a strong influence of the envelope breakdown, due to high-
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frequency spectral part formation. The process description requires a consideration of the medium 

dispersion.  

Figure I.7 shows that spatio-temporal dynamics is strongly dependent on the pulse duration. Few-

cycle pulses are greatly affected by dispersion effects, which occurs due to their initial spectra being 

wider. As a result, the overall contribution of nonlinear effects is less for shorter pulses, the intensity 

value remaining unchanged. Moreover, shorter pulses exhibit less visible spatial compression (Fig. 

I.7) and less spectrum broadening regarding the initial ones. For longer pulses, the waist shifts closer 

to the pulse tail (Fig. I.7a, b, c). The pulse on-axis nonlinear phase shift increases in terms of the 

periphery along with the pulse duration: for the propagation distance of 0.2 mm the nonlinear phase 

shift has the value of  for the pulse duration of  (Fig. I.7c), about  for the pulse 

duration of  (Fig. I.7h) and more than  for the pulse duration of  (Fig. I.7m). The 

envelope breakdown and high-intensity pulse spectrum wing become apparent for the pulse of 

 (Figures I.8, I.9) only. 

The radiation self-focusing efficiency is quantitatively defined by the pulse electric field amplitude 

maximum value [84]. Figure I.10 shows the field maximum amplitude dependence on the pulse 

propagation distance z for the same duration values as those used above (curved 1-3). To emphasize 

the spatial effect importance, numerical calculations have been conducted, however, neglecting the 

diffraction contribution (i.e. omitting the diffraction term from the equation (I.3.23)). This case 

corresponds to the plane-wave approximation, namely ,  (Fig. I.10, curves 1′–3′), 

which shows that the intensity of pulses featuring no frequency modulation at the input is 

monotonically decreasing due to  the duration increase. Besides, similar behavior is typical for pulses 

of all the durations used (i.e. 1.5 , 3  and 6 ). The field maximum amplitude decrease is more 

evident for shorter pulses (as expected).   

Consideration of the diffraction (transverse) effects makes the propagational change in the amplitude 

maximum become significantly more apparent. Fig. I.10 shows that curves 1–3 initially take the 

position above curves 1′–3′ This means that the self-focusing impact is the strongest for all the three 

frequency values considered. Curve 1 represent the shortest duration, i.e. 1.5 field oscillations. Being 

almost horizontal at the input, the function is monotonically decreasing. There is no intensity increase 

(relative to the input value) observed, regardless of the focal region presence (Fig. I.7, b–e). This 

means that dispersion and diffraction are ―blurring‖ the pulse both transversely and longitudinally, 

which, in the case of such a short pulse, undermines the nonlinear refraction contribution resulting in 

the peak intensity decrease. The radiation parameters and medium characteristics allow to conclude 

that duration value of  refers to the extreme case. For pulses featuring longer duration 

self-focusing leads to the field amplitude increase as early as at the initial propagation stage. For the 

pulse duration of  the nonlinear focus amplitude is 1.4 times higher than the input value 

(Fig. I.10, curve 2). For the pulse duration of  the nonlinear focus field amplitude increases 

exponentially becoming 2.5 times (Fig. I.10, curve 3) higher. However, the limitation is still there and 

the values are the same due to the envelope breakdown and high-intensity pulse tail formation (Figs. 

I.8 and I.9).  
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Fig. I.10. Electric field amplitude maximum value dynamics in terms of the propagation distance  in 

fused silica. Solid curves 1–3 consider diffraction effects, whereas the dotted ones 1'–3' do not 

( ). The simulation parameters used correspond to those in Fig. I.7. 

Thus, the few-cycle pulse self-focusing efficiency decreases along with the pulse duration regarding 

the radiation propagating in transparent media featuring cubic electronic nonlinearity and normal 

GVD. The shorter pulses, suffering dispersion broadening, feature big transverse size in the nonlinear 

focus region, though small amplitude. For example, 1.5-2-cycle pulses of the peak intensity 7.5·10
12

 

W/cm
2
 propagating in fused silica have minimal transverse size lower than their input value. For 5-10-

cycle pulses the transverse pulse compression occurs closer to its tail, the maximum compression 

reaching 5-7 times.  

The few-cycle pulse paraxial self-focusing process analysis demonstrates that their transverse sizes in 

nonlinear media can be commensurate with their central wavelength values. This leads to a conclusion 

that a more profound analysis of the phenomena must take into consideration non-paraxial 

propagation. Sections I.5 and I.6 have shown that spectral approach can be used for the above 

purpose.  

II. Effect of laser-ionized liquid nonlinear characteristics on the optical-to-

terahertz conversion efficiency 

Terahertz (THz) broadband radiation is of considerable interest both for the fundamental science 

and for numerous applications: wireless information transmission, non-destructive materials 

diagnostics, biomedicine [85–87]. These applications require efficient and economical THz radiation 

source and motivate an active search for new methods and development of modern systems for a high-

power THz wave generation. 

One promising technique based on the THz generation in optical media during the plasma 

formation by near-IR range femtosecond pulse filamentation. In particular, this method is attractive 

due to a wide spectral coverage of the output THz field and its relatively simple experimental 

implementation. Further development of the plasma-based THz sources is associated with a search for 

the generation medium with a high damage threshold, weak absorption in the THz range and 

pronounced nonlinear effects. To date, this direction includes the research on the THz waves 

generation in various gases [88], metals [89] along with latest studies on the liquid media [90–92]. 
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Considered firstly unpromising due to the relatively high THz absorption, liquid media turned out to 

be an optimal solution for the THz waves generation due to their high molecular density, strong 

nonlinearities and high damage threshold. 

Among theoretical studies of spectrum superbroadening during ultrashort pulses filamentation in 

optical media, review [93] is of particular interest. However, most papers in this review analyze the 

evolution of the laser pulse complex envelope during its self-action in a nonlinear medium. This 

approach ceases to be applicable in the case of the intense near-infrared laser pulse propagation and 

subsequent generation of radiation with a spectrum so superbroadened that it also covers the THz 

range. In order to analyze such issues, it would be appropriate to study the pulse field dynamics itself 

instead of its envelope, as, for instance, in [91], where the field approach is used to describe the THz 

waves generation in liquid nitrogen. In addition, it was demonstrated in [94] that the THz emission in 

plasma formed by irradiating water with intense Ti:Sa laser subpicosecond pulses can be successfully 

described by field equations. 

The theoretical approach used in [94] to interpret the experimental results on the THz waves 

generation during plasma formation in a water jet is based on a system of equations similar to (I.3.5):  

                                                                                            (II.1) 

where  and  characterize the linear dispersion  in liquid media, which is 
reasonable even for the case of spectrum superbroadening, since a high proportion of the radiation 

energy remains within the region of the normal group dispersion;  describes inertialess Kerr 

nonlinear medium response;  and  refer to the highly excited states population: and the current 

density of quasi-free electrons;  and  characterize the collision and relaxation time of highly 

excited states. The effect of diffraction is neglected here since thin (100-300 ) liquid jets are used 
in the experiments which were described above.  

The temporal evolution of the current density is proportional to the electric field  and the 

electron density , the inertialess transition of which from the excited states is proportional to . 
This leads to cubic field dependence. The third equation of the system described above is responsible 

for the change in the excited states population density, which is determined by . 

The latter two dynamics equations were derived in [95] on the basis of the density matrix 
formalism, but they can be easily explained using a well-known equation [96]:  

                                                                                (II.2) 

which describes the population difference of the excited e and ground g electron states 

 dynamics for a two-level system;  is equilibrium population difference,  is the 

relaxation time of electron population;  is a characteristic oscillator intraband relaxation time; 

 determines the energy gap between the lower and upper state. 

Using the non-resonant approximation with  the equation (II.2) can be written in the 
following form:  

                                                                                             (II.3) 

Here the energy gap between the levels is considered large enough to take into account 
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equilibrium population . The inertial and instantaneous parts can be further studied separately as 

:  

                                                                                                 (II.4) 

where . 

It is sufficient to consider only the inertialess mechanism of changing the electron density when 
describing the transitions from the excited states to the quasi-free ones.  Thereby, the cubic field 
dependence of the current density is justified.  

The system of equations (II.1) can be reduced to the one field equation as follows:  

                          

                                                                                                                                                 (II.5) 

Here  is an empirical coefficient, which describes the plasma nonlinearity, where αβ 

determines the efficiency of the electrons transition to quasi-free states [94]. 

For the numerical simulation and further theoretical investigation, it is convenient to work with 

the normalized form of (II.5), introducing dimensionless parameters ,  ,  

, where    is a pulse peak amplitude at the medium input,  is central radiation 

frequency corresponding to the wavelength of =800 nm:  

  

(II.6) 

where , . 

In order to satisfy the experimental conditions, a chirped Gaussian pulse is used as an input field, 
taking upon normalization the form of: 

                                                                             (II.7) 

where  is pulse duration and ;  determines frequency modulation, which is 

chosen so that the width of the chirped pulse spectrum fits the width of the 35 fs spectral-limited 
pulse.  

The experimental results along with theoretical dependences of THz radiation energy on the 
pump pulse energy during THz generation in laser-ionized water jet are presented in Fig.II.1a 
Experimental setup similar to that in [96] has been used based on 800 nm femtosecond laser with a 
p-polarization and pulse duration of 400 fs.  
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Fig. II.1 (a). Experimental and numerically simulated THz radiation energy dependence on the pump 

pulse energy in the case of its generation in a flat water jet. (b) Numerical simulation of the pulse 

spectrum dynamics during its propagation in a medium with the intensity 

over the distance of 150 µm. The inset shows the spectral and temporal 

forms of the THz signal as a numerical simulation result in the range of up to 2.5 THz.  

The following medium parameters have been used: a = 3.6 · 10
−44

s
3
/cm,  = 1.4 · 10

−24
cm · s/W,  

= 4.5 · 10
10

cm
3
/(s

2
 · W

2
 ), τc = 1-2 fs [97] and τp = 150 fs [98]. The optical-to-terahertz conversion 

efficiency taking the linear THz absorption into account makes 10
−4

 [94]. The numerically simulated  

pulse spectrum dynamics during the propagation in the medium with the above characteristics and the 

intensity of   over the distance of 150 µm is presented in Fig. II.1b The 

inset demonstrates the spectral and temporal forms of the THz signal as a numerical simulation result 

in the range of up to 2.5 THz. Thereby, the described theoretical model has been confirmed to be valid 

for studying the THz waves generation, fitting the experimentally obtained quasi-quadratic THz 

energy increase with increasing pump energy. 

 The nature of this dependence cannot be theoretically justified in any simple fashion. However, it 

is possible to give an estimation. Since the Kerr third-order nonlinear effect induces cubic temporal 

field dependence, and the plasma nonlinearity is proportional to , multiplying the field equation 

(II.5) by E, it can be shown that . Summarizing all these assumptions, this estimate 

demonstrates almost quadratic and cubic dependence of the THz radiation energy on the pump 

intensity, being in good agreement with the experiment. 

Moreover, it is now possible to estimate the relative contribution of the third-order nonlinearity 
and induced plasma using the normalized coefficients in (II.6), which determine the effect of each 
physical process on the strong field dynamics during the pulse propagation. Fig. II.2. shows the 
comparison of the THz signal generated in the cases of only Kerr or plasma nonlinearity 
contribution, as well as their mutual effect. It can be seen that the contribution of plasma nonlinearity 
is stronger. Furthermore, taking into account both plasma and Kerr nonlinearities, THz signal 
decreases due to the redistribution of energy between the third and fifth-order nonlinearity 
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mechanisms. 

It is then of considerable interest to study the influence of the ratio  on the THz generation 

efficiency. Fig. II.3. represents the THz radiation energy dependence on the induced plasma effect 

contribution with various fixed values of the third-order nonlinearity contribution. A characteristic 

curve, which can be separated into two regimes of THz waves generation, is observed for each fixed 

value of .  

 

 

Fig.II.2. Generated THz pulse temporal form, considering the effect of only Kerr (black) or plasma 

nonlinearity (blue) during its propagation, as well as their mutual contribution (red). 

The first mode corresponds to a weak ionization of the medium, in which there is an increase in 

optical-to-THz conversion efficiency with the dominance of third-order effects and a following 

decrease, which can be explained through the destructive mutual Kerr and plasma formation effect. 

The second mode (strong ionization) corresponds to a sharp THz radiation energy growth starting 

after a characteristic minimum, which, presumably, corresponds to the medium ionization threshold. 

In this case, the contribution of plasma nonlinearity over the Kerr one prevails. 
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Fig.II.3. THz radiation energy dependences with the growth of the ratio  for a range of fixed 

normalized third-order nonlinearity coefficient .  

Furthermore, it has been revealed that with an increase in the third-order nonlinearity effect, the 

described minimum (a transition between the modes) is shifted towards smaller ratio values. The  ratio 

studies can be expressed through the equation , from which it can be seen that 

it is proportional to the pump energy. Thereby, a decrease in this ratio for media with a strong Kerr 

nonlinearity corresponds to the case in which less pump energy is required to overcome the transition 

between the modes. The arrow and dots in Fig. II.3 demonstrate the THz radiation energy growth with 

an increase in the normalized Kerr nonlinearity coefficient for a fixed plasma effect. This result can be 

explained by a redistribution of the pump energy to the third-order nonlinearity mechanism. 

III. Nonlinear refractive index in the THz frequency range in semiconductor 

crystals and liquids 

There are various phenomena that contribute to the nonlinear optical response in the media studied 

[41,99–101]. Some of these phenomena are based on the nonlinear response of each atom or 

molecule, while others are associated with a change in the concentration of these particles, for 

example, due to thermal expansion of the substance in the presence of high-intensity radiation. The 

first case is called ―low-inertia‖ nonlinearity, and the second one - ―high-inertia‖ nonlinearity. In the 

case of ultrashort optical pulses, including intense picosecond pulses of the THz frequency range, the 

dominant nonlinearity mechanism, as a rule, is the low-inertia one. For pulses in the visible and near-

IR spectral ranges, the dominant low-inertial nonlinearity mechanism is electronic. It was previously 

shown that for pulses in the far infrared region, which in the generalized case also includes the THz 

range, the dominant nonlinearity mechanism is associated with anharmonic lattice vibrations [99,102]. 

III.1. Theoretical approach for assessing vibrational low-inertial nonlinearity of 

crystals within the THz frequency range 

Following the theoretical approach proposed in [99] for calculating the coefficient of the nonlinear 

refractive index in the THz frequency range of the crystal, the structural unit of which in this case is 

the classical anharmonic oscillator with quadratic and cubic nonlinearities, we give a brief conclusion 

of this formula described in [99]. To analyze the vibrational nonlinearity of a crystalline material, we 

consider the dynamics of ions in the lattice caused by the action of an external electromagnetic field. 

The equation of the classical oscillator is defined as: 

, (III.1) 

where  is the displacement of the lattice ion from its equilibrium position,  is the damping 

coefficient,  is the natural frequency of the ion,  and  are nonlinear coefficients characterizing the 

anharmonicity of the oscillator, and  is the intensity of the applied electric field. The parameter  is 

defined as the ratio of the ion charge  to the reduced mass of the vibrational mode . In a more 

detailed consideration, the parameter  describes the magnitude of the electrical coupling of the 
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vibrational mode with the electric field vector and depends on whether the chemical bond is ionic or 

vibrational. Equation (III.1) is solved using perturbation theory with the following substitution: 

, (III.2) 

where  is the decomposition parameter with conditions . It is assumed that the electric 

field interacting with ions is monochromatic with a frequency . This approach considers nonlinear 

optical effects that occur without changing the frequency spectrum. Oscillations of the ions of the 

crystal lattice occur only at the fundamental frequency. Given these approximations, we obtain: 

 

(III.3) 

 Here, the nonlinear susceptibility associated with the Kerr effect is considered. The total 

polarization in the medium, which includes both the electronic  and the vibrational  contribution 

to the susceptibility, is determined by the following expression: 

 

(III.4) 

The amplitude of the polarization component oscillating at the frequency  includes both linear and 

nonlinear parts: 

 

(III.5) 

where . 

 The complex refractive index (hereinafter  shows the complex value, then when considering the 

real part it will be omitted;  determines that the value is considered in the CGSE system; the 

index  denotes the vibrational nature of the effect,  the electronic one) of the medium can be 

represented through the effective susceptibility as: 

 

(III.6) 

where   

 Taking into account (III.3) - (III.5), we can express  and , and then substitute them into the 

expression for the coefficient of nonlinear refractive index in the CGSE system : 

 

(III.7) 

 This derivation of  is obtained using the approximation of a single vibrational resonance. This 

approximation is also suitable for the situation when one resonance dominates the others. 

 Dividing  and by their real and imaginary parts, from expressions (III.6) and (III.7) one can 

find linear and nonlinear refractive indices and absorption coefficients of the medium. Expression 

(III.7) can be used to consider four different cases of the relationship between the frequency of the 

incident radiation  and : the low-frequency limit , the two-photon resonance , 

the almost resonant case , and for frequencies much higher than the resonance frequencies 

. 



 
 

 42 
 

 To consider the nonlinearities of electro-optical crystals, as well as crystals applicable in the THz 

frequency range (0.1-3 THz), we elaborate on the case of the low-frequency limit : 

 

(III.8) 

 It is important to note that expressions (III.7) and (III.8) in this form are not suitable for estimating 

the coefficient of the nonlinear refractive index, since the parameters and coefficients present in them 

do not have a direct and obvious connection with the real properties of the media that can be measured 

or found in reference book. Therefore, we further consider how the authors of this theoretical 

approach associate the parameters  and  with the real properties of the medium. 

 The relationship between the vibrational contribution to the nonlinear refractive index and thermal 

expansion [100] is given in [99], provided that the electronic contribution to both the linear and 

nonlinear refractive indices is prevailed in magnitude by the vibrational contribution. Potential energy, 

based on the expression (III.1), is determined as follows: 

 

(III.9) 

 The coefficient  is related to the coefficient of thermal expansion , taking into account the 

average displacement of the ion from its equilibrium position, which determines the total linear 

expansion of the solid: 

 

 

 

 

(III.10) 

where  is the lattice constant,  is the Boltzmann constant,  is the temperature expansion 

coefficient, and parameter  can be defined as the reduced mass of the vibrational mode. 

 It is important to emphasize that the nature of the nonlinearity of the refractive index in this case is 

not due to the thermal expansion of the substance caused by a change in its density. The root cause of 

the low inertia nonlinearity of the refractive index and subsequent inertial thermal expansion of the 

substance is the anharmonicity of the vibrations of the lattice ions. 

 Returning to the expression (III.8) and dividing it by two terms defining a different nature the 

following form is obtained: 

 

 
(III.11) 

therefore, 
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(III.12) 

 (III.13) 

The parameter  in expression (III.1) was determined as . However, later it was introduced in a 

different way, for example, through linear susceptibility with respect to resonance parameters (III.7), 

(III.8). Given the expressions for parameter , expression (III.12) takes the form: 

 

(III.14) 

 Expression (III.13), which describes the second term in the contribution to the nonlinear refractive 

index, is associated with a change in the frequency of oscillations in the field of intense radiation 

(dynamic Stark effect) [101]. In the case of nonresonant isotropic media at low THz frequencies and 

the assumption that only one excited state makes a significant contribution to the vibrational 

nonlinearity, the third-order susceptibility will be described by the following expression: 

 

(III.15) 

where is the dipole moment of the transition, which must be determined through the "measured" 

parameters of the medium. In [99], it was proposed to express this parameter in terms of a linear 

refractive index considering the vibrational contribution: 

 

 

(III.16) 

 Then the final expression for the coefficient of the nonlinear refractive index of the medium in the 

THz frequency range, considering the vibrational nonlinearity, will take the form [99]: 

CGSE: 

 

SI: 

 

(III.17) 
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(for simplicity, we omit the spelling  in the indices). 

III.2. Calculation of the coefficient of nonlinear refractive index considering the 

vibrational nonlinearity of electro-optical crystals in the THz frequency range 

 Earlier, using this theoretical approach, the coefficient  in the terahertz frequency range for 

crystalline quartz (SiO2) were estimated [99]. Crystalline quartz has high transparency in the visible 

and IR spectral ranges, as well as in the THz frequency range (starting from 100 μm), therefore, it is 

actively used as a material for components (transparency windows, lenses) in terahertz technology 

[103]. It is anisotropic and has birefringence in the THz spectral region [104]. 

 SiO2 crystal parameters necessary for calculating the coefficient of the nonlinear refractive index 

by the formula (III.17) are given in the table below [99]: 
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where: 

  – fundamental vibration frequency. 

  – linear refractive index for the frequency range 0,5 – 1,5 THz. 

  – refractive index in the range with a nonresonant electron contribution (800 nm). 

  – lattice constant. 

  – reduced mass of the vibrational mode which can be calculated for AxBy crystal as 

. 

   – thermal expansion coefficient. 

  – effective charge of a chemical bond, in this case is considered as an electron charge 

  – relative density 

  – numerical density of vibrations in the crystal AxBy lattice per 1 cm
3
  

  – vibrational contribution to the low-frequency refractive index  

  – nonlinear refractive index coefficient in the IR frequency range 

   – calculated nonlinear refractive index coefficient in the THz frequency range 

It is seen that for SiO2 crystal the nonlinear refractive index coefficient in the THz frequency range 

exceeds this value in the IR range by 4 orders. 
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 If we analyze the parameters of media that affect the value of , then an increase in this 

coefficient can be inherent in media with a higher coefficient of thermal expansion, a larger lattice 

constant, a larger natural frequency of vibration and a reduced value of the numerical density of 

vibrations, which is ensured by an increase in the total mass of atoms and a decrease in the relative 

density of the medium. 

 It is also important that the vibrational contribution to the low-frequency refractive index be larger, 

and this depends on the difference in the values of the linear refractive index in the THz frequency 

range and the linear refractive index in the range with non-resonant electronic contribution ( ). 

 The calculated coefficient  changes its sign to negative, provided that the contribution made by 

changing the oscillation frequency in the intense radiation field (dynamic Stark effect) for a given 

medium is higher than the contribution associated with the inertial thermal expansion of the substance. 

III.3. Application and modification of the theoretical approach to assess the 

vibrational nonlinearity of liquid water in the THz frequency range 

 Until recently, the use of various liquids, and especially water, in the THz frequency range was 

considered difficult due to their large absorption. The possibility of generating a broadband THz 

radiation from a volume of water, a water jet, and a film was experimentally demonstrated in 

[105,106]. These results have opened a new field of study. 

 The previous section showed the parameters that affect the increase of the Kerr nonlinearity of the 

vibrational nature of the medium in the THz frequency range. Liquids are characterized by a large 

coefficient of thermal expansion than solids, as well as fundamental vibrations of molecules at high 

frequencies. 

 The estimation of the nonlinear refractive index of liquid water of great interest. To do this, we 

consider the possibility of applying the previously proposed theoretical approach for calculating the 

coefficient  (III.17) [99] and modify it. 

 Water, in comparison with other liquids that have recently been used in the THz range (alcohols, 

esters and other organic compounds) [107], is a simple and convenient model for modifying the 

theoretical approach for assessing vibrational nonlinearity in the THz frequency range. This is due to 

the certainty in the description of molecular vibrations in such a triatomic molecule and quite obvious 

resonances in the high-frequency THz region. Despite the strong absorption of water in the THz 

range, the use of a thin layer circumvents the limitation of its use in the THz frequency range. 

 Equation (III.17) is applicable in a situation when the central THz frequency of the incident 

radiation  is much less than the fundamental frequency of the medium . For water,  ~ 100 THz 

[108], which corresponds to the peak of water absorption at a wavelength of  = 3 μm (see Figure 

III.1). Accordingly, this condition is satisfied. 
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Fig. III.1. Absorption of liquid water in the IR spectral range [109] (for reference 3338 cm
-1

 ≈ 100 

THz). 

 It is also important that the medium has a single vibrational resonance, or one clearly dominant. 

When considering liquid water, there is a dominant resonance at a frequency of ~ 100 THz. 

 Next, the total polarization of liquid water associated with the summation (  is considered 

averaging over the volume) of the contribution from each molecule: 

 

 

(III.18) 

Both quadratic and cubic nonlinearity of molecular vibrations determine the cubic nonlinearity of an 

isotropic medium. However, due to the random orientation of the molecules in the volume of water 

(see Figure III.2a), with averaging, the quadratic contribution of the nonlinearity of molecular 

vibrations becomes equal to zero. 

 

Fig. III.2. (a) The random orientation of molecules in the water; (b) three vibrational modes of a 

water molecule with corresponding vibration frequencies in the terahertz frequency range. 

Next, the vibrational contribution to the nonlinear refractive index is considered (III.14). In the 

case of liquid water, instead of the lattice constant of the crystal, which limits the length of the 

displacement of the ion from the equilibrium position, this parameter will be interpreted as the unit 

cell size , by which the vibration under consideration is limited. In the case of liquid water,  is the 

diameter of the molecule. In addition, when calculating  for crystals, the ratio between the change 
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in the lattice constant due to thermal expansion is used. For liquids, we consider the change in the size 

of the molecules due to the stretching of various bonds in the molecule from thermal expansion. 

This model assumes that the nature of the nonlinearity of the refractive index of water is not due to 

the thermal expansion of the substance (as well as a change in its density). The process of liquid 

expansion is inertial. The root cause of the low inertia nonlinearity of the measured refractive index 

and subsequent inertial thermal expansion of the substance is the anharmonicity of molecular 

vibrations. 

As for the contribution caused by the change in the oscillation frequency in the intense radiation 

field (III.13), (III.16), in the case of liquid water, only one excited state is also taken into account, 

which makes a significant contribution to the vibrational nonlinearity. 

Thus, the theoretical approach (III.17) [99] is also applicable to liquid water with a slight 

modification of the parameters described above. The resulting expression for water nonlinear 

refractive index coefficient in the THz frequency range in SI system takes the form: 

 

(III.

19) 

 

The parameters of liquid water for  estimation are given in the table below. 

Parameter Value 

ω0 fundamental vibration frequency 100 THz  [108] 

n0 linear refractive index for the frequency range 

0,3-1ТГц 
2.3 [110] 

n
el

 refractive index (800 nm) 1.33 [108] 

a
с
 unit cell dimension (molecule size) 0.28×10

-7
 cm [111] 

α
T
 thermal expansion coefficient 0.2×10

-3
 /°C [112] 

S specific gravity 1 

m reduced mass of the vibrational mode  1.6×10
-24

 g 

q reduced mass of the vibrational mode electron charge 

N numerical density of vibrations per 1 cm
3
  3.3×10

22
 

 nonlinear refractive index coefficient in the IR 

frequency range, cm
2
/W, for reference 

4.1×10
−16

 [113] 

 nonlinear refractive index coefficient in the THz 

frequency range, cm
2
/W  

5.1×10
-10

 

 Using these values, the calculated value of  for water in the low-frequency range is  = 5 × 10
-

10
 cm

2
/W, which is 6 orders of magnitude higher than the similar coefficient in the near infrared range 

= 4.1 × 10
−16

 cm
2
/W [113]. 
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III.4. Z-scan technique for measuring third-order nonlinearities 

The z-scan technique is one of the most widespread methods for assessing the nonlinear properties 

of thin media. It was first proposed in [114] and is based on the measuring the change in phase 

induced on a laser beam upon propagation through a nonlinear material, which is simply related to the 

change in index of refraction. Below we present more detailed description of the technique. 

Using a single highly focused Gaussian pulse, as shown in Figure III.3, it is possible to measure the 

transmission of a nonlinear medium through a finite aperture in the far field as a function of the 

position of the sample z measured relative to the focal plane. In the following example, it will be 

qualitatively clarified how such a curve (z-scan) is associated with nonlinear refraction of the sample. 

Suppose, for example, a material with a negative nonlinear refractive index and a thickness less than 

the diffraction length of the focused beam (thin medium). This can be considered as a thin lens with a 

variable focal length. Starting scanning at a distance far from the focus (negative z), the radiation 

intensity is low and slight nonlinear refraction is observed; therefore, the transmittance (  in 

Figure III.3) remains relatively constant. When the sample approaches the focus, the radiation 

intensity increases, which leads to the Kerr lens formation within the sample. A negative induced lens 

in front of the focus will tend to collimate the beam, which leads to a narrowing of the beam at the 

aperture, which leads to an increase in the measured transmittance. As the scanning along z continues 

and the sample passes through the focal plane and is to the right of it (positive z), self-defocusing 

increases the beam divergence, which leads to broadening of the beam at the aperture and, 

consequently, to a decrease in the transmittance. This suggests that there is zero when the sample 

crosses the focal plane. This is similar to placing a thin lens in or near the focus, which leads to a 

minimum change in the field distribution in the far field. Z-scan is completed as the sample moves 

away from the focus (positive z), so that the transmittance becomes linear again. 

 

Fig. III.3. Example of an experimental setup where the ratio  is represented as a function of the 

position of the sample z [114]. 

The prefocal transmittance maximum (peak), followed by the postfocal minimum transmittance 

limit (valley), is thus a z-scan signal of negative nonlinear refraction. Positive nonlinear refraction, 

following the same analogy, gives rise to the opposite configuration of the valley-peak. An extremely 

useful feature of the Z-scan method is that the sign of the nonlinear refractive index immediately 

becomes apparent from the data, and, the value can be easily estimated using simple analysis for a thin 

medium. 

In the Fig. III.3, it should be borne in mind that only nonlinear refraction was considered, assuming 
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that absorption nonlinearities (such as multiphoton absorption or saturable absorption) are absent. 

Qualitatively, multiphoton absorption suppresses the peak and enhances the valley, while saturable 

absorption causes the opposite effect. Sensitivity to nonlinear refraction is completely determined by 

the aperture, and removal of the aperture completely eliminates the effect. However, in this case, the Z 

scan will still be sensitive to nonlinear absorption. From such experiments with an ―open‖ aperture, 

nonlinear absorption coefficients can be extracted. 

III.5. Theory of Z-scan technique 

In the general case, nonlinearities of any order can be considered; however, for simplicity, we 

consider only cubic nonlinearity, where the refractive index  is expressed in terms of the nonlinear 

indices  (CGSE) or  (m
2
/W): 

 (III.20) 

where  is the linear refractive index,  is the peak value of the electric field (CGSE), and I is the 

intensity of the laser beam (SI) in the sample (  and  are related by the formula 

, where  (m/s) is the speed of light in vacuum). Assuming that a 

Gaussian beam TEM00 with a beam waist  moves in the + z direction, we can write E as: 

 (III.21) 

where  is the beam radius,  is the radius of curvature of the 

wavefront at the point ,  is the beam diffraction length,  is the wave vector and  

is the laser wavelength, all values are in free space.  indicates the electric field of radiation in 

focus and contains the envelope of the temporal profile of the laser pulse. The term  contains 

all radially homogeneous phase changes. Since we are dealing only with the calculation of the radial 

phase changes , the slowly varying envelope approximation is applied, and all other phase 

changes that are uniform in  are ignored. 

If the sample thickness is small enough, i.e. changes in the beam diameter due to diffraction or 

nonlinear refraction can be neglected, then the medium is considered ―thin‖, and in this case the self-

focusing process is called ―external self-action‖ [115]. For linear diffraction, this means that , 

and for nonlinear refraction, . In most experiments using the Z-scan technique, the 

second criterion is automatically satisfied, since  is small. In addition, the first criterion for linear 

diffraction is too strict and it is enough to replace it with . This assumption greatly simplifies 

the problem, and the amplitude  and the phase  of the electric field as a function of  are now 

determined by a pair of simple equations: 

 (III.22) 
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 (III.23) 

where  is the propagation distance in the sample and  includes linear and nonlinear absorption. It 

should be noted that  should not be confused with the position of sample . In the case of cubic 

nonlinearity and negligible nonlinear absorption, (III.22) and (III.23) give a phase shift  on the 

output surface of the sample, which simply follows the radial change in the incident intensity at a 

given position of the sample . In this case, 

 (III.24) 

where 

 (III.25) 

 is the phase shift on the axis in focus and is defined as 

 (III.26) 

where ,  is the length of the sample, and  is the linear absorption coefficient. 

Here , and  is the intensity on the axis in focus (i.e.,  = 0). Fresnel reflection losses 

are ignored, so, for example,  is the intensity inside the sample. 

The complex electric field emerging from sample  now contains nonlinear phase distortion 

 (III.27) 

By virtue of the Huygens principle, it is possible to obtain the field distribution in the far field on 

the aperture plane through the Hankel transform of the zero order from  [116]. However, it is also 

possible to use a more convenient approach to Gaussian input beams, which is called the ―Gaussian 

Decomposition‖ method described in [115], which expanding the complex electric field on the exit 

plane of the sample into the sum of Gaussian beams through Taylor series expansion of nonlinear 

phase term  in (III.27). I.e, 

 (III.28) 

Each Gaussian beam can be propagated to the aperture plane, where they will be summed to 

reconstruct the beam. When considering the initial curvature of the focused beam, the resulting field 

distribution at the aperture is as follows: 

 (III.29) 

Defining  as the propagation distance in free space from the sample to the aperture plane, and 

, the remaining parameters in (III.29) can be expressed as 
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Expression (III.29) is a general case with respect to [116], where a collimated beam (R = ∞) was 

considered, for which . It was found that the ―Gaussian Decomposition‖ method is very useful 

for small phase distortions detected using the z-scan technique, since only a few terms of the sum in 

(III.29) are needed. The method also extends easily to higher-order nonlinearities. 

The power transmitted through the aperture is obtained by spatial integration of  up to the 

radius of the aperture  and can be expressed as: 

 (III.30) 

where  is the dielectric constant. Given the temporal change in the pulse, the normalized z-scan 

transmittance  can be calculated as 

 (III.31) 

where  is the instantaneous input power (inside the sample) and 

 is the linear transmission of the aperture, and  is the beam radius at the 

aperture in linear regime. 

First, consider instantaneous nonlinearity and a square pulse in time domain to illustrate the general 

features of z-scan technique. This is equivalent to the assumption that the radiation is continuous, and 

the nonlinearity has reached a steady state. The normalized transmittance  in the far field is 

shown in Fig. III.4 for  = ±0.25 and a small aperture (S = 0.01). It demonstrates the expected 

features, namely, the valley and peak (v-p) for positive nonlinearity and the peak and valley (p-v) for 

negative one. 
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Fig. III.4. Calculated Z-scan transmission curves for cubic nonlinearity with two polarities and small 

aperture (S = 0.01) [114]. 

For a given , the magnitude and shape of  are independent of wavelength or geometry if 

the far field condition for the aperture plane is satisfied ( ). Aperture size , however, is an 

important parameter since a large aperture reduces the differential . This decrease is more 

noticeable at the peak where the beam narrows and can lead to a peak transmittance that cannot 

exceed ( ). With a very large aperture or no aperture ( ), the effect disappears and  

for all  and . For small  peak and valley occur at the same distance relative to the focus, and 

for cubic nonlinearity this distance turns out to be . For large phase distortions ( ), 

the numerical estimate (III.29) - (III.31) shows that this symmetry is no longer fulfilled, and the peak 

and valley move toward ± z for the corresponding sign of nonlinearity ( ), so that the separation 

remains almost constant: 

 (III.32) 

The measured value of  can be defined as the difference between the normalized 

transmission peak and valley: . The change in this value depending on  calculated for 

different aperture sizes is shown in Figure III.5. 
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Fig. III.5. Calculated  values as a function of the phase shift in focus ( ). Sensitivity as 

indicated by the slope of the curves. decreases slowly with increase in the size of the aperture ( ) 

[114]. 

These curves demonstrate some useful features. First, for a given order of nonlinearity, they can be 

considered universal. In other words, they are independent of the laser wavelength, geometry (as long 

as the far field condition is satisfied), and the sign of nonlinearity. Secondly, for all aperture sizes, the 

change in  turns out to be almost linearly dependent on . For small phase distortion and 

small aperture ( ): 

 (III.33) 

Numerical calculations show that this ratio has an accuracy of up to 0.5% for . As shown 

in Figure III.5, for large apertures the linear coefficient 0.406 decreases, so that at  = 0.5 it becomes 

≅0.34, and at  = 0.7, it decreases to ≅0.29. Based on the numerical fit, the following relationships 

can be used to include such changes with an accuracy of ± 2%: 

, for  (III.34) 

The consequences of (III.33) and (III.34) are very promising in the sense that they can be used to 

easily estimate the nonlinear refractive index ( ) with good accuracy based on z-scan experimental 

results. The most intriguing thing about these expressions is that they show the very sensitive nature 

of the z-scan method. For example, if the experimental apparatus and data acquisition systems are 

capable of resolving transmittance changes , this makes it possible to measure phase 

changes corresponding to wavefront distortions of less than . However, to achieve this 

sensitivity, a relatively good optical quality of the test sample is required. 

Now the stationary results can easily be expanded to include transition effects caused by pulsed 

radiation, using the time-averaged changes in the refractive index , where 
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 (III.35) 

The time-averaged  is related to  through (III.26). With nonlinearity having an 

instantaneous response time and fall time relative to the pulse duration for a temporary Gaussian 

pulse: 

 (III.36) 

where  now represents the change in the maximum of the refractive index on the axis in focus. For 

a cumulative nonlinearity having a fall time much longer than the pulse duration (for example, 

thermal), the instantaneous change of the refractive index is given by the following integral: 

 (III.37) 

where  is a constant depending on the nature of the nonlinearity. If we substitute (III.37) into 

(III.35), we obtain the averaging coefficient of the energy density 1/2. I.e, 

 (III.38) 

where  is the energy density in focus inside the sample. Interestingly, the coefficient 1/2 is 

independent of the temporal form of the pulse. 

These equations were obtained based on cubic nonlinearity (i.e., the  effects). A similar analysis 

can be performed for higher order nonlinearities. Regardless of the order of nonlinearity, the same 

qualitative characteristics should be expected from a z-scan analysis. Nonlinearities encountered in 

semiconductors, where the refractive index changes due to charge carriers generated by two-photon 

absorption (ie, the sequential effect : ) manifest themselves as a fifth-order nonlinearity [117]. 

III.6. Experimental verification of the water nonlinear refractive index estimation 

in the THz frequency range by z-scan technique 

 Usually, the z-scan technique is strictly applicable only to quasimonochromatic radiation. 

However, it is also widely used in the case of femtosecond pulsed radiation, which has a wide 

spectrum [118]. Even though the method involves the use of nonparaxial linearly polarized radiation, 

the differences between the paraxial and nonparaxial modes for pulses of a small number of 

oscillations are insignificant, as was shown in [119]. It was also shown in [120] that the z-scan 

technique is also applicable to pulsed THz radiation, but to minimize the error in determining  it is 

necessary to use a thin sample with a thickness equal to or less than the longitudinal spatial size of the 

pulse. In the experiment below thin flat water jet was used. A water jet, unlike a film and other thin 

fixed surfaces, provides a constant change of liquid in the region of interaction with radiation, which 

eliminates the contribution of thermal cumulative effects (when selecting the correct liquid flow rate) 

to the nonlinearity under study. 
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 Figure III.6 shows the experimental setup for measuring the nonlinear refractive index of a flat 

liquid jet using THz pulses. The generation of THz radiation in this system is based on the optical 

rectification of femtosecond pulses in a lithium niobate crystal [121]. The TERA-AX (Avesta Project) 

generator is pumped using a laser femtosecond system (pulse duration 30 fs, pulse energy 2.2 mJ, 

repetition rate 1 kHz, central wavelength 800 nm). 

 

Fig. III.6. Experimental setup for measuring the nonlinear refractive index ( ) of a flat water jet in 

the THz spectral range. Insert - the geometric position of the jet when moving along the z axis relative 

to the THz pulse. 

The energy of a THz pulse is 400 nJ, the pulse duration is 1.5 ps (see Figure III.7a) and the 

spectrum width is 0.1-2.5 THz (see Figure III.7b). The THz electric field was measured using a 

conventional electro-optical detection system. The intensity of the THz radiation is controlled by 

decreasing the intensity of the femtosecond pump beam. A change in the pump intensity during the 

generation of THz radiation leads to a change in the divergence of the terahertz beam and also affects 

the position of the maxima of the spectrum [122]. The experiment uses a parabolic mirror with a focal 

length of 25 mm to collimate the THz radiation generated by the LiNbO3 crystal. Then, when 

adjusting the experimental setup, THz beam with a diameter of 25.4 mm obtained at the TERA-AX 

output is adjusted to be collimated at all femtosecond pump energies, and its optical axis passes 

through the center of the parabolic mirror PZ1. Pulse THz radiation is focused and collimated by two 

parabolic mirrors (PZ1 and PZ2) with a focal length of 12.5 mm. The spatial size of the THz radiation 

at the generator output is 25.4 mm. Caustic diameter 1 mm (full width at half maximum). To obtain a 

higher intensity in the caustic, a short-focus parabolic mirror with a large numerical aperture is used. 
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Such a geometry makes it possible to achieve a peak intensity in the caustic of a THz beam of 0.5 × 

10
8
 W/cm

2
.  

A flat water jet (jet) is moved along the caustic region from -4 mm to 4 mm using a linear 

motorized translator; the displacement limitation is determined by the jet width and the focus 

geometry of the THz radiation (see insert Figure III.6). The polarization of THz radiation is vertical. 

 

 Fig. III.7. (a) Temporal form and (b) spectrum of a THz pulse generated by the TERA – AX 

system. 

The experiment used distilled water, which does not contain any impurities, and is a clean medium. 

The jet is oriented along the normal to the incident radiation and has a thickness of 0.1 mm, which 

corresponds to condition [120] for the ratio of the sample thickness (L) to the spatial pulse size (x): 

 

(III.39) 

The jet is created using a nozzle, which is a hollow cylinder with a compressed tube and two blades 

overlapping the edges [123,124]. This design forms a flat surface of water with a laminar flow. The 

optical axis of the THz pulse passes through the center of the jet region with a constant thickness. 

Thanks to the use of a pump, it is possible to select the flow rate, so each THz pulse interact with new 

volume of water (10
3
 mm/s in this experiment). The hydraulic accumulator in the water supply system 

can significantly reduce the ripple associated with the operation of the water pump. THz radiation is 

collimated by a parabolic mirror PZ2 and is focused by a lens (L) on a Golay cell (G). For closed 

aperture geometry, the aperture (A) moves into the beam (closed position). Detection synchronization 

is performed using a mechanical modulator (M) located between the lens and the Golay cell. When 

the jet moves along the z axis through the focal region of THz radiation, the average power of the 

latter is measured in open and closed aperture regimes. 

Figure III.5 shows z-scan curves for the water jet measured with an open (Figure III.8a) and a 

closed aperture (Figure III.8b) for different THz radiation energies. Each curve is averaged over 50 

measurements. Figure III.8a shows about 2% saturable absorption, caused by an increase in the THz 

radiation energy by 2 orders of magnitude. This confirms the nonlinear absorption of the medium. To 
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determine , we will use experimental data with a closed aperture. According to [114], for a more 

correct calculation of  from the closed aperture data, it is necessary to subtract the effect of 

nonlinear absorption, for which the curve for closed aperture should be divided by open aperture one. 

 

Fig. III.8. Z-scan curves for a 0.1 mm thick water jet with (a) open and (b) closed aperture for 

different THz radiation energies of 4 nJ, 40 nJ and 400 nJ. 

As can be seen from Figure III.8b, the movement of the jet along the z axis leads to a change in the 

measured THz radiation intensity, which is a unique feature of the z-scan curves. This is caused by a 

change in the divergence of radiation at different positions of the water jet in the caustic, where the 

nonlinear Kerr lens is induced by the THz radiation field. In this case, it is advisable to use standard 

equations that are applicable for monochromatic radiation [114,125,126] in order to estimate  of 

water in accordance with the measurement results: 

 
(III.40) 

where  = 0.013 (Figure III.9) is the peak-to-valley ratio of the transmission curve,  is the linear 

transmission of the aperture,  is the sample thickness,  is the effective 

interaction length,  is the absorption coefficient (  = 100 cm
-1

 for water),  is the wavelength, and 

 is the input radiation intensity. The linear transmittance of the aperture is 2%, which allows to 

maximize the sensitivity of the measurement method but reduces the signal-to-noise ratio. The 

radiation wavelength  = 0.4 mm (  = 0.75 THz) corresponds to the maximum in the spectrum of the 

generation of THz radiation (see Figure III.7b). The result of the estimation of the coefficient of the 

nonlinear refractive index for water from experimentally obtained data according to formula (III.40) 

was  = 7 × 10
-10

 cm
2
/W. 
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Fig. III.9. Z-scan peak-to-valley ratio estimation. 

To illustrate the correct use of equation (III.40) for calculating the coefficient of nonlinear 

refractive index in the case of broadband THz radiation, we compare the experimental data for closed 

aperture with the analytical z-scan curve for monochromatic radiation (Figure III.10) according to 

equation (III.29 - III.31). 

 

Fig. III.10. Comparison of experimental z-scan curve for a 0.1 mm thick water jet for pulsed 

broadband THz radiation in the case of a closed aperture with an analytical curve for monochromatic 

radiation with a wavelength of 0.4 mm. 

 As can be seen, the experimental z-scan curve for broadband THz radiation is in good agreement 

with the analytical z-scan curve for monochromatic radiation. This confirms the reliability of the 

obtained value  of liquid water in the experiment. 

 The value of  = 7 × 10
-10

 cm
2
/W obtained during the experiment for liquid water coincides in 

order with the calculated  = 5 × 10
-10

 cm
2
/W, which was obtained using the modified theoretical 

approach, which takes into account the anharmonicity of molecular vibrations. Therefore, the 

coefficient of the nonlinear refractive index of water in the THz frequency range (0.2 -2.5 THz) 

exceeds the value in the infrared region of the spectrum  = 4.1 × 10
−16

 cm
2
/W by 6 orders of 

magnitude. Thus, from the point of view of the application and further development of research, these 

results open up new prospects for the study of various materials in the THz frequency range. 
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