УНИВЕРСИТЕТ ИТМО

В.К. Козин, В.А. Пивоваров, Ф.А. Смирнов

ПРАКТИЧЕСКИЙ КУРС КЛАССИЧЕСКОЙ ЭЛЕКТРОДИНАМИКИ ДЛЯ СТУДЕНТОВ ТЕХНИЧЕСКИХ НАПРАВЛЕНИЙ ПОДГОТОВКИ

Санкт-Петербург 2020

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

УНИВЕРСИТЕТ ИТМО

В.К. Козин, В.А. Пивоваров, Ф.А. Смирнов ПРАКТИЧЕСКИЙ КУРС КЛАССИЧЕСКОЙ ЭЛЕКТРОДИНАМИКИ ДЛЯ СТУДЕНТОВ ТЕХНИЧЕСКИХ НАПРАВЛЕНИЙ ПОДГОТОВКИ

УЧЕБНО-МЕТОДИЧЕСКОЕ ПОСОБИЕ

РЕКОМЕНДОВАНО К ИСПОЛЬЗОВАНИЮ В УНИВЕРСИТЕТЕ ИТМО по направлению подготовки 12.03.03, 12.03.05, 13.03.02, 14.03.01, 16.03.01. в качестве учебно-методического пособия для реализации основных профессиональных образовательных программ высшего образования бакалавриата,

УНИВЕРСИТЕТ ИТМО

Санкт-Петербург 2020 Козин В.К., Пивоваров В.А., Смирнов Ф.А., Практический курс классической электродинамики для студентов технических направлений подготовки– СПб: Университет ИТМО, 2020. – 71 с.

Рецензент(ы):

Горлач Максим Александрович, кандидат физико-математических наук, , старший научный сотрудник физико-технического факультета, Университета ИТМО.

Данное пособие является методическим приложением к курсу лекций и рассчитано на студентов бакалавриата, изучающих классическую электродинамику. В пособии делается упор на подробность изложения, практически все главы сопровождены задачами и упражнениями. Краткость теоретической части некоторых глав (например 5-й) обусловлена тем, что данный материал рассказывается на лекциях. Задачи в конце глав расположены в порядке возрастания сложности и могут использовать результаты предыдущих задач.

УНИВЕРСИТЕТ ИТМО

Университет ИТМО – ведущий вуз России в области информационных и фотонных технологий, один из немногих российских вузов, получивших в 2009 году статус национального исследовательского университета. С 2013 года Университет ИТМО – участник программы повышения конкурентоспособности российских университетов среди ведущих мировых научно-образовательных центров, известной как проект «5 в 100». Цель Университета ИТМО – становление исследовательского университета мирового уровня, предпринимательского по типу, ориентированного на интернационализацию всех направлений деятельности.

© Университет ИТМО, 2020 © Козин В.К., Пивоваров В.А., Смирнов Ф.А., 2020

Содержание

1	Введение				
2	Дви	Движение в электрическом и магнитном поле			
	2.1	Движение в постоянном однородном электрическом поле	6		
	2.2	Движение в постоянном однородном магнитном поле	7		
	2.3	Движение заряда в скрещенных полях	8		
	2.4	Задачи	10		
3	Тензоры				
	3.1	Определения и свойства	10		
	3.2	Метрика	13		
	3.3	Полностью антисимметричный тензор	14		
	3.4	Задачи	17		
4	Гру	ппы О(3) и SO(3)	18		
5	Пре	образования Лоренца	20		
	5.1	Свойства матриц преобразования из группы Лоренца	20		
	5.2	Задачи	22		
	5.3	Переход в движущиеся системы отсчёта	22		
	5.4	Задачи	23		
6	Релятивистская электродинамика				
	6.1	Задачи	26		
7	Разделение переменных в электростатических задачах				
	7.1	Общий алгоритм	27		
	7.2	Декартовы координаты	28		
	7.3	Сферические координаты	32		
	7.4	Уравнение Пуассона	38		
	7.5	Мультипольное разложение	41		
8	Кал	Калибровочные преобразования и степени свободы в электродинамике			
	8.1	Действие	44		
	8.2	Уравнения движения и калибровочная свобода	46		
	8.3	Фиксация калибровки	48		
9	Свободное электромагнитное поле				
	9.1	Плоские волны и поляризация	49		
	9.2	Энергетические характеристики свободного электромагнитного поля	51		

	9.3	Дифракция плоских электромагнитных волн	53
	9.4	Дифракция света на круглом отверстии	54
	9.5	Гауссов пучок	55
	9.6	Дифракция на тонком диске	57
	9.7	Задачи	58
10	Поля	я движущихся зарядов	58
	10.1	Поле произвольным образом движущегося точечного заряда	58
	10.2	Потенциалы Льенара-Вихерта	59
	10.3	Напряжённости	60
	10.4	Интенсивность излучения точечного заряда	61
	10.5	Частные случаи	62
	10.6	Мультипольное излучение	63
	10.7	Задачи	66
11	Pacc	еяние электромагнитных волн на зарядах	66
	11.1	Самодействие заряда	66
	11.2	Рассеяние электромагнитных волн гармоническим осциллятором	70
	11.3	Задачи	72

1 Введение

Данное пособие является методическим приложением к курсу лекций по классической электродинамике [1] и содержит решение основных задач курса, а также последовательное изложение сделанных предположений и приближений. Пособие может быть использовано также и для самостоятельного овладения знаниями в рамках курса классической электродинамики. Главы данного пособия идут по возрастанию сложности и мы рекомендуем изучать их в той последовательности, в какой они представлены в содержании.

Глава 2 посвящена задаче о движении частицы в фиксированном внешнем поле без учёта излучения [2] и должна напомнить основы релятивистского подхода в электродинамике. В главе 3 вводятся тензоры и подробно обсуждаются правила работы в этом формализме, необходимом для построения инвариантной формулировки классической электродинамики. Затем в 4-й главе кратко изложены необходимые сведения о группе SO(3). Главы 5, 6 содержат [3] необходимые справочные сведения и задачи по преобразованиям Лоренца и релятивистской электродинамике в тензорной форме. Глава 7 посвящена задаче о разделении переменных оператора Лапласа в декартовых и сферических координатах [4], подробно разбираются примеры с использованием полиномов Лежандра и сферических функций. Глава 8 носит более теоретический характер, в ней подробно обсуждается построение действия электродинамики [7], вывод уравнений Максвелла в тензорной форме и калибровочная свобода. В главе 9 мы постарались дать подробное изложение поляризации плоских волн, энергетических характеристик свободного поля и рассеяния на экранах различной формы. 10-я глава содержит [8] подробный вывод излучения движущегося точечного заряда от запаздывающего потенциала до диаграмм излучения. Последняя, 11-я глава рассказывает о границах применимости классической электродинамики.

Обозначения: прописными латинскими буквами *i*, *k*, *n*, . . . обозначаются индексы в трёхмерном пространстве, прописными греческими буквами μ , *v*, α , . . . обозначаются индексы в 4-мерном пространстве Минковского. Сигнатура метрики: (+, -, -, -).

2 Движение в электрическом и магнитном поле

2.1 Движение в постоянном однородном электрическом поле

Рассмотрим движение заряда *е* в однородном постоянном электрическом поле \vec{E} . Без потери общности предположим, что поле направлено вдоль оси *x*. Движение будет происходить в одной плоскости, в качестве которой выберем *xy*. Тогда уравнения движения для частицы:

$$\dot{p}_x = eE, \quad \dot{p}_y = 0$$

Выбирая за начало отсчёта времени момент, когда $p_x = 0$, получаем:

$$p_x = eEt, \quad p_y = p_0. \tag{2.1}$$

Кинетическая энергия частицы $\mathcal{E}_{\text{кин}} = c\sqrt{m^2c^2 + p^2}$. Подставляя сюда (2.1) получаем:

$$\mathcal{E}_{\text{KHH}} = \sqrt{m^2 c^4 + c^2 p_0^2 + (ceEt)^2} = \sqrt{\mathcal{E}_0^2 + (ceEt)^2}$$
(2.2)

где \mathcal{E}_0 - энергия при t = 0. трёхмерный вектор скорости частицы связана с трёхмерным импульсом и энергией соотношением: $\vec{v} = \vec{p}c^2/\mathcal{E}_{\text{кин}}$. Для скорости по оси $v_x = \dot{x}$ получаем

$$\frac{dx}{dt} = \frac{p_x c^2}{\mathcal{E}_{\text{KUH}}} = \frac{c^2 eEt}{\sqrt{\mathcal{E}_0^2 + (ceEt)^2}}$$

Интегрируя это выражение и выбирая константу интегрирования так, чтобы выполнялось x(t = 0) = 0, получаем зависимость координаты от времени:

$$x = \frac{1}{eE} \sqrt{\mathcal{E}_0^2 + (ceEt)^2} - \frac{\mathcal{E}_0}{eE}.$$
 (2.3)

Аналогично, по оси у:

$$rac{dy}{dt} = rac{p_y c^2}{\mathcal{E}_{ ext{kuh}}} = rac{p_0 c^2}{\sqrt{\mathcal{E}_0^2 + (ceEt)^2}}$$

откуда

$$y = \frac{p_0 c^2}{eE} \operatorname{Arsh} \frac{ceEt}{\mathcal{E}_0}$$
(2.4)

Уравнение траектории нетрудно найти, выражая из (2.4) *t* через *y* и подставляя в (2.3):

$$x = \frac{\mathcal{E}_0}{eE} \operatorname{ch} \frac{eEy}{p_0 c} - \frac{\mathcal{E}_0}{eE}.$$
(2.5)

Если взять нерелятивистский предел $v \ll c$, то можно положить $p_0 = mv_0$, $\mathcal{E}_0 = mc^2$. Разлагая (2.5) по степеням 1/c, получаем с точностью до членов высшего порядка:

$$x = \frac{eE}{2mv_0^2}y^2 + O(1/c^2)$$

таким образом получаем классический результат нерелятивистской механики - параболу.

2.2 Движение в постоянном однородном магнитном поле

Рассмотрим теперь движение заряда *е* в однородном магнитном поле \vec{B} . Направление поля выберем за ось *z*. Уравнения движения

$$\dot{\vec{p}} = rac{e}{c} [\vec{v} \times \vec{B}]$$

перепишем в другом виде, подставив вместо импульса $\vec{p} = \mathcal{E}\vec{v}/c^2$. Где \mathcal{E} - энергия частицы, которая в магнитном поле постоянна. Уравнения движения:

$$\frac{\mathcal{E}}{c^2}\frac{d\vec{v}}{dt} = \frac{e}{c}\left[\vec{v}\times\vec{B}\right]$$
(2.6)

или в компонентах:

$$\dot{v}_x = \omega v_y, \quad \dot{v}_y = -\omega v_x, \quad \dot{v}_z = 0, \tag{2.7}$$

где $\omega = \frac{ecB}{E}$. Умножив второе из уравнений (2.7) и сложим с первым:

$$\frac{d}{dt}(v_x+iv_y)=-i\omega(v_x+iv_y),$$

откуда

$$v_x + iv_y = ae^{-i\omega t},$$

где *a* - комплексная постоянная. Её можно записать в виде $a = v_{0t}e^{-i\alpha}$, где v_{0t} и α вещественны. Тогда

$$v_x + iv_y = v_{0t}e^{-i(\omega t + \alpha)},$$

расписывая по отдельности вещественную и мнимую части находим:

$$v_x = v_{0t}\cos(\omega t + \alpha), \quad v_y = -v_{0t}\sin(\omega t + \alpha).$$
(2.8)

Постоянные v_{0t} и α определяются начальными условиями. α - начальная фаза, а из (2.8) видно, что

$$v_{0t} = \sqrt{v_x^2 + v_y^2},$$

т.е. v_{0t} - скорость частицы в плоскости xy, остающаяся при движении постоянной по величине. Интегрируя ещё раз (2.8) получаем:

$$x = x_0 + r\sin(\omega t + \alpha), \quad y = y_0 + r\cos(\omega t + \alpha), \quad (2.9)$$

где

$$r=\frac{v_{0t}}{\omega}=\frac{v_{0t}\mathcal{E}}{ecB}.$$

Из третьего уравнения (2.7) находим:

$$v_z = v_{0z}, \quad z = z_0 + v_{0z}t.$$

Из полученных уравнений видно, что частица движется в магнитном поле по винтовой линии с осью вдоль магнитного поля и с радиусом *r*.

2.3 Движение заряда в скрещенных полях

Рассмотрим движение заряда в случае одновременного наличия однородных и постоянных электрического и магнитного полей. Ограничимся при этом нерелятивистским случаем ($v \ll c$), вследствие чего для импульса выполнено $\vec{p} = m\vec{v}$. Как будет видно, для этого необходимо, чтобы электрическое поле было мало по сравнению с магнитным.

Направление \vec{B} выберем за ось *z*, а плоскость, проходящую через \vec{B} и \vec{E} , за плоскость *yz*. Тогда уравнения движения

$$\vec{mv} = e\vec{E} + \frac{e}{c}[\vec{v} \times \vec{B}]$$

в координатах запишутся в виде

$$m\ddot{x} = \frac{e}{c}\dot{y}B, \quad m\ddot{y} = eE_y - \frac{e}{c}\dot{x}B, \quad m\ddot{z} = eE_z.$$
 (2.10)

Из третьего уравнения видно, что вдоль оси *z* заряд движется равноускоренно, т.е.

$$z = \frac{eE_X}{2m}t^2 + v_{0z}t.$$

Умножая второе из уравнений (2.10) на *i* и складывая с первым, находим:

$$rac{d}{dt}(\dot{x}+i\dot{y})+i\omega(\dot{x}+i\dot{y})=irac{e}{m}E_y,$$
 где $\omega=rac{eB}{mc}.$

Это линейное дифференциальное уравнение относительно $(\dot{x} + i\dot{y})(t)$. Его решение является сумма общего решения однородного плюс частное решение неоднородного уравнения

$$\dot{x} + i\dot{y} = ae^{-i\omega t} + \frac{cE_y}{B}$$

Постоянная *a*, вообще говоря, комплексная. Записав её в виде $a = be^{i\alpha}$ с вещественными *b* и α , мы видим, что, поскольку *a* умножается на $e^{-i\omega t}$, то постоянная α соответствует произволу в выборе начала отсчёта времени. Фиксируем *t* так, чтобы $\alpha = 0$. Тогда, отделяя в $\dot{x} + i\dot{y}$ вещественную и мнимую части, находим:

$$\dot{x} = a\cos\omega t + c\frac{E_y}{B}, \quad \dot{y} = -a\sin\omega t.$$
 (2.11)

При этом в момент времени t = 0 скорость частицы направлена по оси x. Видно, что компоненты скорости являются периодическими функциями времени. Их средние значения равны:

$$\bar{\dot{x}} = \frac{cE_y}{B}, \quad \bar{\dot{y}} = 0.$$

Эту среднюю скорость движения заряда в скрещенных полях ещё называют скоростью *дрейфа*. Её направление ортогонально обоим полям и не зависит от знака заряда. В векторном виде её можно записать как

$$ec{v}_{ ext{ gammap}} = rac{c[ec{E} imesec{B}]}{B^2}$$

Все вышеизложенные рассуждения верны в нерелятивистском случае. Из последней формулы видно, что для этого, в частности, необходимо, чтобы выполнялось условие $E_y/B \ll 1$. При этом абсолютные значения полей могут быть произвольными. Интегрируя ещё раз уравнения (2.11) И, выбирая постоянные интегрирования так, чтобы при t = 0 было x = y = 0, получаем:

$$x = \frac{a}{\omega}\sin\omega t + \frac{cE_y}{B}t, \quad y = \frac{a}{\omega}(\cos\omega t - 1).$$

Эти параметрические уравнения описывают трохоиду. В случае $a = -cE_y/B$ получаем циклоиду.

2.4 Задачи

- 1. Определить релятивистское движение заряда в в параллельных однородных электрическом и магнитном полях.
- 2. Определить релятивистское движение заряда во взаимно перпендикулярных и равных по величине электрическом и магнитном полях.

3 Тензоры

3.1 Определения и свойства

В этой главе мы подробно обсудим понятие тензора и как работать с объектами этого класса. Для наглядности начнём с трёхмерного мерного евклидова пространства, а затем покажем как полученные результаты тривиально обобщаются на четырёхмерное пространство Минковского или более общие случаи. В трёхмерном пространстве индексы будут обозначаться латинскими буквами *i*, *k*, *n*, . . . и могут иметь значения 1, 2, 3, в четырёхмерном пространстве Минковского индексы будут обозначаться буквами греческого алфавита α , β , μ , ν , . . . и могут иметь значения 0, . . . , 3. Тензор объект с верхними и нижними индексами, при замене координат преобразующийся по закону:

$$T_{j'k'}^{i'} = \sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{k=1}^{3} T_{jk}^{i} \frac{\partial x^{i'}}{\partial x^{i}} \frac{\partial x^{j}}{\partial x^{j'}} \frac{\partial x^{k}}{\partial x^{k'}},$$
(3.1)

где $x^{i'}$ - новые координаты, x^i - старые координаты. $\partial x^{i'}/\partial x^i$ - матрица Якоби замены координат. У тензора T^i_{jk} верхние индексы называются контравариантыми, нижние - ковариантными. Валентностью или рангом тензора является общее число индексов (не имеет ничего общего с понятием ранга матрицы из линейной алгебры). Тензор обобщает понятие скаляра, вектора и матрицы. Как можно видеть, нижние и верхние индексы отличаются законом преобразования при замене координат. Мы предполагаем, что координаты имеют верхние индексы x^i или x^{α} . При использовании тензоров повсеместно возникает суммирование по индексам. Для краткости записи обычно применяют правило суммирования Эйнштейна, опускаются значки сумм и суммирование предполагается по повторяющимся индексам, один из которых должен быть ко-, а второй контравариантным. С учётом правила Эйнштейна выражение (3.1) запишется как

$$T_{j'k'}^{i'} = T_{jk}^{i} \frac{\partial x^{i'}}{\partial x^{i}} \frac{\partial x^{j}}{\partial x^{j'}} \frac{\partial x^{k}}{\partial x^{k'}}.$$
(3.2)

В случае тензоров суммирование по индексам называют свёрткой. Ещё пример: пусть A^i_j - матричный элемент некоторого оператора. Тогда след этой матрицы $\sum_{i=1}^{3} A^i_i$ в новых обозначениях будет A^i_i .

Скаляр - тензор без индексов, он имеет одну компоненту. При замене координат скаляр не преобразуется, т.е. является инвариантом. Если мы имеем не просто скаляр, а скалярную функцию, то при замене координат в каждой точке пространства значение скалярной функции остаётся прежним, но функция может меняться, так как изменяется координатная сетка на многообразии:

$$\phi'(x') = \phi(x(x')).$$

Здесь x(') - старые (нештрихованные) координаты, выраженные через новые.

Вектор - тензор с одним верхним (контравариантным) индексом. При замене координат вектор преобразуется как дифференциал координат dx^i :

$$dx^{i'} = \frac{\partial x^{i'}}{\partial x^i} dx^i$$
 аналогично, для любого вектора $v^{i'} = \frac{\partial x^{i'}}{\partial x^i} v^i$. (3.3)

Ковектор (ковариантный вектор) - тензор с одним нижним индексом. При замене координат ковектор преобразуется по тем же правилам, что и компоненты градиента. Число компонент вектора и ковектора совпадает, между ними можно установить взаимно-однозначное соответствие(об этом ниже), но при замене координат они имеют разный закон преобразования.

$$\frac{\partial \phi}{\partial x^{i'}} = \nabla_{i'} \phi = \frac{\partial x^i}{\partial x^{i'}} \nabla_i \phi$$
 аналогично, для любого ковектора $u_{i'} = \frac{\partial x^i}{\partial x^{i'}} u_i.$ (3.4)

Координаты имеют верхний индекс, производная по координате нижний: $\frac{\partial}{\partial x^i} = \nabla_i$. Правила преобразования тензоров (3.2), (3.3), (3.4) устроены таким образом, что произведение компонент нескольких тензоров (тензорное или прямое произведение) даёт компоненты нового тензора, а любая свёртка (верхнего и нижнего индекса) тоже даёт новый тензор, но с меньшим числом индексов.

$$T^{ij...}_{kl...}S^{mn...}_{op...} = R^{ij...}_{kl...} {}^{mn...}_{op...}$$
 – тензорное произведение
 $R^{...imj...}_{...kml...} = P^{...ij...}_{...kl...}$ – свёртка

Можно легко установить признак тензора: если при свёртке некоторого объекта с произвольным вектором (ковектором) получается тензор, то и исходный объект тоже был тензором.

Для доказательства признака тензора можно использовать то, что свёртка вектора и ковектора даёт тензор без индексов, т.е. скаляр. Это легко увидеть на примере свёртки бесконечно-малого приращения координат между двумя фиксированными точками и градиента:

$$dx^i
abla_i\phi=dx^irac{\partial\phi}{\partial x^i}=d\phi.$$

Поскольку дифференциал скалярной функции не зависит от выбора координат, данная свёртка оказывается инвариантом (скаляром), т.е. тензором нулевого ранга. Поскольку все другие вектора и ковектора имеют по определению закон преобразования как у dx^i и ∇_i , то и свёртка произвольных вектора и ковектора будет скаляром.

Покажем, что δ-символ (символ Кронекера) с одним верхним и одним нижним индексом является тензором. Символ Кронекера определяется через компоненты единичной матрицы:

$$\delta_j^i = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$

Если свернуть δ -символ с произвольным вектором, то получим

$$v^j \delta^i_j = v^i.$$

При суммировании по j ненулевыми будут только слагаемые с i = j, таким образом, в итоге мы получили тот же вектор. Значит, символ Кронекера является тензором.

При работе с тензорами следует соблюдать следующие правила:

- в каждом слагаемом индекс может встречаться один или два раза;
- если индекс встречается один раз, то:
 - слагаемое зависит от значения этого индекса;
 - можно приравнять индекс какому-то значению;
 - все члены выражения; должны содержать тот же индекс один раз в том же (верхнем или нижнем) положении
- если индекс встречается в слагаемом два раза (немой индекс), то
 - один раз он должен быть верхним, а другой нижним;
 - по нему производится свёртка;
 - нельзя приравнять индекс какому-либо значению;
- требуется различать индексы, относящиеся к разным системам координат.

3.2 Метрика

Правило соответствия между векторами и ковекторами задаётся с помощью метрического тензора *g_{ij}* с двумя нижними индексами:

$$v_i = g_{ij} v^j$$
.

Ковектор, полученный из вектора таким способом принято обозначать той же буквой, поскольку задано взаимно-однозначное соотношение между векторами и ковекторами.

На метрический тензор накладывается условие симметричности

$$g_{ij} = g_{ji},$$

чтобы определённое с его помощью скалярное произведение было симметричным. И требование невырожденности:

$$\det g_{ii} \neq 0.$$

Обратная метрика задаётся матрицей обратной к метрике, она имеет два верхних индекса и определяется выражением

$$g_{ij}g^{ik}=\delta_i^k.$$

Скалярное произведение (и норма) определяется с помощью метрического тензора:

$$(a,b) = a^i b_i = a_i b^i = a^i b^j g_{ij} = a_i b_j g^{ij}.$$

Норма вектора *dxⁱ* задаёт квадрат расстояния (интервала) между двумя бесконечно близкими точками

$$ds^2 = g_{ij} dx^i dx^j.$$

3.2.1 Метрика Минковского

Для теории поля важнейшим объектом является метрика Минковского

$$\eta_{\mu\nu} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}.$$

Обратная метрика $\eta^{\mu\nu}$ совпадает покомпонентно с метрикой Минковского с нижними значками. Квадрат расстояния по этой метрике:

$$ds^{2} = \eta_{\mu\nu} dx^{\mu} dx^{\nu} = c^{2} dt^{2} - dx^{2} - dy^{2} - dz^{2},$$

здесь мы принимаем обозначение $x_0 = ct$. Таким образом опускание индексов у вектора $A^{\mu} = (A^0, A^1, A^2, A^3)$ даёт вектор A_{μ} с компонентами $A_{\mu} = \eta_{\mu\nu}A^{n\mu} = (A^0, -A^1, -A^2, -A^3)$

3.2.2 Евклидова метрика

В случае если метрика задаётся единичной матрицей

$$g_{ik} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad ds^2 = dx^2 + dy^2 + dz^2,$$

поднятие или опускания индекса не приводит к изменению компонент тензора, это соответствует декартовым координатам. Переход между различными декартовыми координатами осуществляется с помощью линейных ортогональных преобразований. В таком случае можно не различать верхние и нижние индексы.

3.3 Полностью антисимметричный тензор

3.3.1 3-мерный случай

Абсолютно антисимметричный тензор определяется следующим образом $\epsilon_{ikl} = \pm 1$, +1 соответствует тому, что *i*, *k*, *l* образуют чётную перестановку 1, 2, 3, а -1 - нечётную. Если хотя бы два из индексов повторяются, то $\epsilon_{ikl} = 0$. Этот тензор используется в теории поля повсеместно. Покажем, как с его помощью можно записать определитель матрицы. Пусть

$$A = \begin{pmatrix} a^1 & a^2 & a^3 \\ b^1 & b^2 & b^3 \\ c^1 & c^2 & c^3 \end{pmatrix},$$

легко проверить, что

$$\det A = \epsilon_{ikl} a^i b^k c^l.$$

Это же выражение соответствует объёму, натянутому на три вектора $\vec{a}, \vec{b}, \vec{c}$. Его можно записать через смешанное произведение

$$\det A = \epsilon_{ikl} a^i b^k c^l = ([\vec{a} \times \vec{b}], \vec{c}),$$

отсюда видно, что

$$[\vec{a}\times\vec{b}]_l=\epsilon_{ikl}a_ib_k,$$

мы получили векторное произведение, записанное в терминах ϵ -тензора.

Часто возникающим объектом в теории поля является произведение эпсилон тензоров и их свёртки. Чтобы вычислить их, докажем формулу

$$\epsilon_{ikl}\epsilon_{abc} = \det \begin{pmatrix} \delta_{ia} & \delta_{ib} & \delta_{ic} \\ \delta_{ka} & \delta_{kb} & \delta_{kc} \\ \delta_{la} & \delta_{lb} & \delta_{lc} \end{pmatrix}.$$
(3.5)

Рассмотрим формулу при фиксированных значениях индексов. Левая часть выражения отлична от нуля тогда и только тогда, когда тройки *i*, *k*, *l* и *a*, *b*, *c* состоят из трёх различных индексов. Правая часть обладает той антисимметрией, т.к. перестановка *i*, *k*, *l* соответствует перестановке строк определителя, а *a*, *b*, *c* перестановке столбцов. При этом левая часть даёт +1, когда тройка *a*, *b*, *c* получается из тройки *a*, *k*, *l* чётной перестановкой и -1 - при нечётной перестановке. Если же внутри хотя бы одной из троек есть совпадающие индексы, то это ведёт к линейной зависимости столбцов или строк. Таким образом, достаточно проверить равенство для одного набора индексов.

$$\epsilon_{123}\epsilon_{123} = \det \begin{pmatrix} \delta_{11} & \delta_{12} & \delta_{13} \\ \delta_{21} & \delta_{22} & \delta_{23} \\ \delta_{31} & \delta_{32} & \delta_{33} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = 1.$$

Рассмотрим свёртки $\epsilon_{ikl}\epsilon_{ikl}$, $\epsilon_{ikl}\epsilon_{ikm}$ и $\epsilon_{ikl}\epsilon_{ipm}$. Поскольку мы сворачиваем нижние индексы предполагается, что тензоры записаны в декартовых координатах. Однако выкладки легко обобщаются на случай произвольной метрики путём замены δ_{ik} на g_{ik} .

Первая свёртка легко вычисляется, она соответствует сумме квадратов всех элементов тензора:

$$\epsilon_{ikl}\epsilon_{ikl} = \sum_{i\neq k\neq l} (\pm 1)^2 = 3! = 6.$$

Вторая свёртка задаёт тензор с двумя свободными индексами l и m. Из формулы (3.5) видно, что результат должен быть пропорционален δ -символу:

$$\epsilon_{ikl}\epsilon_{ikm}=c\delta_{lm}.$$

Чтобы определить значение константы свернём свободные индексы, сведя задачу к предыдущей:

$$6 = \epsilon_{ikl}\epsilon_{ikl} = c\delta_{ll} = 3c \quad \Rightarrow \quad c = 2,$$

$$\epsilon_{ikl}\epsilon_{ikm}=2\delta_{lm}.$$

Третья свёртка задаёт тензор с четырьмя свободными индексами. Из свойств симметрии единственным вариантом является

$$\epsilon_{ikl}\epsilon_{ipm}=c'(\delta_{kp}\delta_{lm}-\delta_{km}\delta_{lp}).$$

Чтобы определить константу c' свернём индексы k, p, сведя задачу к предыдущей:

$$2\delta_{lm} = \epsilon_{ikl}\epsilon_{ikm} = c'(\delta_{kk}\delta_{lm} - \delta_{mk}\delta_{lk}) = c'(3\delta_{lm} - \delta_{ml}) = c'2\delta_{lm} \Rightarrow c' = 1$$

таким образом,

$$\epsilon_{ikl}\epsilon_{ipm}=\delta_{kp}\delta_{lm}-\delta_{km}\delta_{lp}.$$

Эта формула полезна при многих вычислениях, использующих векторные произведения и роторы. По существу она соответствует формуле "ВАС-САВ" для двойного векторного произведения.

$$\begin{bmatrix} \vec{a} \times [\vec{b} \times \vec{c}] \end{bmatrix}_i = \epsilon_{ikl} a_k \epsilon_{lmn} b_m c_n = \epsilon_{ikl} a_k \epsilon_{mnl} b_m c_n = (\delta_{im} \delta_{kn} - \delta_{in} \delta_{km}) a_k b_m c_n =$$
$$= a_k b_i c_k - a_k b_k c_i = (\vec{b}(\vec{a}, \vec{c}) - \vec{c}(\vec{a}, \vec{b}))_i.$$

$$(\operatorname{grad}\phi)_i = \nabla_i \phi;$$
 (3.6)

$$\operatorname{div}\vec{a} = \nabla_i a_i; \tag{3.7}$$

$$(\operatorname{rot}\vec{a})_i = [\vec{\nabla} \times \vec{a}]_i = \epsilon_{ikl} \nabla_k a_l; \tag{3.8}$$

$$\Delta \phi = \nabla_i \nabla_i \phi. \tag{3.9}$$

Важными являются формулы

$$abla_i x_k = rac{\partial x_i}{\partial x_k} = \delta_{ik}; \quad
abla_i r = n_i = rac{x_i}{r}.$$

Докажем последнюю:

$$\nabla_i r = \nabla_i \sqrt{x_k x_k} = \frac{1}{2\sqrt{x_k x_k}} \nabla_i (x_l x_l) = \frac{1}{2\sqrt{x_k x_k}} 2x_l \nabla_i x_l =$$
$$= \frac{1}{\sqrt{x_k x_k}} x_l \delta_{il} = \frac{x_i}{x_k x_k} = \frac{x_i}{r} = n_i.$$

3.3.2 4-мерный случай

В 4-мерном пространстве ϵ -тензор имеет 4 индекса. Основные вычисления будут предложены в разделе задачи. Стоит отметить, что предложенная выше формулировка векторного произведения позволяет обобщить его на случай любой размерности пространства. В 4-мерном случае результатом векторного произведения уже будет не вектор, но антисимметричный тензор с двумя индексами:

$$[\vec{a} \times \vec{b}]_{\mu
u} = \epsilon_{\mu
ulphaeta} a^{lpha} b^{eta} = T_{\mu
u},$$

имеющий 6 ненулевых компонент.

3.4 Задачи

3.4.1 d=3

- 1. Показать, что если тензор S_{ik} симметричный, а тензор A_{ik} антисимметричный, то $A_{ik}S_{ik} = 0$.
- 2. Записать в инвариантой векторной форме: $\epsilon_{inl}\epsilon_{irs}\epsilon_{lmp}\epsilon_{stp}a_na_rb_mc_t$
- 3. Доказать тождества:

(a)
$$\operatorname{div}(\phi \vec{A}) = \phi \operatorname{div} \vec{A} + \vec{A} \cdot \operatorname{grad} \phi;$$

(b) $\operatorname{rot}(\phi \vec{A}) = \phi \operatorname{rot} \vec{A} - \vec{A} \times \operatorname{grad} \phi;$
(c) $\operatorname{div}(\vec{A} \times \vec{B}) = \vec{B} \cdot \operatorname{rot} \vec{A} - \vec{A} \cdot \operatorname{rot} \vec{B};$
(d) $\operatorname{rot}(\vec{A} \times \vec{B}) = \vec{A} \operatorname{div} \vec{B} - \vec{B} \operatorname{div} \vec{A} + (\vec{B} \cdot \vec{\nabla}) \vec{A} - (\vec{A} \cdot \vec{\nabla}) \vec{B};$
(e) $\operatorname{grad}(\vec{A} \cdot \vec{B}) = \vec{A} \times \operatorname{rot} \vec{B} + \vec{B} \times \operatorname{rot} \vec{A} + (\vec{B} \cdot \vec{\nabla}) \vec{A} + (\vec{A} \cdot \vec{\nabla}) \vec{B};$
(f) $(\vec{\nabla} \cdot \vec{A}) \vec{B} = (\vec{A} \cdot \vec{\nabla}) \vec{B} + \vec{B} \operatorname{div} \vec{A};$
(g) $(\vec{A} \times \vec{B}) \cdot \operatorname{rot} \vec{C} = \vec{B} \cdot (\vec{A} \cdot \vec{\nabla}) \vec{C} - \vec{A} \cdot (\vec{B} \cdot \vec{\nabla}) \vec{C};$
(h) $(\vec{A} \times \vec{\nabla}) \times \vec{B} = (\vec{A} \cdot \vec{\nabla}) \vec{B} + \vec{A} \times \operatorname{rot} \vec{B} - \vec{A} \operatorname{div} \vec{B};$
(i) $(\vec{\nabla} \times \vec{A}) \times \vec{B} = \vec{A} \operatorname{div} \vec{B} - (\vec{A} \cdot \vec{\nabla}) \vec{B} - \vec{A} \times \operatorname{rot} \vec{B} - \vec{B} \times \operatorname{rot} \vec{A}.$

- 4. Найти дивергенции и роторы следующих векторов: $(\vec{a} \cdot \vec{r})\vec{b}$, $(\vec{a} \cdot \vec{r})\vec{r}$, $(\vec{a} \times \vec{r})$, $\phi(r)(\vec{a} \times \vec{r})$, $\vec{r} \times (\vec{a} \times \vec{r})$, где \vec{a} и \vec{b} постоянные векторы.
- 5. Доказать, что

 $(\vec{A} \cdot \vec{\nabla})\vec{A} = -\vec{A} \times \text{rot}\vec{A}$ при $\vec{A}^2 = \text{const.}$

6. Интеграл по объёму $\int (\operatorname{grad} \phi \cdot \operatorname{rot} \vec{A}) dV$ преобразовать в интеграл по поверхности.

3.4.2 d=4

В этом параграфе мы работаем с метрикой Минковского и важно различать верхние и нижние индексы.

- 1. Найдите значение выражения $\epsilon_{\mu\nu\rho\sigma}\epsilon^{\mu\nu\rho\sigma}$.
- 2. Найдите чему равны следующие свёртки *є*-тензора
 - (a) $\epsilon_{\mu\nu\rho\sigma}\epsilon^{\rho\sigma\alpha\beta} = ?$
 - (b) $\epsilon_{\mu\nu\rho\sigma}\epsilon^{\nu\rho\sigma\alpha} = ?$

4 Группы O(3) и SO(3)

Рассмотрим 3-мерное пространство с координатами $\vec{r} = (x, y, z)$. Группой O(3) называется линейное преобразование $\vec{r}' = R\vec{r}$, которое не изменят длины радиус вектора $\vec{r}^2 = x^2 + y^2 + z^2$:

$$\vec{r}^{\prime 2} = (R\vec{r})^T R\vec{r} = \vec{r}^T R^T R\vec{r} = \vec{r}^2.$$

Чтобы квадрат вектора не изменился должно выполнятся условие ортогональности:

$$R^T R = I$$
,

за *I* обозначена единичная матрица. Из этого условия следует, что det $R = \pm 1$. Подгруппа O(3) матриц с определителем равным 1 образует группу SO(3), которую называют группой вращений. Далее будем рассматривать группу вращений.

Пусть $R \in SO(3)$. Введём матрицу A небольшого отклонения от единичного преобразования (поворот на малые углы): R = 1 + A + ... Пренебрегая вторым порядком малости запишем условие ортогональности:

$$R^T R \approx (1 + A^T)(1 + A) \approx 1 + A + A^T = 1 \Rightarrow A^T = -A.$$

Как можно видеть из условия ортогональности следует, что матрица *A* обязана быть антисимметричной. Она имеет три независимых элемента:

$$A = \begin{pmatrix} 0 & a_3 & -a_2 \\ -a_3 & 0 & a_1 \\ a_2 & -a_1 & 0 \end{pmatrix}.$$

Величины a_1, ai_2, a_3 можно рассматривать как малые параметры преобразования. Генераторы группы $R = 1 + A + \ldots = 1 + \phi_i X_i + \ldots$ имеют вид:

$$X_1 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}, \quad X_2 = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \quad X_3 = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Для того, чтобы понять точный смысл параметров a_1 , a_2 , a_3 рассмотрим поворот вокруг оси x на малый угол ϕ :

$$R_{1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \phi & \sin \phi \\ 0 & -\sin \phi & \cos \phi \end{pmatrix} \approx \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & \phi \\ 0 & -\phi & 1 \end{pmatrix} = I + \phi X_{1}$$

То есть эти параметрами являются углами инфинитезимальных поворотов вокруг соответствующих осей.

Упражнение. Прямыми вычисления проверьте, что эти матрицы удовлетворяют алгебре Ли:

$$[X_1, X_2] = -X_3, \quad [X_3, X_1] = -X_2, \quad [X_2, X_3] = -X_3.$$

Это можно записать одной формулой, используя символ Леви-Чивиты:

$$[X_i, X_j] = -\epsilon_{ijk}X_k.$$

Для бесконечно малого вращения вокруг произвольной оси \vec{n} на угол ϕ верно следующее:

$$R_{ij} \approx \delta_{ij} + \epsilon_{ijk} n_k \phi + \ldots = \delta_{ij} + X_k n_k \phi + \ldots$$
(4.1)

Вместо вещественных генераторов X_i часто удобно использовать $J_k = -iX_k$.

$$R = 1 + ia_k J_k + \dots \tag{4.2}$$

В этих терминах коммутационное соотношение между ними запишется:

$$[J_i, J_j] = i\epsilon_{ijk}J_k. \tag{4.3}$$

В такой записи ϵ_{ijk} называются структурными константами группы.

Получим выражение матрицы R через генераторы для вращений на произвольные, а не только малые углы. Для этого рассмотрим два последовательных поворота на углы ϕ_1 , ϕ_2 вокруг одной оси. В этом случае происходит обычное сложение углов поворота (если последовательные вращения совершаются вокруг разных осей это не так):

$$R(\vec{n},\phi_1)R(\vec{n},\phi_2) = R(\vec{n},\phi_1+\phi_2).$$

Используя (4.1) возьмём производную по ϕ_2 , приравняв $\phi_2 = 0$, а $\phi_1 = \phi$:

$$R(\vec{n},\phi)i(n_kJ_k) = \frac{\partial R(\vec{n},\phi)}{\partial\phi}.$$
(4.4)

Так как последовательность поворотов вокруг одной оси не играет роли $R(\vec{n}, \phi_1) \cdot R(\vec{n}, \phi_2) = R(\vec{n}, \phi_2)R(\vec{n}, \phi_1)$, матрицы $R(\vec{n}, \phi)$ и $n_k J_k$ коммутируют. Значит уравнение (4.4) равносильно

$$i(n_k J_k) R(\vec{n}, \phi) = rac{\partial R(\vec{n}, \phi)}{\partial \phi},$$

а его решением является

$$R(\vec{n},\phi) = e^{in_k J_k \phi} = e^{i\vec{n}\vec{J}\phi}.$$

Экспонента от матрицы понимается в смысле её разложения в бесконечный степенной ряд Тейлора.

Упражнение. Найдите элемент группы $R(\vec{n}, \phi)$ соответствующий двум последовательным вращениям вокруг осей n_1 и n_2 на углы ϕ_1 и ϕ_2 .

5 Преобразования Лоренца

5.1 Свойства матриц преобразования из группы Лоренца

Рассмотрим группу, составленную из матриц линейных преобразований координат пространства-времени $x'^{\mu} = \Lambda^{\mu}_{\ \nu} x^{\nu}$, таких что при выполнении преобразования сохраняется норма

$$x'_{\mu}x'^{\mu} = x_{\nu}x^{\nu} \equiv \eta_{\mu\nu}x^{\mu}x^{\nu}, \qquad (5.1)$$

здесь $x^{\mu} = (x^0, x^1, x^2, x^3) \equiv (ct, x, y, z)$ и метрический тензор имеет вид $\eta^{\mu\nu} = \eta_{\mu\nu} = \text{diag}(1, -1, -1, -1)$. Такая группа называется группой Лоренца и обозначается O(1, 3). Из требования (5.1) подстановкой соответствующего закона преобразования получается

$$\eta_{\mu\nu}x^{\prime\mu}x^{\prime\nu} = \eta_{\mu\nu}\Lambda^{\mu}{}_{\rho}x^{\rho}\Lambda^{\nu}{}_{\sigma}x^{\sigma} = \eta_{\rho\sigma}x^{\rho}x^{\sigma}, \qquad (5.2)$$

откуда вытекает следующее свойство матриц групп O(1,3)

$$\eta_{\mu\nu}\Lambda^{\mu}{}_{\rho}\Lambda^{\nu}{}_{\sigma} = \eta_{\rho\sigma}.$$
(5.3)

Аналогично закону преобразования контравариантных векторов x^{μ} , можно записать закон преобразования ковариантных векторов $x_{\mu} = (x^0, -x^1, -x^2, -x^3) \equiv (ct, -x, -y, -z)$, которые получаются из x^{μ} опусканием индекса $x_{\mu} \equiv \eta_{\mu\nu} x^{\nu}$. Из определения ковариантного вектора следует

$$x'_{\mu} = \eta_{\mu\nu} x'^{\nu} = \eta_{\mu\nu} \Lambda^{\nu}{}_{\rho} x^{\rho} = \eta_{\mu\nu} \Lambda^{\nu}{}_{\rho} \eta^{\rho\sigma} x_{\sigma} \equiv \Lambda^{\sigma}{}_{\mu} x_{\sigma}, \qquad (5.4)$$

где введена матрица $\Lambda_{\mu}^{\ \sigma} \equiv \eta_{\mu\nu} \eta^{\rho\sigma} \Lambda^{\nu}{}_{\rho}$. Таким образом видно, что удобно определить операцию поднятия и опускания индексов у матриц Λ , не смотря на то, что сами матрицы группы O(1,3) не являются тензорами.

Используя свойство симметричности метрического тензора, формулу (5.3) можно переписать как $\Lambda_{\nu\rho}\Lambda^{\nu}{}_{\sigma} = \eta_{\rho\sigma}$, после чего умножением обеих частей получившегося равенства на $\eta^{\mu\rho}$ получим

$$\Lambda_{\nu}^{\ \mu}\Lambda_{\ \sigma}^{\nu} = \delta_{\ \sigma}^{\mu},\tag{5.5}$$

где мы использовали простое свойство метрического тензора, позволяющее получить символ Кронекера $\eta^{\mu\rho}\eta_{\rho\nu} = \delta^{\mu}{}_{\nu} = \text{diag}(1, 1, 1, 1)$. Из полученной формулы следует прямо по определению обратной матрицы, что $(\Lambda^{-1})^{\mu}{}_{\nu} = \Lambda^{\mu}_{\nu}$. Используя это, можно придать формуле (5.3) новую интерпретацию, а именно, сперва перепишем ее в виде

$$\eta_{\mu\nu}(\Lambda^{-1})_{\rho}^{\ \mu}(\Lambda^{-1})_{\sigma}^{\ \nu} = \eta_{\rho\sigma}, \tag{5.6}$$

а затем умножим обе части на $\Lambda_{\alpha}^{\ \rho}\Lambda_{\beta}^{\ \sigma}$, тогда получим $\eta_{\mu\nu}\delta_{\alpha}^{\ \mu}\delta_{\beta}^{\ \nu} = \eta_{\rho\sigma}\Lambda_{\alpha}^{\ \rho}\Lambda_{\beta}^{\ \sigma}$. Окончательно, используя свойства символа Кронекера, имеем

$$\Lambda_{\alpha}^{\ \rho}\Lambda_{\beta}^{\ \sigma}\eta_{\rho\sigma}=\eta_{\alpha\beta},\tag{5.7}$$

что можно интерпретировать, как утверждении об инвариантности метрического тензора относительно преобразований группы Лоренца. Также инвариантными являются все тензоры, полученный из $\eta_{\mu\nu}$ поднятием индексов, в частности символ Кронекера δ^{μ}_{ν} .

Теперь проверим такое свойство, что объект $\partial_{\mu} \equiv \partial/\partial x^{\mu}$ действительно преобразуется как ковариантный вектор (т.е. его правомерно записывать как объект с нижним индексом). Для это рассмотрим 4-градиент скалярной функции $\phi'(x'(x)) \equiv \phi(x)$ и совершим преобразование из группы Лоренца

$$\frac{\partial \phi}{\partial x^{\mu}} = \frac{\partial x^{\prime \nu}}{\partial x^{\mu}} \frac{\partial \phi}{\partial x^{\prime \nu}}.$$
(5.8)

Так как $x'^{\mu} = \Lambda^{\mu}_{\ \nu} x^{\nu}$, то

$$\frac{\partial x'^{\mu}}{\partial x^{\nu}} = \Lambda^{\mu}_{\ \nu},\tag{5.9}$$

и значит

$$\frac{\partial \phi}{\partial x^{\mu}} = \Lambda^{\nu}{}_{\mu} \frac{\partial \phi}{\partial x'^{\nu}} = (\Lambda^{-1})_{\mu}{}^{\nu} \frac{\partial \phi}{\partial x'^{\nu}}.$$
(5.10)

Умножая обе части на $\Lambda_{\rho}^{\ \mu}$ и, используя свойство обратной матрицы $\Lambda_{\rho}^{\ \mu}(\Lambda^{-1})_{\mu}^{\ \nu} = \delta_{\rho}^{\ \nu}$, получаем

$$\frac{\partial \phi}{\partial x'^{\rho}} = \Lambda_{\rho}^{\ \mu} \frac{\partial \phi}{\partial x^{\mu}},\tag{5.11}$$

или, в терминах 4-градиента $\partial'_{\mu}\phi = \Lambda_{\mu}{}^{\nu}\partial_{\nu}\phi$ что завершает доказательство того, что 4-вектор производных по x^{μ} сам преобразуется как ковектор (является объектом с нижним индексом и преобразуется как $x'_{\mu} = \Lambda_{\mu}{}^{\nu}x_{\nu}$).

5.2 Задачи

- 1. Докажите, что $\partial^{\mu} \equiv \partial/\partial x_{\mu}$ преобразуется как контравариантный вектор.
- Докажите, что полностью антисимметричный тензор 4-го ранга ε^{μνρσ}, определяемый двумя свойствами: (a) ε⁰¹²³ = 1, (b) тензор меняет знак при перестановки любых двух индексов действительно является тензором, если рассматривать только преобразования из собственной ортохронной группы Лоренца (иными словами, если исключить отражения пространства/времени и их комбинации, т.к. при всех преобразованиях группы Лоренца данный объект ведет себя как *псевдотензор*)
- Вычислите (а) η^{μν}η^{ρσ} ε_{μνρσ} (обратите внимание, что тензор ε_{μνρσ} здесь идет с нижними индексами). (b) ε_{μνρσ}ε^{ρσμν} (см. Л.-Л. Т.2 [2]). Как преобразуется данные величины при преобразованиях из собственной ортохронной группы Лоренца? А в общем случае?

5.3 Переход в движущиеся системы отсчёта

Преобразования Лоренца для перехода в систему отсчёта, движущуюся со скоростью *V* вдоль оси *x*:

$$x^{\mu\prime} = \begin{pmatrix} ct' \\ x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} \gamma & -\beta\gamma & 0 & 0 \\ -\beta\gamma & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} ct \\ x \\ y \\ z \end{pmatrix} = \Lambda^{\mu}_{\nu} x^{\nu}, \quad \gamma = \frac{1}{1 - \nu^2/c^2}, \quad \beta = \frac{\nu}{c}.$$

Или в координатах:

$$x' = \gamma(x + Vt), \quad y' = y, \quad z' = z, \quad t' = \gamma\left(t + \frac{Vx}{c^2}\right).$$

5.4 Задачи

- 1. Два пучка электронов летят навстречу друг другу со скоростями *v* = 0, 9*c* относительно лабораторной системы координат. Какова относительная скорость *V* электронов:
 - (а) с точки зрения наблюдателя в лаборатории?
 - (b) с точки зрения наблюдателя, движущегося вместе с одним из пучков электронов?
- 2. Записать формулы преобразования Лоренца для произвольного 4-вектора A^{μ} , не предполагая, что скорость \vec{V} системы S' относительно S параллельна оси x.
- 3. Вывести формулы сложения скоростей для случая, когда скорость \vec{V} системы S' относительно S имеет произвольное направление. Формулы представить в векторном виде.
- 4. Относительно системы *S* движутся система *S'* со скоростью \vec{V} и два тела скоростями v_1 и v_2 . Какой угол α между скоростями этих тел при наблюдении в системе *S* и в системе *S'*?
- 5. Зеркало движется нормально к собственной плоскости со скоростью \vec{V} . Фотон падает на зеркало под углом α к его скорости. Найдите угол, под которым фотон отразится. Какую частоту он будет иметь после отражения, если изначально его частота была v?

6 Релятивистская электродинамика

Подробный вывод указанных ниже выражений проводится в курсе лекций [1], мы просто приведём основные формулы релятивистской электродинамики в вакууме.

Электрическое и магнитное поля являются компонентами антисимметричного тензора электромагнитного поля $F_{\mu\nu}$:

$$F_{\mu\nu} = \begin{pmatrix} 0 & -E_x & -E_y & -E_z \\ E_x & 0 & -B_z & -B_y \\ E_y & B_z & 0 & -B_x \\ E_z & -B_y & -B_x & 0 \end{pmatrix}.$$
 (6.1)

При переходе от системы S к системе S' компоненты поля преобразуются по формулам (оси x и x' параллельны относительной скорости систем отсчёта):

$$E'_{x} = E_{x}, \quad E'_{y} = \gamma(E_{y} + \beta B_{z}), \quad E'_{z} = \gamma(E_{z} - \beta B_{y}); \quad (6.2)$$

$$B'_{x} = B_{x}, \quad B'_{y} = \gamma (B'_{y} - \beta E_{z}), \quad B'_{z} = \gamma (B_{z} + \beta E_{y}).$$
 (6.3)

Величины

$$\vec{B}^2 - \vec{E}^2 = \text{inv}, \quad \vec{E} \cdot \vec{B} = \text{inv},$$
 (6.4)

инвариантны относительно преобразований Лоренца, поскольку являются следом и корнем определителя тензора электромагнитного поля (6.1).

Векторный \vec{A} и скалярный ϕ потенциал образуют 4-х вектор потенциала

$$A^{\mu}=(\phi,ec{A}).$$

Этот вектор связан с напряжённостями по формулам

$$\vec{B} = \operatorname{rot}\vec{A} \quad \vec{E} = -\vec{\nabla}\phi - c^{-1}\partial_t\vec{A}.$$
(6.5)

Часто в релятивистских задачах при преобразованиях Лоренца бывает удобно работать с 4-х вектором потенциала.

Компоненты тензора энергии-импульса в вакууме определяются формулой

$$T_{\mu\nu} = \frac{1}{4\pi} \left(-F_{\mu}^{\ \alpha} F_{\nu\alpha} + \frac{1}{4} g_{\mu\nu} F_{\alpha\beta} F^{\alpha\beta} \right) \tag{6.6}$$

Упражнение. Докажите, что при переходе в систему отсчёта, движущуюся со скорость \vec{V} в произвольном направлении напряжённости электрического и магнитного поля преобразуются по формулам

$$\vec{E}' = \gamma \left(\vec{E} + \frac{\vec{V}}{c} \times \vec{B}\right) - (\gamma - 1)\vec{V}\frac{(\vec{V} \cdot \vec{E})}{V^2},\tag{6.7}$$

$$\vec{B}' = \gamma \left(\vec{B} - \frac{\vec{V}}{c} \times \vec{E}\right) - (\gamma - 1)\vec{V}\frac{(\vec{V} \cdot \vec{B})}{V^2}.$$
(6.8)

Пример 1. Пусть в системе отсчёта *S* электрическое и магнитное поля взаимно перпендикулярны: $\vec{E} \perp \vec{B}$. С какой скоростью относительно *S* должна двигаться система *S'*, в которой имеется только электрическое или только магнитное поле? Всегда ли существует решение и единственно ли оно?

Решение. Для решения этой задачи воспользуемся инвариантами поля (6.4). При E > B должна существовать система отсчёта, в которой B' = 0, $E' = \sqrt{E^2 - B^2}$. При E < B существует система существует система отсчёта, в которой E' = 0,

 $B' = \sqrt{B^2 - E^2}$. При E = B первый инвариант в (6.4) равен нулю в любой системе отсчёта, а значит решения не существует. Чтобы найти скорость искомой системы отсчёта воспользуемся формулами (6.7, 6.8).

В случае E > B имеем:

$$ec{V} = c rac{ec{E} imes ec{B}}{E^2}, \quad ec{E}' = rac{ec{E}}{E} \sqrt{E^2 - B^2}.$$

В любой системе отсчёта движущейся вдоль \vec{E}' с произвольной скоростью, магнитное поле также будет отсутствовать.

В случае E < B

$$ec{V}=crac{ec{B} imesec{E}}{B^2},\quad ec{B}'=rac{ec{B}}{B}\sqrt{B^2-E^2}.$$

Пример 2. Рассмотрим задачу об электрическом и магнитном полях равномерно движущегося заряда. Для ее решения мы можем воспользоваться тем, что 4потенциал A^{μ} является 4-вектором, и соответственно, если мы знаем как выглядит 4-потенциал покоящейся частицы, то мы можем получить 4-потенциал частицы в движущейся системе отсчета, выполнив преобразование Лоренца (буст). Иными словами, вместо решения задачи о движущемся заряде, мы решаем сперва задачу о покоящемся заряде (тривиально), а затем переходим в движущуюся инерциальную систему отсчета (ИСО).

Координаты в исходной ИСО мы будем обозначать $x^{\nu} = (x^0, x^1, x^2, x^3)$, а в движущейся ИСО $x'^{\mu} = (x'^0, x'^1, x'^2, x'^3)$, помня что координаты обеих ИСО связаны с помощью преобразования Лоренца $x'^{\mu} = \Lambda^{\mu}_{\ \nu} x^{\nu}$. Будем считать, что штрихованная ИСО движется со скоростью $(-\nu)$ вдоль оси x^1 нештрихованной ИСО.

В исходной ИСО заряд покоится и описывается 4-потенциалом $A^{\mu}(x) = (\phi(x)/c, \vec{A}(x))$, здесь мы не выписываем явно 4-индекс ν у 4-вектора x^{ν} , скалярный потенциал выбран как $\phi(x) = kq/r$, где радиус вектор $r = \sqrt{(x^1)^2 + (x^2)^2 + (x^3)^2}$, а векторный потенциал тождественно равен нулю $\vec{A}(x) =$ (0,0,0). Тогда в движущейся системе отсчета 4-потенциал имеет вид $A'^{\mu}(x') =$ $\Lambda^{\mu}_{\ \nu}A^{\nu}(x(x'))$. Обратите внимание, что 4-потенциалы в обеих частях равенства, заданы в одной и той же точке пространства-времени, имеющей, однако, разные координаты в зависимости от ИСО, в которой эта точка рассматривается. Если известен 4-потенциал, то электрическое и магнитное поля в движущейся ИСО определяются с помощью следующих формул

$$\vec{E}'(t',\vec{x}') = -\nabla'\phi'(t',\vec{x}') - \frac{\partial \vec{A}'(t',\vec{x}')}{\partial t'}, \quad \vec{B}'(t',\vec{x}') = \nabla' \times \vec{A}'(t',\vec{x}'), \quad (6.9)$$

где штрихи означают дифференцирование по координатам

 $(\vec{x}' \equiv (x'^1, x'^2, x'^3))$ и времени $(x'^0 = ct')$ движущейся системы отсчета. Непосредственное вычисление электрического поля по вышеуказанной формуле дает

$$E_{1}^{'}(t',\vec{x}') = \frac{q}{4\pi\epsilon_{0}\sqrt{1-v^{2}/c^{2}}} \frac{x'^{1}-vt'}{\left[\frac{(x'^{1}-vt')^{2}}{1-v^{2}/c^{2}} + (x'^{2})^{2} + (x'^{3})^{2}\right]^{3/2}},$$

$$E_{2}^{'}(t',\vec{x}') = \frac{q}{4\pi\epsilon_{0}\sqrt{1-v^{2}/c^{2}}} \frac{x'^{2}}{\left[\frac{(x'^{1}-vt')^{2}}{1-v^{2}/c^{2}} + (x'^{2})^{2} + (x'^{3})^{2}\right]^{3/2}},$$

$$E_{3}^{'}(t',\vec{x}') = \frac{q}{4\pi\epsilon_{0}\sqrt{1-v^{2}/c^{2}}} \frac{x'^{3}}{\left[\frac{(x'^{1}-vt')^{2}}{1-v^{2}/c^{2}} + (x'^{2})^{2} + (x'^{3})^{2}\right]^{3/2}},$$
(6.10)

где мы выписали 3-вектор напряженности электрического поля $\vec{E'}$ с нижними индексами, т.к. у 3-векторов можно не различать ко- и контравариантные компоненты.

6.1 Задачи

- 1. Проанализируйте полученные в примере 2 формулы для электрического поля, а именно, нарисуйте эскиз того, как выглядят линии электрического поля быстро движущегося заряда.
- 2. Вычислите магнитное поле движущегося заряда с помощью 4-потенциала $A'^{\mu}(x')$. Сравните нерелятивистский предел вашего ответа с известной формулой, получающейся из закона Био-Савара-Лапласа. Как выглядят линии магнитного поля у движущегося заряда?
- 3. Явными вычислениями проверьте правильность (6.4).
- 4. Найдите след тензора энергии-импульса (6.6) и выпишите его компоненты.
- 5. В системе отсчёта *S* имеется однородное электромагнитное поле \vec{E} , \vec{B} . С какой скоростью должна двигаться система, в которой $\vec{E'} \parallel \vec{B'}$? Всегда ли задача имеет решение и единственно ли оно? Чему равны абсолютные значения $\vec{E'}$, $\vec{B'}$?
- 6. Найти поля ϕ , \vec{A} , \vec{E} , \vec{B} точечного заряда e, движущегося равномерно со скоростью \vec{V} , произведя преобразование Лоренца от системы отсчёта, в которой заряд покоится. Подсказка: можно найти ϕ , \vec{A} с помощью преобразований Лоренца, а потом посчитать \vec{E} , \vec{B} по формулам (6.5).
- 7. Электрический диполь с моментом \vec{p}_0 равномерно движется со скоростью \vec{V} . Найдите создаваемые им поля ϕ , \vec{A} , \vec{E} , \vec{B} .

8. Найдите закон релятивистского движения заряда во взаимно перпендикулярных электрическом и магнитном полях (Известно, что *E* < *B*).

7 Разделение переменных в электростатических задачах

Одной из задач электростатики является решение уравнения Пуассона ($\rho = 0$ - Лапласа)

$$\Delta \Phi = -4\pi\rho.$$

Для данного дифференциального уравнения выделяют граничные условия следующих типов:

- Дирихле: задано значение потенциала на некоторой поверхности $\Phi|_{S} = \Phi_{0}$;
- Неймана: задано значение нормальной производной (проекции вектора напряжённости на нормаль) ∂_nΦ|_S = (∇Φ_S, n) = Ψ₀;
- задана поверхностная плотность заряда для границы двух областей. Потенциал остаётся непрерывным, а напряжённость (производная потенциала по нормали) испытывает скачок:

$$\Phi_1|_S = \Phi_2|_S, (\vec{E}_1 - \vec{E}_2, \vec{n}_2) = \partial_{n_2}\Phi_2 - \partial_{n_2}\Phi_1 = \partial_{n_2}\Phi_2 + \partial_{n_1}\Phi_1 = -4\pi\sigma$$

где *n*₂ - нормаль к границе внутрь второй области;

• условие убывания потенциала на бесконечности $\Phi \xrightarrow[|\vec{r}| \to \infty]{} 0;$

7.1 Общий алгоритм

- 1. Находим частные решения вида $X_1^{(m)}(x_1)X_2^{(n)}(x_2)X_3^{(m.n)}(x_3)$ т.е. произведения функций, зависящих от одной координаты.
- 2. Представляем решение в виде разложения по этим функциям:

$$\Phi = \sum_{m,n} C_{m,n} X_1^{(m)}(x_1) X_2^{(n)}(x_2) X_3^{(m,n)}(x_3).$$

3. Подставляем решение в граничные условия. Например условие на $x_3 = a$:

$$\sum_{m,n} C_{m,n} X_1^{(m)}(x_1) X_2^{(n)}(x_2) X_3^{(m,n)}(a) = \Psi$$

Слева получаем разложение по полному ортогональному набору $X_1^{(m)}(x_1)X_2^{(n)}(x_2)$.

4. Разлагаем правую часть по тому же набору:

$$\sum_{m,n} C_{m,n} X_1^{(m)}(x_1) X_2^{(n)}(x_2) X_3^{(m,n)}(a) = \sum_{m,n} \Psi_{m,n} X_1^{(m)}(x_1) X_2^{(n)}(x_2).$$

5. Поскольку слева и справа разложения по линейно-независимым функциям, можем приравнять их коэффициенты:

$$C_{m,n}X_3^{(m,n)}(a)=\Psi_{m,n}.$$

6. Учитывая все граничные условия, получаем алгебраические уравнения, из которых определяем неизвестные константы *C*_{*m*,*n*}.

7.2 Декартовы координаты

Уравнение Лапласа в декартовых координатах:

$$(\partial_x^2 + \partial_y^2 + \partial_z^2)\Phi(x, y, z) = 0.$$

Ищем решение в виде $\Phi(x, y, z) = X(x)Y(y)Z(z)$:

$$X''(x)Y(y)Z(z) + X(x)Y''(y)Z(z) + X(x)Y(y)Z''(z) = 0.$$

Делим на X(x)Y(y)Z(z):

$$\frac{X''(x)}{X(x)} + \frac{Y''(y)}{Y(y)} + \frac{Z''(z)}{Z(z)} = 0.$$

Поскольку каждое слагаемое зависит от одной координаты, от которой не зависят остальные, каждое из них равно некоторой константе. Получаем уравнения:

$$\begin{aligned} X''(x) &+ \alpha^2 X(x) = 0; \\ Y''(y) &+ \beta^2 Y^{(y)} = 0; \\ Z''(z) &- \gamma^2 Z(z) = 0; \\ \alpha^2 &+ \beta^2 = \gamma^2. \end{aligned}$$

В итоге представляем решение в следующем виде:

$$\Phi = \sum_{\alpha,\beta} \left(C^+_{\alpha\beta} e^{\sqrt{\alpha^2 + \beta^2}z} + C^-_{\alpha\beta} e^{-\sqrt{\alpha^2 + \beta^2}z} \right) e^{i\alpha x + i\beta y}.$$
(7.1)

Иногда удобнее экспоненты сразу перегруппировать в синусы и косинусы. Например:

$$\sum_{\alpha,\beta} \left(A_{\alpha} \cos \alpha x + \tilde{A}_{\alpha} \sin \alpha x \right) \left(B_{\beta} \cos \beta y + \tilde{B}_{\beta} \sin \beta y \right) \cdot \left(C_{\alpha\beta} \cosh \sqrt{\alpha^2 + \beta^2} z + \tilde{C}_{\alpha\beta} \sinh \sqrt{\alpha^2 + \beta^2} z \right).$$
(7.2)

- Экспонента *e^{αx}* периодична тогда и только тогда, когда параметр *α* чисто мнимый.
- Экспонента $e^{\alpha x}$ стремится к нулю при $x \to +\infty$ тогда и только тогда, когда вещественная часть параметра α строго отрицательна (строго положительна при $x \to -\infty$).
- Если в задаче некоторая координата ограничена конечным отрезком, а показатель соответствующей экспоненты чисто мнимый, получаем дискретный ряд Фурье. Аналогично, если все граничные условия периодичны по этой координате.
- Если же вся ось или полуось без периодичности непрерывное преобразование Фурье.

7.2.1 Пример задачи в декартовых координатах

Для простоты рассмотрим двумерную задачу. Рассмотрим заземлённый ящик (т.е. потенциал на его поверхности равен нулю), образованный плоскостями x = 0, x = a, y = -b, y = b. На плоскости y = 0, лежащей целиком внутри ящика и ограниченной его боковыми стенками x = 0, x = b, задана постоянная поверхностная плотность заряда σ_0 . Требуется найти потенциал внутри ящика.

Решение: Пространство внутри ящика делится заряженной плоскостью на две области: при положительных *у* и при отрицательных. Из симметрии задачи, а также того факта, что по разные стороны от плоскости поле направлено в разные стороны от неё, следует, что $\Phi_{y<0}(y) = \Phi_{y>0}(-y)$, поэтому для начала ограничимся областью положительных *у*. В разложение:

$$\Phi_{y>0} = \sum_{\alpha} \left(A_{\alpha} \cos \alpha x + \tilde{A}_{\alpha} \sin \alpha x \right) \left(B_{\alpha} \cosh \alpha y + \tilde{B}_{\alpha} \sinh \alpha y \right),$$

подставляем граничное условие x = 0:

$$\sum_{\alpha} A_{\alpha} \left(B_{\alpha} \cosh \alpha y + \tilde{B}_{\alpha} \sinh \alpha y \right) = 0$$

Поскольку это должно выполняться при всех *y*, а наше разложение идёт по линейно-независимым функциям, все коэффициенты A_{α} равны нулю, т.е. вся зависимость по *x* представлена синусами. Теперь подставим граничное условие x = a:

$$\sum_{\alpha} \tilde{A}_{\alpha} \sin \alpha a \left(B_{\alpha} \cosh \alpha y + \tilde{B}_{\alpha} \sinh \alpha y \right) = 0.$$

Снова используя линейную независимость получаем $\tilde{A}_{\alpha} \sin \alpha a = 0$. Это значит, что ненулевыми остаются только коэффициенты при синусах с $\alpha = \pi n/a$, где n - целое положительное число (коэффициенты при синусах с отрицательными n группируются с положительными).

Получаем:

$$\Phi_{y>0} = \sum_{n=0}^{+\infty} \left(C_n \cosh \frac{\pi n}{a} y + \tilde{C}_n \sinh \frac{\pi n}{a} y \right) \sin \frac{\pi n}{a} x.$$

Учтём теперь граничные условия заряженной плоскости. Условие равенства потенциалов удовлетворяется сразу равенством $\Phi_{y<0}(y) = \Phi_{y>0}(-y)$, полученным из соображений симметрии. Условие на скачок производной:

$$-4\pi\sigma_0 = \partial_y \Phi_{y>0}|_{y=0} - \partial_y \Phi_{y<0}|_{y=0} = 2\partial_y \Phi_{y>0}|_{y=0} = 2\sum_{n=0}^{+\infty} \frac{\pi n}{a} \tilde{C}_n \sin \frac{\pi n}{a} x.$$

Чтобы найти \tilde{C}_n нужно разложить σ_0 по синусам:

$$\sigma_0 = \sum_{n=0}^{+\infty} \sigma_n \sin \frac{\pi n}{a} x,$$

тогда из линейной независимости синусов получаем

$$\tilde{C}_n = -\frac{2a}{n}\sigma_n.$$

Казалось бы, такое разложение не существует, поскольку исходная функция (константа) симметрична. Однако мы можем разложить функцию σ_{0x} , которая равна $+\sigma_0$ при $x \in (0, a)$ и $-\sigma_0$ при $x \in (-a, 0)$. Для этого умножим разложение на $\sin \frac{\pi m}{a} x$ и проинтегрируем по x от -a до a:

$$\int_{-a}^{+a} \sigma_{0x}(x) \sin \frac{\pi m}{a} x dx = \sum_{n=0}^{+\infty} \sigma_n \int_{-a}^{+a} \sin \frac{\pi m}{a} x \sin \frac{\pi n}{a} x dx = a \sigma_m.$$

Подставляя в левую часть $\sigma_{0x}(x)$ получаем:

$$\sigma_m = \frac{2}{a} \sigma_0 \int_0^{+a} \sin \frac{\pi m}{a} x dx = 2 \frac{1 - \cos \pi m}{\pi m} = 2 \frac{1 - (-1)^m}{\pi m} \sigma_0,$$

следовательно константы \tilde{C} равны:

$$\tilde{C}_m = -4a \frac{1 - (-1)^m}{\pi m^2} \sigma_0 = \begin{cases} 0, & m = 2k \\ -\frac{8\sigma_0 a}{\pi m^2}, & m = 2k + 1 \end{cases}$$

Рассмотрим теперь последнее граничное условие при y = b:

$$\sum_{n=0}^{+\infty} \left(C_n \cosh \frac{\pi n b}{a} + \tilde{C}_n \sinh \frac{\pi n b}{a} \right) \sin \frac{\pi n}{a} x = 0,$$

из линенйной независимости синусов следует:

$$C_n \cosh \frac{\pi nb}{a} + \tilde{C}_n \sinh \frac{\pi nb}{a} = 0,$$

 $C_n = -\tilde{C}_n \tanh \frac{\pi nb}{a}.$

То есть

$$\Phi_{y>0} = \sum_{n=0}^{+\infty} \tilde{C}_n \left(-\tanh \frac{\pi n b}{a} \cosh \frac{\pi n}{a} y + \sinh \frac{\pi n}{a} y \right) \sin \frac{\pi n}{a} x.$$

В итоге получаем во всём пространстве внутри ящика:

$$\Phi = \frac{8\sigma_0 a}{\pi} \sum_{k=0}^{+\infty} \frac{1}{(2k+1)^2} \left(\tanh \frac{\pi (2k+1)b}{a} \cosh \frac{\pi (2k+1)}{a} |y| - \sinh \frac{\pi (2k+1)}{a} |y| \right) \cdot \\ \cdot \sin \frac{\pi (2k+1)}{a} x.$$
(7.3)

Для трёхмерной задачи процедура схожая: нужно повторить рассуждение для оси x применительно к оси z, получив там тоже одни синусы. После чего, таким же образом разложив константу по синусам, учесть заряженную плоскость.

7.2.2 Задачи

1. Внутри бесконечного полуслоя толщиной *a*, определяемого условиями $0 < x < a, y > 0, -\infty < z < +\infty$, зарядов нет. На нижней стенке 0 < x < a, y = 0 потенциал равен $\Phi(x) = \Phi_0 \sin \frac{\pi x}{a}$, на боковых стенках x = 0 и x = a

постоянный потенциал $\Phi = 0$. Найти не зависящий от *z* потенциал $\Phi = \Phi(x, y)$ внутри полуслоя.

- 2. Внутри бесконечного полуслоя толщиной *a*, определяемого условиями $0 < x < a, y > 0, -\infty < z < +\infty$, зарядов нет. На нижней стенке 0 < x < a, y = 0 постоянный потенциал Φ_0 , на боковых стенках x = 0 и x = a постоянный потенциал $\Phi = 0$. Найти не зависящий от *z* потенциал $\Phi = \Phi(x, y)$ внутри полуслоя.
- 3. Внутри бесконечного параллелепипеда, определяемого условиями $0 < x < a, 0 < y < b, -\infty < z < +\infty$, зарядов нет. На нижней стенке 0 < x < a, y = 0 постоянный потенциал Φ_0 , на боковых стенках x = 0 и x = a и верхней стенке y = b постоянный потенциал $\Phi = 0$. Найти потенциал внутри параллелепипеда.

7.3 Сферические координаты

Уравнение Лапласа в сферических координатах (r, θ, ϕ):

$$\frac{1}{r}\partial_r^2(r\Phi) + \frac{1}{r^2\sin\theta}\partial_\theta(\sin\theta\partial_\theta\Phi) + \frac{1}{r^2\sin^2\theta}\partial_\phi^2\Phi = 0,$$

будем искать решение в виде $\Phi = \frac{U(r)}{r} P(\theta) Q(\phi)$. Умножим уравнение на $\frac{r^2}{\Phi}$:

$$r^2 rac{U''(r)}{U(r)} + rac{1}{\sin heta} \partial_ heta rac{\sin heta \partial_ heta P(heta)}{P(heta)} + rac{1}{\sin^2 heta} rac{\partial_\phi^2 Q(\phi)}{Q(\phi)} = 0.$$

Только первое слагаемое зависит от *r*, оно же не зависит ни от чего больше. Следовательно, оно равно константе. Аналогично, если умножить уравнение на $\sin^2 \theta$, третье и только третье слагаемое зависит только от ϕ , следовательно оно также равно константе. Сделав замену переменной $x = \cos \phi$, получаем три уравнения:

$$r^{2}U''(r) = l(l+1)U(r),$$

$$Q''(\phi) + m^{2}Q(\phi) = 0,$$

$$\frac{d}{dx}\left((1-x^{2})\frac{dP(x)}{dx}\right) + \left[l(l+1) - \frac{m^{2}}{1-x^{2}}\right]P(x) = 0.$$

Первое уравнение можно решить, сделав подстановку $e^{t} = r$:

$$\frac{d^2U}{dt^2} - \frac{dU}{dt} - l(l+1)U = 0 \Rightarrow U(t) = Ae^{(l+1)t} + Be^{-lt},$$

следовательно

$$\frac{U(r)}{r} = Ar^l + Br^{-l-1}.$$

Решением второго уравнения является экспонента $e^{im\phi}$. Так как решение должно быть однозначным, она должна быть периодичной с периодом 2π , следовательно *m* должно быть целым.

Перейдём к третьему уравнению. В начале рассмотрим случай m = 0. Решение существует на всём промежутке $-1 \le x \le 1$, если l положительное и целое. Этим решением являются полиномы Лежандра $P_l(x)$. Их нормируют так, чтобы $P_l(1) = 1$. Они образуют полную систему функций на промежутке [-1, 1], т.е. по ним может быть разложена любая функция, заданная на этом промежутке.

Первые полиномы Лежандра:

$$P_0(x) = 1, P_1(x) = x, P_2(x) = \frac{1}{2}(3x^2 - 1),$$
$$P_3(x) = \frac{1}{2}(5x^2 - 3x), P_4(x) = \frac{1}{8}(35x^4 - 30x^2 + 3).$$

Формула Родрига:

$$P_l(x) = \frac{1}{2^l l!} \frac{d^l}{dx^l} (x^2 - 1)^l.$$

Полиномы Лежандра ортогональны, но не ортонормированны

$$\int_{-1}^{+1} P_l(x) P_{l'} dx = \frac{2}{2l+1} \delta_{ll'}.$$

Ещё несколько полезных свойств:

$$P_{l}(-x) = (-1)^{l} P_{l}(x), P_{2n}(0) = (-1)^{n} C_{2n}^{n} / 2^{2n},$$
$$\frac{d}{dx} P_{l+1} - \frac{d}{dx} P_{l-1} = (2l+1) P_{l}.$$

В случае произвольного *m* решение существует, если *m* - целое и меньшее по модулю чем *l*. Обобщённые полиномы Лежандра:

$$P_l^m = \frac{(-1)^m}{2^l l!} (1 - x^2)^{m/2} \frac{d^{l+m}}{dx^{l+m}} (x^2 - 1)^l.$$

Полезное соотношение на обобщённые полиномы:

$$P_l^{-m} = (-1)^m \frac{(l-m)!}{(l+m)!} P_l^m, \quad P_l^0 = P_l.$$

Заметим, что для любого *m* отличного от нуля верно

$$P_l^m(1)=0, \quad m\neq 0.$$

Для каждого *m* обобщённые полиномы Лежандра образуют полный набор функций на промежутке [-1, 1]. Ортогональность:

$$\int_{-1}^{+1} P_l^m P_{l\prime}^m dx = \frac{2}{2l+1} \frac{(l+m)!}{(l-m)!} \delta_{ll\prime}.$$

Для разложения по угловым координатам в удобно использовать сферические функции:

$$Y_{lm}(\theta,\phi) = \sqrt{\frac{2l+1}{4\pi} \frac{(l-m)!}{(l+m)!}} e^{im\phi} P_l^m(\cos\theta), \quad Y_{l,-m} = (-1)^m Y_{lm}^*,$$

они образуют полный, ортонормированный набор:

$$\int_{0}^{2\pi} d\phi \int_{0}^{\pi} d\theta \sin \theta Y_{l'm'}^{*}(\theta,\phi) Y_{lm}(\theta,\phi) = \delta_{ll'} \delta_{mm'}$$
$$\sum_{l=0}^{+\infty} \sum_{m=-l}^{+l} Y_{lm}^{*}(\theta',\phi') Y_{lm}(\theta,\phi) = \delta(\phi-\phi') \delta(\cos\theta-\cos\theta').$$

Таблица некоторых сферических функций:

$$Y_{00} = \frac{1}{\sqrt{4\pi}},$$

$$Y_{11} = -\sqrt{\frac{3}{8\pi}} \sin \theta e^{i\phi}, \quad Y_{10} = \sqrt{\frac{3}{4\pi}} \cos \theta,$$

$$Y_{22} = \frac{1}{4}\sqrt{\frac{15}{2\pi}} \sin^2 \theta e^{2i\phi}, \quad Y_{21} = -\sqrt{\frac{15}{8\pi}} \sin \theta \cos \theta e^{i\phi}, \quad Y_{20} = \sqrt{\frac{5}{4\pi}} \left(\frac{3}{2} \cos^2 \theta - \frac{1}{2}\right)$$

Таким образом, получаем разложения:

$$\Phi(r,\theta,\phi) = \sum_{l=0}^{+\infty} \sum_{m=-l}^{+l} \left(A_{lm} r^l + B_{lm} r^{-l-1} \right) e^{im\phi} P_l^m(\cos\theta),$$

$$\Phi(r,\theta,\phi) = \sum_{l=0}^{+\infty} \sum_{m=-l}^{+l} \left(A_{lm} r^l + B_{lm} r^{-l-1} \right) Y_{lm}(\theta,\phi).$$
(7.4)

7.3.1 Пример №1

Рассмотрим сферу радиуса *R* с поверхностной плотностью заряда $\sigma_0 \cos \theta$. Требуется найти потенциал во всём пространстве.

Решение: Разделим пространство на две области: первая внутри сферы, вторая снаружи. Внутри есть координатная особенность r = 0, следовательно в разложении Φ_1 коэффициенты при r^{-l-1} должны быть равны нулю. Аналогично, в разложении Φ_2 будут отсутствовать члены вида r^l , неограниченные на бесконечности.

$$\Phi_1(r, heta,\phi) = \sum_{l=0}^{+\infty} \sum_{m=-l}^{+l} A_{lm} r^l Y_{lm}(heta,\phi),
onumber \ \Phi_2(r, heta,\phi) = \sum_{l=0}^{+\infty} \sum_{m=-l}^{+l} B_{lm} r^{-l-1} Y_{lm}(heta,\phi).$$

Имеется два граничных условия:

$$\Phi_1(R,\theta,\phi) = \Phi_2(R,\theta,\phi),$$

$$\partial_r \Phi_1(r,\theta,\phi)|_{r=R} - \partial_r \Phi_2(r,\theta,\phi)|_{r=R} = 4\pi\sigma_0\cos\theta,$$

подставляя в них наше разложение получаем:

$$\sum_{l=0}^{+\infty} \sum_{m=-l}^{+l} A_{lm} R^{l} Y_{lm}(\theta, \phi) = \sum_{l=0}^{+\infty} \sum_{m=-l}^{+l} B_{lm} R^{-l-1} Y_{lm}(\theta, \phi),$$

$$\sum_{l=0}^{+\infty} \sum_{m=-l}^{+l} \left(l A_{lm} R^{l-1} + (l+1) B_{lm} R^{-l-2} \right) Y_{lm}(\theta, \phi) = 4\pi\sigma_0 \cos\theta$$

Из таблицы сферических функций можно увидеть, что:

$$\sigma_0\cos\theta=\sqrt{\frac{4\pi}{3}}\sigma_0Y_{10}.$$

Поскольку сферические функции линейно-независимы суммирование по индексам можно снять:

$$A_{lm}R^{l} = B_{lm}R^{-l-1}$$
$$lA_{lm}R^{l-1} + (l+1)B_{lm}R^{-l-2} = 4\pi\sqrt{\frac{4\pi}{3}}\sigma_{0}\delta_{l1}\delta_{m0},$$

откуда получаем, что нулю равны все коэффициенты разложения, кроме

$$A_{10} = \frac{8\pi^{3/2}\sqrt{3}}{9}\sigma_0, \quad A_{10} = \frac{8\pi^{3/2}\sqrt{3}}{9}R^3\sigma_0.$$
Следовательно потенциал:

$$\Phi = \begin{cases} \frac{8\pi^{3/2}\sqrt{3}}{9} \sigma_0 r Y_{10} = \frac{4\pi}{3} \sigma_0 r \cos\theta & \text{при } r < R \\ \frac{8\pi^{3/2}\sqrt{3}}{9} \sigma_0 \frac{R^3}{r^2} Y_{10} = \frac{4\pi}{3} \sigma_0 \frac{R^3}{r^2} \cos\theta & \text{при } r > R \end{cases}$$

Можно было сразу заметить, что задача симметрична по ϕ , следовательно потенциал не будет зависеть от коэффициентов с ненулевым *m*. Значит можно было сразу искать разложение по обычным полиномам Лежандра:

$$\Phi(r,\theta,\phi) = \sum_{l=0}^{+\infty} \left(A_l r^l + B_l r^{-l-1} \right) P_l(\cos\theta).$$
(7.5)

Эта ситуация общая для всех осесимметричных задач.

7.3.2 Пример №2

Имеется две сферы с общим центром в начале координат. На внутренней сфере радиуса R_1 задан потенциал $\Phi_1 \cos \theta$. На внешней сфере радиуса R_2 задан потенциал $\Phi_2 \sin^2 \theta \sin 2\phi$. Найти потенциал во всём пространстве.

Решение: Разобьём пространство на три области: первая $r < R_1$, вторая $R_1 < r < R_2$ и третья $r > R_2$. С учётом требования конечности потенциала и его убывания на бесконечности получаем следующие разложения:

$$\begin{split} \Phi_{I}(r,\theta,\phi) &= \sum_{l=0}^{+\infty} \sum_{m=-l}^{+l} A_{lm}^{(I)} r^{l} Y_{lm}(\theta,\phi), \\ \Phi_{II}(r,\theta,\phi) &= \sum_{l=0}^{+\infty} \sum_{m=-l}^{+l} \left(A_{lm}^{(II)} r^{l} + B_{lm}^{(II)} r^{-l-1} \right) Y_{lm}(\theta,\phi), \\ \Phi_{III}(r,\theta,\phi) &= \sum_{l=0}^{+\infty} \sum_{m=-l}^{+l} B_{lm}^{(III)} r^{-l-1} Y_{lm}(\theta,\phi). \end{split}$$

Разложим граничные условия по сферическим функциям:

$$\Phi_1 \cos \theta = \sqrt{\frac{4\pi}{3}} \Phi_1 Y_{10}, \quad \Phi_2 \sin^2 \theta \sin 2\phi = -2i\sqrt{\frac{2\pi}{15}} \Phi_2 Y_{22} + 2i\sqrt{\frac{2\pi}{15}} \Phi_2 Y_{2,-2}.$$

Используем граничное условие внутренней сферы для первой области:

$$\sum_{l=0}^{+\infty}\sum_{m=-l}^{+l}A_{lm}^{(I)}r^{l}Y_{lm}=\sqrt{\frac{4\pi}{3}}\Phi_{1}Y_{10}.$$

Из линейной независимости ясно, что все $A_{lm}^{(I)}$ равны нулю, кроме $A_{10}^{(I)}$, в результате потенциал в первой области:

$$\Phi_I = \sqrt{\frac{4\pi}{3}} \frac{r}{R_1} \Phi_1 Y_{10} = \frac{r}{R_1} \Phi_1 \cos \theta.$$

Применяем теперь это же граничное условие ко второй области:

$$\sum_{l=0}^{+\infty}\sum_{m=-l}^{+l} \left(A_{lm}^{(II)}r^{l} + B_{lm}^{(II)}r^{-l-1} \right) Y_{lm} = \sqrt{\frac{4\pi}{3}} \Phi_1 Y_{10},$$

что даёт цепочку уравнений:

$$A_{lm}^{(II)}R_1^l+B_{lm}^{(II)}R_1^{-l-1}=\sqrt{rac{4\pi}{3}}\Phi_1\delta_{l1}\delta_{m0}.$$

Перейдём теперь к граничному условию для внешней сферы:

$$\sum_{l=0}^{+\infty}\sum_{m=-l}^{+l} \left(A_{lm}^{(II)} R_2^l + B_{lm}^{(II)} R_2^{-l-1} \right) Y_{lm} = -2i\sqrt{\frac{2\pi}{15}} \Phi_2 Y_{22} + 2i\sqrt{\frac{2\pi}{15}} \Phi_2 Y_{2,-2},$$

что даёт вторую цепочку уравнений:

$$A_{lm}^{(II)}R_2^l + B_{lm}^{(II)}R_2^{-l-1} = -2i\sqrt{\frac{2\pi}{15}}\Phi_2\delta_{l2}\delta_{m2} + 2i\sqrt{\frac{2\pi}{15}}\Phi_2\delta_{l2}\delta_{m,-2}.$$

Из этих уравнений следует, что константы $A_{lm}^{(II)}$ и $B_{lm}^{(II)}$ равны нуля для всех l и m кроме трёх особых случаев:

$$\begin{split} l &= 1, m = 0 \quad A_{10}^{(II)} = -2\sqrt{\frac{\pi}{3}} \frac{R_1^2}{R_2^3 - R_1^3} \Phi_1, \quad B_{10}^{(II)} = 2\sqrt{\frac{\pi}{3}} \frac{R_1^2 R_2^3}{R_2^3 - R_1^3} \Phi_1, \\ l &= 2, m = 2 \quad A_{22}^{(II)} = -2i\sqrt{\frac{2\pi}{15}} \frac{R_2^3}{R_2^5 - R_1^5} \Phi_2, \quad B_{22}^{(II)} = 2i\sqrt{\frac{2\pi}{15}} \frac{R_1^5 R_2^3}{R_2^5 - R_1^5} \Phi_2, \\ l &= 2, m = -2 \quad A_{2,-2}^{(II)} = 2i\sqrt{\frac{2\pi}{15}} \frac{R_2^3}{R_2^5 - R_1^5} \Phi_2, \quad B_{2,-2}^{(II)} = -2i\sqrt{\frac{2\pi}{15}} \frac{R_1^5 R_2^3}{R_2^5 - R_1^5} \Phi_2. \end{split}$$

Используя таблицу сферических функция получаем потенциал во второй области:

$$\Phi_{II} = -\frac{R_1^2}{R_2^3 - R_1^3} \left(r - \frac{R_2^3}{r^2} \right) \Phi_1 \cos \theta + \frac{R_2^3}{R_2^5 - R_1^5} \left(r^2 - \frac{R_1^5}{r^3} \right) \Phi_2 \sin^2 \theta \sin 2\phi.$$

И наконец накладываем граничное условие на внешней сфере на потенциал в третьей области:

$$\sum_{l=0}^{+\infty}\sum_{m=-l}^{+l}B_{lm}^{(III)}R_2^{-l-1}Y_{lm} = -2i\sqrt{\frac{2\pi}{15}}\Phi_2Y_{22} + 2i\sqrt{\frac{2\pi}{15}}\Phi_2Y_{2,-2}.$$

Из линейной независимости сферических функций получаем, что все константы равны нулю кроме

$$B_{2,\pm 2}^{(III)} = \mp 2i\sqrt{rac{2\pi}{15}}R_2^3\Phi_{2,\pm 2}$$

что даёт для потенциала в третьей области:

$$\Phi_{III} = -2i\sqrt{\frac{2\pi}{15}}R_2^3\Phi_2Y_{22} + 2i\sqrt{\frac{2\pi}{15}}R_2^3\Phi_2Y_{2,-2} = \frac{R_2^3}{r^3}\Phi_2\sin^2\theta\sin^2\phi$$

7.4 Уравнение Пуассона

Решаем уравнение Пуассона

$$\Delta \Phi = -4\pi \rho$$

Мы можем любым способом найти решение неоднородного уравнения, а потом поправить его с помощью уже известных нам решений уравнений Лапласа так, чтобы удовлетворялись граничные условия.

Разлагаем Ф и ρ по сферическим функциям:

$$\Phi(r,\theta,\phi) = \sum_{l=0}^{+\infty} \sum_{m=-l}^{+l} \frac{U_{lm}(r)}{r} Y_{lm}(\theta,\phi), \quad \rho(r,\theta,\phi) = \sum_{l=0}^{+\infty} \sum_{m=-l}^{+l} \rho_{lm}(r) Y_{lm}(\theta,\phi).$$

Обратите внимание, что сейчас U_{lm} - неизвестная функция от r. Используя формулу для оператора Лапласа в сферических координатах получаем уравнение на радиальную часть:

$$\partial_r^2 U_{lm} - rac{l(l+1)}{r^2} U_{lm} = -4\pi
ho_{lm} r.$$

Левую часть можно представить в факторизованном виде:

$$(\partial_r - f)(\partial_r + f)U_{lm}.$$

У нас два варианта f = l/r и f = -(l+1)/r, выберем первый (второй вариант даст тот же результат)

$$(\partial_r - \frac{l}{r})(\partial_r + \frac{l}{r})U_{lm} = -4\pi\rho_{lm}r.$$

Введём новую переменную:

$$u_{lm} \equiv (\partial_r + \frac{l}{r})U_{lm}.$$

Подставляя в наше уравнение получим:

$$(\partial_r - \frac{l}{r})u_{lm} = -4\pi\rho_{lm}r.$$

Чтобы избавиться от слагаемого $\frac{1}{r}u_{lm}$ сделаем замену:

$$u_{lm} = \exp\left(\int \frac{l}{r} dr\right) \tilde{u}_{lm} = r^l \tilde{u}_{lm}$$

Тогда уравнение становится совсем простым:

$$\partial_r \tilde{u}_{lm} = -4\pi \rho_{lm} r^{-l+1}.$$

Получаем:

$$u_{lm}=-4\pi r^l\int\rho_{lm}r^{-l+1}dr.$$

Возвращаясь к исходным переменным:

$$(\partial_r + \frac{l}{r})U_{lm} = -4\pi r^l \int \rho_{lm} r^{-l+1} dr.$$

Это уравнение аналогично уравнению на u_{lm} , отличаясь от него только знаком при $\frac{l}{r}$. Повторяя те же шаги получаем:

$$U_{lm} = -4\pi r^{-l} \int dr \left(r^{2l} \int \rho_{lm} r^{-l+1} dr \right) = -\frac{4\pi}{2l+1} r^{-l} \int dr \left(\partial_r (r^{2l+1}) \int \rho_{lm} r^{-l+1} dr \right).$$

Берём внешний интеграл по частям, делим U_{lm} на r и приходим к окончательному ответу:

$$\frac{U_{lm}}{r} = \frac{4\pi}{2l+1} \left(r^{-l-1} \int \rho_{lm} r^{l+2} dr - r^l \int \rho_{lm} r^{-l+1} dr \right)$$

$$\Phi = \sum_{l=0}^{+\infty} \sum_{m=-l}^{+l} \frac{4\pi}{2l+1} \left(r^{-l-1} \int \rho_{lm} r^{l+2} dr - r^l \int \rho_{lm} r^{-l+1} dr \right) Y_{lm}(\theta,\phi).$$
(7.6)

В такой форме легко заметить, что константы интегрирования дадут (как и следовало ожидать) произвольное решение однородного уравнения (т.е. уравнения Лапласа).

7.4.1 Пример

Шар радиуса R_1 с плотностью заряда $\rho = \rho_0 \frac{r}{R_1} \cos \theta$ заключён в заземлённую сферу радиуса R_2 . Найти потенциал внутри сферы (т.е. при $r < R_2$)

Решение: Плотность заряда выражается через сферические функции следующим образом:

$$\rho = \sqrt{\frac{4\pi}{3}}\rho_0 \frac{r}{R_1} Y_{10}.$$

Разделим пространство внутри сферы на две области:первая при $r \leq R_1$ и вторая при $R_1 \leq r \leq R_2$. Потенциал в первой области находится как решение уравнения Пуассона:

$$\Phi_I = \sum_{l=0}^{+\infty} \sum_{m=-l}^{+l} \frac{U_{lm}^I(r)}{r} Y_{lm},$$

$$\frac{U_{10}^{I}}{r} = \left(\frac{4\pi}{3}\right)^{3/2} \frac{\rho_{0}}{R_{1}} \left(\frac{1}{r^{2}} \int r^{4} dr - r \int r dr\right) = \left(\frac{4\pi}{3}\right)^{3/2} \frac{\rho_{0}}{R_{1}} \left(\frac{r^{3}}{5} + \frac{B_{10}^{I}}{r^{2}} - \frac{r^{3}}{2} + A_{10}^{I}r\right),$$
$$\frac{U_{lm}^{I}}{r} = A_{lm}^{I} r^{l} + B_{lm}^{I} r^{-l-1}, \quad (l,m) \neq (1,0).$$

Поскольку первая область включает в себя r = 0, все коэффициенты $B_{lm}^{I} = 0$. Потенциал во второй области - решение уравнения Лапласа.

$$\Phi_{II} = \sum_{l=0}^{+\infty} \left(A_{lm}^{II} r^l + B_{lm}^{II} r^{-l-1} \right) Y_{lm}.$$

Учтём граничное условие при $r = R_2$:

$$\sum_{l=0}^{+\infty} \sum_{m=-l}^{+l} \left(A_{lm}^{II} R_2^l + B_{lm}^{II} R_2^{-l-1} \right) Y_{lm} = 0.$$

Из линейной независимости сферических функций следует, что коэффициенты при них равны нулю, следовательно:

$$B_{lm}^{II} = -A_{lm}^{II} R_2^{2l+1}$$

$$\Phi_{II} = \sum_{l=0}^{+\infty} \sum_{m=-l}^{+l} A_{lm}^{II} (r^l - R_2^{2l+1} r^{-l-1}) Y_{lm}.$$

Чтобы найти оставшиеся константы нам нужно учесть условия сшивания потенциалов на границе $r = R_1$ они аналогичны условиям сшивания для нулевой поверхностной плотности заряда, т.е. условию равенства потенциалов и нормальных производных:

$$\Phi_I|_{r=R_1} = \Phi_{II}|_{r=R_1}, \quad \partial_r \Phi_I|_{r=R_1} = \partial_r \Phi_{II}|_{r=R_1}.$$

Как всегда, поскольку эти равенства выполняются при любом ϕ и θ , мы можем приравнять коэффициенты при сферических функциях слева и справа. Легко понять, что за исключением одного особого случая l = 1, m = 0 мы получаем систему уравнений, допускающую только тривиальное решение $A_{lm}^{I} = A_{lm}^{II} = 0$.

Для случая l = 1, m = 0 получаем:

$$-\frac{(4\pi)^{3/2}}{12}\rho_0 R_1^2 + A_{10}^I = A_{10}^{II} \left(1 - \frac{R_2}{R_1}\right),$$
$$-\frac{(4\pi)^{3/2}}{12}\rho_0 R_1 = A_{10}^{II} \frac{R_1}{R_1},$$

откуда находим коэффициенты и ответ:

$$\Phi_{I} = -\frac{(4\pi)^{3/2}}{4}\rho_{0}\left(\frac{r^{3}}{3R_{1}} + \frac{R_{1}^{3}}{R_{2}}\right)Y_{10} = -\pi\rho_{0}\left(\frac{r^{3}}{3R_{1}} + \frac{R_{1}^{3}}{R_{2}}\right)\cos\theta,$$

$$\Phi_{II} = -\frac{(4\pi)^{3/2}}{12}\rho_{0}R_{1}^{2}\frac{3R_{1} - 4R_{2}}{R_{2}}\left(1 - \frac{R_{2}}{r}\right)Y_{10} = -\pi\rho_{0}R_{1}^{2}\frac{3R_{1} - 4R_{2}}{R_{2}}\left(1 - \frac{R_{2}}{r}\right)\cos\theta.$$

7.5 Мультипольное разложение

Рассмотрим ситуацию, при которой вся плотность заряда сосредоточена в некоторой ограниченной области пространства так, что можно провести сферу, разделяющую пространство на две части: внутри сферы заряды есть, снаружи – нет. Тогда снаружи сферы справедливо уравнение Лапласа и его решение в этой области можно представить в виде

$$\Phi(\vec{r}) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \frac{4\pi}{2l+1} q_{lm} \frac{Y_{lm}(\theta,\varphi)}{r^{l+1}},$$
(7.7)

где q_{lm} неизвестные коэффициенты, определяемые плотностью заряда внутри воображаемой сферы. Выражение, приведенное выше, обычно называют разложением по мультиполям: член с l = 0 называют монополем, член с l = 1 – дипольным моментом и т.д. Смысл этих терминов будет прояснён далее, а сначала выразим неизвестные коэффициенты q_{lm} через заданную плотность заряда $\rho(\vec{r})$. Для этого запишем решение уравнения Лапласа для потенциала $\Phi(\vec{r})$ в виде

$$\Phi(\vec{r}) = \int \frac{\rho(\vec{r}')}{|\vec{r} - \vec{r}'|} d^3 r'.$$
(7.8)

Убедиться, что это решение уравнения Лапласа не трудно, действительно: т.к. $\rho(\vec{r}')$ отлично от нуля лишь внутри воображаемой сферы, а значения потенциала $\Phi(\vec{r})$ рассматриваются только вне ее, то знаменатель $|\vec{r} - \vec{r}'|$ никогда не обращается в ноль. В этом случае $\Delta |\vec{r} - \vec{r}'|^{-1} = 0$ и следовательно $\Delta \Phi(\vec{r}) = 0$. Заметим, что в общем случае $\Delta |\vec{r} - \vec{r}'|^{-1} = -4\pi\delta(\vec{r} - \vec{r}')$ (дельта-функция). Теперь разложим (доказательство см. в [4]) $|\vec{r} - \vec{r}'|^{-1}$ по сферическим функциям в области r > r'

$$\frac{1}{|\vec{r} - \vec{r}'|} = 4\pi \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \frac{1}{2l+1} \frac{r'^l}{r^{l+1}} Y_{lm}^*\left(\theta', \varphi'\right) Y_{lm}(\theta, \varphi),$$
(7.9)

здесь $\vec{r} = (r \sin \theta \cos \varphi, r \sin \theta \sin \varphi, r \cos \theta)^{\mathrm{T}} \,\mathrm{u} \,\vec{r}' = (r' \sin \theta' \cos \varphi', r' \sin \theta' \sin \varphi', r' \cos \theta')^{\mathrm{T}}$. Используя это разложение, можно переписать потенциал (7.8) в следующем виде

$$\Phi(\vec{r}) = 4\pi \sum_{l,m} \frac{1}{2l+1} \left[\int Y_{lm}^* \left(\theta', \varphi'\right) r'^l \rho\left(\vec{r}'\right) d^3 r' \right] \frac{Y_{lm}(\theta, \varphi)}{r^{l+1}}.$$
 (7.10)

Таким образом, коэффициенты в разложении (7.7) оказываются равными

$$q_{lm} = \int Y_{lm}^* \left(\theta', \varphi'\right) r'^l \rho\left(\vec{r}'\right) d^3 r'.$$
(7.11)

Эти коэффициенты называют мультипольными моментами. Для их анализа запишем выражения для нескольких первых моментов в декартовых координатах, используя явный вид сферических функций

$$q_{00} = \frac{1}{\sqrt{4\pi}} q_{0},$$

$$q_{11} = -\sqrt{\frac{3}{8\pi}} (p_{x} - ip_{y}),$$

$$q_{10} = \sqrt{\frac{3}{4\pi}} p_{z},$$

$$q_{22} = \frac{1}{12} \sqrt{\frac{15}{2\pi}} (Q_{11} - 2iQ_{12} - Q_{22}),$$

$$q_{21} = -\frac{1}{3} \sqrt{\frac{15}{8\pi}} (Q_{13} - iQ_{23}),$$

$$q_{20} = \frac{1}{2} \sqrt{\frac{5}{4\pi}} Q_{33},$$
(7.12)

здесь мы привели только моменты для m > 0, т.к. для действительной плотности заряда $q_{l,-m} = (-1)^m q_{l,m}^*$. В приведенных выше выражениях, $q_0 = \int \rho(\vec{r}') d^3 r' -$ полный заряд системы, вектор \vec{p} есть электрический дипольный момент системы

$$\vec{p} = \int \vec{r}' \rho(\vec{r}') d^3 r', \qquad (7.13)$$

а Q_{ij} составляют тензор квадрупольного момента системы

$$Q_{ij} = \int (3r'_i r'_j - r'^2 \delta_{ij}) \rho(\vec{r}') d^3 r'.$$
(7.14)

Мы видим, что *l*-е мультипольные компоненты (число которых 2l + 1) представляются в виде линейной комбинации декартовых составляющих соответствующих мультиполей. Действуя другим образом, можно было получить разложение для потенциала $\Phi(\vec{r})$ сразу в декартовых координатах, раскладывая $|\vec{r} - \vec{r}'|^{-1}$ в ряд Тейлора

$$\Phi(\vec{r}) = \frac{q_0}{r} + \frac{\vec{p} \cdot \vec{r}}{r^3} + \frac{1}{2} \sum_{i,j} Q_{ij} \frac{r_i r_j}{r^5} + \cdots, \qquad (7.15)$$

в чем предлагается читателю убедиться самостоятельно. Аналогичным образом можно разложить по мультиполям и векторный потенциал $\vec{A}(\vec{r})$. Т.к. скалярный и векторные потенциалы определяют все физические величины в электродинамике, то отсюда видно, что мультипольное разложение можно построить для электрического $\vec{E}(\vec{r})$ и магнитного $\vec{B}(\vec{r})$ полей, а также для энергии распределения зарядов во внешнем поле, зная соответствующие разложения для потенциалов. Часто в прикладных задачах оказывается достаточным учесть лишь несколько первых мультиполей.

7.5.1 Задачи

- 1. Дана заряженная сфера радиуса *R*. Известен потенциал на сфере $\Phi = \Phi_0 \cos \theta$. Найти потенциал во всём пространстве и неизвестную поверхностную плотность заряда на сфере.
- 2. Дана сфера радиуса *R* с поверхностной плотностью заряда $\sigma = \sigma_0 \sin \theta \cos \phi$. Найти потенциал во всём пространстве.
- 3. Сфера радиуса *R* разделена на две изолированные полусферы. Одна полусфера удерживается при постоянном потенциале $+\Phi_0$, другая полусфера про постоянном потенциале $-\Phi_0$. Найти потенциал во всём пространстве.
- 4. Шар радиуса *R* заряжен с плотностью заряда $\rho = \rho_0 \cos \theta$. Найти потенциал во всём пространстве.
- 5. Вычислите компоненты вектора дипольного момента \vec{p} в декартовых координатах для системы состоящей из тонкого стержня длины *a*, одна половина которого имеет заряд +q, а вторая -q.

8 Калибровочные преобразования и степени свободы в электродинамике

8.1 Действие

Чтобы обсудить калибровочную свободу в электродинамике начнём с построения действия теории. Напомним терминологию. Действие обозначается буквой *S* и связано с лагранжианом *L* следующим образом: $S = \int dt L$. Лагранжиан связан с лагранжевой плотностью \mathcal{L} как $L = \int d^3 x \mathcal{L}$. Таким образом $S = \int dt L = \int dt d^3 x \mathcal{L}$. В теории поля из-за присутствия Лоренц-инвариантности время смешано с пространственными координатами и связь записывается $S = \int d^4 x \mathcal{L}$. Часто вместо лагранжевой плотности в теории поля \mathcal{L} называют лагранжианом так мы поступим и здесь для краткости.

Мы хотим построить теорию поля безмассового поперечного векторного поля. Как мы знаем, вместо физически измеримых полей E и B электромагнитное поле можно описывать 4-х вектором A_{μ} , имеющим простой закон трансформации при преобразованиях Лоренца. Тогда действие должно иметь только кинетический член, быть квадратично по полю A и иметь не выше двух производных в каждом слагаемом. Все возможные варианты свёрток индексов:

$$\begin{aligned} \mathcal{L}_1 &= \partial_{\mu} A^{\nu} \partial^{\mu} A_{\nu}, \\ \mathcal{L}_2 &= \partial_{\mu} A^{\mu} \partial^{\nu} A_{\nu}, \\ \mathcal{L}_3 &= \partial_{\mu} A^{\nu} \partial_{\nu} A^{\mu}. \end{aligned}$$

Полный лагранжиан в общем виде: $\mathcal{L} = a_1 \mathcal{L}_1 + a_2 \mathcal{L}_2 + a_3 \mathcal{L}_3$, где a_1, a_2, a_3 вещественные произвольные постоянные, которые мы определим в дальнейшем. Во-первых покажем, что второе и последнее слагаемое дают одинаковый вклад в действие с точностью до поверхностного члена.

Последнее слагаемое является поверхностным членом, интегрирование в нём происходит по границе многообразия¹. В нашем случае многообразием является всё пространство и интегрирование происходит по пространственной бесконечности, где мы можем положить значение поля A равным нулю(достаточно быстро убывает). Тогда мы можем отбросить последнее слагаемое. Стоит заметить, что вообще говоря это не всегда можно делать. Например эффект Казимира основан как раз на учёте граничных вкладов в действие. Дальше учтём, что частные производные коммутируют и перебросим одну из них обратно.

$$=-\int d^4x A^\mu \partial_
u \partial_\mu A^
u = \int d^4x \partial_
u A^\mu \partial_\mu A^
u +$$
 пов. чл.

Отбрасывая снова поверхностный вклад видим, что \mathcal{L}_2 и \mathcal{L}_3 дают одинаковый вклад в действие и можно без потери общности положить $a_3 = 0$.

Чтобы учесть требование поперечности, разложим *A*_µ на продольную(скалярную) и поперечную компоненту:

$$A_{\mu} = A_{\mu}^{\perp} + \partial_{\mu}\chi, \quad \partial_{\mu}A^{\perp\mu} = 0.$$
(8.1)

Рассмотрим вклад продольной части в \mathcal{L}_1 :

$$\mathcal{L}_{2} = \partial_{\mu} (A^{\perp \nu} + \partial^{\nu} \chi) \partial^{\mu} (A^{\perp}_{\nu} + \partial_{\nu} \chi) = \\ \partial_{\mu} \partial^{\nu} \chi \partial^{\mu} \partial_{\nu} \chi + 2 \partial_{\mu} A^{\perp \nu} \partial^{\mu} \partial_{\nu} \chi + \text{вклад не зависящий от } \chi$$
(8.2)

¹ Элемент dS^{μ} определяется как (см. [2]): $dS^{\mu} = -\frac{1}{6} \epsilon^{\mu\nu\rho\sigma} dS_{\nu\rho\sigma}$, где $dS^{\nu\rho\sigma} = \begin{vmatrix} dx^{\nu} & dx'^{\nu} & dx''^{\nu} \\ dx^{\rho} & dx'^{\rho} & dx''^{\rho} \\ dx^{\sigma} & dx'^{\sigma} & dx''^{\sigma} \end{vmatrix}$ - элемент гиперпо-

Первое слагаемое после интегрирования по частям (напомним, что в действие \mathcal{L}_2 входит под знаком интеграла) и отбрасывания поверхностного вклада равно $(\Box \chi)^2$, второе слагаемое даёт нулевой вклад после перебрасывания производных обнуляется, из-за ортогональности поля A^{\perp}_{μ} (8.1). Легко проверить прямыми вычислениями, что вклад поля χ в \mathcal{L}_1 также равен $(\Box \chi)^2$. Таким образом, скалярная часть лагранжиана, отвечающая за продольную степень свободы:

$$\mathcal{L}_{\text{scalar}} = (a_1 + a_2)(\Box \chi)^2.$$

Требование поперечности электромагнитного поля даёт: $a_1 = -a_2$. В итоге получаем полный лагранжиан:

$$\mathcal{L} = c(\mathcal{L}_1 - \mathcal{L}_2) = c(\partial_\mu A^\nu \partial^\mu A_\nu - \partial_\mu A^\mu \partial^\nu A_\nu) = c(\partial_\mu A_\nu - \partial_\nu A_\mu)(\partial^\mu A^\nu - \partial^\nu A^\mu) = cF_{\mu\nu}F^{\mu\nu}$$

где мы определили $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$. Положив константу c = -1/4 получаем хорошо знакомое действие классической электродинамики:

$$S_{EM} = -\frac{1}{4} \int d^4 x F_{\mu\nu} F^{\mu\nu}.$$
 (8.3)

8.2 Уравнения движения и калибровочная свобода

В этом параграфе мы получим уравнения движения, проверим, что они совпадают с уравнениями Максвелла, обсудим калибровочный произвол теории и способы фиксировать калибровку. Чтобы получить уравнения движения мы ищем конфигурацию полей при которой вариация действия обращается в ноль.

$$\delta S_{EM} = -\frac{1}{2} \int d^4 x \left(\partial_\mu \delta A_\nu \partial^\mu A^\nu - \partial_\mu \delta A_\nu \partial^\nu A^\mu \right) = \int d^4 x \delta A_\nu \partial_\mu \left(\partial^\mu A^\nu - \partial^\nu A^\mu \right) = \int d^4 x \delta A_\nu \partial_\mu F^{\mu\nu},$$
(8.4)

с точностью до поверхностных вкладов. Уравнения движения нашей теории:

$$\partial_{\mu}F^{\mu\nu} = 0. \tag{8.5}$$

Чуть позже мы докажем, что это и есть уравнения Максвелла в вакууме записанные в ковариантной формулировке. Если мы хотим добавить материю, то в действии появится вклад 4-х тока:

$$S=-rac{1}{4}\int d^4x\left(F_{\mu
u}F^{\mu
u}+rac{4\pi}{c}J_\mu A^\mu
ight),$$

где $J_{\mu} = (c\rho, \vec{j}), \rho$ - скалярная плотность зарядов, а \vec{j} - классический вектор тока. Полные уравнения движения с учётом зарядов в системе

$$\partial_{\mu}F^{\mu\nu} = \frac{4\pi}{c}J^{\nu}.$$
(8.6)

Заметим, что если подействовать на полученное выражение ещё одной производной, то вследствие антисимметрии тензора $F^{\mu\nu}$ мы получим уравнение

$$\partial_{\nu}J^{\nu}=0$$

которое называется уравнением неразрывности. Докажем теперь, что полученные уравнения (8.6) совпадают с уравнениями Максвелла:

$$\begin{cases} \operatorname{div} \vec{E} = 4\pi\rho, \\ \operatorname{rot} \vec{B} - \frac{1}{c}\partial_t \vec{E} = \frac{4\pi}{c}\vec{j}. \end{cases}$$

$$(8.7)$$

Воспользуемся связью между напряжённостями и векторным потенциалом, чтобы показать, что эта система уравнений совпадает с (8.6). Примем обозначение $A^{\mu} = (\phi, \vec{A})$, в этих терминах:

$$\vec{B} = \mathrm{rot}\vec{A}$$
 $\vec{E} = -\vec{\nabla}\phi - c^{-1}\partial_t\vec{A},$

с учётом этой замены уравнения (8.7) станут:

$$\begin{cases} \operatorname{div}(-\vec{\nabla}\phi - c^{-1}\partial_t \vec{A}) = 4\pi\rho,\\ \operatorname{rot}\operatorname{rot}\vec{A} - c^{-1}\partial_t(-\vec{\nabla}\phi - c^{-1}\partial_t \vec{A}) = \frac{4\pi}{c}\vec{j}, \end{cases}$$

учтём, что rot rot = $\nabla \text{div} - \Delta$ и введём оператор Д'Аламбера $\Box = c^{-2}\partial_t^2 - \partial_i\partial^i = c^{-2}\partial_t^2 - \Delta$

$$\begin{cases} -\Delta\phi - c^{-1}\partial_t \vec{A} = 4\pi\rho \\ \nabla(\operatorname{div}\vec{A} + c^{-1}\partial_t\phi) - \nabla\vec{A} + c^{-1}\partial_t^2\vec{A} = \frac{4\pi}{c}\vec{j} \\ \iff \begin{cases} \Box\phi - c^{-1}\partial_t(\operatorname{div}\vec{A} + c^{-1}\partial_t\phi) = 4\pi\rho \\ \Box\vec{A} + \nabla(\operatorname{div}\vec{A} + c^{-1}\partial_t\phi) = \frac{4\pi}{c}\vec{j} \end{cases} \end{cases}$$

$$\tag{8.8}$$

Упражнение. Прямой подстановкой $A^{\mu} = (\phi, \vec{A})$ и $J_{\mu} = (c\rho, \vec{j})$, в (8.6) показать, что оно совпадает с полученной из уравнений Максвелла системой (8.8).

Фундаментальным свойством теории является инвариантность относительно замены $A_{\mu} \rightarrow A_{\mu} + \partial_{\mu} \chi$, т.е. сдвига векторного потенциала на 4-х градиент скалярного поля. Это можно (**и нужно**) проверить прямой подстановкой в действие или уравнения движения или вспомнить о том, что теория изначально была построена так, чтобы продольная степень свободы не входила в действие (см. параграф 8.1). Как следствие, одному и тому же физическому состоянию соответствует множество A_{μ} отличающихся друг от друга градиентным сдвигом. в следующем параграфе мы обсудим способы фиксации этой свободы.

8.3 Фиксация калибровки

Первым способом убрать нефизическую степень свободы является калибровка Лоренца:

$$\operatorname{div}\vec{A} + c^{-1}\partial_t \phi = \partial_\mu A^\mu = 0,$$

по построению она является Лоренц-инвариантной и её удобно использовать при решении релятивистских задач. Уравнения (8.8) в этом случае упрощаются до

$$\begin{cases} \Box \phi = 4\pi\rho, \\ \Box \vec{A} = \frac{4\pi}{c}\vec{j}. \end{cases}$$

Ещё часто используется Кулоновская калибровка:

$$\operatorname{div} A = \partial_i A^i = 0,$$

в ней уравнения (8.8) примут вид

$$\begin{cases} \Delta \phi = -4\pi\rho, \\ \Box \vec{A} + c^{-1}\partial_t \phi = \frac{4\pi}{c}\vec{j}, \end{cases}$$

её удобно применять при решении статических задач. В секции 7 мы будем пользоваться именно ей.

Упражнение. Вообще говоря оба описанных выше условия не фиксируют калибровку полностью. Опишите остаточные калибровочные преобразования для калибровок Лоренца и Кулона. Например для синхронной калибровки ($A_0 = 0$) остаточным калибровочным преобразованием является преобразование, которое оставляет условие калибровки неизменным $A_0 \rightarrow A_0 + \partial_0 \phi$. Т.е. остаточным калибровочным преобразованием для синхронной калибровки является градиентный сдвиг с любой функцией, зависящей только от пространственных координат, но не зависящей от времени.

9 Свободное электромагнитное поле

9.1 Плоские волны и поляризация

В этой главе обсудим волновые решения уравнений Максвелла в вакууме (при отсутствии токов и зарядов). Уравнения Максвелла в вакууме имеют вид

div
$$\vec{E} = 0$$
,
div $\vec{B} = 0$,
rot $\vec{E} = -\frac{1}{c} \frac{\partial \vec{B}}{\partial t}$,
rot $\vec{B} = \frac{1}{c} \frac{\partial \vec{E}}{\partial t}$.

Взяв ротор от второй пары уравнений, и воспользовавшись тождеством $\nabla \times (\nabla \times \vec{V}) = \nabla (\nabla \cdot \vec{V}) - \Delta \vec{V}$, а также первой парой уравнений – четыре уравнения Максвелла, содержащие первые производные по времени, можно переписать в виде пары уравнений второго порядка по времени

$$\Delta \vec{E} - \frac{1}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} = 0,$$

$$\Delta \vec{B} - \frac{1}{c^2} \frac{\partial^2 \vec{B}}{\partial t^2} = 0.$$
(9.1)

Полученные уравнения называются волновыми уравнениями. Будем искать решения этих уравнений в виде плоских монохроматических волн

$$\begin{split} \vec{E}(t,\vec{x}) &= \vec{E}_0 e^{i(\vec{k}\cdot\vec{x}-\omega t)} + \text{K.c.} \equiv \vec{E}_0 e^{i(\vec{k}\cdot\vec{x}-\omega t)} + \vec{E}_0^* e^{-i(\vec{k}\cdot\vec{x}-\omega t)},\\ \vec{B}(\vec{x},t) &= \vec{B}_0 e^{i(\vec{k}\cdot\vec{x}-\omega t)} + \text{K.c.} \end{split}$$

Подставив эти выражения в волновые уравнения (9.1), получим условия на частоту и вектор поляризации:

$$\omega^{2} = c^{2} |\vec{k}|^{2}, \quad E_{0} = H_{0}, \vec{k} \cdot \vec{E}_{0} = 0, \quad \vec{B}_{0} = k^{-1} \left[\vec{k} \times \vec{E}_{0} \right]$$

В общем случае, в силу линейности волновых уравнений, их решения в вакууме можно записать в виде разложения по плоским монохроматическим волнам. Например, для электрического поля такое разложение будет иметь вид

$$\vec{E}(t,\vec{x}) = \int \frac{d^3k}{(2\pi)^3} \vec{E}_{\vec{k}} e^{i\left(\vec{k}\cdot\vec{x}-\omega_kt\right)} + \text{K.c.}, \qquad (9.2)$$

где $\omega_k = ck$.

Упражнение. Убедиться в справедливости (9.2) прямой подстановкой в уравнения Максвелла.

Теперь обсудим поляризацию волн. Пусть для простоты свет распространяется вдоль оси z, т.е. $\vec{k} = k\vec{e}_z$. Тогда вектор электрического поля \vec{E}_0 может лежать лишь в плоскости xy. В случае если обе компоненты вектора \vec{E}_0 имеют одинаковые комплексные фазы, говорят, что свет линейно поляризован. В случае если компоненты вектора \vec{E}_0 имеют различные, но постоянные во времени фазы, выделяют два типа поляризации: круговую (циркулярную) и эллиптическую. Если вектор \vec{E}_0 можно представить в виде

$$ec{E}_0=E_0ec{e}_{\pm}=E_0rac{1}{\sqrt{2}}\left(\mpec{e}_x-iec{e}_y
ight),$$

то говорят о круговой поляризации волны. Вектор электрического поля в этом случае будет

$$\vec{E}(t, \vec{x}) = E_0 \vec{e}_{\pm} e^{i(kz - \omega t)} + \text{k.c.} = \sqrt{2}E_0 \left[\mp \cos(kz - \omega t)\vec{e}_x + \sin(kz - \omega t)\vec{e}_y \right].$$

Верхняя строчка соответствует вращению вектора электрического поля против часовой стрелки (если смотреть вдоль оси *z*). Такой тип поляризации в оптике называется левой круговой поляризацией. Нижняя строчка соответствует правой круговой поляризации. В общем случае говорят об эллиптической поляризации плоской монохроматической волны.

Параметры Стокса. Для описания общего случая поляризации используют параметры Стокса. Пусть для какой-то точки пространства электромагнитное поле монохроматично, т.е. верно разложение вектора электрического поля $\vec{E}(t) = \vec{E}_0 e^{-i\omega t} +$ к.с.. Тогда с его помощью можно составить тензор второго ранга в этой точке:

$$J_{ij} = E_{0i} E_{0j}^*. (9.3)$$

Здесь E_{0i} - компоненты вектора \vec{E}_0 в ортогональной системе координат. Этот объект называется тензором поляризации. Заметим, что он не является тензором относительно группы Лоренца. Более общее определение тензора поляризации включает в себя усреднение по по временам порядка $T \sim 2\pi/\omega$:

$$J_{ij} = \overline{E_{0i}(t)E_{0j}^{*}(t)} = \frac{1}{T}\int_{0}^{T} E_{0i}(t)E_{0j}^{*}(t)dt.$$

Зависимость от времени у компонент возникает из-за возможной немонохроматичности излучения. Очевидно, что этот тензор является эрмитовым. В пространстве эрмитовых матриц существует базис:

$$\sigma_0 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}; \sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}; \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Три матрицы σ_1 , σ_2 , σ_3 называются матрицами Паули. Тензор поляризации можно разложить по базису этих четырех матриц:

$$J_{ij} = |\vec{E}_0|^2 \left[\frac{1}{2} \sigma_0 + \xi_1 \sigma_1 + \xi_2 \sigma_2 + \xi_3 \sigma_3 \right],$$
(9.4)

числа ξ_i называются параметрами Стокса. Параметрами Стокса можно описать любой тип поляризации.

Упражнение. Рассмотрите подробнее свойства параметров Стокса.

- 1. Доказать, что параметры Стокса вещественны.
- Показать, что каждому типу поляризации (линейному, круговому, эллиптическому) соответствует точка на сфере в пространстве параметров ξ₁, ξ₂, ξ₃. Найти радиус этой сферы.
- 3. Каким типам поляризации соответствуют случаи

•
$$\xi_1 \neq 0, \xi_2 = \xi_3 = 0,$$

- $\xi_2 \neq 0, \xi_1 = \xi_3 = 0,$
- $\xi_3 \neq 0, \xi_2 = \xi_1 = 0?$
- 4. Как преобразуются параметры Стокса при повороте осей xy на угол ϕ ?

9.2 Энергетические характеристики свободного электромагнитного поля

Рассмотрим изменение энергии свободного электромагнитного поля \mathcal{E} внутри объема V за малый промежуток времени δt .

$$\delta \mathcal{E} = \frac{1}{8\pi} \int_{V} \delta \left[\vec{E}^{2} + \vec{B}^{2} \right] d^{3}x = \frac{1}{8\pi} \int_{V} \left[2 \vec{E} \frac{\partial \vec{E}}{\partial t} + 2 \vec{B} \frac{\partial \vec{B}}{\partial t} \right] d^{3}x \delta t =$$
$$= -\delta t \frac{c}{4\pi} \int_{\partial V} d\vec{\sigma} \left[\vec{E} \times \vec{B} \right], \qquad (9.5)$$

здесь использовалась теорема Гаусса-Остроградского для объема V, ограниченного поверхностью ∂V с элементом $d\vec{\sigma}$, направленным по внешней нормали к поверхности, а также тождество div $\left[\vec{B} \times \vec{A}\right] = \vec{A} \operatorname{rot} \vec{B} - \vec{B} \operatorname{rot} \vec{A}$. Вектор $\vec{S} = \frac{c}{4\pi} \left[\vec{E} \times \vec{B}\right]$

называется вектором Пойнтинга (или Умова-Пойнтинга) и представляет из себя плотность потока энергии электромагнитного излучения через элемент площади $d\vec{\sigma}$. Возьмем в качестве объема V шар радиуса R, значительно превышающего все линейные размеры имеющиеся в задаче. В случае немонохроматического поля этот размер должен быть меньше, чем продольный размер волнового пакета (см. подробное обсуждение в книжке М. Борн, Э. Вольф - Основы Оптики [5]). Также произведем усреднение по быстрым изменениям энергии (по временам ~ $2\pi/\omega$). Это усреднение мы будем обозначать вертикальной чертой над выражением. Тогда

$$\overline{\delta \mathcal{E}} = -\delta t \int d\Omega R^2 \,\overline{\vec{S}\vec{n}} = -\delta t \int \frac{dP}{d\Omega} d\Omega, \qquad (9.6)$$

здесь $\vec{n} = \vec{x}/r$. Величина

$$I(\vec{n}) = \frac{dP}{d\Omega} = -\frac{\overline{\delta \mathcal{E}}}{d\Omega\delta t} = \lim_{R \to \infty} R^2 \,\overline{\vec{S}n} = \lim_{R \to \infty} R^2 \,\overline{\vec{S}n}$$
(9.7)

представляет из себя интенсивность электромагнитной волны - количество излучаемой энергии, уходящей на бесконечность за единицу времени в единицу телесного угла направлении \vec{n} . Для монохроматической волны это выражение сильно упрощается. Возьмем электромагнитное поле в виде

$$\vec{E}(t,\vec{x}) = \vec{E}_0(\vec{x}) e^{-i\omega t} + \text{K.c.}$$

$$\vec{B}(t,\vec{x}) = \vec{B}_0(\vec{x}) e^{-i\omega t} + \text{K.c.}$$
(9.8)

Тогда угловое распределение интенсивности можно представить в виде

$$I(\vec{n}) = \frac{c}{4\pi} R^2 \vec{n} \left(\vec{E}_0 \times \vec{H}_0^* + \vec{E}_0^* \times \vec{H}_0 \right).$$
(9.9)

Через удаленную сферическую поверхность будут уходить только те волны, у которых \vec{k} можно считать сонаправленным с \vec{n} , поэтому приближенно можно положить

$$\vec{H}_0 \approx \left[\vec{n} \times \vec{E}_0\right],$$
 (9.10)

тогда

$$I(\vec{n}) \approx \lim_{R \to \infty} \frac{c}{2\pi} R^2 |E_0(\vec{r})|^2.$$
 (9.11)

Угловая зависимость интенсивности излучения определяется функцией $I(\vec{n})$. В ряде случаев она зависит только от угла θ и тогда угловую зависимость $I(\vec{n})$ можно нарисовать в виде графика на плоскости в полярных осях. Такой график называется диаграммой направленности излучения, наглядно показывая, в какую сторону излучение является наиболее сильным.

9.3 Дифракция плоских электромагнитных волн

Продолжим рассмотрение распространения свободного электромагнитного поля. Пусть на плоскость z = 0 из области z < 0 нормально падает плоская монохроматическая электромагнитная волна. Для описания распространения поля в области воспользуемся следующей интуицией. Нам известна какая-то компонента поля в плоскости z = 0 которую мы будем обозначать $u_0(x, y, t)$. Если поле поляризовано вдоль x, то это может быть компонента E_x . При этом часть этой плоскости может не содержать поля - так называемые области геометрической тени. В этих областях $u_0 \equiv 0$. Необходимо найти поле за экраном $u(t, \vec{x})$. Сначала разложим в интеграл Фурье поле, находящееся в плоскости:

$$u_0(x, y, t) = \int u_0(\vec{q}) \, e^{iq_x x + iq_y y - i\omega t} \frac{dq_x dq_y}{(2\pi)^2}.$$
(9.12)

Тогда справедлива следующая оценка промежутков, в которых изменяются q_x, q_y . Если характерный масштаб изменения поля $u_0(x, y, t)$ больше длины волны $a \gg \lambda$, то интеграл собирается в области $q_x^2, q_y^2 \ll 1/a^2 \ll 1/\lambda^2$. Поэтому в дальнейших рассуждениях можно опускать высшие порядки по $q\lambda$.

Чтобы найти поле справа от экрана, нам нужно согласовать начальное условие с общим выражением для поля в свободном пространстве (9.2). Тогда поле за экраном запишется следующим образом

$$u(t, \vec{x}) = \int u_0(\vec{q}) e^{i(q_x x + q_y y + \sqrt{\omega^2/c^2 - q_x^2 - q_y^2} z - i\omega t)} \frac{dq_x dq_y}{(2\pi)^2} \approx \\ \approx \int u_0(\vec{q}) e^{i(q_x x + q_y y - [q_x^2 + q_y^2]cz/2\omega - i\omega(t - z/c))} \frac{dq_x dq_y}{(2\pi)^2} = \\ = \int \frac{dq_x dq_y}{(2\pi)^2} \int dx' dy' u_0(x', y') e^{-i(q_x x' + q_y y')} e^{i(q_x x + q_y y - [q_x^2 + q_y^2]cz/2\omega + i\omega z/c)}, \quad (9.13)$$

здесь мы использовали предположение о том, что поле налетает на плоскость z = 0 нормально:

$$|u|_{z=-0} \simeq -i \frac{c}{\omega} \frac{\partial u}{\partial z}\Big|_{z=-0}$$

В противном случае нам пришлось бы учитывать два возможных значения q_z . Интеграл по q_x , q_y является гауссовым и поэтому берется и мы приходим к выражению:

$$u(t,\vec{x}) \approx \frac{\omega}{2\pi i \, cz} \int \exp\left[i\frac{\omega}{c}\frac{(x-x')^2 + (y-y')^2}{2z} + i\frac{\omega z}{c}\right] u_0(x',y',t) \, dx' dy'. \quad (9.14)$$

Такая форма записи решений уравнений Максвелла называется интегралом Кирхгофа (в одной из множества форм записи). Она существенно упрощает решение оптических задач о дифракции света на макроскопических объектах ($\lambda \ll a$,

где *а* - характерный размер системы). Последовательное рассмотрение дифракционных явлений можно найти в книжке [5].

9.4 Дифракция света на круглом отверстии

Рис. 1: Дифракция на круглом отверстии

Рассмотрим свет широкой апертуры, распространяющийся вдоль оси z, падающий нормально на круглое отверстие радиуса a в непрозрачном экране. Тогда поле в плоскости z = 0 можно представить в следующем виде:

$$u_0(x, y, t) = u_0 \,\theta(a - \rho) \, e^{-i\omega t}, \qquad (9.15)$$

где ρ - длина вектора $\vec{\rho} = \vec{x} - (\vec{x}\vec{e}_z)\vec{e}_z$. А поле в области z > 0 можно вычислить с помощью интеграла Кирхгофа

$$u(t,\vec{x}) \approx \frac{u_0\omega}{2\pi i \, cz} \int \exp\left(\frac{i\omega}{2cz} \left(\vec{\rho} - \vec{\rho}_0\right)^2 + \frac{i\omega}{c} (z - ct)\right) d^2\rho_0, \tag{9.16}$$

где интегрирование проходит по поверхности отверстия. Интересуясь полем вне оси распространения $\rho \gg a$ мы можем взять этот интеграл.

$$u(t,\vec{x}) \approx \frac{u_0\omega}{2\pi i \, cz} \int \exp\left(\frac{i\omega}{2cz} \left(\vec{\rho}^2 - 2\rho_0 R\cos\phi\right) + \frac{i\omega}{c}(z-ct)\right) \rho_0 d\rho_0 d\phi.$$
(9.17)

Интеграл по ϕ даст нам функцию Бесселя нулевого порядка

$$J_0(z) = \frac{1}{2\pi} \int e^{iz\cos\phi} d\phi,$$

после чего возникнет также известный табличный интеграл

$$\int_0^a z J_0(kz) dz = \frac{a}{k} J_1(ka),$$

где *J*₁ - **функция Бесселя первого порядка**. В итоге мы можем написать финальное выражение

$$u(t,\vec{x}) \approx -\frac{iu_0 a}{\rho} \exp\left(\frac{i\omega}{2cz}\vec{\rho}^2 + \frac{i\omega}{c}(z-ct)\right) J_1\left(\frac{\omega a\rho}{cz}\right).$$
(9.18)

Введем угол дифракции $\theta \approx \tan \theta = \rho/z$, при этом мы ограничиваемся рассмотрением области $z \gg \rho$. Тогда мы можем переписать это выражение

$$u(t,\vec{x}) \approx -\frac{iu_0 a}{\theta} J_1\left(\frac{2\pi a}{\lambda}\theta\right) \frac{1}{\sqrt{z^2 + \rho^2}} \exp\left(\frac{i\omega}{c}(\sqrt{z^2 + \rho^2} - ct)\right), \qquad (9.19)$$

тогда интенсивность дифрагированного света на удаленной поверхности $dP = c/2\pi |u|^2 z^2 d\Omega$:

$$dP = |u_0|^2 \frac{a^2 c}{2\pi} \left[\frac{1}{\theta} J_1\left(\frac{2\pi a}{\lambda}\theta\right) \right]^2 d\Omega.$$
(9.20)

График этой функции построен на Рис. 2. Характерный угол отклонения можно оценить следующим образом. Первый нуль функции Бесселя первого рода $J_1(x)$ находится в точке $x \simeq 3.832$, поэтому угол дифракции можно оценить как $\delta\theta \simeq 0.6 \lambda/a$ (см. Рис. 1).

При малых углах θ мы нарушаем условие $\rho \ll a$ и формула (9.20) перестает действовать потому, что мы пренебрегли ρ_0 в (9.16). На оси распространения в интеграле (9.16) можно положить $\rho = 0$. Тогда поле на оси *z* будет выглядеть следующим образом

$$u(t,\vec{x})\big|_{R=0} \approx u_0 e^{i\frac{\omega}{c}(z-ct)} \left[1 - \exp\left(i\frac{\omega a^2}{2cz}\right)\right] \approx u_0 e^{i\frac{\omega}{c}z-i\omega t} - u_0 e^{i\frac{\omega}{c}\sqrt{z^2+a^2}-i\omega t}.$$
 (9.21)

При удалении от отверстия на расстояния $z \gg a$ интенсивность, проходящая через элемент площадки на бесконечности $dS|_{\theta=0}$ равна

$$dP \sim \frac{2c}{\pi} |u_0|^2 \sin^2\left(\frac{\omega a^2}{4cz}\right) z^2 d\Omega \approx |u_0|^2 \frac{c}{2\pi} \left(\frac{\pi a^2}{\lambda}\right) d\Omega, \qquad (9.22)$$

что, однако, соответствует предельному переходу $\theta \to 0$ в выражении (9.20). В противоположном случае, когда мы находимся вблизи отверстия $z \ll a$, волна является почти плоской.

9.5 Гауссов пучок

Пусть в плоскости *z* = 0 нам известны компоненты электрического поля

$$E_x(x, y, t) = E_0 e^{-\frac{x^2 + y^2}{2\sigma^2}} e^{-i\omega t} + \text{k.c.}; \quad E_y = 0;$$

Рис. 2: Дифракционная картина от круглого отверстия в непрозрачном экране.

Найдем поле в полупространстве z > 0 в случае $\sigma \gg \lambda = \frac{2\pi c}{\omega}$. Приравниваем выражение (9.2) к условию на плоскости z = 0:

$$\int \frac{d^{3}k}{(2\pi)^{3}} E_{x\vec{k}} e^{i(k_{x}x+k_{y}y-\omega_{k}t)} = E_{0} e^{-\frac{x^{2}+y^{2}}{2\sigma^{2}}} e^{-i\omega t} =$$

$$= 2\pi\sigma^{2}E_{0} \int \frac{dk_{x}dk_{y}}{(2\pi)^{2}} e^{-\sigma^{2}(k_{x}^{2}+k_{y}^{2})/2} e^{i(k_{x}x+k_{y}y-\omega t)},$$
(9.23)

откуда можно получить

$$E_{x\vec{k}} = (2\pi)^2 \sigma^2 E_0 e^{-\sigma^2 (k_x^2 + k_y^2)/2} \delta\left(k_z - \sqrt{\omega^2/c^2 - k_x^2 - k_y^2}\right).$$
(9.24)

Подставляя полученное выражение обратно в (9.2), получаем

$$E_{x}(t,\vec{x}) =$$

$$= \pi \sigma^{2} E_{0} \int \frac{d^{2}k}{(2\pi)^{2}} \exp\left[-\sigma^{2}(k_{x}^{2}+k_{y}^{2})/2 + i\left(k_{x}x+k_{y}y+z\sqrt{\omega^{2}/c^{2}-k_{x}^{2}-k_{y}^{2}}-\omega t\right)\right]$$
(9.25)

В случае $\sigma \gg \lambda$ этот интеграл берется. Мы приходим к окончательному выражению

$$E_x(t,\vec{x}) = \frac{\sigma^2}{\sigma^2(z)} E_0 e^{-\frac{x^2 + y^2}{2\sigma^2(z)} + i\frac{\omega}{c}(z - ct)},$$
(9.26)

где введено обозначение

$$\sigma^2(z) = \sigma^2 \times \left(1 + i\frac{z}{z_R}\right).$$

Величина

$$z_R = \frac{2\pi\sigma^2}{\lambda}$$

называется длиной Рэлея. Она определяет ту длину, на которой решение начинает расходится. Видно, что решение в виде (9.26) можно продолжить и в область z < 0. Такое решение, продолженное на $z \in \mathcal{R}$, называется **гауссовым лучом (пучком)**. Оценим угол дифракции гауссова пучка

$$\tan \theta \approx \theta = \lim_{z \to \infty} \frac{|\sigma(z)|}{z} = \frac{\sigma}{z_R} = \frac{\lambda}{2\pi\sigma}.$$
(9.27)

Величина θ называется **расходимостью луча** и представляет из себя угол дифракции в дальней зоне ($z \gg \lambda$).

9.6 Дифракция на тонком диске

Рассмотрим монохроматическую электромагнитную волну, падающую нормально на тонкий диск радиуса $a \gg \lambda$, находящийся в плоскости *xy* в точке z > 0. Тогда условие на поле в точке z = 0 можно переписать через условие предыдущей задачи (9.15):

$$u_0(x, y, t) = u_0 \theta(\rho - a) e^{-i\omega t} = u_0 e^{-i\omega t} - u_0 \theta(a - \rho) e^{-i\omega t}.$$
 (9.28)

Поле в полупространстве z > 0 первого слагаемого можно написать точно, а поле второго слагаемого в этой области было найдено в предыдущей задаче. Пусть налетающая волна имеет большую, но конечную апертуру $\sigma \gg a$ и имеет форму гауссова пучка. При этом интенсивность света мы регистрируем на расстоянии ρ , существенно превышающим апертуру налетающего света ($\rho \gg \sigma$). Тогда поле в области $z \gg \rho$ можно представить следующим образом:

$$u(t,\vec{x}) \approx u_0 \frac{\sigma^2}{\sigma^2(z)} \exp\left(-\frac{\rho^2}{2\sigma^2(z)} + i\frac{\omega}{c}(z-ct)\right) +$$

$$i\frac{u_0 a}{\theta} J_1\left(\frac{2\pi a}{\lambda}\theta\right) \frac{1}{\sqrt{z^2 + \rho^2}} \exp\left(\frac{i\omega}{c}(\sqrt{z^2 + \rho^2} - ct)\right).$$
(9.29)

В области $\lambda/2\pi a \sim \theta \gg \lambda/2\pi\sigma$ вклад от налетающей волны будет незначительным и интерференционная картина будет совпадать с полученной в предыдущей задаче (9.20). Это проявление **принципа Бабине**, гласящего что интерференционная картина от дополнительных экранов совпадает. В области $\theta \leq \lambda/2\pi\sigma$ интенсивность будет продуктом интерференции двух волн: налетающей и рассеянной:

$$dP = \frac{c}{2\pi} |u_0|^2 \left(z_R - \frac{\pi a^2}{\lambda} \right)^2 d\Omega.$$
(9.30)

9.7 Задачи

- 1. Две монохроматические волны поляризованы по кругу в противоположные стороны и распространяются в одном направлении. Амплитуды и частоты волн одинаковы, а фазы отличаются на постоянную величину. Найдите поляризацию суммарной волны.
- 2. Амплитуда правополяризованной круговой волны равна *A*, а левополяризованной *B*. Частоты и фазы этих волн одинаковы. Определите поляризацию результирующей волны.
- 3. Две монохроматические волны, поляризованные по кругу и в противоположные стороны имеют одинаковые амплитуды и распространяются в одном направлении. Частоты этих волн ω_1 и ω_2 отличаются на малую величину $2|\omega_1 \omega_2| \ll \omega_1 + \omega_2$. Определите параметры Стокса результирующей волны. Указание. Представить результирующее поле в виде $\vec{E} = \vec{E}_0(t)e^{-i[(\omega_1+\omega_2)/2]t} +$ к.с.. Воспользоваться определением тензора поляризации $J_{\alpha\beta} = \overline{E_{\alpha}E_{\beta}^*}$.
- 4. Рассмотреть дифракцию на прямоугольном отверстии $a \times b$. Проанализировать $dP/d\Omega$
- 5. Помимо E_x , у гауссова луча существует также продольная компонента электрического поля E_z . Найти функцию E_z в первом неисчезающем порядке. Указание: воспользоваться выражением (9.25), а также уравнением div $\vec{E} = 0$.

10 Поля движущихся зарядов

10.1 Поле произвольным образом движущегося точечного заряда

Пусть точечный заряд *е* движется по заданной траектории $\vec{r}(t)$ и мы хотим найти создаваемое им поле. Следует отметить, что в постановке задачи "траектория фиксирована, поле ищется"уже содержится элемент идеализации. В общем виде это сложная задача (учёт силы реакции излучения, её влияния на траекторию и т.д.) и в данном курсе мы её не рассматриваем. Ранее мы уже обсуждали движение частицы в фиксированном внешнем поле (см. главу 2). Здесь сосредоточимся на задаче "траектория задана, ищем поле".

Рассмотрим скалярный потенциал ϕ , обобщение на векторный потенциал \vec{A} будет тривиальным. Если подставить в формулу запаздывающих потенциалов выражение $\rho(t, \vec{x}) = e\delta(\vec{x} - \vec{r}(t))$ для объёмной плотности заряда, получим:

$$\phi(t,\vec{x}) = e \int d\vec{x}' \int dt' R^{-1} \delta(\vec{x}' - \vec{r}(t')) \delta(t - t' - R/c)|_{R = |\vec{x} - \vec{x}'|}.$$
 (10.1)

За подробным обсуждением запаздывающих потенциалов можно обратиться к конспекту лекций [1] или к книге Васильева [8]. После интегрирования по \vec{x}' получим:

$$\phi(t, \vec{x}) = e \int dt' R^{-1} \delta(t - t' - R/c) |_{R = |\vec{x} - \vec{r}(t')|}$$

Подчеркнём, что после снятия интегрирования по \vec{x}' изменяется вид *R*: аргумент \vec{x}' в исходном выражении $R = |\vec{x} - \vec{x}'|$ заменяется на $\vec{r}(t')$. Необходимо отметить, что в полученном выражении аргументом δ -функции является сложная функция, переменная интегрирования t' входит туда как явно, так и через *R*.

Из курса ТФКП известно, что снятие интегрирования в таких случаях происходит по следующему правилу:

$$\int dx f(x) \delta[F(x)] = \sum_{i} |dF(x)/dx|^{-1} f(x)|_{x=x_{i}},$$
(10.2)

с суммированием по всем корням x_i функции F(x).

10.2 Потенциалы Льенара-Вихерта

Изменим для удобства знак в аргументе нашей δ -функции и будем записывать её в виде $\delta[F(t')]$, где

$$F(t') = t' - t + R/c, \quad R \equiv |\vec{R}|, \quad \vec{R} \equiv \vec{x} - \vec{r}(t').$$
 (10.3)

Вычислим производную:

$$dF(t')/dt' = 1 + c^{-1}(\partial R/\partial t') = 1 + c^{-1}(\partial R/\partial r_i(t'))(dr_i(t')/dt').$$

По определению, $dr_i(t')/dt' = v_i(t')$, а для *R* находим $\partial R/\partial r_i(t') = -\partial R/\partial x_i = n_i$, где $n_i \equiv R_i/R$. Учитывая это, получаем:

$$dF(t')/dt' = 1 - (ec{n}ec{eta}),$$
 где $ec{eta} \equiv ec{v}/c,$ $ec{n} \equiv ec{R}/R,$

все величины берутся в момент времени t'. Поскольку $|\vec{\beta}| < 1$ и $|\vec{n}| = 1$, производная аргумента δ -функции строго положительна, отсюда следует, что "уравнение запаздывания"

$$F(t') = t' - t + R/c = t' - t + |\vec{x} - \vec{r}(t')|/c = 0$$

имеет не более одного корня, т.е. решения $t' = t'(t, \vec{x})$.

Покажем теперь, что при разумных предположениях о траектории $\vec{r}(t)$ корень существует. Будем считать "разумным предположением" условие $|\vec{r}(t)| < \text{const}$, т.е. что траектория находится внутри некоторой ограниченной области. Тогда при фиксированном \vec{x} можно считать R < const, так что асимптотика функции F(t') при $t' \to \pm \infty$ определяется её первым слагаемым: F(t') = t' + const. Отсюда следует, что $F(t') \to \pm \infty$ при $t' \to \pm \infty$ соответственно, т.е. внутри этого интервала функция F(t') обращается в ноль. Координата этой точки t' и является решением уравнения запаздывания.

Таким образом, при нахождении потенциала имеется вклад только одного корня аргумента δ -функции, в итоге получаем:

$$\phi(t, \vec{x}) = e/lpha R$$
, где
 $lpha = 1 - (\vec{n}\vec{eta}), \quad \vec{eta} = \vec{v}(t')/c.$
(10.4)

Аналогичная формула для векторного потенциала получается стандартной заменой $\phi \to \vec{A}, \rho \to \vec{j}/c$. Плотность тока \vec{j} для точечной частицы отличается от ρ лишь дополнительным множителем \vec{v} . Выражение для векторного потенциала:

$$\vec{A}(t,\vec{x}) = e\vec{\beta}/\alpha R. \tag{10.5}$$

Полученные поля для произвольно движущегося точечного заряда и называют потенциалами Льенара-Вихерта.

10.3 Напряжённости

При известных потенциалах напряжённости вычисляются по стандартным формулам:

$$\vec{E} = -\vec{\nabla}\phi - c^{-1}\partial_t \vec{A}, \quad \vec{B} = \operatorname{rot} \vec{A}.$$

Упражнение. Явными вычислениями в координатах получить формулы:

$$\vec{B} = [\vec{n} \times \vec{E}],$$

$$\vec{E} = \frac{e(1-\beta^2)}{R^2 \alpha^3} (\vec{n} - \vec{\beta}) + \frac{e}{cR\alpha^3} [\vec{n} \times [(\vec{n} - \vec{\beta}) \times \dot{\vec{\beta}}]],$$
(10.6)

здесь $\vec{\beta} \equiv d\vec{\beta}(t')/dt' = \dot{\vec{v}}(t')/c$. Все величины в ответах зависят от аргумента $t'(t, \vec{x})$.

В выражение напряжённости электрического поля входят два принципиально разных вклада: первый зависит только от скорости и убывает на бесконечности как $1/R^2$, а а второй содержит ускорение и убывает как 1/R. По первому вкладу определяется, в частности, поле равномерно и прямолинейно движущегося точечного заряда. Ниже будет показано, что излучение порождается вкладом, зависящим от ускорения и убывающего как 1/R.

10.4 Интенсивность излучения точечного заряда

Вычислим интенсивность излучения для нашего случая точечного заряда на большом расстоянии от локализованной системы. Для этого воспользуемся результатами из главы 9.2. И магнитная и электрическая напряжённость содержат вклады порядка $1/R^2$ и 1/R, поэтому соответствующий вектор потока энергии $\vec{S} = (c/4\pi)[\vec{E} \times \vec{B}]$ содержит вклады порядка $1/R^4$, 1, R^3 и $1/R^2$. Ясно, что при подстановке в формулу для интенсивности излучения в пределе $R \to \infty$ ненулевым окажется только вклад $1/R^2$. Таким образом, учитывая в формулах для \vec{E} и \vec{B} только вклады порядка 1/R в вектор плотности потока энергии получаем:

$$\vec{S} = \frac{c}{4\pi} [\vec{E} \times \vec{B}] = \frac{c}{4\pi} [\vec{E} \times [\vec{n} \times \vec{E}]] = \frac{c}{4\pi} (\vec{n}E^2 - \vec{E}(\vec{n}\vec{E})) = \frac{c}{4\pi} \vec{n}E^2.$$
(10.7)

Здесь мы учли ортогональность $\vec{E} \perp \vec{n}$. Из (10.7) следует, что вектор \vec{S} направлен по \vec{n} , поэтому его нормальная составляющая S_n - просто коэффициент при \vec{n} в (10.7).

Теперь подставим это выражение для S_n в (9.7). У нас $E \sim 1/R$, поэтому $S_n \sim 1/R^2$ и эти явные степени R в (9.7) сокращаются. Но это ещё не означает, что мы нашли искомый предел $R \to \infty$, поскольку в $S_n \sim E^2$ содержится ещё и неявная зависимость от R через входящую в \vec{E} переменную t', определяемую из условия запаздывания (10.3).

Поэтому более естественной является предельная процедура в которой фиксированным считается не время наблюдения t, а время излучения t'. Тогда переменной становится величина t', определяемая из условия $t = t' + |\vec{x} - \vec{r}(t')| = t' + R/c$. Ответ для интенсивности излучения $I(\vec{n})$ тогда будет зависеть от двух независимых переменных: направления излучения \vec{n} и и времени излучения t', по которому можно однозначно определить положение частицы на траектории, её скорость и ускорение.

Имея в виду именно эту предельную процедуру, при подстановке известного из (10.7) значения S_n в (9.7) получаем:

$$I(\vec{n}) = \lim_{R \to \infty} [R^2 S_n] = \lim_{R \to \infty} [cR^2 E^2/4\pi].$$

Понимая под \vec{E} второе слагаемое в (10.6) имеем:

$$I(\vec{n}) = \frac{e^2}{4\pi c \alpha^6} |[\vec{n} \times [(\vec{n} - \vec{\beta}) \times \dot{\vec{\beta}}]]|^2.$$
(10.8)

Это соотношение - окончательный ответ для интенсивности излучения в направлении \vec{n} произвольно движущегося заряда, излучающего в заданный момент времени t'.

10.5 Частные случаи

Мы рассмотрим два случая:

- 1. Нерелятивистская частица, для которой $\beta \equiv |\vec{\beta}| \ll 1$,
- 2. Одномерное движение с $\vec{\beta} \parallel \vec{\beta}$ при любом $\beta \equiv |\vec{\beta}| < 1$.

Их общей чертой является то, что в векторном произведении $[(\vec{n} - \vec{\beta}) \times \vec{\beta}]$ в (10.8) можно отбросить вклад $\vec{\beta}$: в нерелятивистском случае - ввиду его малости по сравнению с единичным вектором нормали, а во втором случае векторное произведение скорости и ускорения равно нулю.

В итоге для обоих случаев формула для интенсивности упрощается до

$$I(\vec{n}) = \frac{e^2}{4\pi c \alpha^6} |[\vec{n} \times [\vec{n} \times \dot{\vec{\beta}}]]|^2.$$

Раскрывая смешанное произведение по формуле "БАЦ-ЦАБ"и возводя в квадрат получаем:

$$I(\vec{n}) = \frac{e^2}{4\pi c \alpha^6} (\dot{\vec{\beta}}^2 - (\vec{n}\dot{\vec{\beta}})^2).$$
(10.9)

1. Нерелятивистская частица. в этом случае в $\alpha = 1 - (\vec{n}\vec{\beta})$ можно пренебречь вкладом $(\vec{n}\vec{\beta})$, положив $\alpha = 1$. Тогда, обозначая за θ угол между векторами \vec{n} и $\vec{\beta}$:

$$I(\vec{n}) = \frac{e^2 \dot{\beta}^2}{4\pi c} \sin^2 \theta$$

Интегрируя полученное выражение по угловым координатам получаем формулу Лармора:

$$P=\frac{2e^2\dot{\beta}^2}{3c}.$$

2. Одномерное движение с $\vec{\beta} \parallel \vec{\beta}$. Пусть θ - угол между векторами \vec{n} и $\vec{\beta}$, а θ' - между векторами \vec{n} и $\vec{\beta}$. Если $\vec{\beta} \parallel \vec{\beta}$ и эти два вектора направлены в одну сторону, то $\theta' = \theta$, а если в противоположные, то $\theta' = \theta - \pi$. В обоих случаях $\sin \theta' = \sin \theta$. В этих обозначениях $\alpha = 1 - \beta \cos \theta$, а выражение в круглых скобках (10.9) получается $\dot{\beta}^2 \sin^2 \theta$.

В итоге:

$$I(\vec{n}) = \frac{e^2 \dot{\beta}^2}{4\pi c} \frac{\sin^2 \theta}{(1 - \beta \cos \theta)^6}.$$

Куда же в основном излучает движущийся заряд? Для нерелятивистского движения - в плоскости, перпендикулярной ускорению, для одномерного движения - в конус вперёд по скорости.

10.6 Мультипольное излучение

Рассмотрим точечный заряд *e*, движущийся по круговой траектории вокруг неподвижного заряда -e. Выберем начало координат в точке нахождения заряда -e. Тогда траектория движения $\vec{r}(t)$ заряда *e* дается уравнениями:

$$\begin{aligned} x(t) &= a\cos(\omega t), \\ y(t) &= a\sin(\omega t), \\ z(t) &= 0. \end{aligned}$$
 (10.10)

Можно было бы подставить выражение для траектории в выражение (10.6) и получить окончательный ответ в виде очень громоздких формул. Однако в случае движения заряда в ограниченной области при размера $a \ll \lambda$ можно пользоваться мультипольным разложением. Рассмотрим потенциалы поля излучения этой системы:

$$\phi(t, \vec{x}) = \int \frac{\rho(t - \frac{1}{c} |\vec{r} - \vec{r}'|, \vec{x}')}{|\vec{x} - \vec{x}'|} d^3 x',
\vec{A}(t, \vec{x}) = \frac{1}{c} \int \frac{\vec{j}(t - \frac{1}{c} |\vec{r} - \vec{r}'|, \vec{x}',)}{|\vec{x} - \vec{x}'|} d^3 x'.$$
(10.11)

Зададимся вопросом о поле излучения вдали от системы. Тогда в подынтегральных выражениях можно положить $r \gg r'$. При этом мы положим $|\vec{x} - \vec{x}'| \simeq r - \vec{n}\vec{x}'$ только в аргументах времени. Связано это с тем, что в конечном итоге мы хотим получить интенсивность $dI/d\Omega$ на бесконечности. Поле, дающее вклад в интенсивность излучения должно убывать на бесконечности не быстрее, чем 1/R. Только эти слагаемые мы и будем учитывать. В оговоренных предположениях можно записать

$$\phi(t,\vec{x}) = \frac{1}{r} \int \rho \left(t - \frac{r}{c} + \frac{\vec{n}\vec{x}'}{c}, \vec{x}' \right) d^3x' \approx \frac{1}{r} \int \left[\rho \left(t - \frac{r}{c}, \vec{x}' \right) + \frac{\vec{n}\vec{x}'}{c} \dot{\rho} \left(t - \frac{r}{c}, \vec{x}' \right) \right] d^3x',$$

$$\vec{A}(t,\vec{x}) = \frac{1}{cr} \int \vec{j} \left(t - \frac{r}{c} + \frac{\vec{n}\vec{x}'}{c}, \vec{x}' \right) d^3x' \approx \frac{1}{cr} \int \left[\vec{j} \left(t - \frac{r}{c}, \vec{x}' \right) + \frac{\vec{n}\vec{r}'}{c} \dot{\vec{j}} \left(t - \frac{r}{c}, \vec{x}' \right) \right] d^3x'.$$

Потенциал ϕ можно легко написать в виде (учтя электронейтральность системы):

$$\phi(t,\vec{x}) = \frac{\vec{n}\,\vec{p}(\tau)}{r},\tag{10.12}$$

где \vec{p} - вектор дипольного момента системы:

$$\vec{p}(\tau) = \int \vec{x}' \rho(\tau, \vec{x}') d^3 x'.$$

Здесь под τ понимается запаздывающее время: $\tau = t - r/c$. С интегралами, входящими в \vec{A} , можно поработать и получить:

$$\vec{A}(t,\vec{x}) = \frac{\vec{p}(\tau)}{cr} + \frac{\vec{m}(\tau) \times \vec{n}}{cr} + \frac{1}{6c^2r}\ddot{Q}_{ij}(\tau)\vec{e}_in_j + f(t,\vec{x})\vec{n},$$
(10.13)

где \vec{m} - вектор магнитного дипольного момента, а Q_{ij} - тензор электрического квадрупольного момента:

$$\vec{m}(\tau) = \frac{1}{2c} \int \vec{x}' \times \vec{j} \, d^3 x',$$

$$Q_{ij}(\tau) = \int \rho \left(3 \, x'_i x'_j - r'^2 \delta_{ij}\right) d^3 x'.$$
(10.14)

Для дальнейших рассуждений нам не понадобится функция f. Будем интересоваться полем на больших расстояниях. В этом случае любое дифференцирование пространственных координат в знаменателе будет давать члены порядка $1/r^2$, которые мы хотим отбросить. Таким образом, при взятии пространственных производных мы будем дифференцировать лишь моменты $\vec{p}(\tau)$, $\vec{m}(\tau)$, $Q_{ij}(\tau)$. Можно догадаться,

что в таком случае выражения для полей примут следующий вид:

$$\vec{B} = \frac{1}{c} \vec{A_{\perp}} \times \vec{n},$$

$$\vec{E} = \vec{B} \times \vec{n} = -\frac{1}{c} \vec{A_{\perp}}.$$
(10.15)

Здесь под \vec{A}_{\perp} понимается векторный потенциал без компоненты вдоль \vec{n} : $\vec{A}_{\perp} = \vec{A} - \vec{n}(\vec{A}, \vec{n})$. Возвращаемся к нашей задаче. Магнитный дипольный момент будет константой (интуиция - он всегда пропорционален моменту импульса), поэтому не будет давать вклада в излучение. Квадрупольный и дипольный электрические моменты же будут записываться в виде:

$$Q_{ij} = ea^2 \begin{pmatrix} 3\cos^2\omega\tau - 1 & 3\cos\omega\tau\sin\omega\tau & 0\\ 3\cos\omega\tau\sin\omega\tau & 3\sin^2\omega\tau - 1 & 0\\ 0 & 0 & -1 \end{pmatrix}; \quad p_i = ea \begin{pmatrix} \cos\omega\tau\\\sin\omega\tau\\0 \end{pmatrix}, \quad (10.16)$$

нам понадобятся временные производные, которые можно записать как

$$\ddot{Q}_{ij} = -6ea^2\omega^2 \begin{pmatrix} \cos 2\omega\tau & \sin 2\omega\tau & 0\\ \sin 2\omega\tau & -\cos 2\omega\tau & 0\\ 0 & 0 & 0 \end{pmatrix}; \quad \dot{p}_i = ea\omega \begin{pmatrix} -\sin \omega\tau\\ \cos \omega\tau\\ 0 \end{pmatrix}. \quad (10.17)$$

Уже тут можно разделить эти величины на положительно-частотную и отрицательночастотную компоненты:

$$\ddot{Q}_{ij} = 3ea^2\omega^2 e^{-i2\omega\tau} \begin{pmatrix} -1 & -i & 0\\ -i & 1 & 0\\ 0 & 0 & 0 \end{pmatrix} + \text{k.c.}; \quad \dot{p}_i = \frac{ea\omega}{2}e^{-i\omega\tau} \begin{pmatrix} -i\\ 1\\ 0 \end{pmatrix} + \text{k.c.} \quad (10.18)$$

Перейдем к сферическим координатам. Представим вектор *n* как

$$\vec{n} = \begin{pmatrix} \sin\theta\cos\phi\\ \sin\theta\sin\phi\\ \cos\theta \end{pmatrix}, \tag{10.19}$$

тогда окончательно векторный потенциал можно записать в виде:

$$\vec{A}(t,\vec{x}) = \left[\frac{ea\omega}{2cr}e^{-i\omega\tau} - \sin\theta \frac{iea^2\omega^2}{2c^2r}e^{-i(2\omega\tau-\phi)}\right] \begin{pmatrix} -i\\ 1\\ 0 \end{pmatrix} + \text{K.c.}$$
(10.20)

Вычитая компоненту *n* из векторного потенциала, мы приходим к выражению для электрического поля:

$$\vec{E}(t,\vec{x}) = \left[i\frac{ea\omega^2}{2c^2r}e^{-i\omega\tau} + \sin\theta\frac{ea^2\omega^3}{c^3r}e^{-i(2\omega\tau-\phi)}\right] \left[\binom{-i}{1} + i\sin\theta e^{i\phi}\vec{n}\right] + \kappa.c.$$
(10.21)

Или то же самое в сферических координатах:

$$\vec{E}(t,\vec{x}) = \left[\frac{ea\omega^2}{2c^2r}e^{-i(\omega\tau-\phi)} - i\sin\theta\frac{ea^2\omega^3}{c^3r}e^{-i(2\omega\tau-2\phi)}\right]\left[\cos\theta\vec{e}_{\theta} + i\vec{e}_{\phi}\right] + \text{k.c.} \quad (10.22)$$

Тогда угловое распределение интенсивности дается выражением:

$$\frac{dI}{d\Omega} = \frac{2\pi^3 c e^2 a^2}{\lambda^4} \left(1 + \frac{4\pi^2 a^2}{\lambda^2} \sin^2\theta\right) (1 + \cos^2\theta). \tag{10.23}$$

Возникает логичный вопрос: насколько быстро уходит механическая энергия из системы? Полная интенсивность запишется в виде:

$$I = \frac{32\pi^4 c e^2 a^2}{\lambda^4} \left(\frac{1}{3} + \frac{4\pi^2 a^2}{5\lambda^2}\right) \approx \frac{2e^2}{3c^3} a^2 \omega^4 = \hbar \omega \frac{4}{3} \frac{d_0^2 \omega^3}{\hbar c^2} = \hbar \omega \times \gamma.$$
(10.24)

Рассматриваемая система очень сильно напоминает электрон, вращающийся вокруг неподвижного протона - модель атома. Электрон, двигаясь по окружности излучает, причем он теряет один "квант" электромагнитного поля $\hbar\omega$ за промежуток времени γ^{-1} . Потеряв всю механическую энергию электрон неизбежно (в рамках нашей модели) упадет на ядро. При всей противоречивости этого утверждения известным физическим законам, формула для скорости излучения γ по порядку величины сходится с предсказаниями квантовой электродинамики.

10.7 Задачи

- 1. Исследовать поляризацию излучения поля (10.22). Найти зависимость параметров Стокса поля излучения от сферических углов $\xi_i(\theta, \phi)$.
- 2. Записать вектор Пойнтинга в последней задаче с точностью до членов порядка $1/r^3$. Считать, что квадрупольное излучение мало по сравнению с дипольным.

11 Рассеяние электромагнитных волн на зарядах

11.1 Самодействие заряда

В предыдущих главах мы увидели как электромагнитное поле влияет на движение заряженных частиц, а также мы увидели, что заряды сами являются источниками электромагнитного поля. В этой главе мы коротко рассмотрим как поле, излучаемое зарядом, влияет на движение этого заряда. Другими словами, мы хотим решить уравнения Максвелла и уравнения Ньютона совместно:

$$\operatorname{div} \vec{E} = 4\pi e \delta(\vec{x} - \vec{r}(t)),$$

$$\operatorname{div} \vec{B} = 0,$$

$$\operatorname{rot} \vec{E} = -\frac{1}{c} \frac{\partial \vec{B}}{\partial t},$$

$$\operatorname{rot} \vec{B} = \frac{4\pi e}{c} \dot{\vec{r}}(t) \delta(\vec{x} - \vec{r}(t)) + \frac{1}{c} \frac{\partial \vec{E}}{\partial t},$$

$$m\ddot{\vec{r}} = \vec{F}_{\text{ext}} + e\vec{E}(t, \vec{r}(t)) + \frac{e}{c} [\dot{\vec{r}}(t) \times \vec{B}(t, \vec{r}(t))].$$
(11.1)

Воспользуемся следующим трюком. Рассмотрим равномерно заряженный шар радиуса R_0 , движущийся поступательно по траектории $\vec{r}(t)$. Полный заряд шара равен

$$e = \int de = \int d^3r \ \rho = \frac{4\pi}{3}\rho R_0^3.$$

Легко видеть, что предельный переход $R_0 \rightarrow 0$, e - const. соответствует решению задачи (11.1). Каждый элемент заряженного шара de_1 в точке $\vec{r}_1(t) = \vec{x}_1 + \vec{r}(t)$ создает электромагнитное поле

$$d\vec{E}(t,\vec{x}) = \frac{de_1(1-\beta^2)}{\alpha^3 |\vec{x}-\vec{r}_1(\tau)|^2} \left(\vec{n}-\vec{\beta}\right) + \frac{de_1}{c\alpha^3 |\vec{x}-\vec{r}_1(\tau)|} [\vec{n} \times [(\vec{n}-\vec{\beta}) \times \dot{\vec{\beta}}]],$$

$$d\vec{H}(t,\vec{x}) = \vec{n} \times d\vec{E}(t,\vec{x}).$$
(11.2)

Здесь $\tau : t - \tau - |\vec{x} - \vec{r}_1(\tau)|/c = 0$. Упростим наше рассмотрение. Пусть движение заряженного шара слаборелятивистское - будем рассматривать лишь первый прядок по β . В таком случае можно пренебречь лоренцевским сокращением и считать шар абсолютно твердым шаром в любой системе отсчета ². Тогда сила, действующая на заряд de_2 в точке $\vec{r}_2(t) = \vec{x}_2 + \vec{r}(t)$ будет даваться известным выражением:

$$d^{2}\vec{F}_{12} = de_{2}d\vec{E}(t,\vec{r}_{2}(t)) + de_{2}\frac{\vec{r}}{c} \times d\vec{B}(t,\vec{r}_{2}(t)), \qquad (11.3)$$

а выражения для полей будут выглядеть следующим образом:

$$d\vec{E}(t,\vec{x}) = \frac{de_1\left[\vec{n}-\vec{\beta}\right]}{\alpha^3 |\vec{x}-\vec{r}_1(\tau)|^2} + \frac{de_1}{c^2 |\vec{x}-\vec{r}_1(\tau)|} [\vec{n}(\vec{n}\vec{r}(\tau)) - \ddot{\vec{r}}(\tau)],$$

$$d\vec{B}(t,\vec{x}) = -\frac{de_1}{c^2 |\vec{x}-\vec{r}_1(\tau)|} \vec{n} \times \ddot{\vec{r}}(\tau).$$
(11.4)

²Хоть и может сложиться впечатление, что при полном релятивистском рассмотрении задачи конечные выражения будут громоздкими и неузнаваемыми, это не так. См., например, [9]

Центр заряженного шара будет двигаться согласно уравнению Ньютона $m\vec{\ddot{r}}(t) = \vec{F}$, где \vec{F} дается выражением:

$$\vec{F} = \iint de_1 de_2 \Big[\frac{\vec{n} - \vec{\beta}}{(1 - 3\vec{n}\vec{\beta})|\vec{r}_2(t) - \vec{r}_1(\tau)|^2} + \frac{1}{c^2 |\vec{r}_2(t) - \vec{r}_1(\tau)|} [\vec{n}(\vec{n}\vec{r}(\tau)) - \ddot{\vec{r}}(\tau)] - \frac{\vec{\beta} \times \vec{n} \times \ddot{\vec{r}}(\tau)}{c^2 |\vec{r}_2(t) - \vec{r}_1(\tau)|} \Big],$$
(11.5)

где вектор *n* с точностью до членов интересующего нас порядка выглядит следующим образом:

$$\vec{n} = \frac{\vec{r}_2(t) - \vec{r}_1(\tau)}{|\vec{r}_2(t) - \vec{r}_1(\tau)|} \approx \frac{\vec{x}_2 - \vec{x}_1 + \frac{1}{c}\vec{r}|\vec{x}_2 - \vec{x}_1|}{|\vec{x}_2 - \vec{x}_1 + \frac{1}{c}\vec{r}|\vec{x}_2 - \vec{x}_1||} = \frac{\vec{x} + \vec{\beta}x}{|\vec{x} + \vec{\beta}x|},$$
(11.6)

где введено обозначение $\vec{x} = \vec{x}_2 - \vec{x}_1$.Рассмотрим каждое слагаемое отдельно.

$$\vec{F}_{1} = \rho^{2} \iint d^{3}x_{1}d^{3}x_{2} \frac{\vec{n} - \vec{\beta}}{(1 - 3\vec{n}\vec{\beta})|\vec{r}_{2}(t) - \vec{r}_{1}(\tau)|^{2}} = \rho^{2} \iint d^{3}x_{1}d^{3}x_{2} \left[\frac{\vec{x} + \vec{\beta}x}{|\vec{x} + \vec{\beta}x|^{3}} - \frac{1}{x^{2}} \left(\vec{\beta} - 3\frac{\vec{x}(\vec{x}, \vec{\beta})}{x^{2}} \right) \right] = \rho^{2} \iint d^{3}x_{1}d^{3}x_{2} \left[\frac{\vec{x}}{x^{3}} + \frac{1}{x^{3}} \left(\vec{\beta} - 3\frac{\vec{x}(\vec{x}, \vec{\beta})}{x^{2}} \right) + O(\beta^{2}) \right].$$
(11.7)

Используя простое свойство

$$\iint d^3x_1 d^3x_2 \vec{x}_1 f(|\vec{x}_1 - \vec{x}_2|) = \iint d^3x_1 d^3x_2 \vec{x}_2 f(|\vec{x}_1 - \vec{x}_2|)$$

заключаем, что $\vec{F}_1 = 0$.

$$\vec{F}_{3} = -\iint de_{1}de_{2}\frac{\vec{\beta} \times \vec{n} \times \vec{\vec{R}}(\tau)}{c^{2}|\vec{R}_{2}(t) - \vec{R}_{1}(\tau)|} = -\rho^{2} \iint d^{3}r_{1}d^{3}r_{2}\vec{\beta} \times \frac{\vec{x} + \vec{\beta}x}{|\vec{x} + \vec{\beta}x|^{2}} \times \vec{\vec{R}}(\tau) = -\rho^{2}\vec{\beta} \times \iint d^{3}r_{1}d^{3}r_{2}\frac{\vec{x}}{x^{2}} \times \vec{\vec{R}}(\tau) + O(\beta^{2}).$$
(11.8)

По аналогичному свойству, $\vec{F}_3 = 0$. Оставшееся слагаемое даст неисчезающий

вклад в результирующую силу:

$$\vec{F}_{2} = \iint de_{1}de_{2}\frac{1}{c^{2}|\vec{r}_{2}(t) - \vec{r}_{1}(\tau)|} [\vec{n}(\vec{n}\vec{r}(\tau)) - \ddot{\vec{r}}(\tau)] = \\ \iint de_{1}de_{2} \left[\frac{\vec{x}(\vec{x}\vec{r}(\tau) + \vec{x}(\vec{\beta}\vec{r}(\tau)) + \vec{\beta}x(\vec{x}\vec{r}(\tau))}{c^{2}|\vec{x} + \vec{\beta}x|^{3}} - \frac{\ddot{\vec{r}}(\tau)}{c^{2}|\vec{x} + \vec{\beta}x|} \right] = \\ -\iint de_{1}de_{2} \left[\frac{\vec{r}(\tau)}{c^{2}x} \left(1 - \frac{\vec{\beta}\vec{x}}{x} \right) + O(\beta^{2}) \right] = \\ -\frac{2}{3c^{2}} \iint \frac{de_{1}de_{2}}{|\vec{x}_{1} - \vec{x}_{2}|} \vec{r}(\tau) = -\frac{4}{3}\frac{W_{0}}{c^{2}} \vec{r}(t) + \frac{2e^{2}}{3c^{3}}\vec{r}(t) + O(R_{0},\beta).$$
(11.9)

Здесь $W_0 = \frac{1}{2} \iint \frac{de_1 de_2}{|\vec{r_1} - \vec{r_2}|} = \frac{3}{5} \frac{e^2}{R_0}$ - электростатическая энергия заряженного шара. Наконец, устремляя радиус заряженного шара к нулю, мы получим уравнение

Наконец, устремляя радиус заряженного шара к нулю, мы получим уравнение движения для заряженной точечной частицы, взаимодействующей с собственным электромагнитным полем:

$$\left(m_0 + \frac{12}{15} \frac{e^2}{c^2 R_0}\right)\vec{\vec{r}} = \frac{2e^2}{3c^3}\vec{\vec{r}} + \vec{F}_{\text{ext.}}.$$
(11.10)

Наличие бесконечной добавки к массе, вообще говоря, появляется не только в классической электродинамике, но и в квантовой. Если в рассматриваемой задаче все масштабы превышают масштаб $r_{cl} \simeq \frac{e^2}{mc^2}$, называемый классическим радиусом электрона, для преодоления этой трудности можно рассуждать следующим образом. В любых экспериментах по измерению массы заряженной частицы мы будем всегда наблюдать величину $m_0 + \frac{12}{15} \frac{e^2}{c^2 R_0}$. Величину же m_0 , которая не имеет смысла наблюдаемой массы и входит лишь в уравнение Ньютона без электромагнитного поля, мы можем положить равной $m_e - \frac{12}{15} \frac{e^2}{c^2 R_0}$, где m_e - наблюдаемая масса. Тогда уравнение движения для заряженной точечной частицы примет привычный вид

$$m_e \vec{\ddot{r}} = \frac{2e^2}{3c^3}\vec{\ddot{r}} + \vec{F}_{\text{ext.}}.$$
 (11.11)

Такой подход похож на процедуру перенормировки массы в квантовой электродинамике. Однако противоречия классической электродинамики с экспериментом начинаются уже при масштабах задачи $\sim \lambda_c/2\pi = 137 r_{\rm cl.}$, поэтому эта процедура не является необходимой в рамках классического подхода.

Другое неудобство этого уравнения заключается в наличии третьей производной координаты по времени. Проблема заключается в том, что получаемая траектория будет зависеть от начальной координаты, начальной скорости и начального ускорения, что противоречит постулатам классической механики. Более того, среди

решений этого уравнения существуют траектории частиц, которые ускоряются при излучении, а не замедляются, как должно быть в согласии с законом сохранения энергии. В процессе решения мы будем выбирать те решения, которые не противоречат закону сохранения энергии. Рассмотрим пример свободного движения. Пускай $\vec{F}_{\text{ext.}} = 0$. Тогда скорость частицы будет даваться выражением $\vec{v}(t) = \vec{v}_0 + \vec{b}e^{t/\tau_c}$, где $\tau_c = \frac{2e^2}{3mc^3}$. Мы должны в данном случае наложить условие $\vec{b} = 0$.

Другой способ решения уравнения заключается в том, чтобы решать приближенное уравнение, понимая под третьей производной координаты силу, которая действует на частицу в данный момент времени:

$$m\vec{\ddot{R}} \approx \tau_c \frac{d}{dt} \vec{F}_{\text{ext.}} + \vec{F}_{\text{ext.}},$$
 (11.12)

в котором автоматически исключены нефизические решения. Здесь мы пренебрегли поправками порядка $(\tau_c/\Delta t)^2$, где Δt - масштаб, на котором изменяется сила. Оценим эти поправки в экстремальном случае. Пусть за время Δt энергия изменяется на mc^2 , тогда по принципу Гейзенберга $\Delta t \sim \hbar/mc^2$ и $\tau_c/\Delta t \sim 1/137$. Даже в нашем экстремальном случае мы пренебрегаем поправками порядка $(\tau_c/\Delta t)^2 \sim 10^{-4}$, что является хорошим приближением. Один из способов разрешения внутренних противоречий в классической электродинамике можно найти, например, в работе [10].

11.2 Рассеяние электромагнитных волн гармоническим осциллятором

Рассмотрим рассеяние плоской электромагнитной волны на заряде в симметричном параболическом потенциале с учетом силы лучистого трения. Начнем с движения заряда без внешнего электромагнитного поля. Как известно, в случае без учета лучистой силы, заряд будет двигаться по периодической траектории с некоторой частотой ω_0 . В случае присутствия этой силы мы ожидаем, что заряд будет тратить свою механическую энергию на излучение пока не потеряет всю энергию. Уравнение движения заряда запишется следующим образом:

$$\ddot{\vec{r}}(t) = -\omega_0^2 \vec{r} - \omega_0^2 \tau_c \dot{\vec{r}}.$$
(11.13)

Ищем решение этого уравнения в виде $\vec{r}(t) = e^{-i\alpha t}$. Приходим к уравнению на α :

$$-\alpha^2 + \omega_0^2 - i\omega_0^2 \tau_c \alpha = 0,$$

его решение:

$$lpha = \pm \omega + i \frac{\Gamma}{2} = \pm \left(\omega_0 - \frac{\omega_0^3 \tau_c^2}{8} \right) + i \frac{\omega_0^2 \tau_c}{2}.$$

В рамках данного подхода сдвиг резонансной частоты пренебрежимо мал $\Delta\omega_0 \sim \omega_0^3 \tau_c^2 \sim \omega_0 (\tau_c/\Delta t)^2$. В квантовой электродинамике сдвиг частоты осциллятора $\Delta\omega_0 \sim \omega_0^2 \tau_c \ln mc^2/\hbar\omega_0$ может значительно превышать Г. Такой сдвиг называется сдвигом Лэмба. Траектории заряда представляют из себя траектории осциллятора с трением. Одна из возможных траекторий:

$$x(t) = ae^{-\Gamma t/2}\cos(\omega_0 t) = \frac{1}{2}ae^{-\Gamma t/2 - i\omega_0 t} + \kappa.c.$$

$$y(t) = ae^{-\Gamma t/2}\sin(\omega_0 t) = \frac{1}{2}iae^{-\Gamma t/2 - i\omega_0 t} + \kappa.c.$$
 (11.14)

Пускай теперь заряд движется в поле электромагнитной волны $\vec{E} = E_0 \vec{e}_+ e^{-i\omega t}$. Членами порядка βE_0 мы пренебрегаем, считая налетающее поле и рассматриваемые скорости достаточно малым. Уравнения движения

$$\ddot{\vec{r}}(t) = -\omega_0^2 \vec{r} - \omega_0^2 \tau_c \dot{\vec{r}} + \frac{e}{m} E_0 \vec{e} e^{-i\omega t}$$
(11.15)

будут иметь решение:

$$\vec{r}(t) = \frac{e}{m} \frac{\vec{e}_{+}E_{0}}{\omega^{2} - \omega_{0}^{2} + i\omega\Gamma} e^{-i\omega t}.$$
(11.16)

Интенсивность излучения такой системы мы уже изучали. Она дается формулой:

$$\frac{dI}{d\Omega} = \frac{2\pi^3 c e^2 a^2}{\lambda^4} (1 + \cos^2 \theta),$$
(11.17)

в нашем случае

$$a^{2} = \left|\sqrt{2}\frac{e}{m} \frac{E_{0}}{\omega^{2} - \omega_{0}^{2} + i\omega\Gamma}\right|^{2}$$

Окончательно получаем

$$\frac{dI}{d\Omega} = \frac{c}{4\pi} \frac{e^4}{m^2 c^4} \frac{\omega^4 |E_0|^2}{(\omega^2 - \omega_0^2)^2 + \omega^2 \Gamma^2} (1 + \cos^2 \theta).$$
(11.18)

В теории рассеяния вводят величину, называемую дифференциальным сечением рассеяния. Она определяется как отношение интенсивности рассеянного света к потоку энергии налетающего света (к соответствующей компоненте вектора Пойнтинга):

$$\frac{d\sigma}{d\Omega} = \frac{2\pi}{c|E_0|^2} \frac{dI}{d\Omega} = \frac{r_{\rm cl}^2 \omega^4}{(\omega^2 - \omega_0^2)^2 + \omega^2 \Gamma^2} \frac{1 + \cos^2 \theta}{2}.$$
 (11.19)

Рассмотрим важные случаи.
В пределе низких частот (больших длин волн) ω → 0 мы получаем сечение рассеяния Рэлея:

$$\sigma_R = \frac{2}{3} \times 4\pi r_{\rm cl}^2 \frac{\omega^4}{\omega_0^4} \tag{11.20}$$

с характерной зависимостью ~ ω^4 . Исторически важный результат, благодаря которому объясняется голубоватый цвет неба днем и красноватый на закате.

 В пределе ω₀ → 0 мы получим рассеяние на свободных зарядах - рассеяние Томпсона, не зависящее от частоты налетающего излучения:

$$\sigma_T = \frac{2}{3} \times 4\pi r_{\rm cl}^2 / \tag{11.21}$$

Важно отметить, что рассеяние в рамках классической электродинамики происходит без изменения длины волны, что верно пока длина волны рассеиваемого света не начинает быть сравнимой с комптоновской длиной волны $\lambda_c = 2\pi\hbar/mc$.

Рассеяние вблизи резонанса ω ~ ω₀ называется резонансной флуоресценцией.
Сечение описывается выражением

$$\frac{d\sigma}{d\Omega} = \frac{r_{\rm cl}^2 \omega^2}{(\omega - \omega_0)^2 + \Gamma^2/4} \frac{1 + \cos^2 \theta}{2}.$$
 (11.22)

Полное сечение на резонансе $\sigma = \frac{3}{2\pi}\lambda^2 \gg \sigma_T \gg \sigma_R$.

11.3 Задачи

- 1. Найти поляризуемость системы, состоящей из электрического заряда, движущегося в гармоническом потенциале с учетом лучистого трения, для поля, действующего на частоте близкой к резонансной $\omega \sim \omega_0$ в течение времени $T \sim 1/\Gamma \gg 1/\omega_0$.
- 2. Найти оператор $\hat{G}(\vec{r},t-t')$ выражающий рассеянное поле через налетающее:

$$\vec{E}(\vec{r},t) = \vec{E}_0(\vec{r},t) + \int \hat{G}(\vec{r},t-t')\vec{E}_0(\vec{0},t')dt',$$

где \vec{E}_0 - налетающее на систему поле.

3. Как изменится это выражение в случае наличия нескольких рассеивателей?

Список литературы

- [1] И.А. Шелых, Р.Г. Полозков, А.Г. Шупяцкий, Курс лекций по классической электродинамике.
- [2] Л.Д. Ландау, Е.М. Лифшиц, Курс теоретической физики т. 2 Теория поля. Москва: Наука, 1973.
- [3] В. В. Батыгин, И.Н. Топтыгин. Сборник задач по электродинамике. Москва: НИЦ «Регулярная и хаотическая динамика», 2002.
- [4] Дж. Джексон, Классическая электродинамика. Москва: Мир, 1965.
- [5] М. Борн, Э. Вольф, Основы Оптики. Москва: Наука, 1973
- [6] D. Marcuse, Light Transmission Optics. New York: Van Nostrand Reinhold Company Inc. 1982
- [7] C. de Rham, Massive Gravity, Living Rev.Rel. 17 (2014) 7, arXiv:1401.4173.
- [8] А.Н. Васильев, Классическая электродинамика. Краткий курс лекций. СПб:БХВ-Петербург, 2010.
- [9] Ю.В. Новожилов, Ю.А. Яппа, Электродинамика. Москва: Наука, 1978
- [10] Kwang-Je Kim, The equation of motion of an electron: a debate in classical and quantum physics, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Volume 429, Issues 1–3, 1999

Козин Валерий Константинович Пивоваров Вячеслав Александрович Смирнов Федор Александрович

Практический курс классической электродинамики для студентов технических направлений подготовки

Учебно-методическое пособие

В авторской редакции Редакционно-издательский отдел Университета ИТМО Зав. РИО Н.Ф. Гусарова Подписано к печати Заказ № Тираж Отпечатано на ризографе

Редакционно-издательский отдел Университета ИТМО 197101, Санкт-Петербург, Кронверский пр., 49