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Introduction 

The tutorial outlines the general principles used in measurement data processing 

aimed at estimation of unknown parameters. Depending on the level of a priori 

information of a statistical nature about the parameters being estimated and 

measurement errors, different approaches to the design of estimation algorithms are 

considered, including the least squares method, maximum likelihood method, and the 

Bayesian method. The relationship between the estimation algorithms designed within 

the framework of the considered approaches is analyzed. The methods and algorithms 

obtained for a constant vector are generalized with regard to the estimation of random 

sequences, the most important of which is the recursive discrete Kalman filter. In 

addition, the Kalman filter for continuous time is considered, and the transition from 

continuous algorithms to their discrete analogs is discussed. While presenting the 

material, we discuss not only the problem of algorithm design, but also the problem of 

accuracy analysis, which is very important for practical applications. In this regard, 

preference is given to algorithms resulting from the Bayesian approach. In addition to 

the estimate itself, such algorithms provide the possibility of generating current 

accuracy characteristics in the form of an appropriate covariance matrix of the 

estimation errors. The theory presented in this tutorial can be applied to solve problems 

of navigation data processing. It is in this field that the estimation algorithms 

considered in the tutorial are extensively used. 

The tutorial is intended for students who take courses related to processing of 

redundant measurement data. The tutorial is based on the author’s monographs [24, 

25]. The main aim is to introduce the fundamentals of the theory and principles of 

designing algorithms for estimation of unknown parameters and random sequences. 

The material is presented in eight chapters. Each chapter contains a theoretical part 

and illustrating examples, which include problem statements and algorithms used for 

their solutions. 

At the end of each chapter, exercises are given for the learners to practice the 

solution of estimation problems and test questions, to revise the material.  

The material is presented with the use of the mathematical apparatus which is 

actively used in the courses delivered at technical universities to first- and second-year 

students. The tutorial requires that the students have a good knowledge of the 

fundamentals of probability theory, matrix calculus, and the theory of ordinary 

differential equations. In this regard, for the readers’ convenience, the appendices to the 

tutorial provide basic information on each of the above-mentioned subjects. 

The author is grateful to his colleagues from ITMO University, the staff and 

postgraduate students of the Scientific and Educational Center of the Concern CSRI 

Elektropribor for reading the manuscript and their helpful remarks. Special thanks to 

T.P. Utkina and N.T. Zhigunova for the final editing of the text. 



 
 

7 

 

List of abbreviations 

CDF  cumulative  distribution function  

CRLB  Cramer-Rao lower bound 

GLSM   generalized least squares method  

GNSS  global navigation satellite system 

INS  inertial navigation system 

LSM  least squares method 

MLSM  modified least squares method  

PDF  probability density function 

RMS  root-mean-square  

WLSM  weighted least squares method 

Terms and definitions 

Measurements are outputs of different sensors. With regard to navigation problems, 

the latter are accelerometers, gyroscopes. In this tutorial, the term ‘measurements’ is 

also used to mean coordinates and/or components of the vehicle velocity and/or 

parameters of its attitude generated by inertial navigation systems, dead-reckoning 

system, and GNSS equipment. In addition, measurements can be generated by various 

kinds of additional aids (correcting equipment), for example, barometers, rangefinders, 

beacons, sensors of different geophysical fields, etc. 

For measurements, we usually use notation ( )i iy y t  1,2....i   for discrete time or 

( )y t  for continuous time. 

Like all parameters defined below, measurements can be both scalar and vector. 

Measurement errors are differences between true and measured values. 

For measurement errors, we usually use notation ,iv  1,2....i  for discrete time or 

( )v t  for continuous time. 

Parameters to be estimated are unknown parameters that we need to find (estimate, 

calculate) using the accumulated measurements. 

For the parameters to be estimated, we usually use notation ,ix  1,2....i  for discrete 

time or ( )x t  for continuous time.  

A measurement model is a mathematical relation ( , )i i iy f x v  that determines how 

the measurements depend on the parameters to be estimated and measurement errors. 

In what follows, we use linear and nonlinear models or functions ( )x , i.e. the ones 

that satisfy or do not satisfy the superposition principle: 

1 2 1 2( ) ( ) ( )ax bx a x b x      , 

where a and b are arbitrary constants . 

A model of parameters to be estimated is mathematical relations in the form of 

difference or differential equations that determine how these parameters vary in time. 
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Further, models given by linear equations are used, as a rule. 

An estimation problem is a problem, which is aimed to find unknown parameters 

(obtain an estimate) using measurements and information about models for 

measurements and the parameters to be estimated. 

A parameter estimate is the parameter value obtained from the solution of the 

estimation problem. 

For the parameter estimates, we usually use notation ˆ ,ix  1,2....i   for discrete time 

or ˆ( )x t  for continuous time. 

An estimation algorithm is a sequence of calculations and logical operations 

performed with measurements aimed to obtain estimates of the sought parameters. 

Estimation errors are the differences between the true values of the parameters and 

their estimates. 

For the parameter estimate errors, we usually use notation 
ˆ , 1,2....i i ix x i    for discrete time or ˆ( ) ( ) ( )t x t x t    for continuous time. 

Estimation criterion is a function or functional which must be minimized or 

maximized when finding the parameters to be estimated. 
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1. Problems of estimating constant parameters in navigation data 

processing: Statements and examples  

 

Consider some examples of typical linear and nonlinear estimation problems for 

constant (time-invariant) unknown parameters that are often solved in navigation data 

processing. 

1.1. Estimation of polynomial coefficients 

Let the aircraft height be unknown and measurements be made at times it , 1.i m  

using an onboard sensor. Assume that the unknown height is constant during the 

measurement interval and is equal to h . Then, introducing x h  and assuming that the 

measurements include errors iv , 1.i m , h , the problem of the height determination 

can be reduced to estimation of unknown constant value x  by a set of noisy 

measurements:  

i iy x v  , 1.i m .      (1.1) 

Introducing unity column H , 
т [1,1....1]H  , and m-dimensional vectors 

т

1( ,... )my y y  and т

1( ,... )mv v v , we can write measurements (1.1) as  

y Hx v  .      (1.2) 

In this equation, the measurements linearly depend on the parameter being 

estimated. Thus we can speak of the linear character of measurements. A more 

complicated model can be introduced to describe the height variations during the 

measurement interval. Particularly, if the height changes by the linear law (representing 

a linear trend), the measurements can be presented as 

0i i iy x Vt v   , 1.i m ,         (1.3) 

where 0 ,x V  are the initial height and vertical velocity being estimated, considered to 

be constant; ( 1)it i t    are the time instants since the beginning of the observation; 

t  is the interval between measurements. 

Measurements (1.3) can also be presented using (1.2) by introducing the vector 

being estimated and matrix H : 

т т

1 2 0( , ) ( , )x x x x V  ; т

1 2

1 1 . . 1

. . m

H
t t t

 
  
 

.            (1.4) 

Representation in the form of (1.2) can be derived also for a more general case, 

wherein the height variation is described by the ( 1n  )-th order polynomial, then the 

problem can be mathematically reduced to estimation of the polynomial coefficients 
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т

1 2( , ,.. )nx x x x  by measurements  

2 1

1 2 3 .. n

i i i n i iy x x t x t x t v      , 1.i m .       (1.5) 

The problem of preprocessing the sensor measurements to decrease the noise level 

is often reduced to this formulation.  

The need to estimate polynomial coefficients often arises in the so-called problem 

of sensor calibration or calibration problem. It consists in comparing the sensor 

outputs with the reference value of the parameter being measured or more accurate 

measurements. The model of sensor errors should be constructed using the difference 

between sensor outputs and the reference value of parameter being measured or more 

accurate measurements. In the absence of the reference, this model makes it possible to 

improve the accuracy of measurements. Examples of measurement errors containing a 

constant component (a) and a quadratic trend (second-order polynomial) (b) are 

shown in Fig. 1.1.  

а)        b) 

Measured values

Constant error

Measurement no.  Measurement no.

Measured values

Quadratic trend

 

Fig. 1.1. Examples of measurement errors containing a constant component (а) and a 

quadratic trend, 10t s , 0.1t s  (b). 

Other arguments can be used in (1.5) instead of time. They can be other physical 

quantities, such as temperature. As is known, the errors of high-accuracy sensors 

significantly depend on temperature. A special thermal stabilization system is used to 

reduce these errors. Preliminary description of the temperature-error dependence, for 

example, by using a polynomial model, sometimes makes it possible to lower 

requirements on expensive thermal stabilization systems.  

1.2. Initial alignment of an inertial navigation system. A simple case study 

As is known, neglecting the errors of the inertial sensor (accelerometers and 

gyroscopes), in the simplest case, the velocity error for the eastern channel of an inertial 

navigation system (INS) can be approximately described with the following formula [7, 15]: 
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( ) (0) sin (0)cosE i sch i E sch iV t gR t V t       , 1.i m , 

where (0) , (0)EV  are the initial vertical error (angle between the true and INS 

horizon planes) and the initial velocity error; g  is the gravity acceleration; R  is the 

Earth’s radius; sch

g

R
   is the frequency of Schuler period: 2 84sch

R
T

g
   min.  

The INS carrier is assumed motionless, i.e., its velocity is zero. Then, the velocity 

measured by the INS is actually the INS error. Taking these measurements at discrete 

times, we can write:  

( ) (0) sin (0)cosi sch i E sch i iy t gR t V t v      ,     (1.6) 

where iv  is the readout error.  

Using the measurement set ( )iy t , 1.i m , we can estimate the initial vertical error 

and the velocity error. Actually, this is the problem of initial alignment of INS in its 

simplest interpretation. Introducing the vector of the parameters being estimated and 

matrix Н:  
т ( (0),x   (0)EV );         (1.7) 

т 1 2

1 2

sin , sin , . . sin

cos , cos , . . cos

sch sch sch m

sch sch sch m

gR t gR t gR t
H

t t t

  

  

   
  
 

, (1.8) 

it is also easy to present these measurements in the form similar to (1.2). 

Assume that the problem is solved over a short time interval, as compared with the 

Schuler period. Expanding functions sin sch it  and cos sch it  in Taylor series, keeping 

only the first-order members, this problem can be easily reduced to estimation of 

polynomial coefficients. In particular, if we assume that 
2

sin sch i i

sch

t t
T


  , cos 1sch it   

with i scht T , the measurements can be approximately written using the first-order 

polynomial: 

2
( ) (0) (0)i i E i

sch

y t gR t V
T


      .    (1.9) 

We also deal with estimation of the second- and third-order polynomials in the 

problem when the INS errors in the velocity and displacement components over 

interval T  are approximately described by polynomial models. 

1.3. Statement of a linear estimation problem  

All the above problems can be reduced to the following common statement of a 

linear estimation problem.  
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We have an unknown constant n -dimensional vector т

1( ,... )nx x x  

0x        (1.10) 

and an m -dimensional measurement vector т

1( ,... )my y y  

y Hx v  ,        (1.11) 

where Н is an mn-dimensional matrix, and т

1( ,... )mv v v is an m-dimensional vector 

describing the measurement errors. 

It is required to determine estimate ˆ( )x y  of unknown vector x  using measurement 

(1.11). In estimation problems, this vector is referred to as the state vector. Notation 

0
dx

x
dt

   means that vector x  is constant (time-invariant), that is, the solution to this 

simplest differential equation is constx  . This notation is used to relate the problem of 

constant vector estimation considered in this chapter to more general problems of 

estimating the variable vector whose behavior with time can be described using 

differential or difference equations (see Chapters 7 and 8). 

In solving the formulated problem, not only the estimate calculation algorithm 

using the available measurements proves to be important but it is also very important to 

be able to quantify the estimation error defined as 

ˆ( ) ( ),y x x y           (1.12) 

i.e., quantify the accuracy of the estimate generated by the proposed algorithm. This is 

especially relevant in solving problems of navigation data processing. Thus, two 

important subproblems can be distinguished within the considered problem: algorithm 

design, i.e., obtaining a detailed procedure for calculating estimates ˆ( )x y , and 

accuracy analysis, which consists in studying the properties of estimation error (1.12), 

the error levels, in particular. 

1.4. Estimation of time delay 

Further, consider some examples of nonlinear estimation problems. In practice, we 

often deal with the problem of estimating a time delay or shift of a measured sample of 

any signal relative to another reference sample of this signal. Let us explain the essence 

of this problem. Assume that we have a known nonlinear function ( )s t  of scalar 

argument and measurements of the type  

( )i i iy s t v   , 1.i m ,    (1.13) 

where iv , 1.i m  are the measurement errors at points it  , and   is an unknown 

constant. 

It is required to estimate  , knowing ( )s t  and having the values iy , it , 1.i m , i.e., 

to determine the time delay (shift) of the measured  sample iy , 1.i m  with respect to 
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the other reference ( )is t  , 1.i m .  

If ( )s t  is a harmonic oscillation, the measurements similar to (1.13) can be 

specified as  

0sin( )i i iy A t v    , 1.i m ,        (1.14) 

where A  is the amplitude, 2 f   is the circular frequency, and 0  is the phase.  

If we know the amplitudes and the frequencies, we have the phase estimation 

problem.  

In formulas (1.13), (1.14), the measurements depend nonlinearly on the parameter 

being estimated. Thus, we can speak about nonlinear measurements and a nonlinear 

estimation problem. 

In general form, in nonlinear estimation problems, measurements can be written 

as  

( )y s x v  ,         (1.15) 

where x , v  are n - and m -dimensional vectors; т

1( ) ( ( ),.. ( ))ms x s x s x  is an m -

dimensional vector-function.  

For harmonic oscillation, with known amplitudes and frequencies, formula (1.14) is 

reduced to (1.15) if 0x   and т

1( ) ( sin( ),.... sin( ))ms x A t x A t x    . The essence of 

this problem is clear from Fig. 1.2.  

Unknown 

phase shift

0

-2

-4

-6

-8

-10

2

4

6

8

10

0 100 200 300 400 500 600 700 800 900 sec
 

Fig. 1.2. Phase determination problem 

If it is required to solve a frequency estimation problem in the case when the 

phase and the amplitude are known, then x   and 
т

1 0 0( ) ( sin( ),.... sin( ))ms A xt A xt     . If both the signal phase and the frequency 

need to be estimated, we should introduce 
т

0( , )x    and 
т

2 1 1 2 1( ) ( sin( ),.... sin( ))ms A x t x A x t x     into formula (1.15). Thus, we have the phase 
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lock problem, which is often solved in designing various measuring devices. In 

general case, in the problem of harmonic signal parameter estimation, all three 

parameters––amplitude, frequency, and phase––can be unknown, then the vector of 

parameters being estimated will be three-dimensional т

0( , , )x A   . It can be easily 

seen that with the known frequency and phase, the measurements linearly depend on 

the amplitude, as the result, we have a linear estimation problem (see Exercise 1.2.). 

The majority of radionavigation systems are also based on time delay estimation, 

i.e., estimation of the shift between the measured sample and the reference one. In 

particular, the possibility of determining coordinates in global navigation satellite 

systems (GNSS) is provided by simultaneous measurements of several delays 

conditioned by the finite time of radio wave propagation between the satellites and the 

user. These delays are estimated by comparing the envelopes extracted from satellite 

signals with their copies generated in the user receivers [10, 14]. 

The so-called map-aided navigation problem is also reduced to a similar 

formulation [3, 23, 26]. The idea of the method is to determine the vehicle position by 

comparing the measured sample of some geophysical parameter, such as terrain 

features, with the reference sample of these parameters computed using the earlier 

constructed map. Then measurements (1.13) will correspond to the one-dimensional 

version of the problem, if the time argument is substituted with the spatial one, and 

function ( )s   agrees with the map terrain variation from this spatial coordinate (Fig. 

1.3). Thus, it is necessary to estimate the spatial shift of the measured sample with 

respect to the map. 

0 100 200 300 400 500 600 700 800

0

-20

20

40

60

80

100

Unknown 
coordinate shift

 Measured 
values 

 Map values

Spatial coordinate, m

T
er

ra
in

, 
m

 
Fig. 1.3. One-dimensional problem of map-aided navigation  

1.5. Position determination by ranging to beacons 

As an example of a nonlinear estimation problem, we can consider the problem of 
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two-dimensional (2D) position determination of a vehicle using ranges (distances) to 

the beacons with the known coordinates (Fig. 1.4). In this case, т

1 2( , )x x x , and the 

measurements are 

   
2 2

1 1 2 2( ) i i

i i i iy s x v x x x x v       , 1.i m ,     (1.16) 

where 1 2,x x  are the coordinates of the vehicle;  
1 2,i ix x , 1.i m  are the coordinates of the 

beacons 

   
2 2

1 1 2 2( ) ( ) i i

i is x D x x x x x     . 

Isoline of position

Uncertainty area

Line of position

 

Fig. 1.4. 2D position determination using range measurements to two beacons with known 

coordinates 

The idea of position determination by a ranging method is rather simple. With a 

correct range measurement to a beacon, the vehicle position can be estimated to the 

accuracy of its location on a circle with the radius equal to the measured range. The 

lines connecting the points of equal values of the parameters being measured are called 

isolines (contour lines) of position in navigation. In this case, they are circles. Having 

two exact ranges, vehicle coordinates can be determined as one of the possible crossing 

points of these isolines. Since the measurements contain errors, bars will be formed 

instead of lines, enclosed between the circles equal to the maximum and minimum 

possible ranges. With two measurements available, the vehicle coordinates are likely to 

be arranged inside a figure formed by the crossing of two bars. If there are more 
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measurements, there arises the problem of position determination with maximum 

accuracy. 

If all the measurements contain the same constant error component denoted by 3x , 

the following equation can be written:  

   
2 2

1 1 2 2 3( ) i i

i i i iy s x v x x x x x v        , 1.i m .  (1.17) 

This error component is usually called a systematic error component or just a 

systematic error. Inclusion of unknown parameters into the state vector being 

estimated is called state vector augmentation. 

1.6. Position and velocity determination by satellite data  

The previous problem can be easily generalized to three-dimensional (3D) position 

determination. 3D measurements are used in GNSS position determination. Having 

measurements of the delays between the received signals and the signals generated in 

user equipment and knowing the radio wave propagation speed, it is possible to present 

the measured ranges to satellites as follows: 

     
2 2 2

1 1 2 2 3 3

i i i

i ix x x x x x c t          ,  (1.18) 

where 1 2 3, ,x x x  are the unknown user coordinates at the moment of signal reception in 

the Cartesian geocentric coordinate system; 
i

jx , 1,2,3j   are the coordinates of the i -th 

satellite in the same coordinate system delivered to the user in navigation message; t  

is the user clock error; i  is the total measurement error; c  is the speed of light [10, 14, 

15].  

The orbits and the arrangement of satellites are selected so that almost at any point 

on the Earth at any time, measurements from at least four satellites are available. Along 

with satellites, GNSS include ground control stations which determine satellite motion 

parameters (position and velocity) (Fig. 1.5).  

The components of the estimated vector т

1 2 3( , , , )x x x x t   are the user position and 

the clock error. 

GNSS is also used to determine the user velocity components. This is done by 

measuring the Doppler shifts of carrier frequency (
dop

jf ) due to mutual displacements 

of the satellite and the user. 
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Satellite 4

Satellite 3Satellite 2

Satellite 1

 

Fig.1.5. Determination of navigation parameters by GNSS data:  

CS are control stations determining the satellite motion parameters 

Using these measurements, we can write:  

     
1 1 1 1 2 2 2 2 3 3 3 3

2 2 2

1 1 2 2 3 3

( )( ) ( )( ) ( )( )i i i i i i

i i
i i i

x x x x x x x x x x x x
c t

x x x x x x

 
       

   

    

,  (1.19) 

where jx ;
i

jx , 1,2,3j   are the velocity components of the user and the i -th satellite; 

t  is the user clock drift error; i  is the total error of Doppler measurements. Here, we 

estimate the vector including the user velocity components 1 2 3, ,x x x  and its clock drift 

error. 

As seen from the given equations, errors in the range and the rate of its change 

caused by the errors of the user clock and its offset drift are systematic errors. The 

presence of these errors explain the terms ‘pseudorange’ and ‘pseudovelocity’ used for 

the parameters being measured (1.18), (1.19) and the fact that at least four satellites are 

needed simultaneously to get the navigation solution.  

1.7. Statement of a nonlinear estimation problem and its linearization   

All the problems considered above can be reduced to the following common 

statement of the nonlinear estimation problem.  

Let the unknown constant n -dimensional vector т

1( ,... )nx x x  be given by 

0x  ,      (1.20) 

and also, we have an m -dimensional measurement vector т

1( ,... )my y y  
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( )y s x v  ,        (1.21) 

where т

1( ) ( ( ),.. ( ))ms s x s x   is a known m -dimensional nonlinear function, and 
т

1( ,... )mv v v  is the m-dimensional vector.  

It is required to find estimate ˆ( )x y  of unknown vector x  using measurement (1.21).  

Here, as in the linear case, we should distinguish between the problems of algorithm 

design and accuracy analysis, the latter consisting in studying the properties of 

estimation errors (1.12). Clearly, this statement includes the linear case as well, since 

substituting ( )s x  for Hx  in (1.21), we come to the problem (1.10), (1.11). 

Further, in the discussion of the approaches to algorithm design and accuracy 

analysis, we will consider both linear and nonlinear estimation problems. However, the 

emphasis will be put on linear problems. This is a consequence conditioned by the fact 

that many nonlinear problems can be reduced to linear statements without an essential 

loss in accuracy. It is made possible due to linearization of function 

( )s  = т

1(.) ( ( ),.. ( ))ms s x s x , i.e., by its approximate presentation as Taylor series, 

keeping only the first-order members: 

т
( ) ( ) ( ) ( ) ( )( )

l

l l l l l

x x

ds
s x s x x x s x H x x x

dx 

      ,  (1.22) 

where 
lx  is the linearization point,  

т
( )

l

l

x x

ds
H x

dx 

.          (1.23) 

In designing estimation algorithms based on linearization, it is convenient to use a 

new vector given by  

( )lx x x        (1.24) 

as the vector to be estimated. 

Rearrange the known summands to the left-hand part of the equation and introduce 

the notation  

( ) ( )l ly x y s x


  .                   (1.25) 

Then, the following approximate equation can be written:  

т
( ) ( ) ( )

l

l l l

x x

ds
y x x x H x x

dx
   



    ,                 (1.26) 

where ( )ly x  is measurement (1.25) calculated from the initial measurement by 

subtracting the known values.  

Thus, the initial nonlinear problem (1.20), (1.21) is approximately reduced to the 

linear problem of x  estimation by measurements (1.26).  

Clearly, the linearized description will be permissible only in the vicinity of the 

linearization point. The accuracy of this representation for the scalar case can be 
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approximately estimated by  
2

2

2
( )ld s
x x

dx
   ,         (1.27) 

which determines the level of the second-order summands in Taylor expansion and 

depends on the second derivative 
2

2

d s

dx
, on the one hand, and on the expectable possible 

deviations of real unknown values of the estimated parameter from the linearization 

point, i.e., from the difference ( )lx x , on the other hand.  

The feasibility of linearized description in estimation problems can be assessed by 

comparing the expected measurement errors v  with the expected values 
2

2

2
( )ld s
x x

dx
   . 

Let us illustrate this by the example of the 2D position determination problem by 

ranges to beacons using measurements (1.16) (see section 1.5). Using the described 

linearization procedure, the following can be written:  

( ) ( )l ly x H x x v  ,             (1.28) 

where             ( ) ( )l l

i i iy x y D x


  , 1.i m ;              (1.29) 

 

   
2 2

1 1 2 2( ) i l i l

i lD x x x x x    ;       (1.30) 

1 1

1 1 1 2 2 1

2 2

1 1 2 2 2 2

1 1 2 2

1 1

2 2

( ) / ( ) ( ) / ( )

( ) / ( ) ( ) / ( )
( )

( ) / ( ) ( ) / ( )

sin ( ) cos ( )

sin ( ) cos ( )

sin ( ) cos ( )

l l l

л

l l l

l л

l m l m l

m л m

l l

l l

l l

m m

x x D x x x D x

x x D x x x D x
H x

x x D x x x D x

B x B x

B x B x

B x B x

  
 

   
  
 

  

 
 
  
  
 
    

(1.31) 

is an 2m -dimensional matrix.  

In these equations, ( )l

iB x  is the angle measured from axis 2ox , which determines 

the vector orientation from т

1 2( , )l l lx x x  to the beacon. The vector determines the 

direction of the gradient for the navigation parameter being measured (here, range), i.e., 

the direction of its greatest change. The components of т ( )l

iH x  correspond to the 

derivatives following the directions along coordinates 1ox  and 2ox . In this example, 

linearization consists in substituting the isolines in the form of circles (see above) by 
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straight lines called the lines of position (see Fig. 1.4).  

For the parameter (1.27), the following is true in this example:  
2 2 2

2 2

1 1 2 2 1 1 2 22 2

1 2 1 2

( ) ( ) ( )( )l l l ld D d D d D
x x x x x x x x

dx dx dx dx
        , 

which can be written as follows with 
1 1 2 2

l lx x x x     : 

2 2 2
2

2 2

1 2 1 2

d D d D d D

dx dx dx dx


 
    
 

. 

Assuming, for simplicity, that one coordinate is known and the direction of the 

straight line connecting the beacon position with the linearization point agrees with the 

direction of the unknown coordinate, we can get the following for  :  
2 2

2

2

1

δ
d D

dx D D

 
     .                (1.32) 

From this it follows that the error in the linearized representation depends on the 

ratio between the possible coordinate error in selecting the linearization point and the 

range to the beacon. The value of   then should be compared to the range 

measurement error. Estimation of the linearization error for the positioning problem by 

satellite data with the orbit altitude of 20,000 km yields that with the linearization point 

set accurate to 110 km, (0.5 5) m   . This value is comparable with the range 

measurement error in real satellite systems.  

Exercises 

Exercise 1.1. We have a set of measurements  

1 2i iy x x v   , 1.i m .            (1) 

Formulate the problem in the form (1.10), (1.11) for the case when only 1x  should 

be found using measurements (1), and the sum 2i ix v    is treated as an error. Repeat 

the procedure to estimate 1x  and 2x . 

Exercise 1.2. Let the following measurements be set at discrete times it , 1.i m   

0sin( )i i iy A t v    , 1.i m , 

where A  is the amplitude; 2 f   is the circular frequency; 0  is the phase.  

Considering the frequency and the phase to be known, formulate the amplitude 

estimation problem in the form (1.10), (1.11). 

Exercise 1.3. Let the measurements 1 sini i iy x A t v    be given at discrete times 

it , 1.i m , where circular frequency 2 f   is considered known, and 1x  and A  are 

unknown magnitudes.  

Formulate the estimation problem in the form (1.10), (1.11) for the case when only 
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the amplitude needs to be found, and the sum 1i ix v    is treated as an error. Repeat 

the procedure to estimate 1x  and A . 

Exercise 1.4. Let the measurements be given as those in Exercise 1.2, and the 

phase should be found with the known frequency and amplitude. Write the linearized 

problem statement, taking 
0  as the linearization point. Repeat the procedure if the 

frequency should be found with the known phase and amplitude.  

Exercise 1.5. Tracking problem (trajectory measurement problem) (Fig. 1.6). 

Let there be a point with known 2D coordinate * *

1 2,x x  from which ranges i  and 

bearings i  to the vehicle moving rectilinearly with a constant speed can be measured 

with errors i  and i , 1.i m  at discrete times. Formulate the estimation problem of 

the vehicle position and velocity components assuming the availability of ranges (а); 

bearings (b); or both, for integrated processing (c). 

 
 

1X  

2X  

Bearing 

Stationary object 

Vehicle trajectory 

Range 

 

Fig. 1.6. Problem of vehicle coordinates determination by ranges and bearings 

Exercise 1.6. Formulate the vehicle tracking problem assuming that the conditions 

of Exercise 1.5 are met, and the range and bearing errors also include constant 

components to be estimated. 

Exercise 1.7. Formulate two previous problems in linearized form as an integrated 

problem of processing ranges and bearings to estimate velocity components and 

coordinates. 

Test questions  

 

1. Explain the essence and provide a mathematical statement of the following linear 

estimation problems: a constant scalar value; coefficients of linear and quadratic 

trends; one-dimensional position and speed with the vehicle uniform motion; 
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polynomial coefficients.  

2. Explain the essence and provide a mathematical statement of the estimation problem 

for the simplest version of INS alignment. 

3. Explain the essence and formulate a mathematical problem statement of estimating 

the shift of a measured sample of any signal relative to another reference sample of 

this signal. Illustrate it by the example of estimating the phase of a harmonic signal. 

Why is it a nonlinear problem? 

4. Explain the essence and provide a mathematical statement of estimating the 

frequency of a harmonic signal and phase lock problems.  

5. Explain the essence and provide mathematical statements of nonlinear problems 

of two-dimensional and three-dimensional vehicle position determination by ranges 

to beacons with and without constant components of measurement errors. What does 

the state vector augmentation mean? 

6. Formulate the problem of constant vector estimation by noisy measurements and 

illustrate it by examples. Discuss the features of algorithm design and accuracy 

analysis problems.  

7. Explain the essence of the linearization procedure and discuss the corresponding 

linearized problem by the example of the vehicle tracking problem, i.e., the problem 

of its position and velocity components determination by using the measurements of 

ranges and bearings.  
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2. Solution of estimation problems using the  

deterministic approach. Least squares method 

This section considers the so-called deterministic approach in which the solution 

of estimation problems does not involve an assumption that the unknown vectors x  and 

  of measurement errors are random vectors, and, therefore, there is no need to use any 

a priori statistical information. 

2.1. Fundamentals and  statement of the estimation problem using the least squares 

method  

A feature of the approach under consideration is that the problem of the algorithm 

design, i.e., obtaining a procedure for calculating the estimate of unknown vector x  

using measurements y , is based on the choice of the values that minimize the criterion 

characterizing the measure of closeness between the measured and calculated values 

( )s x  or Hx . In its simplest version, such a criterion can be introduced as the function 

LSM т 2

1

( ) ( ( )) ( ( )) ( ( ))
m

i i

i

J x y s x y s x y s x


     .   (2.1) 

The differences ( )i i iy s x    are usually called measurement residuals. 

The method based on the minimization of the type (2.1) criterion is called the least 

squares method (LSM). In the subsequent discussion, the algorithms based on 

minimization of the type (2.1) criteria are also called LSM algorithms. 

The criterion (2.1) and the corresponding estimate 
LSM тˆ ( ) argmin( ( )) ( ( ))

x
x y y s x y s x      (2.2) 

have a clear meaning: to select such a value of the parameter being estimated that 

minimizes the sum of the squared differences of the calculated values from their 

measured values, i.e., to minimize the sum of the squared measurement residuals. 

Determining the derivative for LSM ( )J x  in accordance with the rules (A1.63) given 

in Appendix and taking into consideration the necessary condition of minimum, it is 

possible to write the so-called normal equations:  
LSM т( ) ( )

2 ( ( )) 0.
dJ x ds x

y s x
dx dx

               (2.3) 

Recall that (2.3) is only a necessary condition; to provide a local minimum, we 

need to check the validity of the sufficient condition: 

LSM

2
LSM

т ˆ ( )
( ) 0.

x y
J x

x x




 
         (2.4) 
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We speak about the generalized least squares method (GLSM) if the criterion 

(2.1) is replaced by the function: 
GLMS т( ) ( ( )) ( ( )),J x y s x Q y s x       (2.5) 

in which Q  is a symmetric nonnegatively definite matrix. So, if Q  is considered a 

diagonal matrix with elements iq , 1.i m , instead of (2.1), we have  

GLMS 2

1

( ) ( ( ))
m

i i i

i

J x q y s x


  . 

The reason for introducing the weighting matrix Q  is to be able to take into account 

different contributions of the measured and calculated values corresponding to different 

components of the measurement vector. Sometimes this method is called the weighted 

least squares method (WLSM).  

And, at last, we speak about the modified least squares method (MLSM) when the 

following criterion is used: 
т т( ) ( ( )) ( ( )) ( ) ( )MLSMJ x y s x Q y s x x x D x x      .  (2.6) 

Here,  
т

1,.... nx x x  and 0D   are a specified known vector and a symmetric 

nonnegatively definite matrix. For diagonal matrices Q  and D , this criterion takes the 

following form:  

2 2

1 1

( ) ( ( )) ( )
m n

MLSM

i i i j j j

i j

J x q y s x d x x
 

     . 

The aim of introducing the second additional summand is that if the obtained 

estimates ˆ ( )jx y  are different from some of the values 
jx , there is a certain penalty, the 

level of which is set by coefficients 
jd , 1.j n . 

It follows that the determination of estimates corresponding to the LSM or one of 

its variants is reduced to finding the minimum of functions (2.1), (2.5), or (2.6). 

 Example 2.1. Suppose we need to estimate amplitude A  of the harmonic 

oscillations using measurements (1.14), i.e., 0sin( )i i iy A t v    , 1.i m , assuming 

that the phase and the frequency are known. 

Let us solve this problem using the LSM. In this problem, criterion (2.1) at x A  is 

written as 

LSM 2

0

1

( ) ( sin( ))
m

i i

i

J x y x t 


   . 

According to this criterion, the estimate is sought rather simply. Indeed, 
LSM

0 0

1

( )
2 ( sin( ))sin( ) 0

m

i i i

i

dJ x
y x t t

dx
   



     , 

from where 
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LSM

0
2 1 1

0

1

1
ˆ sin( )

sin ( )

m m

i i i im
i i

i

i

x t y q y

t

 

   



  


 


, 

where iq  are the coefficients determined as  

0

2

0

1

sin( )

sin ( )

i
i m

i

i

t
q

t

 

 






. 

It is clear that the sufficient condition (2.4) is also satisfied since  
2 LSM

2

02
1

( )
2 sin ( ) 0

m

i

i

d J x
t

dx
 



   . 

Figure 2.1 shows the samples of the measured values of the harmonic oscillation 

with  1 rad/s, 0 
2


 and the unit amplitude on a 2-second interval with a 0.02-

second increment, and the sample of harmonic oscillation without error, calculated for 

the same parameters at three amplitude values: 1 0.5,A   2 1.0A  , and 3 1.5A  . 

Figure 2.1 makes clear the geometric sense of the problem of finding estimates 

using the LSM: to select (find) the amplitude value at which the best coincidence of the 

measured and calculated samples of harmonic oscillation can be obtained. 

For the example under consideration, criterion LSM 2

0

1

( ) ( sin( ))
m

i i

i

J x y x t 


    

being minimized is shown in Fig. 2.2, from which it is evident that function LSM ( )J x  is 

a parabola with one minimum at the point that determines the value of the estimate 

corresponding to the LSM. 
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Fig. 2.1. Measured and calculated harmonic oscillations at different amplitude values: 1 –

0.5; 2 – 1.0; 3 – 1.5 

 

Fig. 2.2. Criterion LSM ( )J x  as a function of x  

The criterion being minimized for three values of the amplitudes–– 1 0.5,A   

2 1.0A  , and 3 1.5A  ––and the minimum of the criterion at ˆ 0.9448x  0.9448 in this 

example are given in Table 2.1. 

Table 2.1 

The criterion for different values of the amplitude 

x A  0.5 1.0 1.5 ˆx̂ A   0.9448 
LSM ( )J x  18.8 9.0 24.4 8.86 

From the table it follows that the criterion has a minimum at the point that does not 

coincide with the true value of the amplitude. This is due to the measurement errors 

generating the difference of the estimate from the true parameter being estimated, 

which is understandable since the equation for the estimate can be written as 

 0 0
LSM 1

2 1
0

1

sin(ω ) sin( )

ˆ

sin ( )

m

i i i m
i

i im
i

i

i

t x t v

x x q v

t

  

 







  

  







. 

Hence, the following equation for the estimation error is valid: 

LSM

1

ˆ
m

i i

i

x x q v


  . 
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It is not difficult to obtain the solution to the problem under consideration for the 

GLSM as well. Thus, in the case of diagonal matrix Q  and x A , criterion (2.5) is 

written as 

GLSM 2

0

1

( ) ( sin( ))
m

i i i

i

J x q y x t 


   . 

It is quite easy to find the estimate corresponding to this criterion. Indeed, 
GLSM

0 0

1

( )
2 ( sin( ))sin( ) 0

m

i i i i

i

dJ x
q y x t t

dx
   



     , 

from where 

GLSM

0
2 1 1

0

1

1
ˆ sin( )

sin ( )

m m

i i i i im
i i

i i

i

x q t y q y

q t

 

   



  


 


, 

where iq  are the coefficients calculated as  

0

2

0

1

sin( )

sin ( )

i i
i m

i i

i

q t
q

q t

 

 






. 

Finding the estimate for the MLSM does not present any problem  

either. In this case, too, the problem solution reduces to finding the location of the 

parabola extreme point: 
MLSM GLSM 2( ) ( ) ( )J x J x d x x   .    

2.2. General solution of the linear estimation problem using the least squares method 

The ease of obtaining the algorithm for the estimate calculation, i.e., the design 

problem in the above example, is a consequence of the fact that measurements are 

linearly dependent on the unknown amplitude and measurement errors. Consider to 

what the algorithm for solution of the estimation problem in the linear statement is 

reduced in the general linear case, i.e., when measurements may be represented as 

y Hx v  . Having such measurements, for the LSM, the criterion to be minimized is 

written as 
LSM т( ) ( ) ( )J x y Hx y Hx   .    (2.7) 

It is easy to see that with respect to x , this function is defined as quadratic form: 
LSM т т т т т( ) 2J x x H Hx x H y y y   ,        (2.8) 

which, at nonsingular тH H , has a one extremum; at the same time, the sufficient 

condition (2.4) is true.  

Taking into consideration (A1.61), the normal equations corresponding to criterion 

(2.7) can be written as 
т ( ) 0H y Hx  . 
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Here, the condition of тH H  nonsingularity is called the observability condition. 

The choice of this term is quite justified because in this case we have: 
LSM т 1 тˆ ( ) ( ) ,x y H H H y           (2.9) 

or 
LSM LSMˆ ( ) ,x y K y      (2.10) 

where 

 
1

LSM т тK H H H


 .     (2.11) 

Hence, it follows that in the absence of measurement errors and fulfillment of the 

observability condition,  
LSM т 1 тˆ ( ) ( )x y H H H Hx x  ,    (2.12) 

i.е., the estimate coincides with the true value of the vector. 

Proceeding in a similar manner in solving the linear problem, in the case of the 

GLSM, and assuming тH QH  to be nonsingular, we can write:  
GLSM т( ) ( ) ( )J x y Hx Q y Hx   ;   (2.13) 

GLSM GLSMˆ ( ) ,x y K y        (2.14) 

where 

 
1

GLSM т тK H QH H Q


 .    (2.15) 

Note that, generally, matrix Q  is nonsingular, and, therefore, if the observability 

condition is met, matrix тH QH is also nonsingular. 

For the MLSM (see Exercise 2.1), we have the following equations: 
MLSM т т( ) ( ) ( ) ( ) ( )J x y Hx Q y Hx x x D x x      ;   (2.16) 

MLSM MLSMˆ ( ) ( ),x y x K y Hx      (2.17) 

where 

 
1

MLSM т тK D H QH H Q


  .    (2.18) 

The above equations are summarized in Table 2.2. 

We draw your attention to a very important fact: all the resulting estimates in this 

table are linearly dependent on measurements, which is due to linearity of 

measurements and a quadratic nature of the criteria (2.7), (2.13), and (2.16) to be 

minimized. 

It is clear that using the relationships from Table 2.2 for the above example, we can 

easily obtain the formulas for the estimates. For this purpose, we need to take into 

account matrix H , which is determined as 
т

1 2[sin( ),sin( ),....sin( )]mH t t t   . 
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Table 2.2 

Criteria and algorithms in the linear estimation problem 

Method Criterion Algorithm 

LSM 
LSM т( ) ( ) ( )J x y Hx y Hx    

LSM LSMˆ ( ) ,x y K y  

 
1

LSM т тK H H H


  

GLSM 
GLSM т( ) ( ) ( )J x y Hx Q y Hx    

GLSM GLSMˆ ( ) ,x y K y  

 
1

GLSM т тK H QH H Q


  

 

MLSM 

MLSM т( ) ( ) ( )J x y Hx Q y Hx     

т( ) ( )x x D x x    

 

MLSM MLSMˆ ( ) ( ),x y x K y Hx  

 
1

MLSM т тK D H QH H Q


   

Consider two more examples. 

 Example 2.2. Let us find the formulas for the estimates in the problem of 

estimating an unknown scalar value by scalar measurements i iy x v  . In so doing, for 

simplicity, in criterion (2.13), matrix Q  is chosen to be diagonal with elements 

0iq  , 1.i m , and in criterion (2.16), it is assumed that D d . 

Obviously, in this case too, the criterion to be minimized has the form of a parabola, 

and, since matrix т [1,1....1]H  , the equations for the estimates will be determined in 

accordance with the formulas in Table 2.3. 

From these equations it follows that in the LSM, the estimate is an arithmetic mean 

of measurements iy . For the GLSM, the estimate is determined by “weighting” 

measurements with normalized coefficients: 

GLSM

1

1
m

i

i

q


 ;  
GLSM

1

i
i m

i

i

q
q

q





. 

For the MLSM, normalization is changed due to the presence of a priori 

information and an additional term in the criterion.  
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Table 2.3 

Estimation algorithms for three variants of the LSM for a simple example of 

finding x  using measurements i iy x v  , 1.i m  

Metho

d 

Criterion Algorithm 

LSM 
LSM 2

1

( ) ( )
m

i

i

J x y x


   LSM

1

1
ˆ

m

i

i

x y
m 

   

GLSM 
GLSM 2

1

( ) ( )
m

i i

i

J x q y x


   

GLSM GLSM

1

ˆ ,
m

i i

i

x q y


  

GLSM

1

i
i m

i

i

q
q

q





 

MLSM 

MLSM 2

2

1

( ) ( )

( )
m

i i

i

J x d x x

q y x


  

 
 

MLSM MLSM

1

ˆ
m

i i

i

x x q y


  , 

1

m

i

i

d

d q








,

MLSM

1

i
i m

i

i

q
q

d q





 

 Example 2.3. Assume that we need to estimate the initial value of coordinate 0x  

and speed V using measurements 0i i iy x Vt v   . 

In this problem, the LSM criterion will be determined as 

LSM 2

0 0

1

( , ) ( )
m

i i

i

J x V y x Vt


   . 

Taking into consideration the notation in (1.4), it is easy to see that this criterion is 

the quadratic form (2.8), which can be written as 

1 11LSM т 2

1 2

12 2

1 1 1

( ) ( , ) 2

m m

i i m
i i

im m m
i

i i i i

i i i

m t y
x

J x x x y
x

t t t y

 



  

    
                 
    
    

 


  
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or 
2

LSM 2 2 2 2

1 2 1 2 1 2

1 1 1 1 1

( ) 2 2
m m m m m

i i i i i i

i i i i i

J x mx x t x x t x y x t y y
    

   
        

   
     . 

Using (2.9), we obtain the following equation: 
1

LSM
1 11

LSM
22

1 1 1

ˆ

ˆ

m m

i i

i i

m m m

i i i i

i i i

m t y
x

x
t t t y



 

  

   
    
    
    
   
   

 

  
.   (2.19) 

For the GLSM, with diagonal matrix Q , the criterion will include multipliers iq , 

and the equations for the estimate are transformed into the form:  
1

1 1 1GLSM

2

1 1 1

ˆ

m m m

i i i i i

i i i

m m m

i i i i i i i

i i i

q q t q y

x

q t q t q t y



  

  

   
   
   
   
   
   

  

  
. 

In this example, it is not difficult to define concretely the equation for the criterion 

and the estimate applied to the MLSM.  

Figure 2.3 shows the sample of the measured coordinates against the background of 

the true coordinates for the case when measurements are taken on a 10-second interval 

every second at 0 1x  m and 1V   m/s. Figure 2.4 shows criterion LSM ( )J x ; it is a 

paraboloid, extended along one of the axes, corresponding to quadratic form. 
 

  

Fig. 2.3. Sample of measurements 

1 0 , 1.i i iy x Vt v i m     

Fig. 2.4. Criterion 
0( , )LSMJ x V  being 

minimized 

 
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2.3. Accuracy analysis of the least squares method in the linear case  

In the problem statement in section 1.1, it was noted that besides the solution of the 

algorithm design problem, the problem of accuracy analysis is of no less importance, 

i.e., studying properties of estimate errors. For the linear case, using (2.10), (2.14), for 

the LSM and GLSM, we can obtain the following formulas for the estimate errors: 

LSM LSM LSM LSM LSMˆ( ) ( ) ( )y x x y x K y E K H x K        ; 

GLSM GLSM GLSM GLSM GLSMˆ( ) ( ) ( )y x x y x K y E K H x K v        . 

Since the following equations are valid for the LSM and GLSM, 

 
1

LSM т т 0E K H E H H H H


    ;     (2.20) 

 
1

GLSM т т 0E K H E H QH H QH


    ,        (2.21) 

the errors corresponding to these two methods can be written as  
LSM LSM( )y K   ;        (2.22) 

GLSM GLSM( )y K v   .     (2.23) 

For the MLSM, since MLSM( ) 0E K H  , the equation for the estimation errors will 

take the form:  
MLSM MLSM MLSM MLSMˆ( ) ( ) ( )( ) .y x x y E K H x x K               (2.24) 

From the above formulas, we can make the following conclusions. The estimation 

errors corresponding to the LSM and GLSM in the linear case do not contain 

summands that depend on the vector of the parameters being estimated; they only 

depend on measurement errors. In these conditions, it is possible to speak about the 

invariance (independence) of estimation errors with respect to the vector being 

estimated. As for the MLSM, the estimate error depends, in addition, on the value of 

the vector being estimated; thus, it has no property of invariance.  

The advantage of the methods under consideration is that at the stage of the 

algorithm design, we do not need any a priori information of a statistical nature. 

However, its absence makes the solution of the accuracy analysis problem difficult. 

This difficulty may be obviated by introducing an assumption of a random nature of 

both the measurement errors (in the case of LSM and GLSM) and the vector being 

estimated (in the case of MLSM). 

Introduce such assumptions, assuming, in particular, that the measurement errors iv , 

1.i m  are zero-mean random variables with the known covariance matrix R . In this 

case, from (2.22), (2.23), it is inferred that the estimate errors for the LSM and GLSM 

will also be zero mean with the covariance matrices: 

 LSM LSM LSM т т 1 т т 1( )( ) ( ) ( )P M K v K v H H H RH H H   ;   (2.25) 

   
1 1

GLSM т т тP H QH H QRQH H QH
 

 .   (2.26) 
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To calculate the covariance matrix of estimation errors for the MLSM, it is 

necessary not only to introduce an additional assumption about the random nature of 

the vector being estimated and specify statistical properties for vectors v  and x  

separately, but also to define their mutual statistical properties. If, for example, we 

assume that x  and v  are uncorrelated random vectors with expectations x  and 0v   

and covariance matrices R , xP , then, using (2.24), it is easy to verify that the 

estimation errors are also zero mean, so that for the corresponding covariance matrix, 

we can obtain the following formula: 
MLSM MLSM MLSM т MLSM MLSM т( ) ( ) ( ) ,xP E K H P E K H K R K   

 
 (2.27) 

where matrix MLSMK  is given by Equation (2.18). 

If in criterion (2.13) we assume 1Q R , the GLSM estimates and the covariance 

matrix of their errors can be written as  
GLSM т 1 1 т 1ˆ ( ) ( ) ,x y H R H H R y          (2.28) 

 
1

GLSM т 1P H R H


 .     (2.29) 

If, in addition, we assume that
 

 
1

xD P


 , then 

  
1

1
MLSM т 1 т 1xK P H R H H R




    and the equations for estimate (2.17) and the 

corresponding covariance matrix (see Exercise 2.3) will take the form: 

 
1

MLSM 1 т 1 т 1ˆ ( ) ( ) ( )xx y x P H R H H R y Hx


       ;    (2.30) 

  
1

1
MLSM т 1xP P H R H




  .      (2.31) 

The possibility of calculating estimation error covariance matrices provides a 

significant advance in solving the problem of accuracy analysis since this allows it to 

be characterized quantitatively. In particular, the diagonal elements of the obtained 

estimation error covariance matrices (2.25)(2.27) represent the variances of the 

estimation errors of the components of vector х being estimated. 

The values of the diagonal elements of matrix xP  are usually called a priori 

estimation error variances. This name is quite justified if it is assumed that before 

taking measurements, it makes sense to use the value of mathematical expectation x  as 

a priori estimate. The comparison of a priori variances with the corresponding a 

posteriori variances (diagonal elements of covariance matrices (2.25)(2.27)), i.e., 

with those obtained after taking measurements with the use of different algorithms, 

makes it possible to estimate the efficiency of these algorithms. Accordingly, the 

covariance matrix xP  is called a priori matrix and matrices (2.25)(2.27), a 

posteriori covariance matrices of estimation errors. 

If, in addition, along with the assumption of the known values of the expectations 

and covariance matrices, it is assumed that the measurement errors and the vector being 

estimated are Gaussian vectors, then, due to the linear nature of transformations 
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(2.22)(2.24), this provides the Gaussian nature of the estimation errors for these 

methods as well. In other words, the PDF for the vector of estimation errors becomes 

known. The PDF availability provides a complete description of statistical properties 

for estimation errors. In particular, we can calculate for them such characteristics as a 

probable error, three-sigma limit, error, quantile, etc. 

 Example 2.4. Assume that in Example 2.2, x  is a random variable with 

expectation x  and variance 2

0 , and the measurement errors are zero-mean, 

uncorrelated with each other and x , random variables with variances 2

ir , mi .1  

(measurements with unequal accuracy) and 22 rri  , mi .1  (measurements with equal 

accuracy) in a particular case. Let us derive the equations for estimation errors and the 

corresponding variances for the three variants of the LSM as applied to the problem of 

estimating scalar value x . 

Under the assumptions made, matrix R is a diagonal one with elements 2

ir , mi .1 ; 

matrix т [1,1..1]H  ; matrix Q  is a diagonal one with elements 21 /i iq r  in the first 

case, and 21 /iq r , mi .1  in the second case. Thus, it is not difficult to obtain the 

equations given in Table 2.4. 
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Table 2.5 shows the root-mean-square (RMS) value of the estimation errors, 

depending on the number of measurements for the GLSM and MLSM for equal 

variances of measurement errors r
2
=1, 1.10m  . 

Table 2.5 

RMS value of the estimation errors, depending on the number of measurements 

for the GLSM and MLSM for different values of σ0 

Method 
Measurement number  

1 2 3 4 5 6 7 8 9 10 

GLSM 1 0.7 0.58 0.5 0.45 0.41 0.38 0.35 0.33 0.32 

MLSM 

0 10  , 

0x   

1 0.7 0.58 0.5 0.45 0.41 0.38 0.35 0.33 0.32 

MLSM 

0 1  , 

0x   

0.7 0.58 0.5 0.45 0.41 0.38 0.35 0.33 0.32 0.3 

From the results obtained it follows that for the GLSM and MLSM for 0>10 there 

are no differences in accuracy. In this case, the influence of a priori information is 

insignificant because
 0 r  . For 

0 1r   , this effect is significant only for a small 

number of measurements. In fact, the RMS error for the GLSM coincides with that for 

the MLSM at the previous step. This behavior is easy to explain if we take into account 

a possible interpretation of a priori information as an additional measurement (2.46), 

which was described below in section 2.4.    

Now, let us concretize formulas (2.25), (2.26), (2.31) for the problem of estimating a 

two-dimensional vector considered in Example 2.3. 

 Example 2.5. Now, let us obtain equations for the covariance matrices of the 

errors in estimating the coefficients of the polynomial of degree 1 using measurements 

of type (1.3), i.e., 0i i iy x Vt v   , assuming that the measurement errors are zero-mean 

random variables, uncorrelated with each other, with identical variances r
2
, whereas the 

parameters being estimated are zero-mean ( 0x  ) random variables, uncorrelated with 

each other and the measurement errors, with covariance matrix 
2

0

2

1

0

0

xP




 
  
 

.  

Using Equations (1.4), (2.25), (2.26) with diagonal  iQ q , in the criterion for the 

GLSM, it is easy to derive the following relations:  
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1

1LSM 2

2

1 1

m

i

i

m m

i i

i i

m t

P r

t t





 

 
 
 
 
 
 



 
;       (2.32) 

1

1 1LSM

2

1 1

m m

i i i

i i

m m

i i i i

i i

q q t

P

q t q t



 

 

 
 
 
 
 
 

 

 
.       (2.33) 

Assuming 1Q R , and, in addition, for the MLSM, assuming that 0x  , 

 
1

xD P


 , and also, taking into consideration the fact that 2R r E , it is easy to see 

that the estimation error covariance matrices in the LSM and GLSM coincide, i.е., 
GLSM LSMP P , and for the MLSM, 

1

2 2 2
10MLSM

2

2 2 2
1 11

1 1

1 1 1

m

i

i

m m

i i

i i

m
t

r r
P

t t
r r









 

 
 

 
 

 
 



 

.   (2.34)  

2.4. Solution of nonlinear estimation problems. Linearized and iterated algorithms 

In the previous sections we obtained simple algorithms for calculation of errors 

corresponding to the LSM and its modifications. Introducing additional assumptions 

about the random nature of the vector being estimated and measurement errors, it is 

also easy to calculate the covariance matrices of estimation errors which are used to 

analyze the estimation accuracy. The simplicity of the procedures for calculation of 

errors and their accuracy characteristics is, in this case, the result of the linear nature of 

these problems. The estimation problem solution becomes much more complicated in 

the case of nonlinear measurement dependence on the parameters being estimated. At 

the same time, as it has been mentioned, a wide scope of nonlinear problems on 

navigation data processing can be effectively solved with the use of the algorithms 

obtained above. Their application in the nonlinear case is based on the linearization 

procedure described in 1.7. Let us consider this question in greater detail.  

After linearization, the initial nonlinear problem can be easily reduced to the linear 

statement, in which the values of (1.25) represented in the form (1.26) are treated as 

measurements. Using these equations, it is easy to obtain linearized variants of the 

LSM and its modifications. In this case, the efficiency of the designed algorithms 

significantly depends on how the linearization point is chosen. The closer it is to the 

true value of the parameter being estimated, the more accurate the linearized 
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representation and the more accurate the estimate obtained on the basis of linearized 

algorithms are. Therefore, to improve the efficiency of the algorithms based on 

linearization, the linearization point should be chosen so that it will be as close to the 

true unknown value of the vector being estimated as possible. From the above it 

follows that the efficiency of the linearized algorithms can be improved if we use a 

rather evident procedure, namely, we will repeat the measurement processing many 

times in order to use the results for refinement of the linearization point location. Let us 

explain the essence of this procedure. 

After selecting the starting linearization point lx  and using the approximation, 

т
( ) ( ) ( ) ( ) ( )( )

l

l l l l l

x x

ds
s x s x x x s x H x x x

dx 

      , 

we form the initial estimate of the vector being estimated with the use of equation 

 (1) (1)ˆ ( ) ( ) ( )l l l lx x K x y s x H x x x     
 

,         (2.35) 

in which ( )lK x  is calculated in accordance with the rules of the chosen LSM. Repeat 

this procedure until the value of the estimate stops varying significantly. In a general 

case, for the MLSM, this algorithm takes the form: 

 ( 1) ( ) ( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ ˆ( ) ( ) ( )x x K x y s x H x x x           
 

;         (2.36) 

( ) ( ) т ( ) 1ˆ ˆ ˆ( ) ( ) ( )K x P x H x R    ;    (2.37) 

 
1

( ) 1 т ( ) 1 ( )ˆ ˆ ˆ( ) ( ) ( ) ( )xP x P H x R H x  


   ;           (2.38) 

 =0,1,2..,  (0)x̂ x . 

For the MLSM, in these equations, we assume that 1( ) 0xP    and 0x  , and for the 

LSM, in addition, 1R E  . In estimation theory, such algorithms are called iterated 

algorithms or algorithms with local iterations [9, 20, 22]. 

Note that in view of the equality of the KH E  type, when using the LSM or 

GLSM, the equation for the estimate (2.36) can be represented in the following form, 

recursive with respect to the number of the iteration and convenient for practical 

implementation: ( 1) ( ) ( 1)ˆ ˆ ˆx x x     , where ( 1) ( ) ( )ˆ ˆ ˆ( ) ( )x K x y s x        . 

If the measurement errors are assumed to be a zero-mean random vector with 

covariance matrix R  and the vector being estimated is a random vector with 

mathematical expectation x  and covariance matrix xP , then, Equation (2.38) will 

determine the calculated covariance matrix of estimation errors with an accuracy of 

the assumption that the linearized description is valid. This term is due to the fact that 

the covariance matrix, obtained under the assumption that the linearized representation 

of function ( )s x  is valid, differs from the real covariance matrix, which, for an 

arbitrary estimate ( )x y  and the estimate generated with the use of linearized or iterated 

algorithms, is given as 
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 т( ( ))( ( ))P E x x y x x y   .             (2.39) 

In this connection, there arises the problem of consistency, i.e., agreement 

between the calculated covariance matrices and their real values. 

It is also important to emphasize that the resulting algorithms are no longer linear 

with respect to the measurements since there is a nonlinear dependence on the 

measurements because matrices ( ) ( )ˆ ˆ( ) ( ( ))K x K x y   depend on measurements. The 

calculated covariance matrix ( ) ( )ˆ ˆ( ) ( ( ))P x P x y   also depends on measurements. 

The block diagram of the iterated algorithm is shown in Fig. 2.5. 

 

Error estimation 

algorithm
-

 

Fig. 2.5. Block diagram of the iterated estimation algorithm 

 Example 2.8. Let us obtain two algorithms corresponding to the LSM in the 

problem of phase estimation. One of them is based on linearization, and the other one is 

an iterated algorithm. In doing so, we assume that the amplitude and the frequency are 

known. For simplicity, A is assumed to equal to unit.  

In this case, criterion (2.1) for the LSM at 0x   can be written as 

LSM 2

1

( ) ( sin( ))
m

i i

i

J x y t x


   .           (2.40) 

To find the estimate corresponding to criterion (2.40), it is necessary to find the 

point of its minimum value on the x-axis or, as a preliminary, try to solve the normal 

equation corresponding to the necessary condition for an extremum, which in this case 

takes the form: 

LSM

1

( )
2 ( sin( ))cos( ) 0

m

i i i

i

dJ x
y t x t x

dx
 



     . 
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The fact that the problem of criterion (2.40) minimization can be reduced to the 

problem of finding the roots of this nonlinear equation does not make the solution easy. 

We use a linearized description of function sin( )it x  : 

sin( ) sin( ) ( ) cos( )l l l

i i it x t x x x A t x         , 1.i m , 

where lx  is the chosen linearization point. Then, the criterion in the neighborhood of 

the linearization point will be a parabola: 

LSM 2

1

( ) ( ( ) ( )cos( ))
m

l l l

i i

i

J x y x x x t x


    ,   (2.41) 

where ( ) sin( )l l

i i iy x y t x


    .  

Figure 2.6 shows the curves for the criterion being minimized, corresponding to the 

original nonlinear function and its linearized description for the true value of the phase 

0
2


   and 

0

3

4

lx


  . 

 

Fig. 2.6. A plot of criterion LSM

0( )J   (1) and its approximate description (2) in the phase 

estimation problem 

Taking (0)

0
ˆlx x    as a starting point of linearization, where 

0  is a prescribed a 

priori phase value, and using relation (2.35), taking into consideration 
(0) т

1 0 0(cos( ),..cos( ))mH t t      , we obtain the following formula for the estimate 

at the first iteration: 
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0 0
(1) 1
0 0

2

0

1

cos( )( sin( ))
ˆ

cos ( )

m

i i i

i

m

i

i

t y t

t

   

 

 





  

 






. 

This estimate corresponds to the minimum point of the parabola (2.41). Assuming 

further that the measurement errors are random variables, uncorrelated with each other, 

with identical variances 2r , it is easy to find the formula for the calculated variance 

corresponding to this estimate: 
2

LSM 2

0
2

0

1

( ( ))

cos ( )
m

i

i

r

t

 

 





. 

Taking (1)

0
ˆlx   as the next linearization point, after repeated processing of the 

measurement, we obtain a more accurate description of the behavior of the criterion 

being minimized in the neighborhood of the extremum point and, hence, a more 

accurate value of the estimate and the corresponding calculated variance. General 

equations for the estimate (2.36) and its calculated variance corresponding to the 

iterated algorithm for this problem take the form: 

 ( ) ( ) ( ) ( )

0 0 0 0 0
( 1) 1
0 0

2 ( )

0

1

ˆ ˆ ˆ ˆcos( ) sin( ) cos( )( )
ˆ

ˆcos ( )

m

i i i i

i

m

i

i

t y t t

t

   





       

 

 

 



     

 






; (2.42) 

2
LSM ( ) 2

0
2 ( )

0

1

ˆ( ( ))
ˆcos ( )

m

i

i

r

t





 

 





. 

Using such a procedure for calculation of the estimate until the latter does not 

change significantly any longer, we obtain the estimate with a much less error than that 

for a single iteration, i.e., with the use of a linearized algorithm. 

This situation is illustrated below with the plots. The results of the estimate 

calculations, their errors and the calculated RMS errors for several iterations are given 

in Table 2.6. The true value of the phase was assumed to be 
0

2


   and the 

linearization point 
0

3

4

l 
  . 
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Fig. 2.7. Criterion :LSM

0( )J   and its approximate description for different number of 

iterations 

Note that the calculated variance does not practically change due to small changes 

of the derivative of function sin( )it x   resulting from the change of the linearization 

point. 

Table 2.6  

The values of estimates ( )

0
ˆ  , their errors ( )  and calculated RMS errors 

LSM ( )

0
ˆ( )   for an iterated algorithm 

0

3

4

l 
  , the true value 

0
2


   

Iteration 

number 

( )

0
ˆ   

( )  LSM ( )

0
ˆ( )   

1 1.6499 0.0791 0.0422 

2 1.5233 -0.0475 0.0422 

3 1.5164 -0.0544 0.0422 

4 1.5161 -0.0547 0.0422 

5 1.5161 -0.0547 0.0422 
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Fig. 2.8. Phase estimate errors vs. iteration number curve 

Using the recursion procedure, with respect to the iteration number, we can write: 
( 1) ( ) ( 1)

0 0 0
ˆ ˆ ˆ       , 

where 

 ( ) ( )

0 0
( 1) 1
0

2 ( )

0

1

ˆ ˆcos( ) sin( )
ˆ

ˆcos ( )

m

i i i

i

m

i

i

t y t

t

 





   



 

 



  








.    

Linearized and iterated algorithms are widely used to solve the problems of 

coordinate determination by ranging to beacons. In particular, we concretize these 

algorithms for solution of such a problem on a plane.  

 Example 2.9. Assume that we have measurements (1.16) to two beacons. For 

simplicity, it is assumed that one of them is located on the 1ox -axis, and the other one, 

on the 2ox -axis. To begin with, we write the LSM algorithm based on linearization. 

First, note that the criterion to be minimized has the form: 

   
22

2 2
LSM

1 2 1 1 2 2

1

( , ) i i

i

i

J x x y x x x x


 
     

 
 ,          (2.43) 

and its approximation, corresponding to the linearized description of function 

   
2 2

1 1 2 2( ) ( ) i i

i is x D x x x x x      in the neighborhood of the linearization point, is 

a paraboloid: 
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    
2 2

LSM

1 2 1 1 1 2 2 2

1

( , ) ( ) ( )л л

i i i

i

J x x y H x x x H x x x


     ,      (2.44) 

where 
1( ) sin ( )l l

i iH x B x  , 
2( ) cos ( )l l

i iH x B x  , 

   
2 2

1 1 2 2( ) ( )l i l i l

i i i л iy x y D x y x x x x


       , 1,2i  . 

Introducing 

1 1 1

2 2 2

sin ( ),cos ( ) ( )

sin ( ),cos ( ) ( )

l l l

l l l

B x B x H x
H

B x B x H x

   
     

   
; 

1

2

( )

( )

l

l

y x
y

y x

 
  
 

; lx x x    

and using (2.9), we can write: 

LSM т т 1 т т

1 1 2 2 1 1 2 2
ˆ ( ( ) ( ) ( ) ( )) ( ( ) ( ) ( ) ( )),l l l l l l l lx H x H x H x H x H x y x H x y x     

where  ( ) sin ( ),cos ( )l l l

i i iH x B x B x  , 1,2i  . 

Assuming further that the measurement errors are random variables, uncorrelated 

with each other, with identical variances 2r , and using Equation (2.25), we derive the 

following formula for the calculated estimation error covariance matrix:  

 
1

LSM 2 т т

1 1 2 2( ) = ( ) ( ) ( ) ( )l l l l lP x r H x H x H x H x


 . 

Assume that the linearization point is chosen at the origin of coordinates, i.e., 

0lx  . In this case, 
1( ) 90lП x   , 

2( ) 0lП x   and, therefore, H E  . Taking this fact 

into consideration, we obtain: 

1LSM

2

( )
ˆ

( )

l

l

y x
x

y x


 
  

 
;  

2

LSM

2

0

0

r
P

r

 
  
 

. 

Thus, the estimate of the vehicle’s coordinates calculated with the use of the LSM 

takes the form: 

LSM LSMˆ ˆ ( )л l

i i i i i l ix x x x D x y     , 

or, since the linearization point was chosen at the origin of coordinates,  
LSM LSMˆ ˆ (0)i i i ix x D y   , 1,2i  . 

Now, choosing LSMˆl

ix x , repeat the calculations; in so doing, note that at 
LSMˆ 0ix  , matrix H  is no longer unitary because 

1( )lП x  and 
2 ( )lП x  will be different 

from 90 degrees and zero, respectively. To implement the iterated algorithm, the 

described procedures must be repeated until LSMˆ
ix  becomes negligible at the next step. 

It is clear that the obtained estimates coincide with the GLSM estimates if the 

weighting matrix Q  is chosen diagonal with elements 21/ r , 0x  , and matrix D  is 

zero. 

The algorithm is easy to generalize for the case of m  measurements. In particular, 

assuming that ( )lx x x x    is a zero-mean vector with covariance matrix xP , and 
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the measurement errors iv  are zero-mean random variables, uncorrelated with each 

other and with vector x , with variances 2

ir , 1.i m , for the calculated estimation error 

covariance matrices corresponding to different variants of the LSM, we can write:  
11

LSM 2

1 1 1

( ) ( ) ( ) ( )
m m m

л l l l

i i i i

i i i

P x M x r M x M x



  

    
     
    
   ;  (2.45) 

1

GLSM

2
1

1
( ) ( )

m
л l

i

i i

P x M x
r





 
  
 
 ;    (2.46) 

1

MLSM 1

2
1

1
( ) ( ) ( )

m
л x l

i

i i

P x P M x
r







 
  
 

 ,   (2.47) 

where 
2

2

sin ( ) 0.5sin2 ( )
( )

0.5sin2 ( ) cos ( )

l l

l i i

i l l

i i

B x B x
M x

B x B x

  
 
 

.   (2.48) 

When 2 2

ir r , 1.i m , the above equations are simplified to the form: 
1

LSM GLSM 2

1

( ) ( ) ( )
m

л l l

i

i

P x P x r M x





 
   

 
 ;   (2.49) 

1

MLSM 1

2
1

1
( ) ( ) ( )

m
l x l

i

i

P x P M x
r







 
  
 

 .   (2.50) 

When an iterated algorithm is used to obtain the calculated covariance matrix, lx  

should be replaced for the value obtained for the last iteration. 

Note that the number of measurements and the number of beacons may be different.   
 

From the equations obtained in Example 2.9 it follows that the calculated 

estimation accuracy in the problem of coordinate determination using beacons is 

largely determined by the relative position of the beacons. Indeed, introducing the 

radial RMS error in determining position coordinates 
p , we can write: 

GLSM GLSM 1

p

1

(1.1) (2.2) ( ( )) .
m

l

i

i

DRMS P P r Sp M x 



             (2.51) 

Hence, it follows that for the identical values of r , p  is determined by the product 

of the RMS range measurement error by the coefficient  
1

1

( )
m

l

i

i

PDOP Sp M x





 
  

 
 ,            (2.52) 

depending on the relative position of point references. This coefficient is called 
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Position Dilution of Precision. For example, in a particular case of two point 

references with П2=П1+90, it is easy to verify that 2p r  . It is obvious that the 

radial RMS error will decrease as the number of references m  increases.  

Exercises 

Exercise 2.1. Assume that we have a criterion specified as 
MLSM т 1 т 1( ) ( ) ( ) ( ) ( ) ( )xJ x y Hx R y Hx x x P x x       .           (1) 

Show that value x , at which this criterion reaches its maximum value, is 

determined as 
1 т 1 1 т 1ˆ( ) (( ) ) ( ).xx y x P H R H H R y Hx        

Note. Solve this problem  

a) using a set of normal equations; 

b) by selecting a perfect square. 

Exercise 2.2. Show that in the solution to the vector x  estimation problem with 

measurements y Hx v  , using the LSM and GLSM, the following relations [24] will 

hold: 
LSM т LSMˆ ˆ( ) 0,y y y   

GLSM т GLSMˆ ˆ( ) 0,y y Qy   

where LSM LSM LSMˆ ˆ ;y Hx HK y   GLSM GLSM GLSMˆ ˆ .y Hx HK y   

Exercise 2.3. Assume that in criterion (2.16), 1Q R , 1( )xD P  , and, therefore, 

in the equation for the estimate MLSM MLSMˆ ( ) ( )x y x K y Hx   , corresponding to the 

MLSM, matrix MLSMK  is determined as MLSM 1 т 1 1 т 1(( ) )xK P H R H H R     . Assuming 

that x  and v  are uncorrelated random vectors with covariance matrices xP  and R , and 

the mathematical expectation of vector x  is x , show that the estimate error covariance 

matrix of the MLSM is determined as 

  
1

1
MLSM т 1xP P H R H




  . 

Exercise 2.4. Calculate the PDOP in the problem of estimating the position on a 

plane, using measurements (1.16), for the case of two beacons, assuming that the 

following assumptions are valid: the linearization point is at the origin of coordinates; 

one of the beacons is on the 1ox -axis, and the other one, on the 2ox -axis; measurement 

errors are zero-mean random variables, uncorrelated with each other, with similar 

variances 2r .  

Test questions  

1. Formulate estimation problem statements using the LSM¸ GLSM, and MLSM. 

Explain their main features.  
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2. What are measurement residuals and a system of normal equations? Give an example 

of a system of normal equations for a phase estimation problem.  

3. Solve the problem of estimating the amplitude of the harmonic signal using the 

LSM.  

4. Derive algorithms for calculation of estimates with the LSM and its modifications 

for a linear problem in general form. Illustrate the application of these algorithms by 

a solution to a simple problem of estimating a scalar constant value. 

5. Derive equations for errors in estimations with the LSM and its modifications and 

the equations for the estimation error covariance matrix for the linear estimation 

problem. What additional assumptions about the properties of the measurement 

errors should be made to calculate the estimation error covariance matrix when 

solving the problem with the use of the LSM? 

6. Explain how, using measurements ( )y s x v  , it is possible to obtain estimation 

algorithms based on linearization. Illustrate this with estimation of the harmonic 

signal phase and estimation of coordinates on a plane using range measurements to 

beacons. 

7. What are the main features of the iterated algorithm? Under what conditions does 

this algorithm provide the estimate corresponding to the LSM? 
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3. Solution of estimation problems using the non-Bayesian 

approach  

In this chapter we consider a non-Bayesian approach and non-Bayesian 

algorithms. Their common feature is the fact that measurement errors are assumed 

random, and their stochastic properties are assumed known. The latter means that the 

probability density function (PDF) ( )vp   is known. The unknown estimated vector, as 

in the LSM and its modifications, is considered to be a nonrandom (determinate) vector 

[24].  

3.1. Fundamentals and statement of the estimation problem in the non-Bayesian 

approach 

If measurement errors are assumed random, with known PDF ( )vp  , the 

measurement can be treated as a random vector whose properties are determined by 

conditional PDF ( / )p y x , when x is known. It fully refers to estimate ( )x y  and its error 

( ) ( )y x x y   , which are transformations of measurements y . Taking ( )y s x v   

into account and fixing x , the equation for ( / )p y x can be written as: 

( / ) ( ( ))vp y x p y s x  ,      (3.1) 

where ( )vp   is the measurement error PDF.  

Thus, assuming that in the equation ( )y s x v  , the measurement error is a 

Gaussian zero-mean vector with known covariance matrix R , ( / )p y x  can be specified 

as follows: 

т 1

/2

1 1
( / ) exp ( ( )) ( ( ))

2(2 ) detm
p y x y s x R y s x

R

 
    

 
.  (3.2) 

Moreover, if variables of iv , 1.i m  are considered to be random variables, 

independent of each other, with variances 2

ir , 1.i m , then ( / )p y x  is given as  

 

2

2
12

2

1

1 1 ( ( ))
( / ) exp

2
2

m
i i

mm
i i

i

i

y s x
p y x

r
r





 
  

 




.  (3.3) 

The quantitative characteristic of x  estimation quality from y  measurements can be 

introduced using scalar function ( ( ))L x x y , setting a certain penalty for the difference 

between the estimated values and the true ones, referred to as the loss function. In 

navigation data processing, the quadratic loss function is most frequently used to 

analyze the estimation quality:  
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   
2 т т

1

( ( )) ( ) ( ( )) ( ( )) ( ( ))( ( ))
n

i i

i

L x x y x x y x x y x x y Sp x x y x x y


         . 

Introduce the criterion as a mathematical expectation of this function: 

   т

/ /( ) ( ( )) ( ( )) ( ( ))x xJ x E L x x y E x x y x x y    
y y

.      (3.4) 

As operations of the mathematical expectation and calculation of the matrix trace 

can be rearranged, the criterion can be written as follows:  

 т/( ) ( ( ))( ( )) ( )xJ x E Sp x x y x x y SpP x   
y

,             (3.5) 

where  

   т/( ) ( ) ( )y xP x E x x y x x y    

is the estimate error covariance matrix. 

It should be noted that the symbol of mathematical expectation, which depends on 

x . As a result, this determines the dependences of the matrix and the criterion on 

argument x . 

Therefore, the problem of algorithm design within the non-Bayesian approach 

can be specified as follows. Based on minimization of criterion (3.4), design an 

algorithm to estimate unknown determinate (nonrandom) vector x  from measurements 

( )y s x v  , where   is the m-dimensional random vector of the measurement error 

with known ( )vp  , i.е., 

/

2

( )
1

ˆ( ) argmin ( ( )) .
x

n

i
x y

i

x y E x x y


 
  

 
y

 

The problem of accuracy analysis within the non-Bayesian approach is reduced 

to calculation of the estimation error covariance matrix (3.5). 

Criterion (3.4) is referred to as a root-mean-square criterion, and the estimate 

minimizing it is called an optimal root-mean-square non-Bayesian estimate. Note 

that criterion (3.4) is fundamentally different from the observed criterions from the 

previous chapter as it deals with satisfying certain requirements for the estimate error 

rather than for calculated measured parameters.  

Unfortunately, for this problem, we cannot specify a general rule for finding 

estimates that minimize criterion (3.4). Thus, the estimation algorithm is selected by 

comparing the values of criterions and properties of the estimate corresponding to 

different algorithms. The estimate properties, such as unbiasedness, consistency, and 

efficiency, are very important in comparison. Let us provide definitions of these notions 

and explain them.  

In non-Bayesian approach, estimate ( )x y  is called unbiased if its mathematical 

expectation coincides with the true value of parameter x , i.е.,  

/ { ( )} ( ) ( / )y xE x y x y p y x dy x  .                 (3.6) 

As a rule, when criterion (3.3) is minimized, an additional requirement on estimate 

unbiasedness is imposed. An estimate providing minimum of this criterion, when (3.6) 
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is true, is called non-Bayesian unbiased estimate with minimum variance.  

To explain the notion of consistency, assume a sequence of scalar measurements 

i iy x v  , 1.i m  used to calculate estimate mx . This estimate is called consistent if 

it converges in probability to the true value of the parameter being estimated as the 

sample size m  increases, i.e.,  

limPr( ) 1,m
m

x e x x e


                     (3.7) 

where e  is an arbitrarily small positive value.  

The estimate consistency can be determined in vector case in a similar way.  

The notion of estimate efficiency is associated with the so-called Cramer-Rao 

inequality. For unbiased estimates ( )x y , the Cramer-Rao inequality within the non-

Bayesian approach is formulated as follows [29, 30]:  
1( ) ( )P x I x ,                (3.8) 

where  
т

/

ln ( / ) ln ( / )
( ) y x

p y x p y x
I x E

x x

    
   

    

.              (3.9) 

It follows from this inequality that matrix ( )I x  is always equal to or less than the 

covariance matrix for any unbiased estimate. Matrix 1( )I x  determines the Cramer-

Rao Lower Bound (CRLB) of the estimate error. For inequality to hold true, ( / )p y x  

should meet the regularity requirements, i.e., absolute integrability and existence of the 

first and second derivatives with respect to x . The estimate for which 1( ) ( )P x I x  is 

called an efficient non-Bayesian estimate. The matrix in the right-hand part of (3.9) is 

called a Fisher information matrix [24, 29, 30].  

If an algorithm to calculate the efficient estimate ˆ( )x y  is designed, the following 

inequality is true, as follows from (3.8): 

   т т

/ /
ˆ ˆ( ( ))( ( )) ( ( ))( ( ))y x y xE x x y x x y E x x y x x y     ,  (3.10) 

meaning that whatever another algorithm is selected for calculating the unbiased 

estimate ( ),x y  its estimation error covariance matrix will always be more than or equal 

to the matrix inverse of the Fisher information matrix.  
It follows from the above that the problem of finding the non-Bayesian unbiased 

estimate with a minimum variance is equivalent to the problem of finding the unbiased 
efficient estimate if it exists.  

Using Cramer-Rao inequality proves very helpful in accuracy analysis since it 
allows evaluation of potentially achievable accuracy without designing the estimation 
procedure. 

The above definitions of the estimate properties make it possible to compare 
various estimates in more detail.  
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3.2. Maximum likelihood estimation 

In the non-Bayesian approach, the most popular estimator is based on maximizing 

( / )p y x  as a function of x  with the known measurement y . In estimation theory, 

( / )p y x  as a function of x  with fixed measurements y
 
is called a likelihood function, 

and the estimation method based on its maximization is referred to as the maximum 

likelihood method or maximum likelihood estimation [24, 29]. Note that ( * / )p y x  
multiplied by small measurement increment y  in the scalar case approximately 

defines the probability Pr( * * ) ( * / )y y y y p y x y     , i.e., 

Pr( * * ) ( * / )y y y y p y x y     . Thus, the essence of the procedure for maximizing 

the likelihood function is to select the value of an unknown parameter at fixed values of 

the measurements at which this probability reaches its maximum value. Often, instead 

of the likelihood function, we use its logarithm or the logarithmic likelihood function 

ln ( / )p y x . These functions are usually defined with accuracy to the arbitrary constant 

coefficient.  

It is known from the estimation theory that the maximum likelihood estimate has a 

number of important properties: it is consistent; unbiased and normal (Gaussian) in 

asymptotic approximation with unlimited increase of sample size m . Moreover, 

if an efficient non-Bayesian estimate exists, it is the estimate maximizing the 

likelihood function [29]. These features of the maximum likelihood estimate explain 

its popularity in the non-Bayesian approach. However, it should be borne in mind that 

this estimate is not a general solution to minimizing the criterion for finding unbiased 

estimates with a minimum variance and, with a limited sample size, it is not always 

unbiased. 

From the above it follows that the maximum likelihood estimate is calculated by 

selecting the value of x  maximizing ( / )p y x , i.e.,  

mlfˆ ( ) argmax ( / ),
x

x y p y x         (3.11) 

or 
mlfˆ ( ) argmax ln ( / ).

x
x y p y x  

To provide the maximum likelihood function, the estimate should meet the 

necessary maximum condition: 

mlfˆ ( )
( / ) 0,

x y

d
p y x

dx
  

or 

mlfˆ ( )
ln ( / ) 0.

x y

d
p y x

dx
               (3.12) 

These equations are called likelihood equations.  

As with the LSM, (3.12) is the necessary condition to provide the maximum 
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likelihood function, each solution should be checked for a sufficient condition of the 

type  

mlf

2

т ˆ ( )
ln ( / ) 0.

x y

d
p y x

dxdx
                 (3.13) 

Consider an example. 

 Example 3.1. Specify the algorithm to find the maximum likelihood estimate of 

scalar x  by scalar measurements  

i iy x v  , 1.i m ,                    (3.14) 

where iv , 1.i m  are Gaussian random variables, independent of each other, and they 

have the same variances 2r , i.е., 2R r E .  

For this example, the likelihood function is given by (3.3), and ( )s x x , so the 

estimation algorithm is reduced to minimization of the criterion  

mlf 2

2
1

1
( ) ( )

2

m

i

i

J x y x
r 

   , 

wherefrom 

mlf

1

1
ˆ ( )

m

i

i

x y y
m 

  . 

Thus, in this example, the maximum likelihood estimate is the arithmetic average of 

all measurements.  

Analyze the features of this estimate.  

Since  mlf

/ /

1

1
ˆ ( ) ( )

m

y x y x i

i

E x y E x v x
m 

 
   

 
 , the estimate is unbiased, and its error 

variance is calculated as  

  
2 2

2
mlf

/ /2
1

1
ˆ ( )

m

y x y x i

i

r
E x y x E v

m m

   
    

   
 . 

The error variance tends to zero as the sample size m  increases, which means that 

estimate mlfˆ ( )x y  is consistent.  

Calculate the CRLB in this example. Here, we have  

т

2

ln ( / ) 1
( )

p y x
H y Hx

x r


 


, 

where тH  is the row consisting of ones. 

With account for  

 т 2

/ ( )( )y x mE y Hx y Hx r E   , 

we obtain 
2

( )
r

P x
m

 . 
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Thus, in estimating a scalar from measurements (3.14), with the measurement 

errors being Gaussian random values, independent of each other, with the same 

variances 2r , the error variance of an unbiased estimate cannot be less than 
2r

m
. It 

follows that in this example the maximum likelihood estimate is an unbiased efficient 

estimate, and, therefore, an unbiased estimate with a minimum variance.    

3.3. General solution of the linear Gaussian estimation problem using the maximum 

likelihood method  

In Example 3.1, it was rather simple to find the unbiased efficient estimate. 

Moreover, it can be easily seen that the designed algorithm coincides with the LSM. It 

is due to the fact that in this example, we solved a linear Gaussian estimation problem. 

In this case, the solution of the estimation problem using the maximum likelihood 

method is implemented in the easiest form. Let us illustrate it in detail.  

Suppose a linear problem of estimating the constant n-dimensional vector 
т

1( ,... )nx x x , 0x   from the m-dimensional measurement vector 
т

1( ,... )my y y , y Hx v   is solved. In so doing, the measurement errors v is a zero-

mean random Gaussian vector with covariance matrix R . Let us obtain the maximum 

likelihood estimate and analyze its features.  

With these assumptions, the likelihood function coincides with (3.2), where 

( )s x Hx , i.e.,  

т 1

/2

1 1
( / ) exp ( ) ( )

2(2 ) detm
p y x y Hx R y Hx

R

 
    

 
, 

and the logarithmic likelihood function can be written as  
mlf т 1( ) ( ) ( )J x y Hx R y Hx   .    (3.15) 

Therefore,  
mlf mlfˆ ( ) argmax ( ; , ) argmin ( ).

xx
x y N y Hx R J x      (3.16) 

Note that criterion (3.15) coincides with criterion (2.13) for the GLSM, with 1Q R , 

which yields the following: 
mlf mlfˆ ( )x y K y ;     (3.17) 

 
1

mlf mlf mlf т т 1( )P K R K H R H


  ,   (3.18) 

where      
1

mlf т 1 т 1K H R H H R


  .              (3.19) 

Estimate (3.17) is unbiased.  

Indeed, while  /y xE y Hx  and mlf 0E K H  , then  mlf

/ ( ) 0y xE x K y  . 
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Estimate error mlf mlfˆ( ) ( )y x x y    can be represented in the form similar to (2.23):  
mlf mlf( ) ,y K        (3.20) 

therefore, it depends only on the measurement errors rather than on the estimated vector 

x . Thus, the error of the maximum likelihood estimate in the considered problem is 

invariant to the estimated vector. It should be noted that the covariance matrix does not 

depend on the estimated vector either.  

In this problem, the matrix characterizing the CRLB can be found rather easily, and 

it can be proven that estimate (3.17) is efficient. Since ( )s x Hx , with account for  

т 1l ( / )
( )

p y x
H R y Hx

x


 


 

and the fact that the regularity conditions are met, the mathematical expectation in 

(3.9) can be easily calculated, and  
т 1( )I x H R H       (3.21) 

can be obtained for the Fisher information matrix. 

Comparison of 1( )I x  and covariance matrix mlf ( )P x  set by (3.18) shows that they 

coincide.  

Thus, in the linear Gaussian estimation problem, the maximum likelihood 

estimate (3.17) is an unbiased efficient non-Bayesian estimate with covariance 

matrix (3.18) or, which is the same, unbiased non-Bayesian estimate with a 

minimum variance. 

Now, discuss the relation to the LSM. Note that equations (3.17), (3.18) are 

identical to (2.28), (2.29), corresponding to the GLSM with 1Q R . It is quite logical 

since the problem of minimizing the GLSM criterion coincides with the problem of 

maximizing the likelihood function as criterion (3.15) agrees with the GLSM criterion.  

It follows from the above that the maximum likelihood estimate in the x  

estimation problem from measurements (1.11) with Gaussian measurement errors 

coincides with the GLSM estimate if the weight matrix in its criterion is 1Q R .  

Since the maximum likelihood estimate coincides with the GLSM estimate, the 

following statement is true for the GLSM estimates with properly selected matrices. 

In the linear Gaussian estimation problem, the GLSM estimate, with the 

weight matrix in criterion 1Q R , is an unbiased efficient non-Bayesian estimate 

with covariance matrix (3.18). 
In conclusion, we note that in the linear problem (1.10) (1.11), the unbiased 

estimate with the minimum variance can be actually derived without the PDF of 

measurement errors. It can be done by minimizing criterion (3.4) in the class of linear 

estimates and assuming that the two first moments are set for the measurement error v .  
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3.4. Solution of the nonlinear Gaussian estimation problem using the maximum 

likelihood method 

Now, discuss the algorithm to find the maximum likelihood estimate in the 

nonlinear problem (1.20), (1.21) with unknown n-dimensional vector т

1( ,... )nx x x , 

0x   and m-dimensional measurement vector т

1( ,... )my y y , ( )y s x v  . Here, 
т

1( ) ( ( ),.. ( ))ms s x s x   is a generally nonlinear m-dimensional function, т

1( ,... )mv v v  is 

an m-dimensional vector of the measurement error, that is, a zero-mean random 

Gaussian vector with covariance matrix R , as in the previous section. Here, the 

logarithmic likelihood function can be written as  

mlf т 11
( ) ln ( / ) ( ( )) ( ( ))

2
J x p y x y s x R y s x     .  (3.22) 

Hence, to find an estimate, we need to search for the maximum of this criterion or 

to solve the system of nonlinear equations  
т

1ln ( / ) ( )
( ( )) 0

p y x ds x
R y s x

x dx


  


           (3.23) 

with a further check of condition (3.13).  

It can be easily noted that criterion (3.22) for the considered Gaussian case 

coincides with criterion (2.5) of the GLSM accurate to the constant factor if weight 

matrix Q  is selected as
 

1Q R in the GLSM. This yields the conclusion similar to that 

for the linear problem. The maximum likelihood estimate in the x  estimation 

problem from measurements (1.21) with Gaussian measurement errors coincides 

with the GLSM estimate if the weight matrix in its criterion is 1Q R .  

It follows from the above that the algorithm design methods and accuracy analysis 

detailed in 2.4 can be interpreted as maximum likelihood estimation methods. 

Particularly, linearized and iterative algorithms can be used to calculate the estimates. 

In turn, matrix (2.39) should be used in accuracy analysis. In this case, conditional PDF 

( / )p y x  is used in calculating the mathematical expectation.  

Clearly, obtaining this matrix with the use of the Monte Carlo method, for example, 

requires a large size of computations [6]. Here, the application of Cramer-Rao 

inequality proves very helpful since in a nonlinear Gaussian problem, similar to the 

linear case, the matrix characterizing the CRLB can be found rather easily. Assuming 

that function ( )s x  meets the regularity conditions and taking  

т
1ln ( / ) ( )
( ( ))

p y x ds x
R y s x

x dx


 


,    (3.24) 

we obtain  
т

1

т

( ) ( )
( )

ds x ds x
I x R

dx dx

 .        (3.25) 
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It can be seen that if the linearized description of ( )y s x v   is acceptable and the 

problem is approximately solved by the maximum likelihood method using (3.17), the 

covariance matrix calculated according to (3.18) (calculated covariance matrix) 

coincides with 1( )I x  while  

 
1

1 1 т 1 mlf( ) ( ) ( ) ( )l l lI x I x H x R H x P


     , 

where ( )lH x  is calculated according (1.23). 

Let us conctretize the derived equations for two examples.  

 Example 3.2. Obtain the formula for the CRLB in estimating scalar x  from 

measurements  

( )i i iy s x v  , 1.i m ,     (3.26) 

where iv , 1.i m  are Gaussian random variables, independent of each other, with the 

same variances 2r , i.e., 2R r E .  

Using (3.25), write  

2

2
1

1 ( )
( )

m
i

i

ds x
I x

r dx

 
  

 
 . 

We introduce the value characterizing the derivative values  
2

1

1 ( )
( )

m
i

i

ds x
g x

m dx

 
  

 
 , 

then, the equation for the CRLB can be written as  
2

1

2
( ) ( )

( )

r
P x I x

g x m

  .      (3.27) 

Note that 1 LSM 2( ) ( ( ))I x x  , where LSM 2( ( ))x is the calculated error variance of 

the linearized LSM estimate with linearization point 
lx x . 

The obtained relations can be easily specified for Example 2.8. The value 

characterizing the derivative is given by  

2

2 1

cos ( )

( )

m

i

i

t x

g x
m









.    

 Example 3.3. In a nonlinear problem of  positioning by ranges (1.16) to m 

beacons, obtain an equation for the CRLB matrix assuming that measurement errors are 

Gaussian zero-mean random values, independent of each other, with variances 2
ir , 

1.i m .  
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With account for (3.25), equation 

1

1

2
1

1
( ) ( )

m

i

i i

I x M x
r







 
  
 
  can be written for the 

CRLB matrix, where Mi(x) is determined by (2.48), i.e.,  
2

2

sin ( ) 0.5sin2 ( )
( )

0.5sin2 ( ) cos ( )

l l

l i i

i l l

i i

B x B x
M x

B x B x

  
 
 

. 

If linearized description in a priori uncertainty area is true, we will see that the 

GLSM covariance matrix with 
lx x  substituted with the true x , as follows from 

Example 2.9, coincides with the estimated CRLB matrix.    

Generally, when using the Cramer-Rao inequality for accuracy analysis in nonlinear 

problems, it should be remembered that the real error covariance matrix of the 

algorithms being studied is set by  

 т( ( ))( ( ))P E x x y x x y   . 

This matrix can significantly differ from 1( )I x , even if 1 1( ) ( )lI x I x  . Particularly, 

the difference can be observed in the linearized algorithm while description (1.22) is 

approximate. At the same time, inequality (3.8), realized as  
1

т
1

т

( ) ( )
( )

ds x ds x
P x R

dx dx



 
  
 

, 

is always true if ( )s x  provides regularity of likelihood function (3.2). It means that 

whatever algorithm is selected to solve the problem, its error covariance matrix will 

always exceed the matrix in the right-hand part of inequality calculated with the 

prescribed value of the unknown vector x to be estimated.  

Exercises 

Exercise 3.1. Suppose that a scalar x  is estimated from measurements of type 

(3.26) written as  

( )i i iy s x   ,       (1) 

where the measurement errors  

i id v         (2) 

are a sum of a zero-mean Gaussian random variable with variance 2

d  describing the 

systematic error component and zero-mean Gaussian random variables with the same 

variances 2 2

ir r , 1.i m , independent of each other and of d. Obtain the equation for 

the likelihood function mlf ( )J x
 
and the CRLB.  

Exercise 3.2. Show that the equation for mlf ( )J x  from Exercise 3.1 can be 

represented in the form:  
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2
mlf 1

2 2
1 1

ˆ( ( ) ( ))
,

m
i i i

i i

y s x d x
J

r 


 

 



     (1) 

where 
2

1
1 12 2

1

ˆ ˆ ˆ( ) ( ) ( ( ) ( )),i
i i i i i

i

d x d x y s x d x
r






 



   


 ;           (2) 

2 2
2 1

2 2

1

i
i

i

r

r












  1.i m ; 2 2

0 d  , 0
ˆ ( ) 0.d x            (3) 

Exercise 3.3. Suppose that we have two navigation systems, which generate 

measurements 

1 1

2 2

,

,

y x v

y x v

 

 
 

where т

1 2( , )x x x  is a two-dimensional vector generating the vehicle plane 

coordinates. Assume that this vector is determinate (nonrandom) and two-dimensional 

measurement error vectors 1 2,v v  are zero-mean Gaussian vectors with covariance 

matrices 1R , 2R . 

Obtain the algorithm for an efficient estimate and the relevant covariance matrix. 

Compare the results with the GLSM solution assuming that Q  is a block diagonal 

matrix with blocks 
1

1R  and 
2

1R .  

Exercise 3.4. Consider the problem of estimating the phase of the harmonic 

oscillation using measurements (1.14) assuming that the amplitude and the frequency 

are known, and the measurement errors are noncorrelated Gaussian random values with 

the same variance r
2
.  

Obtain the linearization and iterative estimation algorithms by the maximum 

likelihood method. Compare the results with the LSM solution. 

Exercise 3.5. Show that maximum likelihood estimates do not depend on linear 

nonsingular transformations applied to the measurements used in solving the nonlinear 

Gaussian problem of estimating vector x  from measurements (1.21).  

Exercise 3.6. Consider a linear problem of estimating vector x  from measurements 

y Hx v  , where the estimates are determined in the form ˆ( )x y Ky . Obtain the 

equation for matrix K  satisfying the condition 0E KH   and minimizing criterion 

(3.4), i.e.,  т

/
ˆ ˆ( ( )) ( ( ))y xJ E x x y x x y   .  

Beforehand, make sure that in satisfying the above condition to calculate the 

selected criterion J ,  it will suffice to assume only the random nature of the 

measurement error vector v  and specify only its two first moments.  

Assuming further that v  is a zero-mean random vector with known covariance 

matrix R , obtain the equation for the error covariance matrix.  
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Test questions  

1. Formulate the estimation problem within the non-Bayesian approach. Name the 

distinctive features of this formulation as compared with the formulation using the 

LSM and its modifications.  

2. Provide definitions of unbiased and efficient estimates, and unbiased non-Bayesian 

estimate with a minimum variance. 

3. Formulate the Cramer-Rao inequality and explain it. What is an efficient estimate?  

4. Explain the idea of the maximum likelihood method.  What do the likelihood 

function and likelihood equation mean? 

5. Obtain an equation for the Fisher information matrix for linear and nonlinear 

Gaussian estimation problems. 

6. Solve the linear Gaussian estimation problem by the maximum likelihood method. 

Is the derived estimate efficient? What is the interrelation between the maximum 

likelihood method and the LSM method? 

7. What is the relation of the CRLB matrix with the real error covariance matrix in the 

nonlinear Gaussian problem and with the calculated covariance matrix derived using 

a linearized algorithm? 

8. Formulate the problem of calculating unbiased non-Bayesian estimate with a 

minimum variance in the class of linear unbiased estimates. Name the conditions 

under which this solution coincides with the solution to the problem of calculating an 

unbiased non-Bayesian estimate without restrictions on the estimate class.  
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4. Solution of the estimation problem using the Bayesian 

approach. Optimal estimates 

Now consider the estimation problem (1.21) in the context of the Bayesian 

approach. The main feature of this approach consists in the assumption about the 

random nature of vector x to be estimated and the measurement error v . This allows for 

the introduction of the joint PDF ( , )p x v , which, in turn, makes it possible to proceed to 

PDF ( , )p x y , and then, to introduce the conditional (posterior) PDF ( / )p x y . Taking 

into consideration the importance of the posterior PDF concept for the estimation 

problem solved in the context of the Bayesian approach, it will be discussed more 

comprehensively. 

4.1. Bayes formula and posterior probability density function 

So, suppose that the joint PDF ( , )p x y  is known. For ( , )p x y , the following 

formula for PDF multiplication is valid: 

( , ) ( / ) ( ) ( / ) ( ).p x y p x y f y p y x p x          (4.1) 

In these formulas, ( / )p x y  and ( / )p y x  are conditional PDFs that determine the 

statistical properties of vectors x  and
 y , provided that the vector on the right side of the 

slash is fixed. In the solution of estimation problems, conditional PDFs ( / )p x y  and
 

( / )p y x  are also called posterior PDFs or posterior densities, which emphasizes the 

fact that these densities correspond to a posterior situation in which one of the vectors 

associated with the vector being estimated is fixed. Accordingly, functions ( )p x , ( )p y  

are usually called prior PDFs or densities. From (4.1) it follows that 

( , ) ( , )
( / )

( )
( , )

p x y p x y
p x y

p y
p x y dx

 



.    (4.2) 

Function ( ) ( , )p y p x y dx  , depending on measurements y , provides 

normalization, i.e., equality to unity for ( / ) 1p x y dx  . 

Formula (4.2) is known as the Bayes formula or Bayes rule. Equations (4.2) 

provide a possibility for finding conditional PDF using the known joint PDF ( , )p x y . 

From these equations follows that if vectors x  and y  are independent, conditional and 

prior PDFs coincide. 

Write the equations that allow us to find the parameters of the conditional 

Gaussian PDF [9, 19]. Assume that the joint PDF of the two Gaussian vectors x  and 
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y  of n and m dimensions is determined as 

    
т т

т т т т( , ) , ; , ,p x y N x y x y P ,     

where        
т( )

x xy

xy y

P P
P

P P

 
  
 

. 

It is clear that the PDF for each vector can represented in  the following form: 

 ( ) ; , xp x N x x P ;       

 ( ) ; , yp y N y y P .       

Using relation (4.2) and the rules for inversion of a block matrix, we can show that 

the conditional PDF ( / )p x y  is also Gaussian, i.e.,  /ˆ( / ) ; ( ), x yp x y N x x y P , and its 

parameters are determined as 

 
1

ˆ( ) ( )xy yx y x P P y y


   ;    (4.3) 

/ 1 т( ) ( )x y x xy y xyP P P P P  .     (4.4) 

These formulas define the rule for finding the parameters of the conditional 

Gaussian PDF for the two Gaussian vectors. 

 Example 4.1. Suppose that we have a scalar Gaussian random value x  with PDF 
2

0( ) ( ; , )p x N x x   and a set of values  

( )i iy s x v  , 1.i m , 

in which ( )s x  is a known, in the general case, nonlinear function. It is assumed that iv , 

1.i m  are Gaussian random values, independent of each other and x, with PDF 

 2( ) ;0,i ip v N v r . Write the equation for posterior PDF. Using (4.1), (4.2), under the 

assumptions made, we derive: 
2

2

2
1

1 1 1
( / ) exp ( ( ))

( ) 2

m

ix
i

x
p x y y s x

c y P r 

 
    

 
 , 

where ( )c y
 
is the normalizing factor defined as  

2
2

2
1

1 1
( ) exp ( ( ))

2

m

ix
i

x
c y y s x dx

P r





  
     

  
 . 

Function ( )c y  coincides with ( )p y  to the accuracy of the coefficient. For the 

special case of ( )s x x , in these equations, ( )s x  should be replaced for x . For this 

particular case, it is not difficult to show that the posterior PDF is Gaussian 

 /ˆ( / ) ; ( ), x yp x y N x x y P  and its parameters are defined as 
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2

0

2 2
10

ˆ( ) ( )
m

i

i

x y x y x
r m



 

 
   

  
 ; 

1
2 2

0

2 2 2 2

0 0

1 m r
P

r r m



 



 
   

 
. 

To be sure that this is true, first, write the parameters of the Gaussian PDF of the 

composite vector 
1 2( , , ,..... )T

mz x v v v , then find the parameters of the Gaussian PDF for 

the composite vector 
1 2( , , ,..... ) ( , )T T T

mz x y y y x y  . It is not difficult to do, taking into 

consideration that z Tz , where T  is the matrix which is easy to determine from the 

equation i iy x v  , 1.i m . Further, we should use equations (4.3), (4.4). It is easy to 

make sure that in this example, with ( )s x x , function ( )p y  will be determined as 
2 2

1 0( ) ( ; ; )m m m m mp y N y xI I r E    , 

where m mI  , m mE   are the m m  matrix consisting of unities and a unit matrix.  

4.2. Fundamentals, statement, and a general solution of the Bayesian estimation 

problem 

Assume that we need to estimate the n-dimensional constant vector x  using the m-

dimensional vector of measurements ( )y s x v  , where the unknown vector x to be 

estimated and the measurement error v  are random vectors. This allows (see Example 

4.1) us to introduce the joint PDF ( , )p x v , which, in turn, makes it possible to proceed 

to PDF ( , )p x y , and then, to introduce the conditional (posterior) PDF ( / )p x y . 

Now, let us formulate the estimation problem solved in the context of the Bayesian 

approach and give a general solution to this problem. 

As in the previous section, we introduce the quadratic loss function: 

 
2 т

1

( ( )) ( ) ( ( )) ( ( ))
n

i i

i

L x x y x x y x x y x x y


       

and the associated criterion as the expectation of the quadratic loss function:  

     т( ( )) ( ( ))( ( ))B

x,y x,yJ E L x x y E Sp x x y x x y Sp P      . 

In the Bayesian approach, this criterion is called the Bayesian risk. Note that it 

differs from the similar criterion introduced in the previous section because in this case, 

the expectation is calculated based on the random characters of both x  and y . 

In the context of the Bayesian approach, the problem of vector x  estimation using 

measurements y  is formulated as follows: find an estimate that will minimize the 

expected value of the loss function. 

The estimate, minimizing the mathematical expectation of the quadratic loss 

function, is referred to as an optimal root-mean-square Bayesian estimate. This 
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estimate is further called the optimal Bayesian estimate or simply the optimal 

estimate. 

The following statement is very important in estimation theory: the optimal 

Bayesian estimate is a mathematical expectation corresponding to posterior PDF 

( / )p x y , i.e.,  

ˆ( ) ( / ) .x y xp x y dx       (4.5) 

Indeed, writing the criterion as  

т( ( )) ( ( )) ( / ) ( )BJ x x y x x y p x y dxp y dy     

and differentiating it with respect to the estimate, we can write 

т т( ( )) ( ( )) ( / ) 2 ( ( )) ( / ) 0.
( )

d
x x y x x y p x y dx x x y p x y dx

dx y
        

This implies that 

т т( / ) ( ) ( / ) .x p x y dx x y p x y dx   

Taking into account the normalization condition, we obtain (4.5). Thus, to find the 

optimal estimate in the Bayesian approach requires the calculation of multiple integral 

(4.5). 

For the accuracy analysis, in the Bayesian approach we use conditional and 

unconditional posterior covariance matrices of estimation errors: 

т т

|
ˆ ˆ ˆ ˆ( ) {[ ( )][ ( )] } [ ( )][ ( )] ( / )x yP y E x x y x x y x x y x x y p x y dx      ,       (4.6) 

т т

,
ˆ ˆ ˆ ˆ{[ ( )][ ( )] } [ ( )][ ( )] ( , )x yP E x x y x x y x x y x x y p x y dxdy       .      (4.7) 

Matrix ( )P y  determines the estimation accuracy for the certain (prescribed) 

measurement sample, and matrix P  determines the estimation accuracy of the average 

for the whole measurement ensemble. 
It is important to note the following. Unlike the algorithms obtained with the use of 

the LSM or the non-Bayesian approach, in the Bayesian approach, we can provide not 
only the algorithm for calculation of the error, but also the procedure used for the 
calculation of the corresponding covariance matrix ( )P y , which characterizes the 
calculated estimation accuracy for a certain measurement sample used to find the 
estimates. This is of fundamental importance for solving estimation problems in the 
navigation data processing. 

Bearing in mind the above, in the Bayesian approach, the term “the problem of 
the optimal algorithm design” is used to mean finding a procedure that provides not 
only the calculation of estimate (4.5), but also the corresponding accuracy characteristic 
in the form of conditional posterior covariance matrix (4.6). 

The term “the problem of accuracy analysis” is used in the Bayesian approach 

to mean obtaining unconditional posterior covariance matrix P  (4.7). 
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4.3. Properties of optimal estimates 

Definition 1. 

Bayesian estimate ( )x y is called unbiased if the following equality holds: 

 ( )yE x y x . 

Note that this definition differs from the one introduced in considering the non-

Bayesian approach. At the same time, it seems quite logical since in this case, the 

vector to be estimated is assumed random. 

Property 1. Estimate (4.5) is unbiased. This property is easy to verify because  

ˆ ˆ{ ( )} ( ) ( ) ( | ) ( )

( | ) ( ) ( | ) ) ( ) { }.

y y y

x x x

E x y x y p y dy xp x y p y dxdy

xp y x p x dydx x p y x dy p x dx E x

  

  

 

  
 

Property 2 (property of orthogonality). The error of the optimal estimate is not 

correlated with (orthogonal to) the measurements, i.e.,  
т

,
ˆ{( ( )) } 0.x yE x x y y      (4.8) 

This equation is easy to prove if we calculate the mathematical expectation 

sequentially, first, using ( / )p x y , and then, using ( )p y . Similarly, we can show that 

the estimate error is not correlated with (orthogonal to) the optimal estimate, i.e., 
т

,
ˆ ˆ{( ( )) ( )} 0.x yE x x y x y   

Property 3. The covariance matrices of estimate error (4.6) (4.7) satisfy the 

following inequalities: 

0P P   ;    ( ) ( ) 0P y P y  ,    (4.9) 

where ( ),P y P  are conditional and unconditional matrices given by the formulas 

similar to (4.6), (4.7), characterizing the accuracy of ( )x y .  

Recall that for the matrix, 0P   means nonnegative definiteness of the 

corresponding quadratic form. In connection with the above inequality, we can say that 

the optimal Bayesian estimate minimizes the estimate error covariance matrix, whereas 

the posterior covariance matrix P  itself characterizes the potential accuracy of 

optimal estimation in the Bayesian approach. Accordingly, the diagonal elements of 

these matrices define the potential accuracy of the estimation components 
jx , 1.j n . 

Property 4. Optimal estimate (4.5) minimizes determinants of matrices P  and 

( )P y  [24, 29]. 

Property 5. Assume that the m -dimensional vector x  is the linear transformation 

of the n - dimensional vector x , that is, x Tx , where Т is the known m n  matrix. The 

optimal estimate of vector x  is defined as ˆ ˆ( ) ( )x y Tx y , where ˆ( )x y  is the optimal 

estimate of vector x .  
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This is easy to verify using (4.5). 

Definition 2. 

In the context of the Bayesian approach, we also introduce the notion of estimate 

efficiency, which, as in the non-Bayesian approach, follows from the Cramer-Rao 

inequality. Within Bayesian approach, this inequality is formulated as follows [29, 30]: 

т 1

,
ˆ ˆ{( ( ))( ( )) } ( ) ,B

x yP E x x y x x y I        (4.10) 

where BI  is defined as  

т

, ,

,

ln ( , ) ln ( , )
.

x y x yB

x y

p x y p x y
I E

x x

    
   

    

      (4.11) 

The following sequence of inequalities is valid:  
1( )BP P I   .         (4.12) 

Estimate ˆ( )x y  is called an effective Bayesian estimate if in (4.12), the inequality 

sign becomes equality. For inequality to hold true, ( , )p x y  should meet the regularity 

requirements, i.e., absolute integrability and existence of the first and second 

derivatives with respect to x  and y . 

The sign of more or equal in the inequality 1( )BP I   means that the optimal 

Bayesian estimate does not always have to be efficient. This matrix 1( )BI   determines 

the CRLB, and thus, it characterizes the potentially achievable accuracy of optimal 

estimation in the Bayesian approach. Matrix BI  is called the Fisher information 

matrix. Note that in the Bayesian approach, the CRLB is prescribed for the 

unconditional covariance matrix. The ratio between 1( )BI   and matrix ( )P y , which for 

a nonlinear problem depends on measurement, is not prescribed. 

4.4. Solution of the linear Gaussian estimation problem. Interrelation with the least 

squares method   

It is rather simple to solve the estimation problem in the linear Gaussian case within 

the Bayesian approach.  

Suppose it is required to find the optimal Bayesian estimate of vector x  using 

measurements (1.2), i.e., y Hx v  , where x  and v  are assumed Gaussian vectors. In 

view of the Gaussian nature of x , v  and linearity of measurements, the joint PDF 

( , )p x y , and consequently, the posterior density will also be Gaussian.  

To find this PDF, we should act in the same manner as in the example considered in 

4.1: write the joint PDF for vector ( , )T T Tz x v , then find the parameters of the 

Gaussian PDF of vector ( , )T T Tz x y , taking into consideration that z Tz , and then, 

find the parameters of the conditional density PDF. Calculating the values of y Hx , 
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xyP , yP , it is easy to specify the formulas for estimation of the covariance matrix. In the 

special case when vectors x  and v  are independent of each other, i.e., 

( ) ( ) ( )p z p x p v , taking into consideration the notation used vP R , /x yP P , we 

have: 

y Hx ; тxy xP P H ; тy xP HP H R  . 

Hence, it follows: 

ˆ( ) ( )x y x K y Hx   ;    (4.13) 

 
1

т тx xK P H HP H R


  ;    (4.14) 

 
1

т т ( )x x x x xP P P H HP H R HP E KH P


     .  (4.15) 

Using the matrix inversion lemma [5] 

 
11

1 т 1 т тP H R H P PH HPH R HP


       , 

matrix P  and K  can be represented in the form: 

  
1

1
т 1xP P H R H




  ;    (4.16) 

т 1.K PH R      (4.17) 

In the linear Gaussian problem, the optimal, in the RMS sense, the estimate is 

efficient because 

  
1

т 1
ln ( , )

( ) ( ( ))
x,y x

p x y
P x x H R y s x

x





    


. 

Substituting this equation into (4.11), we can write 

  
1

1
1 т 1( ) ( )B xP P y I P H R H




     .    (4.18) 

It is important to note that the posterior PDF in this problem is Gaussian, and the 

algorithm for calculation of the optimal Bayesian estimate is linear relative to 

measurements y . 

It is also essential that the conditional covariance matrix ( )P y  does not dependent 

on measurements and, therefore, it will coincide with the unconditional covariance 

matrix P , which does not hold in the general nonlinear case. 

Find the interrelation between the optimal estimates and the estimates sought by the 

LSM. Verify the validity of the following statement. 

Proposition. The estimates obtained by the modified least squares method (MLSM) 

coincide with optimal Bayesian estimates in the linear Gaussian problem, when, first, 

there is no correlation between the vector to be estimated and the vector of 

measurement errors and second, the criterion in the MLSM is chosen such as x  is the 

mathematical expectation of vector x , and matrices 1( )xD P  , 1.Q R  
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As it was noted above, the posterior PDF in the linear Gaussian problem is also 

Gaussian, and therefore, it is a symmetrical function and the corresponding expectation 

ˆ( )x y , i.e., the optimal estimate (4.5) coincides with the value of x  at which this PDF 

reaches its maximum value. 

Write the following formula for the joint PDF:  

( , ) ( / ) ( ) ( ) ( )vp x y p y x p x p y Hx p x   . 

Thus, for the posterior PDF we will have: 

  
1

т 1 т1
( / ) exp ( ) ( ) ( ) ( ) ,

2

xp x y c y Hx R y Hx x x P x x


 
       

 
  (4.19) 

where c  is the normalization factor which is independent of x . 

Taking into consideration this representation for ( / )p x y , it is not difficult to 

understand that maximization of the posterior density is equivalent to minimization of 

the criterion  
т 1 т 1( ) ( ) ( ) ( ) ( ) ( )xJ x y Hx R y Hx x x P x x       ,   (4.20) 

which coincides with the criterion used in the MLSM, provided that matrices Q  и D  

are chosen properly. It is this fact that explains the coincidence of the MLSM estimate 

at independent x  and v with the optimal Bayesian estimate, which, in turn, coincides in 

the linear Gaussian problem with the linear optimal estimate. Accordingly, the 

covariance matrices of errors also coincide. 

4.5. Linear optimal estimates. Statement of the problem and its  

general solution 

Often, for simplicity of the resultant estimation algorithm, researchers introduce 

restrictions on the class of estimates. For example, it is often thought that the Bayesian 

estimate being sought is linearly dependent on measurements, i.e., it is defined as 

( ) ( )x y x K y y   .     (4.21) 

Bearing this in mind, the problem of vector x  estimation using measurements y  can 

be formulated as follows: find an estimate that minimizes the mathematic expectation 

of the quadratic loss function in the class of linear estimates of the form (4.21). It is 

easy to verify that the estimate defined in the form (4.21) is unbiased. 

Thus, the problem is to find the linear unbiased estimates with a minimum variance, 

or in other words, the problem of finding optimal, in the RMS sense, linear estimates. 

Further, for brevity, we will simply speak about optimal linear estimates. The 

algorithm that provides for finding of such estimates is called an optimal linear 

algorithm. 

Substituting (4.21) in the formula for criterion BJ , we can write  



 
 

68 

 

 

   

т

,

т

,

( ( )) ( ( ))

[ ( ) ( ) ]

B

x y

x y

J E x x K y y x x K y y

E Sp x x K y y x x K y y

       

       
 

 т т( )( ) ( )( )x,ySpE x x x x K y y x x        

т т т т( )( ) ( )( )x x y y K K y y y y K        

 т тx yx xy ySp P KP P K KP K    .   (4.22) 

Thus, the algorithm for the estimate calculation is reduced to the problem of 

parametric optimization of criterion BJ  with respect to matrix K . In other words, 

finding of the posterior PDF itself is not necessary here. 

The following statement is valid. 

For the linear estimate (4.21) in the problem solution of vector x  estimation 

with the use of the measurement vector y  to provide a minimum of criterion 

(4.22), it is necessary and sufficient that matrix linK , used in the calculation of this 

estimate, should satisfy this equation. 
lin y xyK P P .       (4.23) 

This equation can be treated as a simplest variant of the Wiener-Hopf equation 

[19, 29].  

If matrix yP  is nonsingular, then from (4.23) it follows that 
1( )lin xy yK P P            (4.24) 

and, therefore, 
1ˆ( ) ( ) ( ) ( )lin xy yx y x K y y x P P y y      .   (4.25) 

Using (4.25), it is not difficult to write the equation for the covariance matrix: 

,
ˆ ˆ{( ( ))( ( )) }

( ) ( ) .

lin T

x y

x lin y lin T lin yx xy lin T

P E x x y x x y

P K P K K P P K

   

   
 

Transforming this equation with the use of (4.24), we obtain 
-1( )lin x xy y yx x lin yxP P P P P P K P    .       (4.26) 

Thus, the procedure for the calculation of optimal, in the RMS sense, linear 

estimates is given by (4.24)–(4.26). In this case, to design the algorithm, it is necessary 

to have a priori expectations x  and y  and matrices xP , yP , xyP . Knowledge of these 

matrices also provides a solution to the problem of accuracy analysis since they are 

used to find a posteriori error covariance matrix linP corresponding to the optimal linear 

algorithm. 

In the particular case when in the linear problem in the measurements y Hx v  , 

vectors x  and v  are not correlated, and v  is zero mean, it is easy to verify that (see 

Exercise 4.2) formulas (4.25), (4.26) for the optimal linear estimation and the 

covariance matrix of its errors are reduced to formulas (4.13)–(4.17). Recall that these 
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formulas define the algorithm for finding the optimal estimate sought without any 

restriction on the class of estimates in the form of conditional expectation (4.5). 

Thus, we have come to the following important and valid conclusion. 

In the linear Gaussian problem, the optimal linear estimate and the optimal  

estimate coincide. 

Consider an example. 

 Example 4.2. Find the formula for the optimal linear estimate and the 

corresponding variance of the scalar random variable x  uniformly distributed on the 

interval  0,b , using the measurements 
i iy x v  , 1.i m , in which iv  are random 

values, independent of each other and x , uniformly distributed on the interval  0,a . 

As applied to the problem under consideration, for the optimal linear estimate and 

the corresponding variance we obtain: 
2

0

2 2
10

ˆ ( ) ( ),
m

lin

i

i

x y x y x
r m




 

   


   

2 2

0

2 2

0

lin r
P

r m







, 

which, after substituting the values of expectations / 2x b , / 2v a  and variances 
2 2

0 /12b  , 2 2 /12r a , can be written as follows: 

2

2 2
1

ˆ ( ) ( / 2 / 2)
2 ( )

m
lin

i

i

b b
x y y b a

a b m 

   


  ; 
2 2

2 212( )

lin a b
P

a b m



. 

In particular, at a b , we have 

1

1
ˆ ( ) ( / 2)

m
lin

i

i

x y y a
m 

  ;  

2

12

lin a
P

m
 . 

The above algorithm is an optimal linear algorithm not only for random variables 

with uniform distribution, but also for any zero-mean random variables with an 

arbitrary distribution and prescribed variances 2 2

0 /12b  , 2 2 /12r a . In particular, 

this algorithm will be optimal for zero-mean Gaussian random variables with the same 

variances.    

In view of the above said, we can formulate the following conclusion.  

The algorithm for calculation of optimal linear estimates in a linear problem is 

fully determined by the first two moments for the composite vector 

 
т

т т,z x v and it does not depend on the PDF ( , )p x v . In other words, the linear 

optimal algorithm in a linear problem does not depend on the PDF of the vector 

being estimated and measurement errors. Note that in a nonlinear problem, this 

statement is not valid. 

We should emphasize that the estimation problem of vector x using measurements y, 
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considered in the framework of the Bayesian approach, is closely related to the so-

called regression problem. The essence of this problem is to describe the properties of 

one random vector x at a fixed value of another vector y, statistically dependent on x. 

From the mathematical point of view, this problem reduces to obtaining the best 

approximation, in some sense, of vector x using function ( )x y  in the presence of a joint 

PDF ( , )p x y . 

If the regression problem is formulated as the problem of finding function ( )x y  that 

minimizes the Bayesian criterion BJ , then it is obvious that its solution will coincide 

with the estimation problem solution and will be defined by formula (4.5). The most 

popular is the linear regression problem, i.e., one in which the finding of ( )x y  
minimizing 

BJ  is carried out in the class of functions linearly dependent on the vector 

y. To solve this problem, it will suffice to have information only about the first two 

moments of the composite vector, including x and y. It is clear that in this case the 

solution of the linear regression problem will be determined by formula (4.25). The 

difference between the estimation problem and the regression one lies only in the fact 

that the regression problem does not use the functional dependence (1.2). In this sense, 

the estimation problem under consideration can be interpreted as a special case of the 

regression problem in the presence of the functional dependence (1.2). 

4.6. Improvement of estimation accuracy by using a nonlinear algorithm  

Generally, the estimation accuracy provided by nonlinear algorithms can be 

improved as compared with the accuracy of optimal linear algorithms. Let us illustrate 

this with Example 4.2 considered in the previous section. With this aim, we obtain an 

optimal estimate for this example. First, let us write the formulas for 

( , ) ( / ) ( )p x y p y x p x  and ( )yp y . In view of the specific character of the problem, 

these functions can be represented in the form: 

 

 

1
( / ), 0, ,

( , )

0 , 0, ,

p y x x b
bp x y

x b




 
 

 

0

1
( ) ( / ) ( ) ( / )

b

p y p y x p x dx p y x dx
b

   . 

To obtain values of ( )p y  at fixed values of measurements, we need to know 

( / )p y x . We can write:  

1

( / ) ( )
m

v i

i

p y x p y x


  , 
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where   

1
, [ , ]

( / ) ( )

0, [ , ]

i i

i v i

x y a y
p y x p y x a

x y a y


 

   
  

, 1.i m , 

and hence, 

*, ,
( / )

0, .

c x
p y x

x


 


     (4.27) 

In this formula, *c  is a certain constant, and domain   is a segment formed by the 

intersection of all intervals [ , ]i iy a y , 1.i m , i.e.,  

1 2 max min

1

[ , ] [ , ] [ , ]
m

i i

l

y a y d d y a y


      .  (4.28) 

The bounds of this interval 1 maxd y a   and 2 mind y  are determined by the 

maximum maxy  and minimum miny  measured values. Taking into account (4.27), (4.28) 

and the fact that  

0

0

( / )

ˆ( )

( / )

b

b

xp y x dx

x y

p y x dx






, 

for the optimal Bayesian estimate we can write:  
22

1 1

2

2 1

2 1 2 1

1 1 ( )
ˆ( ) ,

2 2

cc

c c

x c c
x y xdx

c c c c

  
   
  
 

    (4.29) 

where 1 2[ , ]c c  is a segment representing an intersection of the prior domain [0, ]b  and 

domain , so that 

 1 1max 0,c d ;   2 2min ,c b d . 

It is important to emphasize that estimate (4.29) is nonlinearly dependent on 

measurements. Formula (4.29) is a consequence of the fact that the posterior PDF in 

this problem corresponds to the uniform distribution on the interval 1 2[ , ]c c .  

In view of the above said, it is easy to show that 
2

2 2 1

0

( )
ˆ( ) ( ( )) ( / )

12

b
c c

P y x x y p x y dx


   .          (4.30) 

In particular, if 1 maxd y a   and 2 mind y  do not go beyond the prior domain [0, ]b , 

then, for the optimal estimate and the conditional variance, the following formula is 

valid: 
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min maxˆ( )
2 2

y y a
x y


  ;          (4.31) 

2
2 min max

0

( )
ˆ( ) ( ( )) ( / )

12

b
y a y

P y x x y p x y dx
 

   . 

From (4.31) it actually follows that the optimal estimate is the arithmetic mean of 

the maximum and minimum values of measurements calculated with the account of the 

known mathematic expectation for measurement errors. 

In order to compare the accuracies of the linear and nonlinear estimates, the method 

of statistical tests was used to calculate the values of the RMS errors ( )opt m  and 

( )lin m  characterizing the accuracy of the nonlinear and linear estimates. 

Table 4.1 and Fig. 4.1 show the results obtained at 1, 0.1b a   and different 

number of measurements 1,2.....100m  , with the number of samples being 1000L  . 

Table 4.1 

The values of the RMS errors of the optimal linear and nonlinear estimates  

Number of measurements 10 20 100 

Optimal linear estimate 0.0091 0.0065 0.0029 

Optimal nonlinear estimate  0.0064 0.0034 0.00075 

 

 

Fig. 4.1. RMS values for the optimal linear (1) and nonlinear (2)  

algorithms at different numbers of measurements 
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From the results obtained it follows that the accuracy of the optimal nonlinear 

algorithm is significantly higher than that of the algorithm which is optimal in the class 

of linear algorithms, which is 

consistent with the statement given at 

the beginning of the section. Formally, 

this difference is explained by the fact 

that the form of the posterior PDF 

(Fig. 4.2) is substantially different 

from the Gaussian one.  

We can give the following 

explanation for this difference. Note 

that if the condition 2 2a b m  is 

satisfied, the algorithm for calculation 

of the optimal linear estimate will 

virtually be reduced to finding the 

arithmetic mean for all values of 

/ 2iy a , 1.i m  that belong to the segment min max[ / 2, / 2]y a y a  . At the same 

time, in the optimal nonlinear algorithm, the posterior domain of the values 1 2[ , ]c c  is 

determined by the intersection of the prior domain [0, ]b  and the segment 

min max[ , ]y y a . 

 
 

miny a  

minmax yy   

miny  

maxmin yay   

maxy  

2/max ay   

a  

ay max  

2/max ay   
 

Fig. 4.3. Formation of the posterior domain for the optimal nonlinear estimate  

It is obvious that as the number of measurements increases, the probability of a 

measurement implementation with a minimum (close to zero) and a maximum (close 

toa ) error increases, i.e., miny x , а maxy x a  . Hence, it follows that the length of 
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the segment max miny y  that determines the domain of the values of all measurements 

used in calculating the arithmetic mean, tends to the value a . At the same time, the 

length of the segment min maxy a y  which determines the size of the posterior domain 

for the optimal nonlinear estimate, will tend to zero (Fig. 4.3). 

Exercises  

Exercise 4.1. Write the formulas for the optimal estimate and its variance for the 

problem of estimating a scalar random variable x  using measurements i iy x   , when 

x  and iv , 1.i m  are independent of each other, and 2

0( ) ( ; , )p x N x x  , 

( ) ( ;0, )p v N v R , where R  is a diagonal matrix with elements 2

ir , 1.i m . Simplify the 

obtained formulas for the case when 2 2

ir r , 1.i m  and compare them with the similar 

formulas in the MLSM. 

Exercise 4.2. Find such PDFs for measurement errors and scalar x  being estimated 

in the conditions of Example 4.1 under which the obtained algorithm will be an optimal  

algorithm.  

Exercise 4.3. Show that for the optimal Bayesian estimate (4.5) of zero-mean 

vector x , the following equation is valid: 

 ,
ˆ ˆ( ) ( )T x

x yE x y x y P P  , 

where xP  and P  are prior and posterior unconditional covariance matrices. 

Exercise 4.4. Solving the problem of finding the optimal linear unbiased estimate, 

as it is formulated in 4.4, and assuming that vectors x  and y  are zero mean, i.e., 0x   

and 0y  , prove the following statement. 

For the linear estimate ( )x y Ky  of vector x  with the use of measurements (1.21) 

to provide the minimum criterion (4.24), it is necessary and sufficient that matrix linK , 

used in the calculation of this estimate, should satisfy the equation 
lin y xyK P P .      (1) 

Exercise 4.5. Write the formulas for the optimal, in the RMS sense, linear estimate 

and the corresponding posterior error covariance matrix, assuming that we have 

measurement y Hx v   and the linear estimation problem is to be solved under the 

conditions where the vector of parameters x  to be estimated and the measurement error 

vector v  are assumed random correlated vectors with zero expectations for them, and 

the covariance matrix is given in the form: 

,

т

x

x v P B
P

B R

 
  
 

. 

Of essential importance here is the fact that the type of the PDF is not assumed to 

be Gaussian; moreover, it is considered that the type of this density is not specified. 

Exercise 4.6. Obtain the formula for the optimal, in the RMS sense, linear estimate 
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and the corresponding covariance matrix, assuming that the previous exercise 4.5 is to 

be solved in the conditions where there are no measurement errors, and 0B  . 

Exercise 4.7. Obtain the formula for the optimal, in the RMS sense, linear estimate 

and the corresponding covariance matrix, assuming that exercise 4.5 is to be solved at 

0B  , and measurements are given in the form: y Hx v u   , where u  is the known 

m-dimensional vector. 

Test questions 

1. What is posterior PDF and how can we find it in the estimation problem? 

2. Formulate the problem statement for obtaining the optimal, in the RMS sense, 

estimate of vector x  using measurements ( )y s x v   without imposing restrictions 

on the class of the estimates used; give its general solution.  

3. Call the properties of optimal estimates.  

4. How is the problem statement for obtaining the optimal in the RMS sense, linear 

estimate of vector x , using measurements у , modified as compared with the 

problem statement that does not impose any restrictions on the class of the estimates 

used? 

5. Give the necessary and sufficient conditions of optimality for the linear estimate of 

vector x  using measurements y . Describe the algorithm for calculating the optimal 

linear estimate.  

6. Under what assumptions will the optimal, in the RMS sense, estimate of vector x  

using measurements vHxy   coincide with the estimates obtained with the use of 

the modified LSM? 

7. Give an example of a problem in which the estimation error variance for the optimal 

algorithm is significantly lower than that for the linear optimal algorithm? 
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5. Algorithms of integrated measurement processing  

This section discusses the problem of integrated processing of measurements and 

design of various algorithms used to solve this problem. 

The problem of integrated (joint) processing of measurements consists in obtaining 

the estimate of the sought vector using measurements from all available sensors and 

systems. 

On the one hand, the purpose of this section is to show that the problem of 

integrated processing of measurements is essentially an ordinary estimation problem. 

On the other hand, we are going to discuss the special features of the algorithms used to 

solve the problem of integrated measurement processing depending on the level of the 

available a priori information about the stochastic properties of unknown parameters 

and measurement errors. 

5.1. Statement of the integrated measurement processing problem 

The simplest case where we deal with the problem of integrated measurement 

processing is finding an n -dimensional vector of unknown parameters x  by data from 

two sensors (systems) whose outputs can be presented as  

1 1

2 2

;

,

y x v

y x v

 

 
 

where 1v , 2v  are the errors of the sensors. Both sensors or systems are supposed to 

measure the same parameters. For example, various navigation systems, such as inertial 

and satellite systems, generate position and velocity of a vehicle, etc.  

It can be easily noted that this problem is a particular case of problem (1.10), (1.11), 

i.e., estimation of x  from measurements y Hx v  . It can be proved by setting 

т т т т т т

1 2 1 2( ) ( )y y ,y ,v ν ,ν  , 
n n

n n

E
H

E





 
  
 

, where n nE   is an n n  unity matrix.  

Thus, the problem of integrated processing of measurements from two sensors 

(systems) is reduced to the standard statement of the linear estimation problem. 

Consider another example of the integrated processing problem. Suppose that x  

should be estimated from two sets of measurements:  

1 1,y x v  ; 

2 2( )y s x v  , 

where 2y  is an l -dimensional vector; т

1( ) ( ( ),.... ( ))ls x s x s x  is an l-dimensional 

nonlinear vector-function depending on n -dimensional unknown vector x ; 1v  and 2v  
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are the vectors of the corresponding dimensions.  

Measurement 1y  provides information directly on all components of the sought 

vector, and measurement 2y  provides some function of this vector x . It should be noted 

that the dimensionality of measurement y2 may not coincide with the dimensionality of 

the estimated vector and can be arbitrary.  

Introducing l n -dimensional vector-function ( )s x  and vector v   

( )
( )

x
s x

s x

 
  
 

, 
1

2

v
v

v

 
  
 

, 

we come to the nonlinear estimation problem (1.20), (1.21) formulated in 1.7, i.e., to 

estimation of x  from measurements ( )y s x v  .  

Thus, the problem of integrated measurement processing in this case can be also 

treated as a standard problem but already nonlinear estimation problem. As before, the 

attention will be focused on linear problems or problems that can be reduced to linear 

ones. After linearization of function s(x), for example, at the point 0lx  , the problem 

under consideration can be reduced to a linear estimation problem, namely, estimation 

of x  from y Hx v  . Indeed, it can be easily done if we write:  

1 1

2 2 2

;

(0) ,

y x v

y y s Hx v

 

   
 

where 
т

0

( )

x

ds x
H

dx 

  is an l n  matrix, and H  is taken to be a ( )l n n   matrix, i.e.,  

т

0

( )

n n

x

E

H ds x

dx





 
 
 
  

. 

This type of problem is encountered, for example, in aiding (correction) of a 

navigation system using some aiding measurements. In particular, distances to beacons 

(landmarks) can be used as aiding data. For example, assume that we have 

measurements 1 1y x v   from a navigation system and aiding distance measurements 

to the beacon ( 1l  ), where т

1 2( , )x x x  is a two-dimensional vehicle position vector, 
(1) (2) т

1 1 1( , )y y y , (1) (2) т

1 1 1( , )v v v . Then it is possible to write 
(1) (1)

1 1 1y x v  ; 
(2) (2)

1 2 1y x v  ; 

   
2 2

2 1 1 2 2 2

o oy x x x x v     , 

where т

1 2( , )о o ox x x  are the known beacon coordinates.  

After linearizing function ( )s x  at the point 0lx  , the aiding measurement 2y  can 

be represented as  
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2 2 2 1 2 2( ) (0) sin cosly x y s Hx v x B x B v        . 

Thus, introducing (1) (2) т

1 1 2( , , )v v v v , 

1 0

0 1

sin cos

H

B B

 
 


 
   

, all measurements 

(1) (2) т

1 1 2( , , )y y y y  can be written as y Hx v  . Here, B is the angle determining the 

orientation of the unit vector (sin ,cos )TB B  with respect to 2OX . 

In the most general case, the problem of integrated processing in the linear 

statement can be formulated as follows. 

Estimate the n-dimensional vector x  using the set of m  vector measurements  

,j j jy H x v   1.j m , 

where 
jH  are 

jm n  matrices; 
jv  are the 

jm -dimensional vectors of measurement 

errors; j  is the measurement number.  

Introducing m n

  matrix H , where 

1

m
j

j

m m



 , composite vectors of 

measurements y  and their errors v  in the form  

1

2

m

H

H
H

H

 
 
 
 
 
 

, 

1

2

m

y

y
y

y

 
 
 
 
 
 

, 

1

2

m

v

v
v

v

 
 
 
 
 
 

, 

we note that in this general case the problem is reduced to a usual statement: estimate x  

from y Hx v  . 

The next sections discuss different variants of designing integrated processing 

algorithms.  

5.2. Complementary filter. Invariant processing scheme 

If data from two or more sensors or measuring devices are available, the 

complementary filter is often used. Such a filter is used in the conditions where a 

priori information on vector x  is absent, but we have only a priori statistical 

information on the sensor errors. [4]. The essence of the complementary filter is to 

use differential measurements Δy that do not contain the sought vector x to obtain an 

estimate of the errors of one sensor v1 against the background of the errors of the other 

sensor v2 (Fig. 5.1). 
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Sensor 2

Sensor 1

22  xy

11  xy

- Filter -

21  y
1̂ x̂

A priori information about

sensor errors

2y

 

Fig. 5.1. Complementary filter or the invariant scheme of an integrated 

 processing algorithm 

Let us illustrate the use of this filter and analyze the properties of the obtained 

estimation errors by the example of the simplest integrated processing problem 

considered above. Assume that we have two measurements  

1 1

2 2

;

,

y x v

y x v

 

 
 

and the sensor errors 1v , 2v  are zero-mean vectors noncorrelated with each other with 

the known covariance matrices 0, 1,2jR j  .  

In order to design the complementary filter, let us generate the difference 

measurements  

1 2 1 2,y y y v v          (5.1) 

which exclude the sought vector x  and use y  to estimate the errors of one sensor 

against the background of the errors of the other sensor. To be definite, suppose that 1v  

is the estimated vector, and 2v  is the measurement error vector. 

The available data on mathematical expectations and covariance matrices of 1v , 2v  

make it possible, using the results of section 4.5, to obtain for 1v , linear RMS optimal 

estimate and the corresponding covariance matrix, which can be easily shown to be 

defined as 

 
1

1 1 1

1 1 2 2 1 2
ˆ ( );v R R R y y


         (5.2) 

 1
1

1 1

1 2 .vP R R


        (5.3) 

The estimate of the sought vector x  can be calculated in the form  

   
1

1 1 1 1 1

1 1 1 1 1 2 1 2 1 2 1 2
ˆ ˆ ˆ ( )x y v x v v R R R R y R y y


              

 
. 

The formula for estimate x̂  is easy to transform as: 



 
 

80 

 

 
1

1 1 1 1

1 2 1 1 2 2
ˆ )x R R R y R y


        .        (5.4) 

Obviously, the estimate error 1 1
ˆ ˆx x v v      does not depend on the vector x 

being estimated, and thus, it is invariant to x, which is why the processing scheme 

corresponding to the complementary filter is called invariant. The corresponding 

algorithms are also referred to as invariant algorithms (filters). Sometimes, estimates 

are said to be invariant. The error covariance matrix for the obtained estimate (5.4) 

coincides with matrix (5.3) for estimate
 1v . 

Write the measurements
 1y , 2y  as y Hx v  , where 

т т т т т т

1 2 1 2( ) ( )y y ,y ,v ν ,ν  ,
n

n

E
H

E

 
  
 

 and 1

2

0

0

v R
R

R

 
  
 

. The GLSM described in 

chapter 2 can be used to solve this estimation problem. Assume that in criterion (2.13) 
1Q R , it is easy to verify that estimate (5.4) is exactly the same as the estimate 

derived using the GLSM algorithm (Exercise 5.1).  

It follows from the above that in this case the complementary filter (invariant 

scheme) can be treated as a specially organized GLSM estimation procedure. Its 

distinctive feature is that any assumptions about stochastic properties on the sought 

vector x  need not be made in designing the estimation algorithm.  

It should be noted that if we additionally assume that 1v  and 2v  are Gaussian, 

estimate (5.2) for error 1v  of the first sensor becomes the optimal Bayesian estimate, 

and estimate (5.4) coincides with the maximum likelihood estimate, i.e., the estimate 

derived using the invariant algorithm coincides with the maximum likelihood estimate. 

In these conditions, we can say that the complementary filter (invariant scheme) 

provides maximum likelihood estimates whose error also does not depend on the vector 

of the parameters being estimated.  

The technique described above can be also applied to process measurements given 

in the form 

1 1y x v  ;      (5.5) 

2 2y Hx v  .      (5.6) 

To get the complementary filter (invariant scheme), difference measurement should 

be generated:  

2 1 1 2y y Hy Hv v      . 

Then, assuming errors 1v , 2v  to be noncorrelated zero-mean vectors with the known 

covariance matrices 0, 1,2jR j  , within the Bayesian  approach, the linear optimal 

estimate of vector 1v  and the corresponding covariance matrix of its estimation error 

can be easily calculated using measurements 2 1y y Hy   : 

 
1

1 т 1 т 1

1 1 2 2 2 1
ˆ ( )v R H R H H R y Hy


     , 
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 1
1

1 т 1

1 2 .vP R H R H


    

Subtracting the derived error estimate 1̂v  of the first sensor from its outputs 1y , we 

get the following for the estimate of x :  

 
1

1 т 1 т 1

1 1 2 2 2 1
ˆ ( )x y R H R H H R y Hy


      .        (5.7) 

It can be easily proven (problem 5.2) that in this case as well, the estimate and its 

error covariance matrix coincide with the GLSM or maximum likelihood estimates if 

measurement errors are assumed Gaussian.  

It is important to emphasize that in order to design an invariant scheme, it would be 

sufficient to have at least one measurement of type y x v   among the measurements 

used, which provides direct measurement of the sought vector x . 

5.3. Non-invariant processing scheme  

It should be noted that the invariant scheme described in 5.2 provides the Bayesian 

estimates, optimal in RMS sense, using difference measurements y  only for the 

sensor errors and not for the sought parameters. To derive the optimal Bayesian 

estimate of the sought vector x , we should make an assumption of its random nature. 

Besides, it is advisable to consider the integrated measurement processing problem as 

the traditional estimation problem for vector x by measurements  y=Hx+v  and use the 

Bayesian algorithms described in sections 4.4. or 4.5 for its solution. Since the error of 

optimal Bayesian estimate ˆ( ) ( )( )x x y E KH x x Kv      depends not only on 

measurement errors but also on the sought parameter, the algorithm used to find this 

estimate is sometimes referred to as a non-invariant algorithm. The algorithm scheme 

is shown in Fig. 5.2. Here, unlike the previous case, both measurements are equally 

processed in the algorithm using a priori data both on the measurement errors and the 

vector being estimated.  

Sensor 1

Sensor 2

Filter
x̂

A priori information on

vector x and sensor errors

22  xy

11  xy

 

Fig. 5.2. Non-invariant (Bayesian ) scheme of the integrated processing algorithm  

The principal difference between the invariant and non-invariant algorithms is that 

in the first case, a priori information about stochastic properties only on measurement 

errors is used, whereas in the second case, such information on the sought parameters 
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vector is additionally applied. 

The advantage of the invariant scheme is that no assumptions about stochastic 

properties should be made on the vector to be estimated. In some cases, it is justified 

since providing adequate description for x  is often complicated. However, it should be 

remembered that if information on the sought parameters of the vector is available, its 

non-use can significantly degrade the accuracy.  

Consider an example illustrating a possible loss in accuracy in the case that a priori 

information about the properties of the estimated vector is not taken into account.  

 Example 5.1. Suppose that an aircraft height is measured using a satellite 

navigation system (SNS) receiver and barometric altimeter data at times it  ( 1.i m ). 

Write these measurements as  
SNS SNS

i i iy h v  , 1.i m ;       (5.8) 

BA BA

i i iy h v  , 1.i m .        (5.9) 

Introduce vectors т

1,( .... )mx h h , т

1 2( ,... )SNS SNS SNS SNS

mv v v v , т

1 2( ,... )BA BA BA BA

mv v v v  and 

matrix mH E , then measurements (5.8), (5.9) can be represented as y Hx v  .  

Assume for the beginning that a priori information on vector x  is absent, and we 

have only a priori statistical information on the sensor errors; they are zero-mean 

Gaussian noncorrelated errors, and for each of them, the covariance matrices are set as 
2

j j mR r E , ,j SNS BA . Let us solve the problem under these assumptions using a 

complementary algorithm and difference measurements 
SNS BA SNS BA

i i i i iy y y v v     . 

Using (4.13) it is easily to derive the formula for the estimate (exercise 5.3) and 

show that the covariance matrix for vector x  is diagonal, and with 2

jr r , ,j SNS BA , 

the equality 
2

2
m

r
P E  is true for it. Hence, it follows that the height error variance at 

each discrete moment is only decreased twofold.  

Now, assume that we have also a priori stochastic information on vector x  and take 

it into account in estimating x . In particular, suppose that the height is constant over 

the observation interval and it is a zero-mean Gaussian random variable with variance 
2

0 . In this case, the a priori covariance for vector x is 2

0

x

m mP I  , where m mI   is the 

matrix of ones. Using the materials of section 4.4, we can derive the Bayesian estimate 

and the corresponding covariance matrix (exercise 5.4). It should be noted that since 
2

0

x

m mP I   is singular, (4.16) cannot be used to calculate the covariance matrix, so we 

use (4.15). With account for the specific matrix  T ,m mH E E , we obtain  

  mmmmmmmmm IErIIIP 



  2

1

2
2

22
2
02

4
0

2
0 . 

Using the relationship following from (A1.59), it is possible to write: 
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 

















 



 mmmmmm I
rm

E
r

ErI 2222
0

2
0

22

1

2
2

22
2
0

2

1
. 

It can be shown that the diagonal elements of the covariance matrix for the vector being 

estimated, which determine the height estimation accuracy, are given by  
2 2

2 0

2 2

02
h

r

m r








.    (5.10) 

The meaning of this formula is quite clear as with the assumptions made, we actually 

solve the problem of estimating the scalar value from 2m  measurements with 

independent errors with variances 2r . 

Neglecting the contribution of a priori information about random vector x and taking 

2 2

0r  , we derived that height error variance decreases by 2 m  times, i.e., 
2

2

2
h

r

m
  , 

which is significantly greater than in the previous case.    

5.4. Centralized and decentralized data processing schemes  

Consider the problem of integrated processing of measurements formulated above: 

,j j jy H x v   1.j i ,     (5.11) 

where jH  are 
jm n  matrices; 

jv  are 
jm -dimensional error vectors; j  is the sensor 

number.  

Introduce composite vectors of measurements iY  and their errors iV  with dimensions 

m =

1

i

j

j

m m



 , and mn matrix iH :  

1

2

i

i

H

H

H

 
 
 
 
 
 

H , 

1

2

i

i

y

y
Y

y

 
 
 
 
 
 

1

2

i

i

v

v
V

v

 
 
 
 
 
 

. 

Then measurements (5.11) can be written as  

i i iY x V H . 

Assume x  and 
jv  to be random zero-mean vectors with preset covariance matrices 

xP , 
jR , 1.j i . For simplicity, assume that all these vectors are noncorrelated with each 

other. Then, covariance matrix iR  for the composite vector iV  is given by  
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1

2

0 0 0

0 0 0

0 0 0

0 0 0

i

i

R

R

R

 
 
 
 
 
 

R . 

With the assumptions made, we can use the optimal Bayesian algorithms for the 

solution of this problem and easily derive the following formulas for the optimal, in the 

RMS sense, estimate and its covariance matrix:  
т 1ˆ ( )i i i i i ix Y P Y H R           (5.12) 

1

1 т 1

1

( )
i

x

i j j j

j

P P H R H



 



 
  
 

 .        (5.13) 

Hence,  
1

1 т 1 т 1

1 1

ˆ ( ) ( )
i i

x

i i j j j j j j

j j

x Y P H R H H R y



  

 

   
    
   

  .         (5.14) 

Note that (5.12) is a linear optimal estimate in the RMS sense. This means that the 

estimate minimizes the RMS criterion in a class of algorithms linearly dependent on 

measurements. This allows us, in designing algorithms, to use information only about 

the mathematical expectations and the covariance matrices of the corresponding 

random vectors. 

To get the optimal estimate (5.12), two processing schemes can be applied to the 

whole set of measurements. The first one is called the centralized processing scheme 

(Fig. 5.3). The name is explained by the fact that all computations are performed 

centrally within one algorithm.  
 

Sensor 1

Sensor 2

(i-1)-th

sensor

i-th sensor

Measurement

processing

algorithm
T

ii yyY ),...( 1

iii xHy 

111  xHy

ii Px ,ˆ

 

Fig. 5.3. Centralized optimal estimation scheme 

Another scheme can be used to calculate the estimate.  
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Suppose that inequality  
1 т 1( )x

j j jP H R H  , 1.j i                      (5.15) 

is true, meaning that a priori information on vector x  can be neglected. Introduce 

partial optimal estimates calculated using only partial j -th measurements,  

 ( ) ( ) т 1ˆ j j

j j jx P H R y ,              (5.16) 

where          ( ) т 1 1( )j

j j jP H R H  ,                        (5.17) 

Taking into account (5.14) (5.16), it can be easily found that the formula for the 

linear optimal estimate calculated by using the whole measurement set can be reduced 

to  

   
1

1 1
( ) ( ) ( )

1 1

ˆ ˆ
i i

j j j

i

j j

x P P x



 

 

   
    
   
  .                  (5.18) 

In other words, the optimal error in using the whole measurement set is a weighted 

sum of partial optimal estimates. 

Assumption (5.15) need not be made if the partial estimates are calculated using  
1

( ) 1 т 11
( )j x

j j jP P H R H
i



  
  
 

           (5.19) 

instead of (5.17). 

The described scheme is presented in Fig. 5.4. It is called the decentralized 

scheme because partial estimates and their covariance matrices can be calculated in 

separate algorithms, and the sought estimate is found by weighting these partial 

estimates. 

Sensor 1

i-th sensor

(i-1)-th

sensor

Sensor 2

Partial

estimation

algorithm

Partial

estimation

algorithm

Partial

estimation

algorithm

Partial

estimation

algorithm Weighting

algorithm of

partial

estimates

111  xHy

iii xHy 

11
,ˆ Px

ii Px ,ˆ

ii
Px ,ˆ

 

Fig. 5.4. Decentralized processing scheme using the results of partial algorithms 
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Note that if we additionally assume that x  and 
jv  are Gaussian vectors, then the 

above estimates are optimal Bayesian estimates minimizing the RMS criterion without 

any restrictions on the class of the algorithms used. 

5.5. Recursion processing scheme 

The recursion scheme is the most popular one in navigation information processing. 

The idea is that the sought estimate is not obtained by processing the whole 

measurement set; it is generated by successive processing of each available 

measurement and the results derived at the previous processing step. These algorithms 

are referred to as recursive algorithms.  

The idea of the algorithm design can be explained by a simple example of estimating 

an unknown scalar from scalar measurements  

i iy x v  . 

If the measurement errors are assumed to be noncorrelated random variables with 

the same variances, the GLSM estimate can be determined as an arithmetic mean of the 

accumulated measurements, i.e., 
1

1
ˆ

i

i j

j

x y
i 

  . Writing the chain of equalities 

1

1

1 1 1

1

1 1 1
ˆ ˆ ˆ ˆ( )

i

i ji
j i

i j i i i i

j

y y
y i

x y x x y x
i i i i i





  






      


 , 

we obtain  

1 1

1
ˆ ˆ ˆ( )i i i ix x y x

i
    .              (5.20) 

Similarly, obtain the recursive algorithm for the problem (5.11) considered in the 

previous section, taking that the measurements are successively input to the processing 

scheme. Introduce the estimate and its error covariance matrix for the processing of the 

( 1i  )-th measurement:  
1

1 1
1 т 1 т 1

1 1

1 1

ˆ ( ) ( )
i i

x

i i j j j j j j

j j

x Y P H R H H R y


 

  

 

 

   
    
   

  ,              (5.21) 

1
1

1 т 1

1

1

( )
i

x

i j j j

j

P P H R H




 





 
  
 

 .           (5.22) 

Then, the following chain of equalities can be written:  
1

т 1 т 1 т 1

1 1

ˆ ( )
i i

i i i j j j i i i i j j j

j j

x Y P H R y P H R y H R y


  

 

   
      

   
   
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 
1

т 1 1 т 1 т 1 1

1 1 1 1 1

1

ˆ ( )
i

i i i i i i j j j i i i i i i i

j

P H R y P P H R y P H R y P x Y


    

    



  
       

  


   т 1 1 т 1

1 1 1 1 1 1 1
ˆ ˆ ˆ( ) ( ) ( )i i i i i i i i i i i i i i i iP H R y P x Y PH R H x Y H x Y  

          

 т 1 1 т 1

1 1 1 1 1
ˆ ˆ( ( )) ( )i i i i i i i i i i i i i iPH R y H x Y P P H R H x Y  

          

т 1

1 1 1 1
ˆ ˆ( ) ( ( ))i i i i i i i i ix Y PH R y H x Y

      ; 
1

1 т 1

1

( )
i

x

i j j j

j

P P H R H



 



 
   
 

  

 
1

1
1

1 т 1 1 1 т 1

1

1

( )
i

x T

j j j i i i i i i i

j

P H R H H R H P H R H





    





 
     
 

 , 

from which, obviously, the sought recursive relationships follow: 
т 1

1 1 1 1
ˆ ˆ ˆ( ) ( ) ( ( ))i i i i i i i i i i ix Y x Y PH R y H x Y

      ;          (5.23) 

 
1

1 т 1

1i i i i iP P H R H


 

  .    (5.24) 

It should be emphasized that these relationships have recursive nature both for the 

estimate and for the covariance matrix. With a matrix  
т 1

i i i iK PH R           (5.25) 

introduced, the estimate can be given by  

1 1 1 1
ˆ ˆ ˆ( ) ( ( ))i i i i i i i ix x y K y H x y      .          (5.26) 

With account for (4.24), (4.26), error covariance matrix iP  and matrix iK  can be 

calculated as  

т т 1

1 1 1 1 1( ) ( )i i i i i i i i i i i i iP P P H H P H R H P E K H P

         ,  (5.27) 

т т 1

1 1( )i i i i i i iK P H H P H R 

   .        (5.28) 

As will be shown in further sections, actually, these are Kalman filter formulas for 

the problem of constant vector estimation studied here.  

Exercises  

Exercise 5.1. Solve the vector estimation problem having measurements 

1 1

2 2

;

,

y x v

y x v

 

 
 

using the GLSM, assuming that in criterion (2.13), 
1

1

2

2

0

0

R
Q

R





 
  
 

. 

Assuming that the measurement errors are noncorrelated with each other centered 
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zero-mean vectors with covariance matrices 1R  and 
2R , using (2.29), write the 

covariance matrix for the errors of the obtained estimate. 

Compare the derived equations with the results corresponding to the 

complementary filter for the problem under consideration. 

Exercise 5.2. Let there be an n-dimensional unknown vector x to be estimated from 

measurements (5.5), (5.6) written as  

1 1y x v  ; 

2 2y Hx v  , 

where 2y  is an l-dimensional vector; H  is an l n  matrix. Use the GLSM to derive the 

x estimate with 1Q R .  

Assuming additionally that 1v  and 2v  are noncorrelated zero-mean vectors with 

known covariance matrices 0, 1,2jR j  , and R  is the covariance matrix of vector 

1

2

v

v

 
 
 

, derive the formula for the estimation error covariance matrix using (2.29). Make 

sure that the obtained estimates coincide with the estimates derived using a 

complementary filter (invariant scheme). Under which conditions will this estimate 

agree with the maximum likelihood estimate? 

Exercise 5.3. For Example 5.1 obtain the formula for the estimate of vector x and 

the corresponding covariance matrix when the measurements (5.8.), (5.9) and a 

complementary filter are used. 

Exercise 5.4. For Example 5.1 obtain the formula for the estimate of vector x and 

the corresponding covariance matrix when measurements (5.8.), (5.9) and the optimal 

Bayesian algorithm are used. 

Exercise 5.5. The aircraft height measurements are taken at times ( 1)it t i   , 

1.i m  with equal intervals t  using a satellite receiver and a barometric altimeter. The 

measurement errors are independent random values with variances 2

SNSr  и 2

BAr . The 

vehicle height is described as a first-order polynomial 0i ih x Vt  . 

Formulate the problem of integrated processing of these measurements to derive 

optimal estimates of vector т т

1 2 0( , ) ( , )x x x x V   assuming that its components are 

Gaussian random values with mathematical expectation т

0( , 0)x  and variances 2

0 , 2

V , 

independent of each other and of measurement errors. Write the formula for the error 

covariance matrix for optimal estimates.  

Exercise 5.6. Consider the problem of aiding the navigation system using distance 

measurements to the beacon, discussed in this section. Suppose that it can be solved in 

a linear statement; thus, the measurements can be written as  
(1) (1)

1 1 1y x v  ; 
(2) (2)

1 2 1y x v  ; 
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2 2 1 2 2sin cosy Hx v x B x B v      , 

where т

1 2( , )x x x  is a two-dimensional vector setting the vehicle 2D position, and 

angle B sets the orientation of the unit vector т(sin ,cos )B B  with respect to axis 2Ox . 

Let (1) (2) т

1 1 1( , )v v v  be a zero-mean measurement error vector with covariance matrix 

R  that has the parameters of error ellipse , ,a b  , and error 2v  is a zero-mean random 

value noncorrelated with this vector with a variance coinciding with 2b .  

Specify the complementary filter for the position estimation algorithm and make 

sure that this algorithm agrees with the GLSM with 1Q R .  

Find angle B such that the distance RMS (DRMS) error is minimum. 

Exercise 5.7. Assume that we have two sensors with outputs  

1 1

2 2

;

,

y x v

y x v

 

 
 

where т

1 2( , )x x x  is a two-dimensional vector setting the vehicle 2D position. Two-

dimensional vectors are assumed to be noncorrelated zero-mean random vectors with 

covariance matrices 2 0R  .  

Obtain the formula for the estimate error covariance matrix corresponding to the 

GLSM assuming that Q  is a block-diagonal matrix with blocks 
1

1R  and 
2

1R .  

Assuming that dimensions of minor and major semiaxes of these ellipse matrices 

are the same, i.e., 1 2a a a  , and 1 2b b b  , determine which mutual orientation of 

these ellipses provides minimum (maximum) DRMS error. 

Test questions  

1. Formulate the problem of integrated measurement processing and illustrate it by 

examples. What is a complementary filter?  

2. Explain the idea of the invariant algorithm by the example of processing data 

from two sensors. Explain the name of the algorithm. Provide the measurement 

processing scheme.  

3. How is the algorithm of the complementary filter related to the GLSM and the 

maximum likelihood algorithms? 

4. Outline the specific feature of the non-invariant algorithm. Provide the 

measurement processing scheme. Discuss its advantages and disadvantages as 

compared with the complementary filter. 

5. Explain the ideas of the centralized and decentralized schemes for processing data 

from several sensors. 

6. Explain how recursive estimation algorithms can be derived in estimating the 

vector of constant parameters. 
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6. Random sequences 

This chapter provides basic definitions and properties of discrete random processes, 

as well as methods used to describe them. These processes are often referred to as 

sequences or discrete time series. Hereinafter, we will use the term “sequence”. 

6.1. Definition of a random sequence and its description 

Consider a sequence of scalar values 1 2 3, , ,..... ,...ix x x x . A sequence is called 

random if each ix  is a random variable. Figure 6.1 shows a sample of a random 

sequence. If the subscript corresponds to time it , we deal with a temporal random 

sequence. Further, we consider a temporal random sequence and the subscript is treated 

as discrete time.  

 

Fig. 6.1. A set of samples of random sequences 

Assume that ix , 1,2..i  is a random sequence. If we fix two arbitrary time points, 

for example, it  and 
jt , we can form a two-dimensional random vector whose 

components are two random variables ix  and 
jx . Joint statistical properties of this 

vector can be determined with the use of either a cumulative probability density (CDF) 

or a probability density function (PDF). It is also possible to introduce similar functions 

for a vector comprising a greater number of variables of the sequence. It is clear that 

the description of a random sequence will be fully specified if we can determine PDF 

1 2( , ..... )ip x x x  for any finite set of variables in a sequence at arbitrary time points 

1 2, ..... it t t .  

We can also introduce some characteristics of a random sequence, the most 
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important of which are the mathematical expectation and the variance of the 

random sequence. Knowing PDF ( )ip x  for an arbitrary i -th time point, these 

characteristics can be defined as: 

  ( )i i i i ix E x x p x dx   ;         (6.1) 

    
2 22 ( )i i i i i i iE x x x x p x dx     .            (6.2) 

If joint PDF ( , )i jp x x  is assumed known for the sequence values at arbitrary time 

points, it is possible to introduce another very important characteristic: 

 ( , ) ( )( ) ( )( ) ( , )i i j j i i j j i j i jk i j E x x x x x x x x p x x dx dx       ,     (6.3) 

which is called the correlation function of a random sequence. 

A similar characteristic of two different sequences is called a cross-correlation 

function. Function (6.3) sets the value of the correlation coefficient between random 

variables, corresponding to the i-th and j -th time points. By virtue of (4.1), the 

following equation  
( , ) ( / ) ( )i j i j jp x x p x x p x  

is true. Here, ( / )i jp x x  is a conditional PDF for the variable of the sequence at the i -th 

time under the condition that the value is fixed at the j -th time. 

Since at i j , ( / ) ( )i j i jp x x x x  , i.e., the transition density is a delta-function, it 

is clear that 
2( , ) ik i i  ,            (6.4) 

i.e., at a fixed time, the sequence variance coincides with the value of the correlation 

function at coincident values of the argument i j . 

Random sequences may be not only scalar, but vector as well. The term a random 

n-dimensional vector sequence is used in reference to a sequence whose variables are 

n-dimensional random vectors.  

Assume that ix , 1,2..i   is an n-dimensional random sequence. Note that hereinafter, 

we use the subscript to indicate the discrete time point which corresponds to the vector 

and its components.  

If we need to simultaneously specify the time point and the number of the 

component, we use double subscripting, i.e., т

1( ,..., )i i inx x x . The first of the 

subscripts indicates the time, while the second, the number of the component. 

All of the definitions given above can be generalized for the case of the vector 

sequence. In particular, the correlation function will be a correlation matrix defined as 
т( , ) ( )( ) ( , )i i j j i j i jk i j x x x x p x x dx dx    .             (6.5) 

For the same values of the argument i j  , the correlation matrix coincides with 

the covariance matrix, i.e., 
т( , ) ( )( ) ( )i i i i i i ik i i P x x x x p x dx    .    (6.6) 
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6.2. Stationary (time-invariant) random sequences. Discrete white noise  

Consider some of the most common types of random sequences.  

An important class of random sequences is stationary random sequences.  

A stationary (time-invariant) sequence, in a broad sense, is a sequence whose 

expectation does not depend on time, whereas the correlation function depends on the 

difference ( )i j : 

ix x ; 

( ) {( )( )}i i j jk i j E x x x x    . 

From this formula it follows that the variance of the stationary sequence does not 

depend on time since 
2 (0)k  . 

If the above-mentioned properties are not met, the sequence is called a 

nonstationary one (time-varying). 

A strictly stationary (time-invariant) sequence is a sequence for which the PDF 

1( ,,..... )kp x x , introduced for any finite set of sequence values, remains unchanged when 

all time points change simultaneously by a value  , i.e., 

1 1( ,,..... ) ( ,,..... )k kp x x p x x   . 

The sequence that has a zero mathematical expectation ( 0x  ) is called a zero-

mean sequence. The samples shown in Fig. 6.1 correspond to a zero-mean sequence. A 

sample of a nonzero-mean random sequence is shown in Fig. 6.2. 

 

Fig. 6.2. Realization of a nonzero-mean random sequence 

It is clear that a random sequence with a nonconstant expectation is nonstationary. 

An example of a nonzero-mean sequence is shown in  

Fig. 6.2. 
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Consider a sequence the variables of which are independent of each other at 

different time points: 

1 2

1

( , ,..... ) ( )
k

k j

j

p x x x p x


 .          (6.7) 

It is easy to understand that the correlation function of this sequence has the 

following form: 

2( , ) i ijk i j   ,            (6.8) 

where 
ij  is the Kronecker symbol.  

A sequence with a correlation function of the form (6.8) is called discrete white 

noise. In other words, discrete white noise is a sequence the variables of which are 

uncorrelated with each other at different time points. If the white noise is zero-mean 

and the variances for all times are identical, the noise is stationary. An example of a 

sample of such noise is shown in Fig. 6.3. 

 

Fig. 6.3. Realization of stationary white noise 

Note that the correlation function characterizes the temporal properties of the 

sequence, defining the level of statistical dependence of its values at different time 

points quantitatively. At the same time, the forms of PDF 1( )p x , 1 2( , )p x x , 1 2 3( , , )p x x x , 

etc. are also of vital importance. For example, we can introduce Gaussian sequences. 

A random sequence is called a Gaussian sequence if PDF 1( ,..... )kp x x  for any set 

of its values is Gaussian at arbitrary time points. In particular, if this requirement is 

fulfilled for white noise, such noise is called discrete Gaussian white noise. It is 

important to emphasize that for Gaussian white noise, formula (6.7) is valid for any set 

of values. Thus, besides (6.8), for any i j , we can be write  

( , ) ( ) ( )i j i jp x x p x p x . 

Gaussian sequences have a very important feature consisting in the fact that if we 
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know expectation (6.1) and correlation function (6.3), it is possible to determine PDF 

1( ,..... )kp x x  for any set of variables of the sequence at arbitrary time points. In other 

words, the knowledge of (6.1) and (6.3) provides a complete description of its statistical 

properties. This is a consequence of the fact that the Gaussian PDF is completely 

determined by the first two time points. 

 Example 6.1. Assume that expectation ix  and correlation function ( )k i  are 

known for a scalar stationary Gaussian sequence. We need to write the PDF 

1 2 3( , , )p x x x  for the vector composed of the values of sequence т

1 2 3( , , )x x x x . 

Since vector т

1 2 3( , , )x x x x  is Gaussian, then, to find the corresponding PDF, it will 

suffice to determine the mathematical expectation т

1 2 3( , , )x x x x  and the covariance 

matrix 

1 2 1 3

2 1 2 3

3 1 2 3

(0) ( ) ( )

( ) (0) ( )

( ) ( ) (0)

x

k k t t k t t

P k t t k k t t

k t t k t t k

  
 

  
 
   

. 

Hence, it follows that 

1 2 3 1 2 3 1 2 3( , , ) ( , , ; , , , )xp x x x N x x x x x x P .    

6.3. Markov sequences 

Consider scalar sequence ix . Fix time points in ascending order and form vector 

1 2, ...... kx x x .. For this vector, we can write a joint PDF 1( ,..... )kp x x , for which (see 

Exercise 6.1), as follows from the formula for multiplication of PDF (4.1), the 

following formula holds true: 

1 1 2 1 1 2 3 1 1( ,..... ) ( / , ,.. ) ( / , ,.. )... ( )k k k k k k kp x x p x x x x p x x x x p x     .    (6.9) 

The question of special interest in studying the temporal properties of sequences is 

how statistical properties of their values at current time kx  depend on the values at 

previous time points 1 2 1, ...... kx x x  . This dependence is determined by the PDF of the 

form 1 1( / ,..., )k kp x x x  . Markov sequences are an important class of random sequences. 

Their distinctive feature is that the statistical properties of their values at a current time 

point only depend on the values at the nearest previous time point. In view of the 

above-said, a Markov sequence can be defined as follows. 

A Markov sequence is a random sequence for which the properties of its variables 

kx  at time point kt  with the known value at the nearest moment 1kt   depend only on the 

sequence values at this moment and do not depend on the sequence values at time 

points 1kt t  , i.е., 

1 2 1 1( / , .... ) ( / )k k k k kp x x x x p x x   .    (6.10) 
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The conditional PDF of the Markov sequence 1( / )k kp x x   is called transition PDF 

or transition density.  

For the Markov sequence, Equation (6.9) can be transformed as follows: 

1 1 1

2

( ,... ) ( ) ( / )
k

k j j

j

p x x p x p x x 



  . 

Thus, specification of the transition PDF and PDF for the initial time 1( )p x  is 

sufficient to find the joint PDF for a set of Markov sequence values at arbitrary time 

points. The above types of random sequences can be easily generalized to the vector 

case. 

6.4. Shaping filter 

In applied problems, an important role is played by sequences specified with 

recursive difference equations of the form 

1i i i i ix x w    , 1,2...i  ,           (6.11) 

where ix  is an n -dimensional vector; iw  is uncorrelated with 0x , zero-mean p - 

dimensional discrete white noise with the correlation function of the form 
т

{ }i j ij iM w w Q ,          (6.12) 

where iQ  is a p p  covariance matrix; i , i  are the known n n  и n p - matrices.  

Vector 0x , which specifies the sequence value at the initial time, is also assumed to 

be random with the known expectation 0x  and covariance matrix 0P . 

It is easy to see that for this sequence, formula (6.10) holds good, i.e., the sequence 

defined by (6.11) is a Markov sequence. If the sequence value at the initial time 0x  and 

white noise iw  are Gaussian 

0 0 0 0( ) ( ; , )p x N x x P ;              (6.13) 

( ) ( ;0, )i i ip w N w Q ,             (6.14) 

then sequence ix  is a Gaussian Markov sequence.  

This is a consequence of the fact that linear transformations of Gaussian vectors 

generate the Gaussian vector, and vectors 0x  and 1,.... iw w  are jointly Gaussian (see 

Exercise 6.2). 

Equation (6.11) is called a shaping filter of a random sequence. This name is 

motivated by the fact that a random sequence is generated as a result of transformation 

of discrete white noise with the use of difference equation (6.11). The input white noise 

iw  is called generating (forcing) noise or system noise. Matrix i  is called a matrix 

of dynamics, matrix i  is a matrix of generating noise, and vector ix  is the state 

vector. 

Taking into account the results of Exercise 6.3, we can see that the time evolution 
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of the expectation and the covariance matrix for sequence (6.11) is determined by the 

recursive relations: 

1i i ix x   ;     (6.15) 

 
т

( )( )i i i i iP M x x x x   т т

1i i i i i iP Q      ,   (6.16) 

allowing the values at the current step to be calculated using the corresponding values 

of the previous step. 

From (6.15) it is obvious that the sequence formed with the use of (6.11) will be 

zero-mean at zero-mean generating noise, when the vector of initial conditions is zero-

mean. 

If necessary, it is easy, using the transformation rules of random vectors and (6.11), 

(6.12), to obtain covariance matrix P
X

i for the composite vector  
т

т т т

0 1, ,...,i iX x x x  

with the sequence values at all previous time points, including the initial variable (see 

Exercise 6.6). 

The advantage of describing the sequence using the shaping filter (6.11) and 

formulas (6.15), (6.16) is the fact that this makes it possible to recursively solve the 

problem of the sequence formation itself, as well as the problem of calculating the 

corresponding statistical characteristics in the form of mathematical expectations and 

covariance matrices. In particular, the diagonal elements of the covariance matrix 

determine variances 2( ) [ , ]i ij P j j  , 1.j n  for each component of the state vector. In 

view of the above-said, shaping filters (6.11) are widely used in solving applied 

problems for simulation of random sequences. For this purpose, it is necessary to form 

random vector 0x , vectors iw , using a random number generator, and then, using 

recursive formula (6.11), obtain the required values of samples formed in the general 

case with the use of the equation 

i i iz H x .      (6.17) 

Further, when considering the examples of how to obtain samples with the use of 

shaping filters, it is assumed that the sensors of Gaussian random variables are used. 

 Example 6.2. A particular case of sequence (6.11) is a sequence in which there is 

no generating noise, i.e., the sequence of the form 

1i i ix x   .     (6.18) 

To determine its expectation, it is necessary to use (6.15). The covariance matrix 

can be calculated if we specify the initial covariance matrix 0P  and equation 
т

1i i i iP P   . 

For unity matrix i , i.e., i E  , we obtain a sequence 

1i ix x  ,      (6.19) 

which is a constant vector with expectation 0x  and covariance matrix 0P .    

 Example 6.3. If i E   and i E   in the equation for the shaping filter (6.11), 
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and there is generating noise, then 

1i i ix x w  .     (6.20) 

It is clear that such a sequence can be represented as a sum of two summands, 

uncorrelated with each other, one of which is a constant random vector, and the other 

one is a sum of uncorrelated vectors of discrete white noise from the first time point to 

the current time, i.e., 

0

1

i

i j

j

x x w


  .        (6.21) 

Since generating noise is considered zero-mean, then 0ix x  for any i . In this case, 

Equation (6.16) is defined concretely as 

1i i iP P Q  . 

If the covariance matrices for the generating noise are constant, i.e., iQ Q , we 

can write: 

0iP P iQ  .          (6.22) 

From the last two equations follows that, despite the fact that the matrices defining 

the shaping filter are time-invariants (constant), the resulting sequence is not stationary 

(time-invariant) because the corresponding covariance matrix increases with time 

increase. 

Sequence (6.20) is called a sequence with uncorrelated increments. This 

definition is due to the fact that for it, increments ( )i jx x  on disjoint time intervals are 

uncorrelated with each other. This is easy to see since on these intervals increments are 

determined by the values of white noise corresponding to different time points. If all 

vectors are Gaussian, such increments are independent of each other, and sequence 

(6.20) is called a Gaussian sequence with independent increments. 

In the scalar case, sequence (6.20) is called a Wiener sequence, also known as a 

random walk.    

 Example 6.4. In section 1.1, we gave an example of how to describe height 

variation during the measurement time in the form:  

0i ih x Vt  , 1.i m ,               (6.23) 

where 0 ,x V  is the initial height and the vertical velocity, which is assumed constant; 

( 1)it i t    are the time points from the beginning of the observation.  

In section 1.1 this model for height variation was introduced using two unknown 

variables. Now we can show that this model can be obtained with the use of the shaping 

filter. Introduce the state vector 
т т

1 2( , ) ( , )i i i ix x x h V  .                (6.24) 
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Since 

1,11

1,22

1

0 1

ii

ii

xx t

xx





     
     
    

, 

where t  is the measurement interval, then at 0i  ,  1,0iH  , 

1

0 1
i

t 
   

 
            (6.25) 

we obtain 

 1,0i i i i iz H x x h   .             (6.26) 

If the initial covariance matrix is given as  
2

0

0 2

0

0 V

P




 
  
 

, 

then using (6.16), it is easy to verify that 

 
22 2 2

0[1,1] ( 1)
ih i VP i t       . 

If we add the generating noise with variance 2

1q  to the first equation 

1,11

1,22

1 1

0 1 0

ii

i

ii

xx t
w

xx





       
       
      

, 

then, instead of (6.23), we obtain the following more general model to describe the 

height variation: 

0

1

i

i i j

j

h x Vt w


   . 

Since the matrix of dynamics is given by (6.25), and the matrix at generating noise 

1

0
i

 
   

 
, in this case, using (6.16), we obtain 

 
22 2 2 2

0[1,1] ( 1) ( 1)
ih i VP i t q i         . 

Figure 6.4 gives some examples of height variation realizations obtained by the 

simulation with the use of the shaping filter and a sensor of random numbers for the 

two cases mentioned above with the following data: time – 100 s, t =1 s, 0 10 m  , 

0.1m/sV  with 1 0q   (a) and 1 1q  m (b). The triple RMS values define 3
ih  and, 

in the Gaussian case, they determine the domain of the most probable values of this 

sequence at each time point. 
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а)       b) 

 

 

Fig. 6.4. Samples of the height variation and the corresponding triple RMS values in the 

absence and in the presence of generating noise    

6.5. Dynamics of the covariance matrix for the Markov sequence  

From (6.16) it follows that in the general case, the covariance matrix of the Markov 

sequence described with the use of the shaping filter varies with time, and in so doing, 

iP  can either increase, i.e., 1i iP P , or decrease: 1i iP P . 

Let us explain it for a scalar example 

1i i ix x w  ,         (6.27) 

where 1   and 2

iQ q  for all i . In this case, after introducing notation 2,i iP    (6.16) 

can be written as  
2 2 2 2

1i i q     . 

If for 2 , 2q  and 2

0  the following inequality 2 2 2 2

0 0q    , i.e., 
2

2

0 21

q
 


, is 

true, then the variance 2

i  increases with the increase of i , i.e., 2 2

1i i   . However, if 

2 2 2 2

0 0q    , i.e., 
2

2

0 21

q

 

 
 

, then variance 2

i  decreases. When there exists a 

solution to the equation 2 2 2 2q     , the variance of sequence (6.27) no longer 

changes with the increase of i  and takes the value 
2

2

21

q
 


. It is possible when 

2 1  . If we assume that 
2

2

0 21

q
 


, the variance will be constant for all i . It is also 

clear that when 1  , the variance can only increase, which is why there is no positive 

solution to the equation 2 2 2 2

0 0q    ; at 1   , the variance will also increase.  

In the vector case, when , ,i i iQ Q       are time invariant (constant) 
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matrices and there exists solution P  for the equation:  
т тP P Q       ,              (6.28) 

 at zero-mean generating noise, sequence (6.11) is a stationary Markov sequence.  

 Example 6.5. Assume that we are given a Wiener sequence (6.20) and 2

0 0P  , 
2Q q .  

Consider an example of this sequence and the calculated RMS values 

corresponding to it at each time point: 2 2

0i iP q i     at different interrelations 

between the initial variance and the variances of generating noise. For definiteness, it is 

assumed that, as in Example 6.4, ix  describes the height variation. 

As it was mentioned before, the values of this sequence at each time point represent 

a sum of two summands: the random value and the sum of the values of the white-noise 

sequence accumulated by the current time. 

At 2

0 0  , there is no first summand. A sample and the corresponding RMS value is 

shown as σi  in Fig. 6.5, a, at 1q   m, and 
0 0  . Here and in the following example, 

it is assumed for definiteness that the sequence is formed on the interval of 100 s and 

t =1 s. If the condition 2 2

0q i   is satisfied for the last time point i=100 (at 0 10 m 

and 1q  m), the contribution of two summands in the resulting value of the variance is 

the same (Fig. 6.5, b).  

а)       b) 

    

Fig. 6.5. Samples of the Wiener sequence and the corresponding RMS values at zero and 

nonzero initial values 

If the condition 2 2

0q i   is satisfied (at 100i  , q=1 m, and 0 100 m), the 

samples will not differ significantly from the samples for the constant vector (Fig. 6.6). 
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Fig. 6.6. Sample of the Wiener sequence and the corresponding RMS values in the case that 

condition  2 2

0i
q   is satisfied 

For all three variants in this example, the sequences are nonstationary (time 

variant), although in the latter case, this nonstationarity does not manifest itself 

significantly, i.e., the RMS of the variable part is much less than the RMS of the 

constant component.    

 Example 6.6. Assume that we need to generate a sample of a zero-mean random 

sequence with the correlation function 2( )
i j

k i j e



 

  . Such sequence is usually 

called an exponentially-correlated sequence. It is evident that this can be done using 

the shaping filter of the form (6.11), where e   , 21 e     ; 0x  is a zero-mean 

random variable with initial variance 2

0 0P  , where 
0  , and iw  is zero-mean 

discrete white noise with a unit variance, independent of 0x  [25].  

This is so because with such parameters, Equation (6.28) becomes an identity: 
2 2 2 2 2(1 )e e       , which means that the variance of the sequence is constant. 

In addition, using the definition of the correlation function, we can write the following 

equation: 

    2

1 1 1 1( , 1) ( ( 1)) (1) i i i i i ik i i k i i k E x x E x x w x e  

             , 

which is not difficult to generalize for the case 1i j  . 

Below are the plots of the samples of such a sequence with 0.1  , 1m   for 

three cases: the stationary case, provided that the conditions 2 2 2 2

0 0    , 0 1     

m are satisfied (Fig. 6.7); the nonstationary case with increasing variance, provided that 

the conditions 2 2 2 2

0 0    , 0 0    are satisfied (Fig. 6.8, а); and the 

nonstationary case with a decreasing variance, provided that the conditions 
2 2 2 2

0 0    , 0 3m    are satisfied (Fig. 6.8, b). The plots show both the 

samples and the corresponding triple RMS values in the form of 3( )i iP  .  
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Fig. 6.7. Sample of an exponentially-correlated sequence 

(stationary case) 

а)        b)  

  

Fig. 6.8. Sample of an exponentially-correlated sequence and the corresponding triple RMS 

values (nonstationary case) 

As it was mentioned above, in all cases, since the condition 2 2 1e     is 

satisfied, the variance reaches the steady- state value 
2 2

2 2

2

(1 )
1

1

e

e






 



 


  


. 

From the above formulas it follows that if there is a need to generate a sequence 

with prescribed 2  and   at unit variance of discrete noise, this sequence can be 

obtained, provided that the condition 2 2 2 2 2(1 ) (1 )e         is satisfied. At 

1  , this condition can be written as 2 22   .    
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Exercises 

Exercise 6.1. Assume that we have a PDF 1( ,..... )kp x x . Show that the 

representation 

1 1 2 1 1 2 3 1 1( ,..... ) ( / , ,.. ) ( / , ,.. )... ( )k k k k k k kp x x p x x x x p x x x x p x      

is valid. 

Exercise 6.2. Explain why vectors 0x  and 1,.... iw w , having Gaussian PDF (6.13), 

(6.14), with 0x  uncorrelated with lw , and lw , 
jw  uncorrelated with each other at l j , 

, 1.l j i , are joint Gaussian. 

Exercise 6.3. Show that the changes of the expectation and the covariance matrix in 

time for sequence (6.11) are defined by (6.15), (6.16): 

1i i ix x   ; 

 т( )( )i i i i iP M x x x x   т т

1i i i i i iP Q      . 

Exercise 6.4. Calculate the covariance matrix for the random vector generated 

according to the equation 
1

i

i j

j

x w


  , in which 
jw , 1.j i  are uncorrelated with each 

other zero-mean random vectors with the same covariance matrix Q  for each time 

point. 

Exercise 6.5. Calculate the covariance matrix for the random vector generated 

according to the equation 
1

i

i j

j

x w


  , in which for all 1.j i , 
jw w , we have the 

same zero-mean random vector with the covariance matrix Q .  

Exercise 6.6. Derive the rule for finding the covariance matrix iX
P  of the 

composite vector  
т

т т т

0 1, ,...,i iX x x x , the components of which are defined by (6.11), 

(6.12). find this matrix for the case of 1i  .  

Exercise 6.7. Derive the formula for a PDF for the composite vector 

 
т

т т т

0 1, ,...,i iX x x x  for the Gaussian Markov sequence specified by (6.11)(6.14).  

Exercise 6.8. Assume that in the previous problem, 1i  , and 1 E  , i.e., 

1 1 0 1x x w  . Taking into consideration the fact that the PDF for the composite vector 
т т т

1 0 1( , )X x x  can be written as (see Problem 6.6) 

1 1 1( ) ( ;0, )p X N X P ,           (1) 

where 

1

1

т

0 0

1 т

1 0 1 0 1

P P
P

P P Q

 
  

     

,               (2) 
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show that representation (1) for the PDF is identical to that derived in the previous 

problem. 

Exercise 6.9. Derive the formula for the correlation function of a zero-mean 

Wiener sequence for which the initial condition is zero and the generating noise has 

identical variance 2q . 

Test questions  

1. Give a definition of a random sequence. Explain what the mathematical expectation, 

variance and correlation function for a random sequence mean. Give examples of 

scalar random sequences. 

2. What are zero-mean, stationary and Gaussian random sequences? 

3. Give a definition of discrete white noise. Can discrete white noise be nonstationary 

or non-Gaussian?  

4. Give a definition of a Markov sequence. Explain what the shaping filter is. Give 

some examples. 

5. Derive recursive formulas for the mathematical expectation and the covariance 

matrix of a Markov sequence specified with the use of the shaping filter. 

6. What is a Wiener sequence? What properties does it possess? Is the Wiener 

sequence a Markov sequence?  

7. Explain why at constant matrices , , Q 
 
in (6.11), (6.12) the sequence is not 

stationary if condition (6.28) is not satisfied. Illustrate it with an example. 
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7. Filtering of random sequences. Discrete Kalman filter  

In chapters 2–4, we discussed in detail various algorithm design methods depending 

on the level of a priori information as applied to the problem of estimating the constant 

vector. Here we consider the problems of estimating the sequences describing time-

varying vectors. In so doing, we assume that the sequence is random; therefore, the 

problem can be formulated within the Bayesian approach as a problem of calculating 

optimal RMS estimates.  

In solving the problem, we also assume that the random sequence is described using 

a linear shaping filter and we have the measurements linearly depending on the 

estimated sequence. The main attention is paid to the recursive algorithms, the essence 

of which is explained in section 5.5. The famous discrete Kalman filter, providing an 

elegant solution to the problem under discussion, is described. 

7.1. Nonrecursive statement and solution of the optimal linear estimation of random 

sequences 

In spite of the fact that the main attention is given to recursive estimation of random 

sequences, let us show that the problem considered in this chapter is related to the 

problem of constant parameter vector estimation, and thus, it can be reduced to the 

latter. Thus, first, we discuss the nonrecursive (batch) statement and the algorithm for 

solution of the estimation problem. 

Consider the following simplest problem of estimating random sequences.  

Assume that there are two random scalar sequences ix  and iy , 1,2..i  . Their 

statistical properties are set using correlation and cross correlation functions  

 ( , ) ( )( )xk E x x x x        ;    (7.1) 

 ( , ) ( )( )yk E y y y y        ;    (7.2) 

 ( , ) ( )( )xyk E x x y y        ,  , 1,2...v              (7.3) 

Assume that their mathematical expectations 
jx  and 

jy , 1.j i  are known. 

Let us introduce vector т

1( ,..., )i iY y y  that includes all measurements 
jy  1.j i  

accumulated by the current time i.  

We need to estimate the values of sequence 
jx  at some time j, 1.j i  using the 

measured values of sequence jy , 1.j i  accumulated by the current time i.  

It follows from the given statement that the values of the random sequence should 

be estimated using the values of another sequence correlated with it.  

Different relations between i  and j  in this statement correspond to different 
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variants of the estimation problem [19, 24]: 

j i  is a filtering problem, in the case that the discrete time for which the estimate 

is sought coincides with the current time (measurement arrival time); 

j i  is an interpolation or smoothing problem, in the case that the estimate is 

sought for an earlier time as compared with the current time; 

j i  is an extrapolation or prediction problem, in the case that the estimate is 

sought for the future time. 

These problems are explained in Fig. 7.1. Filtering and prediction problems are 

usually solved online, when the estimate for the current time should be obtained or the 

estimated parameter should be predicted at the current time. Smoothing problems are 

solved in the so-called off-line mode, when the estimates are generated after all the 

measurements have been obtained. 

To reveal interconnection between the problems of random sequence and constant 

vector estimation, introduce a composite vector  
т

т т,j ix Y  and look at first at 

nonrecursive estimation algorithms using the whole measurement set т

1( ,..., )i iY y y  to 

calculate the estimates of 
jx . Introduce 

/
ˆ ( )j i ix Y , which is the estimate 

jx  at time j  

calculated by the measurements accumulated by the current time i , i.e. 
 

Filtering problem j i  Smoothing problem j i  Prediction problem j i  
 

Current 

time i  

Estimation time j 

Estimated sequence 

 

 

Current 

time i  

Estimation time j  

Estimated sequence 
 

 

 

Estimation 

time j  

Current time i  

Estimated sequence 
 

 

Fig. 7.1. Various types of estimation problems  

The statements of the constant vector estimation problem detailed in chapter 2 were 

concretized depending on the level of the a priori statistical information used. Here, two 

first moments of vector  
т

т т,j ix Y  are supposed to be known; thus, similarly to the 

technique used in 4.5, we can formulate the problem of finding unbiased estimates 

/
ˆ ( )j i ix Y , minimizing the RMS criterion  

  
2

B

/ /
ˆ ( )j i j j i iJ E x x Y            (7.4) 
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in the class of estimates linearly dependent on the measurements. 

These estimates are called RMS optimal linear estimates of a random sequence 

or linear unbiased estimates with minimum variance.  

Actually, this is a Bayesian statement of the random sequence estimation problem 

with a limitation on the class of the estimates used in minimization of the selected 

criterion. Using the results obtained in 4.5, where the solution algorithm is provided, 

with account for (4.24), (4.25), we can write the following equation for the sought 

linear estimate: 

/
ˆ ( ) ( )j i j j i i ix Y x K Y Y   ,       (7.5) 

where 
/j iK  is a 1 i  row matrix satisfying the Wiener-Hopf equation for discrete 

time  

/
j ii

x YY

j iK P P ,           (7.6) 

where 

 ( )( )j ix Y

j jP E x x y y    , 1.i           (7.7) 

is a row matrix determining the correlation between 
jx  and values 1,.... iy y ; 

 ( )( )iY
P E y y y y      , , 1.v i            (7.8) 

is a m m  covariance matrix for the whole measurement set. 

A posteriori variance for the estimate (7.5) error is given by 

/ /

j i i
x Y xlin

j i j iP P K P  ,     (7.9) 

where 

 2( )jx

j jP E x x       (7.10) 

is the variance of the estimated sequence. 

The elements of matrices j ix Y
P , iY

P  and jx
P  can be easily found using (7.1)–(7.3). 

If matrix iY
P  is nonsingular, the formulas for the estimates and their variances can 

be written as follows:  

 
1

/
i i ix Y Y

j iK P P


 ;     (7.11) 

-1

/ ( )j j i i ji
x x Y Y xYlin

j iP P P P P  .                   (7.12) 

As noted in 4.3 (formula (4.8)), the error of the estimate, minimizing the RMS 

criterion of type (7.4) in the class of estimates linearly dependent on the measurements, 

is orthogonal to the whole measurement set or their arbitrary combination. In this case, 

this formula can be written in either equivalent form 

  тˆ ( ) 0j j i iE x x Y Y  ,        (7.13) 

i.e.,  

   т тˆ ( )j i j i iE x Y E x Y Y ,                 (7.14) 
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or 

  ˆ ˆ( ) ( ) 0j j i j iE x x Y x Y  ,                 (7.15) 

i.e., 

   ˆ ˆ ˆ( ) ( ) ( )j j i j i j iE x x Y E x Y x Y .          (7.16) 

Note that the given solution based on the Wiener-Hopf equation is true for any type 

of estimation: filtering, smoothing, and prediction.  

The results considered above will be fully true also for the case if the sequences are 

vector sequences, and criterion  / / /
ˆ ˆ( ( )) ( ( ))B T

j i j j i j j j i jJ E x x Y x x Y    is used instead of 

(7.4). 

Assuming that xi and yi (i=1, 2..) are n-and m-dimensional sequences with 

mathematical expectations 
jx ,

jy  ( 1.j i ), for linear optimal estimates, minimizing this 

criterion, the above formulas will be true. Then, matrices j ix Y
P , iY

P , and jx
P  will have 

dimensions  n i m  ,  n i m  ,    i m i m   , and n n , respectively.  

It can be easily noticed that after introduction of vectors  
т

т т,j ix Y , 1.j i , the 

problems of random sequence estimation of jx  for each j in the presented statement are 

reduced to a set of problems of estimating constant vectors jx , 1.j i , considered in 

chapters 2–4. In this case, when j i , a solution of the filtering problem will be 

formed; when j i , we will derive a solution of the smoothing problem, and for j i , 

a solution of the prediction problem. It is very important that in the case when i  

changes, for example, i  increases, in order to obtain a solution, we need to use the 

whole set of accumulated measurements т

1( ,..., )i iY y y . It is in this sense that
 
the 

solution obtained is nonrecursive. 

It should be emphasized that this problem statement does not imply setting a 

functional dependence between the measured sequences and those being estimated, and 

a priori information is given in the form of mathematical expectations, correlation and 

cross correlation functions (7.1)–(7.3). Actually, it is a generalization of the linear 

regression problem (considered at the end of section 4.5) for random sequences solved 

with only their first and second moments available. The obtained solution corresponds 

to the so-called nonrecursive procedure, where estimates (7.5) are calculated each time 

using the whole set of available measurements (measurement batch).  

 Example 7.1. Suppose that ix  is a stationary zero-mean random sequence with 

correlation function 2( )
i j

k i j e



 

  , and the measurements of this sequence over the 

interval 1.j i  can be represented as  

i i iy x v  ,        (7.17) 
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where iv  is a sequence independent of ix , which is a zero-mean discrete white noise 

with variance 2r . The estimate of the sequence at some time j  should be found. 

For this example, we have  
2jx

P  ;      (7.18) 

      2 2iY
P E x x E v v e r

 

     
 

    ,  , 1.v i  ,  (7.19) 

    2j ix Y j

jP E x x e
 

 
 

  ,  1.i  .  (7.20) 

With account for the above, the following equation for matrix 
/j iK can be written: 

   
1 1 22

/

1
1 12 2 2 2

12 2 2

12 2 2

1 12 2 2 2

, ,...

.

i i i
j j j ix Y Y

j i

i

i

K P P e e e

r e e

e r

r e

e e r

  

 





 



  

 

 

  

      


  





  

  

 
 

 
 

 
 
 
 
 

 

Using (7.5), (7.9), and the last equation, we can specify the formula for the estimate 

in question and its a posteriori error variance.    

The given formulas allow determination of estimates and their accuracy 

characteristics; however, it is difficult to use them in applied problems. In particular, it 

is connected with the fact that dimensionality of matrix iY
P  grows with the increase in 

the number of measurements, which makes the matrix inversion complicated. This is 

the reason is why, further, we focus mainly on recursive filtering problems, where 

algorithms convenient for implementation can be designed.  

7.2. Recursive optimal linear filtering of random sequences. Problem statement 

Formulate the problem of designing recursive algorithms for calculating RMS 

optimal linear estimates of random sequences, i.e., the problem of designing linear 

recursive optimal algorithms. Recursive algorithms were considered in section 5.5 as 

applied to the constant vector estimation problem. Their idea is that the sought estimate 

for the given measurement set i  is generated by successive processing of the next i -th 

measurement and the estimate obtained at the previous processing step using the 

measurement set  
т

1 1 1,...,i iY y y  . The covariance matrix of the current step is also 

calculated using the covariance matrix for the previous step. As applied to the 

considered problem, recursive algorithms can be obtained if the filtering problem is 
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being solved, i.e., i j . Then the random sequence is assumed to be set using a linear 

shaping filter of type (6.4), and the measurements linearly depend on the estimated 

sequence.  

In the general case, the problem can be formulated as follows.  

Let an n -dimensional random sequence be described by a shaping filter  

1 ,i i i i ix x w              (7.21) 

and let there be m -dimensional measurements related to the sequence as follows:  

,i i i iy H x v            (7.22) 

where iw  is a p -dimensional vector of generating noise; iv  is an m -dimensional vector 

of measurement errors; i , iH , i  are the matrices of dimensionalities n n , m n , 

n p . Then, iw  and iv  are discrete zero-mean white noise:   
т

{ } ;i j ij iE w w Q   
т

{ }i j ij iE v v R .         (7.23) 

Initial vector 0x  is considered to be a zero-mean vector with covariance matrix 0P , 

and vectors 0x , iw , iv  are considered to be noncorrelated, i.e.,  

  0T

i jE w v  ,  0 0T

jE x v  ,  0 0T

jE x w  .     (7.24) 

Zero-mean nature of random vectors is assumed, without loss of generality, to 

simplify the obtained formulas.  

It is required, using the measurements accumulated by the current time i  
т т т т

1 2( , ,... )i iY y y y , to find a recursive algorithm for calculating RMS optimal unbiased 

linear estimates of sequence (7.21), minimizing the criterion  

    т

/ /
ˆ ˆ( ) ( )B

i i i i i i i i iJ E x x Y x x Y   ,   (7.25) 

and recursive algorithm of calculating estimate error covariance matrices  

/ /
ˆ( ) ( )i i i i i i iY x x Y   ,     (7.26) 

determined as 

   т/ /
ˆ ˆ( ) ( )i i i i i i i i iP E x x Y x x Y   .   (7.27) 

According to the terminology introduced in 7.1, one can speak of the state vector 

filtering problem described, using (7.21), by measurements (7.22) or of the filtering 

problem formulated in the state-space context.  

Further, we denote estimate /
ˆ ( )i i ix Y  and its error by /

ˆ ˆ ˆ( ) ( )i i i i i ix Y x Y x  , 

/ ( ) ( )i i i i i iY Y    .  

It can be easily seen that the constant vector estimation problem considered in 

chapters 2–4 is a particular case of the sequence filtering problem formulated here. 

Actually, we obtain this problem if in (7.21) we take 0iw  , 0i  , and i E  . 

The following distinctive features of the given problem statement, as compared to 

the one considered earlier, can be outlined as follows: 
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 the problem of Markov sequence estimation is being solved; 

 the shaping filter for the Markov sequence is linear; 

 measurement errors are introduced, and the functional dependence of measurements 

on the estimated sequence and measurement errors is determined; this dependence is 

also linear.  

These features form the background for obtaining recursive linear algorithms in the 

form of a discrete Kalman filter. Such  algorithms are convenient from the 

computational viewpoint. The Kalman filter equations are given in the next section.  

It should be emphasized that in this statement, as in the previous section, no 

information is introduced on the PDF for the random sequence, and the solution is to be 

found in the class of linear estimates. 

7.3. Discrete Kalman filter for random sequences  

To design an optimal recursive algorithm for the above-formulated problem, we 

assume that the current estimate ˆix  is calculated using the subsequent measurement iy , 

estimate 1
ˆ

ix  , and its error covariance matrix 1iP  for the previous step (Fig. 7.2).  

 

Fig. 7.2. Kalman filter block diagram for discrete time 

In section 5.5, a recursive algorithm for the constant vector estimation problem is 

derived. It is emphasized that at each step, the estimate obtained using previous 

measurements is actually corrected by adding a summand being a product of the gain 

factor and the difference between the current measurement and its prediction. It is 

reasonable to assume that the structure of the recursive algorithm for a random 

sequence set using the shaping filter (7.21) will remain unchanged. The peculiarity of 

the algorithm structure, as applied to the changing sequence, manifests itself in the way 

of how to find the prediction estimate of the sequence and the prediction of the current 

y
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measurement, using the optimum estimate 1
ˆ

ix  , corresponding to 1iY  . Clearly, it should 

be done with account for the dynamics equation (7.21) for the sequence being 

estimated.  

Taking into consideration the above-said, it can be shown that the recursive 

algorithm for the calculation of the RMS optimal linear unbiased estimates, minimizing 

the RMS criterion, can be obtained using a set of formulas divided into two blocks (see 

Fig. 7.2).  

In the first block (prediction block), the linear optimal estimate of the state vector 

is calculated at time i  by measurements 1iY  , i.e., the prediction estimate / 1
ˆ

i ix   and its 

prediction error covariance matrix are calculated using the optimal estimate 1
ˆ

ix   and 

covariance matrix 1iP  at the previous step: 

/ 1 1
ˆ ˆ

i i i ix x   ;          (7.28) 

т т

/ 1 1i i i i i i i iP P Q     ,                 (7.29) 

where  

       т т

/ 1 / 1 1 / 1 1 / 1 / 1
ˆ ˆ( ) ( ) ;i i i i i i i i i i i i i iP E x x Y x x Y E             

/ 1 / 1 1
ˆ ( )i i i i i ix x Y     . 

In the second block, the sought current estimate ˆix  and its error covariance matrix 

iP  are calculated using the current measurement iy  and the results obtained in the 

prediction block:  

/ 1 / 1
ˆ ˆ ˆ( )i i i i i i i ix x K y H x    ;           (7.30) 

т т 1

/ 1 / 1( )i i i i i i i i iK P H H P H R 

   ;          (7.31) 
т т 1

/ 1 / 1 / 1 / 1 / 1( ) ( )i i i i i i i i i i i i i i n i i i iP P P H H P H R H P E K H P

         .     (7.32) 

These formulas determine the well-known Kalman filter for discrete time 

(discrete Kalman filter). The recursive nature of this algorithm is obvious because to 

find the predicted estimate and its error covariance matrix, apart from a priori data,–– 

matrices i , i , and iQ , we use only the estimate and its error covariance matrix 

obtained at the previous step; at the same time, to calculate the next estimate and its 

covariance matrix, we use only the results obtained in the prediction block, the current 

measurement, and a priori data: matrices iH  and iR . Despite the fact that only the 

current measurement is used, the resultant estimate is optimal over the whole 

measurement set (it minimizes criterion (7.25)), and in the block diagram, the estimates 

depend on the relevant measurement sets.  

Equations (7.30) are usually referred to as the state estimate observational 

update, or simply the state estimate update, and (7.32), as the error covariance 

update [15, 24]. Matrix Кi is called the Kalman gain matrix or just the Kalman gain.  
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As in 4.4, it can be shown that the following formulas are convenient in some 

applications will be also true for matrices Кi, iP :
 

                                                       
т 1

i i i iK PH R ;                         (7.33) 
1 т 1 1

/ 1( )i i i i i iP P H R H  

  .        (7.34) 

Calculation of the gain and the covariance matrix according to (7.31), (7.32) is 

preferable if m n , while it is more practical to use (7.33), (7.34) with n m  and 

diagonal matrix iR .  

It should be mentioned that error covariance matrices iP  do not depend on 

measurements and are determined only by observation matrices 
iH , covariance 

matrices iQ  and iR , characterizing the properties of generating and measurement noise.  

Thus, all the computations connected with the calculation of the covariance matrix 

and the gain can actually be done in advance. The block implementing these 

computations is sometimes referred to as a covariance block (channel), and the one 

computing estimates (7.30), as an estimation block (channel). It is significant that the 

Kalman filter is linear with respect to the measurements, and the gain depends only on 

matrices iQ ,
 iR  and iH ; therefore, it is independent of the measurements.  

The Kalman filter equations were first provided and proven in the well-known work 

by R.E. Kalman [17]. The proof is based on the use of the orthogonality property.  

After that publication many different approached have been developed proving the 

optimality of Kalman filter estimates.  

It should be once more emphasized that here we consider the problem of obtaining 

the estimates optimal in the linear class, with no assumptions made on the PDF of 

random sequences. If PDF is assumed to be Gaussian, the above given algorithm will 

provide optimal Bayesian estimates, i.e., the estimates minimizing the RMS criterion 

(7.4) without limitations on the class of the estimates used. Thus, one of the proofs can 

be based on obtaining a recursive algorithm for calculating optimal Bayesian estimates 

of the problem under consideration, assuming that the initial vector, generating and 

measurement noises are Gaussian. 

It should be also noted that the Kalman filter algorithm not only defines a 

convenient procedure for calculating the estimates, which solves the problem of 

designing an algorithm for estimation of a random sequence, but also the procedure 

for computing the covariance matrix characterizing the current accuracy of the 

estimation algorithm, which is important for analyzing the estimation accuracy of a 

random sequence.  

Particularly, diagonal elements determine calculated estimate error variances, 

which in their turn determine calculated standard deviations of estimate errors for all 

components of the state vector.  

The formulated problem and the presented formulas are given in Table 7.1  

[8, 9, 13]. 
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Table 7.1 

Equations for discrete Kalman filter algorithm 

Statement of the filtering problem 

State vector 

equation  1i i i i ix x w     

Measurements  i i i iy H x v   

Initial conditions  0 00,x P  

Generating (system) 

noise  

т0, { } ;i i j ij iw E w w Q   

Measurement noise  
т0, { } ;i i j ij iv E v v R   

Cross correlation   т0 0iE x w  ;  т 0i iE wv  ;  т0 0iE x v   

Matrices  
i , – n n , i  - n p , iQ  - p p  

iH m n  , iR m m   

Minimized criterion  

    т

,
ˆ ˆ( ) ( )

i i

B

x Y i i i i i iJ E x x Y x x Y    

Solution of the filtering problem  

Prediction / 1 1
ˆ ˆ

i i i ix x    

Prediction error 

covariance matrix  

т т

/ 1 1i i i i i i i iP P Q      

Estimate / 1 / 1
ˆ ˆ ˆ( )i i i i i i i ix x K y H x     

Gain 

т т 1

/ 1 / 1( )i i i i i i i i iK P H H P H R 

    variant 1 
т 1

i i i iK PH R    variant 2 

Estimate error 

covariance matrix  
/ 1( )i n i i i iP E K H P     variant 1 

1 т 1 1

/ 1( )i i i i i iP P H R H  

     variant 2 

In this statement, the Kalman filter is used to calculate the estimates optimal in the 

linear class, so that one can say that the Kalman filter is used to calculate the potential 

accuracy of the random sequence (7.21) estimation by measurements (7.22) using 

linear estimates.  
Specify the provided Kalman filter equations using the following simple examples.  

 Example 7.2. Obtain the Kalman filter equations for the problem of estimating 

scalar parameter 1i ix x x   by scalar measurements ,i iy x v   where 0x x  is a zero-

mean random value with variance 2

0 ; iv  is a zero-mean discrete white noise 

independent of x , i.e., 2{ }i j ij iE v v r . 
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Here, 1H   , 0Q   . While the parameter being estimated does not change, 

the prediction block is significantly simplified: 

/ 1 1
ˆ ˆ

i i ix x  ; 

/ 1 1i i iP P  . 

Thus, the formula for the estimate takes the form:  

1 1
ˆ ˆ ˆ( )i i i i ix x K y x    . 

The gain and the error variance of the optimal estimate can be calculated with the use 

of (7.33), (7.34): 

1

2

1

i
i

i i

P
K

P r








; 

2
1 1 1 1
1 2

1

( ) i i
i i i

i i

P r
P P R

P r

   




  


, 2

0 0P  . 

If the variances of all measurements are assumed to be identical, i.e., 2 2

ir r , it can 

be easily verified that  
2

0

2

0

i

P r
P

iP r



. 

It follows from here that if a priori variance is significantly larger than the 

measurement variance, i.e., 2

0P r , the equations for the gain and a posteriori 

variance can be determined as 1
iK

i
 , 

2

i

r
P

i
 , and thus, 

1 1

1
ˆ ˆ ˆ( )i i i ix x y x

i
    . 

As could be expected, the last equation in this case is a recursive formula for 

calculating the arithmetic mean i.e., 
1

1
ˆ

i

i j

j

x y
i 

  . 

Figure 7.3 shows the filtering error samples and the tripled calculated standard 

deviations in the form 3( )i iP   for the case 2

0 0 1P   , 2 1r  . 

 

Fig. 7.3. Filtering errors and tripled calculated standard deviations  

in the estimation of the constant value 
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As follows from the plot, the standard deviation of the estimation error unlimitedly 

decreases, in this case, going down to about 0.1 over the interval considered here. 

 Example 7.3. It is required to solve the problem of filtering the Wiener sequence 

1i i ix x w   by measurements i i iy x v  , where 0x  is a zero-mean random variable 

with variance 2

0 ; iw , iv  are zero-mean discrete white noises independent of each other 

and of 0x  such that 2{ }i j ijE v v r , 2{ }i j ijE w w q  .  

In this case, 1H   , 1  . The parameter being estimated is varying; however, 

the equations for the estimates are the same as in the previous example, i.e.,  

/ 1 1
ˆ ˆ

i i ix x  ;  
1 1

ˆ ˆ ˆ( )i i i i ix x K y x    . 

Take the following formulas for the prediction and estimation error variances: 
2

/ 1 1i i iP P q   ; 

/ 1
/ 1 2

/ 1

1 i i
i i i

i i

P
P P

P r






 
  

 

  or    
2

2

1 2 2

1

.i i

i

r
P P q

P q r




 
   

  

 

а) 2

0 0 1P P          b) 2

0 0 0P P      

  
c) 2

0( 3 ) 1P P    

  

Fig. 7.4. Wiener sequence filtering errors and tripled standard deviations: 

 а  stationary case, i.e., error variance is constant; b  error variance increases and reaches a 

steady-state value; c  error variance decreases and reaches a steady-state value    



 
 

117 

 

Figure 7.4 presents the results of solving the problem of filtering a Wiener 

sequence over 20 steps with 1q  , 2 4r   as filtering errors and tripled standard 

deviations ( 3( )i iP   with different values 2

0 0P  .  

 Example 7.4. Obtain Kalman filter equations for the problem of filtering a scalar 

stationary exponentially correlated sequence with a correlation function 
2( )

i j
k i j e




 
   considered in 7.1. 

With account for Example 6.6, Eqs. (7.21), (7.22) in this case are realized as 

follows: 1i i ix x w  ; i i iy x v  , where e   , 0x  is a zero-mean random variable 

with variance 2

0P  ; iw , iv are zero-mean white noises independent of 0x  with 

variances 2 2 2(1 )q e     and 2r .  

The equations for the prediction block can be written as follows:  

/ 1 1
ˆ ˆ

i i ix x   ; 2 2

/ 1 1i i iP P q   , 

and the equations for estimates and their error variances as  

   1 1
ˆ ˆ ˆ( )i i i i ix x K y x     

1 1

2 2 2 2

/ 1 1

1 1 1 1
i

i i i

P
P r P q r

 

 

   
      

    
, where 

2

i
i

P
K

r
 . 

Figure 7.5 shows an example of filtering errors of an exponentially correlated 

sequence and tripled calculated standard deviations in the form 3( )i iP  , with 

0.1  ,  =1 m, 2 0,21(1 ) 0.2q e    m
2
 and two values of measurement error 

variances: 2 1r   m
2
 (а) and 2 2(0.1)r   m

2
 (b). 

 

  

Fig. 7.5. Filtering errors and tripled calculated standard deviations with different levels of 

measurement errors    

b) а) 
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As can be seen from the plots, the variances reach some steady-state values, which 

strongly depend on the level of measurement errors and generating noise. The reasons 

and conditions for reaching the steady-state value are discussed below.  

7.4. Kalman filter error equations. Innovation sequence  

Subtracting Equation (7.30) from the equation of shaping filter (7.21), equations for 

the Kalman filter prediction and estimation errors can be easily obtained: 

/ 1 1 1 1
ˆ

i i i i i i i i i i i ix w x w         ;       (7.35) 

1 1 / 1
ˆ ˆ( )i i i i i i i i i i i i i i ix w x K H x H x K v           

1 1( )i i i i i i i i i i i iw K H w K v             

1( ) ( ) .n i i i i n i i i i i iE K H E K H w K v                  (7.36) 

From the last formula it follows, in particular, that the linear optimal estimate error 

is a Markov sequence, and the following recursive relationship is true for it: 

1( ) ( )i n i i i i i i i i i iE K H K H w K v         ,         (7.37) 

which contains both generating noise and measurement noise in the right-hand part.  

Equations  (7.29), (7.32), or, which is the same, (7.34), will be true for error 

covariance matrices (7.35), (7.36), which can be easily verified (see problem 7.1), using 

the equation for the gain (7.31). 

Clearly, the orthogonality property (7.15) will be satisfied for the estimates 

calculated using the Kalman filter  

  ˆ ˆ( ) ( ) 0i i i i iE x x Y x Y  .        (7.38) 

It should be noted that 

   т т тˆ( ) ( ( ))
i ii i i x Y i i i i iE Y x E x x Y x P    ,      (7.39) 

(see problem 7.3). 

In analyzing the properties of Kalman filter estimates, measurement residual is of 

great importance, which is defined here as  

/ 1 1
ˆ ( )i i i i i iy H x Y    .               (7.40) 

This sequence possesses an important feature, namely, it is a discrete zero-mean 

white noise, i.e.,  

 тi j ij iE L   ,            (7.41) 

where 
т

/ 1i i i i i iL H P H R  .              (7.42) 

Formula (7.42) determines the residual covariance matrix, which can be easily 

proven (see problem 7.2). Let us prove that (7.41) is true. Since 

 
1/ / 1 1

ˆ ( ),
i iy Y i i i i iE y H x Y

    then with j i , 
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    
1 1

т т

/ 1 1 /
ˆ ( ) 0

i i i iY i i i i i j Y y Y i jE y H x Y y E E y
     , 

i.e.,  

 т 0i jE y  , for j i .    (7.43) 

Similarly,  т 0i jE    , for j i . If j i , this equality can be easily obtained by 

verifying that  т 0i jE y  . Thus, the last equality is true for any nonidentical j  and i , 

and, therefore, (7.41) is also true. It follows from the proven statement that random 

sequence iy  is transformed into white noise using (7.40). This operation is sometimes 

called whitening. 

It follows from (7.40), (7.43) that the residual at the current time is orthogonal to the 

set of previous measurements  
т

1 1 1,...,i iY y y  , and the current measurement can be 

represented as a sum  

/ 1 1
ˆ ( )i i i i i iy H x Y    . 

Note that the equation for the Kalman filter estimate can be written as a sum of two 

summands:  

/ 1 1
ˆ ˆ ( )i i i i i ix x K Y   ,              (7.44) 

the first summand is a linear combination of the previous measurement set 

 
т

1 1 1,...,i iY y y  , and the second is a linear combination of the residual vector 

components 1( )i iY   orthogonal to 1iY  . Since this vector contains new data that are not 

present in 1iY  , the data are updated due to the use of i , which explains the term used 

for the residual (7.40): an innovation sequence [24]. 

 Example 7.5. Specify the given equations for estimation errors applied to the 

problem of filtering the constant value and the Wiener sequence.  

For the constant value:  

/ 1 1i i i   ; 

1(1 )i i i i iK K v     ; 

/ 1 1 1
ˆ ( )i i i i i i iy x Y v       ; 

2

1i iL P r  . 

For the Wiener sequence: 

/ 1 1i i i iw    ; 

1(1 ) (1 )i i i i i i iK K w K v       ; 

/ 1 1 / 1 1
ˆ ( )i i i i i i i i i i iy x Y v w v            ; 
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2 2

1i iL P q r   . 

It should be noted that the measurement residual generated as a difference between 

the measured values and the current estimate  

1
ˆ ( ) (1 ) (1 ) (1 )i i i i i i i i i i i iy x Y v K K w K v             , 

is not white noise, unlike the residual which is the difference between the measured 

values and the prediction estimate.    

7.5. Dynamics of the covariance matrix and steady-state mode in the filtering 

problem  

When studying errors of the Kalman filter, it is important to investigate how their 

covariance matrices vary with time. In scalar examples above, it was noted that a 

filtering error variance can reach some steady-state value. Let us discuss this question 

in more detail.  

Analysis of Equation (7.32) for the covariance matrix shows that it has two 

summands. The first summand  

т т

/ 1 1i i i i i i i iP P Q          (7.45) 

shows that the error covariance matrix varies during calculation of the prediction error, 

which is partly conditioned by the generating (system) noise. To analyze the character 

of this variation, introduce matrix (1)

/ 1 1i i i iP P P     and present it as (1)

/ 1 1i i i iP P P    . 

From the results of (6.5) and Equation (7.45) it follows that the prediction error 

covariance matrix / 1i iP   can both increase and decrease as compared with the error 

covariance matrix 1iP  at the previous step. Decrease is possible if the covariance 

(variance) matrix of the sequence being estimated decreases. However, in applied 

problems, the error covariance matrix of the sequence being estimated usually grows. It 

means, in particular, that estimate error variances of each component defined by 

diagonal elements can only increase or at least remain unchanged. This behavior is due 

to the fact that the state vector value changes according to the equation of the shaping 

filter (6.11). Its right-hand part contains generating noise, which increases uncertainty 

in the knowledge of the state vector at each step. Even if the state vector was accurately 

known at some time, for example, at 1 0iP  , during the prediction, covariance matrix 
т

/ 1i i i i iP Q     grows and becomes nonzero since т 0i i iQ   , with 0Q  . It is discussed 

in more detail in example 7.6. 

The second summand in the equation for the covariance matrix, which shows the 

effect of the next (current) measurement, can be represented as follows:  
(2) т т 1

/ 1 / 1 / 1 / 1( )i i i i i i i i i i i i i i iP P P P H H P H R H P

        . 

Since we have a nonnegatively definite matrix in the right-hand part, then 

/ 1 0i i iP P    and, therefore, / 1i i iP P  , i.е., the error covariance matrix can only 
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decrease or remain unchanged as compared with the prediction error covariance matrix. 

This relationship seems quite logical since the use of new measurement data cannot 

degrade the estimation accuracy.  

Therefore, the following can be written for the covariance matrix  
(1) (2)

1i i i iP P P P     . 

Clearly, if summands (1)

iP  and (2)

iP  are equal, the filtering error covariance 

matrix will not depend on time, i.e., it will be constant. Then we can speak of the 

steady-state mode of the filtering problem. This mode can be used, for example, to 

solve filtering problems, where all matrices used in Kalman filter equations 

( , , , ,Г H Q R ) are constant. We have already noted the existence of the steady-state 

solution when the simulation results of the filtering problems for the Wiener and 

exponentially-correlated sequences are considered in examples 7.3, 7.4. Clearly, for the 

steady-state mode to be feasible, there must be a solution to the following equation: 

 
1

т т т т т т т т

т т

( ) ( )

( ).

f f f f

f

P P Q P Q H H P Q H R

H P Q



   



               

    

(7.46) 

Here, fP  determines the filtering error covariance matrix for the steady-state mode. 

If condition (7.46) is met, the prediction error covariance matrix and the gain also 

remain unchanged:  
pr T TP P Q     ; 

т 1fK P H R

  . 

Thus, the Kalman filter turns into a steady-state difference equation:  

1 1 1
ˆ ˆ ˆ ˆ( ) ( )i i i i n i ix x K y H x E K H x K y             , 

which is the Wiener filter for discrete time.  

 Example 7.6. Analyze possible dynamics of error variance and obtain the 

Wiener filter for the problem considered in 7.3, i.e., the problem of estimating the 

Wiener sequence by its measurements with white-noise errors.  

Since 1  , 2

/ 1 1i i iP P q   , at each prediction step, the error variance increases by 

a value equal to the variance of generating noise 2q , i.e., (1) 2

iP q   (Fig. 7.6). 

As the next measurement is processed, as shown in Fig. 7.6, the error variance 

decreases since  

(2) / 1
/ 1 / 1 2

/ 1

0i i
i i i i i i

i i

P
P P P P

P r


 



 
     

 
. 

If (2) 2

iP q  , at the next step, the error variance will exceed the variance at the 

previous step, i.e., 
1i iP P , and will grow as the number of measurements increases. If 

(2) 2

iP q  , the error variance will decrease with the growth of the number of 

measurements: 
1i iP P . 
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Fig. 7.6. Dynamics of filtering and prediction error variances in estimating the Wiener 

sequence  

With (1) (2)

i iP P    the variances at the current and previous steps will be the same, 

and with given 2q  and 2r , their values can be found by solving the equation  
2 2

21

2 2

1

( )i

i

P q
q

P q r








 
. 

It can be easily verified that the solution of this equation will coincide with the 

solution of the equation of type (7.46), which, in this case, is written as  

 
2

2

2 2
0f f

ф

r
P q P

P q r
 



 
   

  
 

or 

 
2

2 2 2 0f fP P q q r    . 

Having solved the equation, we obtain the following for the steady-state variance:  
2 4 2 2 `2

2 `2

2

4
1

2 4 2 2

f q q q q r
P q r

q
         . 

Note that the considered equation has two solutions. Both of them should be 

analyzed if they are positive. If one solution is negative, only the positive one is used 

because the variance naturally cannot be negative. If the variance at initial time is taken 

to be 2

0 P  , it will be change starting from the first measurement; if 2

0 P  , the 

variance will decrease tending to the steady-state value 
2

i
i

P 

 . If 2

0 P  , the 

variance will increase approaching the same value from below. If the filtering error 

2 ) 1 ( 
q P i   

  

1  i P   
i P   

) 2 ( 
i P    

i P 
  

1 /  i i P   

i - 1   i  Measurement    
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variance is a steady-state value, the gain and the prediction error variance will also tend 

to steady-state values  

2

fP
K

r


  ;  2ex fP P q   .     

Thus, assuming 2 1q  , 2 2r  , we obtain 1P   and
1

2
K  , and the Wiener filter is 

given by  

1
1

ˆ
ˆ ˆ0.5 0.5

2

i i
i i i

x y
x x y 




   , 

i.e., the estimate at the current step is an arithmetic mean between the estimate at the 
previous step and the current measurement.  

As shown in problem 7.6, if q r , the following can be written: P rq  ; 

( )prP q r q   ; 
q

K
r

  . If q r , 2P r  , 2prP q  , 1K  .    

Equation (7.46) (see problem 7.7) can be easily specified for the steady-state mode 

of the problem of filtering an exponentially correlated sequence by measurements with 

white-noise errors. 

7.6. Statement and general solution of the problem of recursive optimal filtering of 

random sequences using nonlinear measurements 

Consider a more general statement (as compared to the previous section) of 

recursive optimal Bayesian filtering of random sequences. First, remove the limitation 

on the linear nature of estimates used in minimization of criterion (7.25), second, 

assume that the measurements can nonlinearly depend on the parameters being 

estimated.  

In the general case, the problem can be formulated as follows. 

We have an n -dimensional random sequence in the form of a shaping filter  

1i i i i ix x w          (7.47) 

and m -dimensional measurements  

( ) ,i i i iy s x v        (7.48) 

where iw
 

is a p -dimensional vector of generating noise; iv  is an m -dimensional 

measurement error vector; i , i  are the known matrices of dimensionalities m n , 

n p ; т

1( ) ( ( ),..., ( ))i i i i im is x s x s x  is a known m-dimensional function generally 

nonlinear with respect to argument x .  

Sequences iw  and iv  are discrete zero-mean white noises whose values are 

independent of each other at different times, and initial conditions vector 0x  is assumed 

to be a zero-mean vector with covariance matrix 0P . Vectors 0x , iw , iv  are also 

considered to be independent of each other. 
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PDFs for random vector 0x  and sequences iw  and iv are assumed to be known and 

set by the corresponding functions 
0 0( )xp x , ( )

iw ip w , and ( )
iv ip v . 

It is required to derive a recursive algorithm for calculating RMS optimal estimates 

of sequence (7.1), minimizing the criterion  

    тB ˆ ˆ( ) ( )i i i i i i iJ E x x Y x x Y   ,    (7.49) 

and their accuracy characteristics as estimation error covariance matrices (7.26), using  

measurements т т т т

1 2( , ,... )i iY y y y . In so doing, no restrictions are imposed on the class 

of the estimates used.  

When the measurements are linear and (7.49) is minimized, only for the class of the 

linear estimates, the problem solution is determined by (7.28)(7.32). These formulas 

are derived in 7.3 based on the formulas for linear constant vector estimation problem. 

In this case, in order to get the sought algorithms, we’ll rely upon the results obtained 

in 4.2, according to which the sought estimate is defined as  

ˆ ( ) ( / )i i i i i ix Y x p x Y dx  ,       (7.50) 

where ( / )i ip x Y  is a posteriori PDF, or just a posteriori density.  

Accuracy characteristics in the form of conditional and unconditional a posteriori 

error covariance matrices of optimal estimates of random sequence are given by  
тˆ ˆ( ) ( ( ))( ( )) ( / )i i i i i i i i i i iP Y x x Y x x Y p x Y dx   ;     (7.51) 

тˆ ˆ( ( ))( ( )) ( , )i i i i i i i i i i iP x x Y x x Y p x Y dx dY   .     (7.52) 

Here, unconditional a posteriori covariance matrix 
iP  characterizes the potential 

accuracy of the solution of the formulated optimal filtering problem on the average 

over all measurements, and matrix ( )i iP Y  characterizes the calculated accuracy for the 

current measurement set. It is for this matrix that we are going to obtain the recursive 

algorithm. 

We shall call the estimate (7.50) an RMS optimal Bayesian estimate or just an 

optimal estimate of random sequence. It will possess all the properties of the optimal 

estimates detailed in 4.3.  

Here, similarly to 4.2, it will be reasonable to emphasize that along with setting the 

rule for optimal estimate calculation (7.50), the rule (7.51) is also set for calculating the 

current a posteriori error covariance matrix ( )i iP Y  characterizing the calculated 

estimation accuracy for a certain measurement set. Thus, identically to the case of the 

constant vector estimation, by designing the optimal estimation algorithms for 

random sequences, we mean the problem of designing a procedure providing the 

calculation of estimate (7.50) and its conditional a posteriori covariance matrix (7.51). 

Call this procedure an optimal algorithm. By analyzing the accuracy of estimating 

the random sequences, we mean the problem of the calculation and analysis of 

unconditional a posteriori covariance matrix 
iP . 
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Outline the major specific features of this statement as compared with the statement 

given in 7.2.  

1. No limitations on the class of the estimates used are imposed in minimization of the 

selected criterion.  

2. Measurements are assumed to depend nonlinearly on the estimated parameters.  

3. PDFs for the vector of initial conditions, generating and measurement noise are 

considered to be known, and not only their first two moments. 

4. Instead of uncorrelatedness conditions (7.23), (7.24) of random vectors at different 

times, conditions of their independence are assumed to be fulfilled.  

It follows from (7.50), (7.51) that as in the case of estimating the vector of constant 

parameters, to solve the formulated problem, we need to know a posteriori density 

( / )i ip x Y , finding which is the main contents and the main difficulty of the nonlinear 

filtering problem.  

The recursive optimal filtering problem is greatly simplified if a posteriori density is 

Gaussian. Clearly, a posteriori density will be Gaussian if the measurements linearly 

depend on the estimated sequence, i.e., ( )i i i is x Н x , and the vectors of initial 

conditions, generating and measurement noise are Gaussian, i.e.:  

0 0 0( ) ( ;0, )p x N x P ; ( ) ( ;0, )i i ip w N w Q ; ( ) ( ;0, )i i ip v N v R . 

Thus, it is obvious that if we additionally assume the Gaussian character of initial 

conditions, generating and measurement noise in the problem considered in 7.2, a 

posteriori density will also be Gaussian. Moreover, it can be shown that this problem 

can be solved using the Kalman filter equations (7.28)–(7.32).  

It follows that the Kalman filter equations given in section 7.3 in the Gaussian 

case allow obtaining RMS optimal Bayesian estimates of random sequence (7.21) 

by measurements (7.22), i.e., the estimates minimizing the RMS criterion without 

any limitations on the class of the estimates used.  
Therefore, for the considered particular case, the Kalman filter estimates possess all 

the properties of optimal estimates (see section 4.3).  

In particular, conditional and unconditional error covariance matrices of optimal 

estimates will coincide, i.e., ( )i i iP P Y , and if we select an arbitrary, not necessarily 

linear, algorithm for finding estimates ( )ix Y  and find their unconditional error 

covariance matrix 
iP , according to features 3, 4 given in 4.3, the following inequalities 

will always be true:  

0i iP P  , 

det( ) det( )i iP P . 

Property 5 is also important, implying that obtaining the optimal estimate of the state 

vector as a whole ensures finding of the optimal estimate of the vector being an 

arbitrary linear transformation of the vector being estimated.  

Therefore, estimate error covariance matrix (7.32) calculated in the Kalman filter 
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characterizes the potential accuracy of estimating a random Gaussian sequence 

formed by Eqs. (7.21).  

Exercises  

Exercise 7.1. Assuming that in the filtering problem considered in section 7.2, the 

error covariance matrix at the previous step  т

1 1 1i i iP E      is known, show that 

filtering equations (7.29), (7.34) are true for prediction error covariance matrices and 

estimate errors at the current step calculated as / 1 1
ˆ ˆ

i i i ix x   ; 

/ 1 / 1
ˆ ˆ ˆ( )i i i i i i i ix x K y H x    , where matrix iK  is given by (7.31).  

Exercise 7.2. Show that the covariance matrix for residual / 1 1
ˆ ( )i i i i i iy H x Y     is 

given by т

/ 1i i i i i iL H P H R  . 

Exercise 7.3. Prove that  т( )i i i iE Y x P  . 

Exercise 7.4. It is required to get the optimal estimate of the Wiener sequence set 

given by 1i i ix x w   by using scalar measurements ,i iy x v   where iw , iv  are zero-

mean discrete white noises independent of 0x  2{ }i j ij iE v v r , 2{ } ;i j ij iE v v q  0x  is a 

zero-mean random value with variance 2

0 . Then, 2{ }i j ij iE v w b , i.e., the noises 

depend on each other.  

Specify the formulas of the discrete Kalman filter.  

Exercise 7.5. Write the error equation for the steady-state mode of the problem 

from example 7.6. 

Exercise 7.6. Find the value of the variance of the filtering error, the prediction 

error and the gain in steady-state mode in the Wiener sequence estimation problem 

from example 7.6 for the case when q r  and q r .  

Exercise 7.7. Specify Equation (7.46) for the steady-state value of the error 

variance of filtering the scalar exponentially correlated sequence by using the 

measurements against the white noise background. Find its approximate solution and 

equations for the variance of the prediction error, the gain, and the Wiener filter if 

q r . Relate the equation for the steady-state value of the filtering error variance with 

the similar equation in example 7.6.  

Test questions  

1. Formulate the problem statement of obtaining RMS optimal linear estimates of a 

random sequence using the measurements of another sequence correlated with it. 

Write down its solution using the discrete Wiener-Hopf equation.  

Explain the specific features of filtering, smoothing, and prediction problems.  

2. Formulate the linear problem of recursive estimation of a random sequence described 

using a shaping filter.  
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3. Which main blocks does the discrete Kalman filter algorithm include? Explain why 

this algorithm is a recursive one. Specify these blocks by the example of a constant 

scalar estimation problem.  

4. Explain what is meant by prediction and filtering errors. Write the equation for these 

errors. Why do filtering errors form a Markovian sequence?  

5. What are the conditions for the existence of steady-state mode in the filtering 

problem?  

6. What is the Wiener filter? Explain how it is related to the Kalman filter. Provide an 

example.  

7. Provide the statement and the general solution to the problem of recursive optimal 

Bayesian filtering of random sequences.  

8. Explain the difference between the problems of recursive optimal Bayesian filtering 

and recursive optimal linear filtering of random sequences.  

9. Under which additional conditions, as compared with the conditions in 7.2, will the 

Kalman filter be optimal without imposing limitations for the class of the estimates 

used? 
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8. Filtering of random processes. Kalman-Bucy filter  

In practice, applied filtering problems are usually formulated in continuous form 

using differential equations. In this case, we have to deal with random processes. 

Consider this problem within the approach proposed by R. Kalman and R. Bucy. 

8.1. Random  processes and methods of their description  

A random process ( )tx  in a scalar case is a function of time t , whose value with 

any fixed t  is a random variable. The main characteristics and classes of random 

processes are introduced similarly to random sequences. In particular, the correlation 

function for a random process is given by  

т

1 2 1 1 2 2 1 1 2 2 1 2( , ) ( ( ) ( ))( ( ) ( )) ( , , , )xk t t x t x t x t x t p x t x t dx dx    , (8.1) 

where 1 1 2 2( , , , )p x t x t  is a joint PDF for random variables 1( )x t  and 2( )x t . 

Hereinafter, both random processes ( )tx  and their samples ( )x t  are denoted by 

( )x t , similarly with the random sequences [16].  

For stationary processes, as follows from section 6.2, the correlation function 

depends on the difference of arguments. 

 Example 8.1. As an example of the correlation function of a stationary (time-

invariant) process, consider function  
2( )x xk e

 
 


 .      (8.2) 

The process with such a correlation function is called an exponentially correlated 

process and is a continuous analog of the exponentially correlated sequence given in 

example 6.6 [25]. Here, 2(0)x xk   is the process variance, and c 1 /   is the 

correlation interval.  

Plots of function (8.2) with a unit variance and two values of correlation intervals 

1c  s and 0.1c  s are shown in Fig. 8.1.  

To describe the properties of stationary processes, along with the correlation 
function, the power spectral density (PSD) is used, which is a Fourier transform of the 
correlation function:  

( ) ( )exp( )x xS k j d   




  .     (8.3) 

Inverse representation is also true:  

1
( ) ( )exp( )

2
x xk S j d   







  .       (8.4) 
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Fig. 8.1. Correlation function 
2( )x xk e

 
 


  with two correlation intervals   

Due to even nature of functions ( )xS  , ( )xk  , the formulas can be written as 

0

( ) ( )cos 2 ( )cosx x xS k d k d      
 



   ; 

0

1 1
( ) ( )cos ( )cos .

2
x x xk S d S d      

 

 



    

Obviously, from the last formula, the following is derived:  

21
( ) (0)

2
x x xS d k  







  ,    (8.5) 

meaning that the area enclosed by ( )xS   and the abscissa axis determines the process 

variance 2

x  accurate to a constant coefficient.  

 Example 8.2. Obtain a formula for the PSD of exponentially correlated process 
with correlation function (8.2) and analyze its behavior. The spectral density of this 
function, as follows from Table А3.1, is given by  

2

2 2

2
( ) x

xS
 


 




.     (8.6) 

PSD plots for two correlation intervals c 1 /   are presented in Fig. 8.2. 
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Fig. 8.2. PSD of the exponentially correlated process with various correlation intervals  

The frequency area with nonzero PSD can be estimated by magnitude  , while, as 

  varies from 0 to  , the PSD only decreases twofold from 
22

(0) x
xS




  to 

2

( ) x
xS





 , critically going down with   . This can be distinctly seen from the 

PSD plot for positive frequencies in log scale. The plots with 1   and two values   = 

1s
-1

 and   = 10s
-1

 are presented in Fig. 8.3. 

 

Fig. 8.3. PSD of the exponentially correlated process with various correlation intervals in 

log scale    

The process with constant PSD for all  , i.e., ( )xS Q  , is called white noise, and 

Q  is the PSD of the white noise. The correlation function for white noise has the form  
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( ) ( ),xk Q         (8.7) 

which follows from the following representation for delta function ( )   [21]: 

1
( )

2

je d   


 . 

It follows from (8.7) that continuous white noise, unlike discrete noise, has infinite 

variance. Variables 1( )x t  and 2( )x t  at any different time points 1 2t t  are noncorrelated, 

just as for a random sequence. 

Note that the dimensionality of white-noise PSD is the same as that of its variance 

multiplied by the time unit, i.е.,  

   2units timeQ     . 

The above-said agrees with the formula ( ) ( ) :k Q    there is a parameter 

measured in [units
2
] in the left-hand side, and a parameter measured in  Q [time]

-1
 in 

the right-hand side. It follows from the fact that the delta function with the time 

argument has a dimensionality inverse of time    
1

( )t time


  since, according to the 

nature of the delta function, ( ) 1d  




 . 

It can be noted that white noise has properties inverse, in some sense, to those of a 

process presenting a time-invariant random variable (random bias, or random constant) 

with constant correlation function and PSD being a delta function:  
2( ) 2 ( )x xS     . 

Sample plots of correlation functions and corresponding PSDs of the random 

constant, white noise and the exponentially correlated process are given in Table 8.1. 

Table 8.1 

Correlation functions and PSDs of simple processes  

Process Correlation function  PSD 

Random constant 

with variance 2

x  

 
)(k  


 

2
x  

 
2( ) xk    

 
)(xS  

ω  

2( ) 2 ( )x xS      
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White noise  

with PSD 2q  

 
)(k  

  

 
2( ) ( )x xk      

 
)(S  

2q  

ω  

 
2( )xS q   

Exponentially 

correlated process  

 
2( )x xk e

 
 


  

 
2

2 2

2
( ) x

xS
 


 




 

8.2. Shaping filter  

Consider an n-dimensional random process ( )x t  

( ) ( ) ( ) ( ) ( )x t F t x t G t w t  ,          (8.8) 

where ( )F t , ( )G t , ( )Q t  are the known n n -, n p - and p p -matrices. Suppose that 

at initial time point, (0)x  is a random vector with the known mathematical expectation 

(0)x  and covariance matrix (0)P , ( )w t  is a zero-mean p-dimensional white noise 

independent of (0)x :  

( ( ) ( )) ( ) ( )TE w t w t Q t t     . 

As with the sequences, Equation (8.8) used to describe the processes is called a 

shaping filter; white noise in the right-hand part is called generating (forcing) white 

noise or the system noise; matrix ( )F t  is a dynamics matrix; matrix ( )G t  is a 

generating noise matrix, and vector ( )x t  is a state vector.  

Use formula (A3.8) from Appendix 3 and write the solutions to Equation (8.8) in 

the form  

1

1 1( ) ( , ) ( ) ( , ) ( ) ( )d

t

t

x t t t x t t G w       ,   (8.9) 

where 1( , )t t  is a fundamental matrix for the equation ( ) ( ) ( )x t F t x t . 
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It can be shown that the mathematical expectation, covariance matrix and 

correlation function are given by (exercise 8.1): 

0 0( ) ( , ) ( )x t t t x t ;     (8.10) 

0

0 0 0( ) ( , ) ( ) ( , ) ( , ) ( ) ( ) ( ) ( , ) ; (8.11)

t

T T T

t

P t t t P t t t t G Q G t d           

2 1 1 2 1

2 1

2 1 2 2 1

( , ) ( ), ,
( , )

( ) ( , ), .T

t t P t t t
k t t

P t t t t t

 
 

 
    (8.12) 

Taking (А3.19), (А3.20) into consideration, it can be easily verified that covariance 

matrix (8.11) is a solution to the differential equation  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T TP t F t P t P t F t G t Q t G t   .     (8.13) 

Stationary equations with constant matrices F, Q  and G   

( ) ( ) ( )x t Fx t Gw t  ;       (8.14) 

T TP FP PF GQG          (8.15) 

are a particular case of Equations (8.8), (8.13). 

Discuss the conditions under which the output of stationary system (8.14) is a 

stationary process. Obviously, that first of all, mathematical expectation ( )x t  at the 

initial time should be zero, i.e., 0( ) 0x t  , otherwise, the mathematical expectation of 

process ( )x t , as follows from (8.10), will depend on time. To make the covariance 

matrix (8.13) independent of time, the conditions should be met, wherein there is a 

steady-state solution to this equation. It means that there exists matrix P , such that 

P P , and 

0T TP FP P F GQG      .          (8.16) 

If covariance matrix P(0) for vector x(0) is selected to coincide with the solution of 

this equation (0)P P , process ( )x t  generated by Equation (8.14) becomes a 

stationary process since ( ) (0)P t P , moreover, as follows from (8.12), the correlation 

function  

( ) ( )k P    , ( ) ( )Tk P        (8.17) 

will depend only on  . It also follows from (8.17) that  

( ) ( ) ( )Tk k P       .       (8.18) 

It should be noted that for a stationary system, the fundamental matrix is defined as 

a matrix exponential, i.e., 

0

( ) / !Fe F  



  




   . 

Thus, the conditions for occurrence of a stationary process at the output of a 
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stationary system to which white noise is inputted are as follows: zero-mean of the 

process at the initial time point, existence of solution to Equation (8.16), and selection 

of the initial covariance matrix coinciding with this solution.  

If the steady-state solution to Equation (8.16) exists, but the initial covariance 

matrix does not coincide with 
P , then, since 

 PtP )(  with time, the process can be 

considered stationary after the transient mode at t  is completed.  

N o t e  1. If we additionally assume that (0)x  and the generating noise are 

Gaussian, i.e.,  

( (0)) ( (0); (0), (0))f x N x x P ;    (8.19) 

( ( )) ( ( );0, ( ))f w t N w t Q t ,     (8.20) 

process ( )x t  will also be Gaussian. It is explained by the fact that linear 

transformations of Gaussian vectors provide a Gaussian vector. 

N o t e  2.  Using (8.9), it can be easily verified that process ( )x t  is a Markov 

process. Actually, if we fix the time points 1 2 3t t t  , then, as follows from (8.9), the 

process at 3t  with fixed values at 1t  and 2t  depends only on 2t  and does not depend on 

1t . Then, it is significant that ( )w t  is white noise, which, in the statistical sense, is 

independent of initial conditions (0)x . 

 Example 8.3. Consider a shaping filter  
2( ) ( ) 2 ( )xx t x t w t     .       (8.21) 

Obtain the correlation function for this process and specify Equation (8.15).  

Since F   , 22w xq   , Equation (8.14) takes the form  

2

wP P P q     . 

While 0( )

0( , )
t t

t t e
 

  , solution to this equation can be represented as  

0

0

2 ( ) 2 2 ( )

0( ) ( ) 2

t

t t t

x

t

P t P t e e d
          . 

Clearly, (8.16) is reduced to Eq. 22 2 xP     which has the following solution: 
2

xP   . Thus, with 2(0) xP  , the process will be stationary, and its correlation 

function will take the form  
2( ) ( ) ( ) xk k P e         .    

8.3. Statement and general solution of the optimal linear filtering problem. Kalman-

Bucy filter  

Provide the mathematical formulation and general solution to the optimal linear 

filtering problem considered within the state-space approach. Recall that this solution to 

the filtering problem was derived by R. Kalman for discrete time, and then jointly with 
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R. Bucy, for continuous time as well [1, 18, 27]. This gave the filter its name – the 

Kalman-Bucy filter. 

Formulate the mathematical statement of the continuous optimal linear filtering 

problem similarly to that given for the the discrete case [18, 19, 25, 28].  

Let there be an n-dimensional Markov process 

( ) ( ) ( ) ( ) ( )x t F t x t G t w t  , 0 0( )x t x    (8.22) 

and m-dimensional measurements 

( ) ( ) ( ) ( )y t H t x t v t  ,     (8.23) 

where ( )F t , ( )G t , ( )H t  are generally known n n , n p , m n  time-dependent 

matrices; 0x  is zero-mean initial conditions vector with covariance matrix 0P ; 

( )w t , ( )v t  are zero-mean white noises independent of each other and of initial 

conditions 0x : 

 0 ( ) 0TE x w t  ;  ( ) ( ) 0TE w t v t  ;  0 ( ) 0TE x v t  ;   (8.24) 

{ ( ) ( )} ( ) ( )TE w t w Q t t    , ( ) 0Q t  ;     (8.25) 

{ ( ) ( )} ( ) ( )TE v t v R t t    , ( ) 0R t  .     (8.26) 

The filtering problem in state space for continuous time is formulated as follows. 

Using measurements (8.23)  ( ) ( ) : [0, ]Y t y t    accumulated over the interval [0, ]t  

by time t , obtain a linear RMS optimal estimate of vector ( )x t , which minimizes the 

criterion  

 ˆ ˆ( ) ( ( ) ( )) ( ( ) ( )) .b Tr t E x t x t x t x t      (8.27) 

It can be shown that the estimate and its error covariance matrix are given by [18, 

19, 25]: 

ˆ ˆ ˆ( ) ( ) ( ) ( )( ( ) ( ) ( ));x t F t x t K t y t H t x t           (8.28) 
1( ) ( ) ( ) ( )TK t P t H t R t ;         (8.29) 
1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ).T T TP t P t F t F t P t P t H t R t H t P t G t Q t G t      (8.30) 

These equations define the well-known continuous Kalman-Bucy filter. 

It is important to notice that the measurement residual ˆ( ) ( ) ( )y t H t x t  called an 

innovation, as in discrete case, is a white noise with the PSD matrix equal to R. 

Using (8.8), (8.28), the filtering error equation can be easily obtained (exercise 8.3). 

Covariance matrix (8.30) is called a posteriori covariance matrix.  

It follows from (8.28) that the estimation formula can be written as  

ˆ ˆ( ) ( ( ) ( ) ( )) ( ) ( ) ( ),x t F t K t H t x t K t y t           (8.31) 

i.e., the Kalman filter is a linear generally nonstationary dynamic system, whose 
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properties are defined by matrix ( ( ) ( ) ( ))F t K t H t , and to which the measurements, 

weighted with the use of matrix ( )K t  , are inputted. 

The block diagram of generation of the process being estimated and the 

measurements is presented in Fig. 8.4, and the block diagram of the Kalman-Bucy 

filter, in Fig. 8.5. 

G(t)
)(tw

F(t)

H(t) 

)0(x

)(tx

)(tv

)(ty

 

Fig. 8.4. Block diagram of generation of the process being estimated and its measurements  

-
)t(y

)t(K

)t(F


)t(x̂

)0(x̂

 )t(H

)t(P),t(K
)t(R),t(H

)t(Q),t(G),t(F )t(P

0P

)t(ŷ

 

Fig. 8.5. Block diagram of the Kalman-Bucy filter  

Comparison of these diagrams shows that the Kalman-Bucy filter contains a block 

similar to the shaping filter with added single negative feedback, and instead of 

generating white noise, measurement residuals ˆ( ) ( ) ( ) ( )t y t H t x t    weighted with the 

use of matrix ( )K t  are inputted.  

As in the discrete case, in this algorithm, two blocks (channels) can be 

distinguished: an estimation block, corresponding to the linear differential equation for 

optimal estimates (8.28), and a covariance block corresponding to nonlinear Riccati 

differential equation (8.30). The latter, like the gain matrix ( )K t , does not depend on 

measurements, rather, it depends only on matrices ( ), ( ), ( )F t G t Q t  and ( ), ( )H t R t  

determining the properties of the processes being estimated and measured. Both 

equations should be solved to obtain the estimates; besides, the covariance matrix 
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equation can be solved in advance since it is independent from the measurements. 

The above given formulas and the conditions under which the problem is solved are 

summarized in Table 8.2 [8, 13, 19, 20]. 

Table 8.2 

Statement of the filtering problem  

and the continuous Kalman-Bucy algorithm  

Initial data  

State vector equation ( ) ( ) ( )x F t x G t w t   

Measurements ( ) ( )y H t x v t     

Initial conditions 
0x    is a zero-mean random vector with 

covariance matrix   0P  

Generating noise  т{ ( ) ( )} ( ) ( )M w t w Q t t    , ( ) 0Q t   

Measurement noise  т{ ( ) ( )} ( ) ( )M v t v R t t    , ( ) 0R t   

Cross correlation   т

0 ( ) 0M x w t  ;  т( ) ( ) 0M w t v t   

 т

0 ( ) 0M x v t   

Matrices ( )F t  – n n , ( )G t  – n p   

( )H t  – m n  

Statement of the filtering problem and minimized criterion  

Using measurements  ( ) ( ) : [0, ]Y t y t   , obtain estimate ˆ( )x t  which  

minimizes the criterion  

                                       B тˆ ˆ( ) ( ( ) ( )) ( ( ) ( ))r t M x t x t x t x t    

and error covariance matrix  

                 тˆ ˆ( ) ( ( ) ( ))( ( ) ( ))P t M x t x t x t x t   , B( ) ( )r t SpP t  

Solution of the filtering problem 

Initial conditions ˆ(0) 0x  , 0(0)P P    

Estimate  ˆ ˆ ˆ( ) ( ) ( ) ( )( ( ) ( ) ( ))x t F t x t K t y t H t x t    

Gain factor  т 1( ) ( ) ( ) ( )K t P t H t R t    

Error covariance matrix 
1

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

T

T T

P t P t F t F t P t

P t H t R t H t P t G t Q t G t

  

 
                      

Notably, the PSD matrix of white noise measurement errors should be non-singular, 

i.e., ( ) 0R t  , because we need an inverse matrix of ( )R t  to calculate the covariance 

matrix.  
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 Example 8.4. Solve the problem of filtering of a constant scalar  

0x   
by using the measurements with white noise errors, i.e.,  

( ) ( ),y t x v t   

where x  is a zero-mean random value with variance 2

x , ( )v t  is a zero-mean white 

noise noncorrelated with x  with the correlation function  
2{ ( ) ( )} ( )TM v t v r t    . 

Here, 0, 0, ( ) 1F G H t   , 2

0 0P  , and Equations (8.28)–(8.30) are reduced to  

ˆ ˆ( ) ( )( ( ) ( ))x t K t y t x t  ; 
2( ) ( ) /K t P t r ; 2 2( ) ( ) /P t P t r . 

Direct substitution yields  
2 2

2 2
( ) x

x

r
P t

r t







 and 

2

2 2
( ) x

x

K t
r t







. 

If the inequality 
2

2

x

r

t
  is true, meaning a low effect of a priori information, 

approximate formulas 
2

( )
r

P t
t

 ,
1

( )K t
t

  can be written, from which we obtain the 

estimation equation  

1
ˆ ˆ( ) ( ( ) ( ))x t y t x t

t
  . 

Since the fundamental matrix in this case is given by  

0
0( , )

t
t t

t
  , 

the general solution to the linear nonstationary estimation equation for this problem can 

be written as  

0
0

0 0

1 1
ˆ( ) ( ) ( )

t t
t

x t x y d y d
t t t


   


    . 

It follows herefrom that with the assumptions made in this example, as in a similar 

discrete problem, the algorithm for obtaining the optimal estimate is reduced to the 

calculation of the mean value of all incoming measurements.    

Note 1.  Along with the estimates, the Kalman-Bucy filter generates the covariance 

matrix ( )Р t , whose diagonal elements characterize the current estimation accuracy, 

which is extremely important in navigation data processing problems. 

Note 2.  While the general solution of nonstationary differential equation (8.31) is 

determined by (А3.8), the Kalman-Bucy filter estimates linearly depend on the 

measurements, and thus, are RMS optimal linear estimates.  

Note that in this problem statement, as in the previous section, the form of PDF for 
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generating noise, white noise measurement errors, and initial conditions is not 

specified. If they are additionally assumed Gaussian, the estimates obtained by the 

above formulas will be optimal, in the RMS sense, without adding the term linear; in 

other words, they will minimize criterion (8.27) without an assumption on the linearity 

of the estimation algorithm. In this case, we speak about the Bayesian optimal filtering 

problem. 

Note 3.  If the filtering problem is solved for a stationary system with constant 

matrices , , ,F G Q R , Equation (8.22) may have a steady-state solution, i.е.,  
1 0T T TP F FP P H R HP GQG

       . 

In this case, while 1TK K P H R

   , the estimation equation also becomes 

stationary, and the Kalman filter will coincide with the Wiener filter.  

Note 4.  In some cases, to solve Equation (8.30) without generating noise, i.e., with  
1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T TP t P t F t F t P t P t H t R t H t P t   , 

it is convenient to proceed to the equation for the inverse covariance matrix using 

formula 1( ) ( )P t P t E  . It can be easily seen that in this case  

1
1 1 1( )

( ) ( ) ( ) ( ) ( ) ( ) ( )T TdP t
F t P t P t F t H t R t H t

dt


      , 

or, with account for (А4.20), 

0

1 1 1

0 0 0 0 0( ) ( , ) ( , ) ( , ) ( , )

t

T T T

t

P t t t P t t t H R H t d         . 

8.4. Interrelation of continuous and discrete filtering algorithms  

As was mentioned at the beginning of this chapter, applied filtering problems are 

formulated in continuous form. However, for computers, we need a discrete statement. 

To obtain this statement, first, we should design an n -dimensional random sequence 

(for sampling interval Δt) 

1i i i i ix x w       (8.32) 

with discrete p -dimensional zero-mean white noise iw , with the mathematical 

expectation and the covariance matrix at discrete times, coinciding with similar 

parameters for the continuous process (8.8), i.е., 

( ) ( )i i i im Mx Mx t x t   ,         (8.33) 

     ( )( ) ( ) ( ) ( ) ( )
TT

i i i i i i i i iP M x m x m M x t x t x t x t      .     (8.34) 

These equalities are called conditions of stochastic (statistic) equivalence, 

meaning that statistical characteristics (8.33), (8.34) of a continuous random process 

and its discrete analog are the same for the same time points [8]. 
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Hence, it follows that we need to find such matrices i , i  and the covariance 

matrix of discrete white noise iQ  which will guarantee that conditions (8.33), (8.34) are 

met. The resultant sequence is called a sequence stochastically equivalent to process 

(8.8). 

Taking (8.10) into consideration, note that if matrix i  in (8.32) is selected in the 

form  

1 1( , )i i it t t    ,     (8.35) 

condition (8.32) will be met.  

Using (8.11), write  

1

1 1 1

1 1 1

( ) ( , ) ( ) ( , )

( , ) ( ) ( ) ( ) ( , ) .
i

i

T

i i i i i i

t

T T

i i i i i

t

P t t t P t t t

t G t Q t G t t d     



  

  

  

     
      (8.36) 

With account for (6.16), it can easily be seen that in calculating matrix i  using 

(8.35), to make the covariance matrices of continuous process and its discrete analog 

equal, i.e., ( )i iP P t , matrices i  and iQ  should be selected such that  
*T

i i i diГ Q Г Q ,        (8.37) 

where  
1

1

*

1 1( , ) ( ) ( ) ( ) ( , )
i

i

t t

T T

di i i

t

Q t t G Q G t t d     






        .   (8.38) 

The dimensionality of matrix iQ  corresponds to that of vector iw  and is equal to p , 

so the dimensionality of matrix i  must be n p . 

Thus, to get a discrete representation of the process described by Equation (8.8), 

formulas (8.35), (8.37), (8.38) can be used. 

Assume that the continuous system is stationary, i.e., matrices , ,F G Q  are time-

invariant. In this case, matrix i  is determined as a matrix exponent 

0

( ) / !
k

F t

i i t e F t 







      ,    (8. 39) 

and (8.37), (8.38) take the form  
*T

d dQ Q   ,        (8.40) 

where  

*

0

( )

t

F T F T

dQ e GQG e d  


  .     (8.41) 

Using some  * 0, t    and the mean value theorem, we can write for (8.41) 

 * * *
T

F T F

dQ e GQG e t   .      (8.42) 
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If we assume that *Fe E   t , 
* T

dQ GQG t  .                    (8.43) 

Using (8.37), (8.38), write  
T T

dQ GQG t    .     (8.44) 

If 

G t   ,        (8.45) 

we obtain the following for the covariance matrix of discrete white noise: 

1
dQ Q

t



.        (8.46) 

If we introduce white noise as a mean value of continuous white noise over the 

sampling interval, i.e.,  

0

1
( )

t

iw w t dt
t




  ,     (8.47) 

its covariance matrix will be given by 
1

( )T

i iМ w w Q
t




 (see exercise 8.2), i.e., if the 

matrices are selected using (8.45), (8.46), the covariance matrix of discrete noise 

coincides with that of the continuous noise averaged over the sampling interval t .  

It should be borne in mind that the given formulas are approximate. This especially 

refers to matrices iQ  and i . To obtain more accurate formulas, matrix *

dQ  should be 

calculated according to (8.38) or (8.41). 

To complete the formulation of the discrete form of the filtering problem, we need 

to find matrices iH  and iR , which can be used to write down the measurements. To 

determine these matrices, we assume that the measurement set over the interval 

1 1[ , ]i it t t t    is replaced by one averaged measurement, i.e., 

1
( ( ) ( ) ( ))

i

i

t

i

t t

y H t x t v t dt
t



 
  .          (8.48) 

In this case, matrices iH  and iR  are given by  

( ) ( )i iH t H t H  ;     (8.49) 

1 1( ) ( ), [ , ]i i iR t R t t t t t    ;    (8.50) 

1
( )i iR R t

t



.        (8.51) 

The last formula follows from the fact that  

1
( )

i

i

t

i

t t

v v t dt
t




  . 

Clearly, to receive a discrete analog of a continuous problem, a correct sampling 

interval t  should be chosen. Firstly, this interval should be selected based on the 
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condition that matrices ( ), ( )F t H t  and the matrices in (8.38) change insignificantly 

over the sampling interval 1 1[ , ]i it t t t   . In addition, it is necessary to take into 

consideration possible variability of the process conditioned by internal dynamics 

defined by matrix ( ) ( )i iF t F t F   assumed to be constant for 1 1[ , ]i it t t t   . This 

variability is known to depend on natural frequencies, which, in turn, depend on the 

matrix eigenvalues. That is why when selecting the sampling interval, it is desirable to 

ensure the validity of expression  

max
/t k   ,     (8.52) 

where k  is taken to be 0.10.2,  and 
max

  is the maximum module of dynamics matrix 

eigenvalues.  

 Example 8.5. Obtain the discrete variant of the filtering problem for an 

exponentially correlated process described by the equation  
2( ) ( ) 2 ( )xx t x t w t     , 

by measurements  

( ) ( ) ( )y t x t v t  , 

where 2

x  is the process variance; 1/с    is the correlation interval;  

w(t) is the white noise of unit PSD; v(t) is the measurement white noise independent of 

w(t) and x(0) with PSD 2r .  

Using (8.35), (8.37), (8.38), we can write: 

te    , 

2

2

0

2
2 (1 )

t

tx

x e d e  
  





      , 
1

dQ
t




, 
2

2

d

r
r

t



. 

Thus, the discrete problem is formulated as follows. Estimate the sequence  
2

1

2
(1 )t tx

i i ix e x e w  



   

   , 

by using measurements  

i iy x v  , 

where ( ) ( )
i

i

t t

i i

t

y y t y d 



   , ( ) ( )
i

i

t t

i i

t

v v t v d 



   . 

With consideration for (8.52) and the fact that k  , it is recommended to account 

for the condition 0.1
k

t




  in selecting the sampling interval.    

Exercises 

Exercise 8.1. Show that the mathematical expectation, the covariance matrix and 

the correlation function of the process defined by the shaping filter (8.8) will be 



 
 

143 

 

determined by (8.10)(8.12). 

Exercise 8.2. Let ( )w t  be a zero-mean white noise with PSD Q . Introduce a 

random sequence  

1
( )

i

i

t t

i

t

w w t dt
t




  , 

where t  is the sampling interval.  

Find the correlation function for this sequence. 

Exercise 8.3. Having the equations for the process  

( ) ( ) ( ) ( ) ( )x t F t x t G t w t  . 

and estimation equations  

ˆ ˆ ˆ( ) ( ) ( ) ( )( ( ) ( ) ( ))x t F t x t K t y t H t x t   , 

write the equations for filtering errors. Is the process describing the filtering errors a 

stationary and Markov one?  

Exercise 8.4. Write the equations for the estimate and a posteriori variance for the 

Kalman-Bucy filter in the filtering of the Wiener process described by 
2( ) 2 ( )xx t w t   using measurements ( ) ( ) ( )y t x t v t  , where v(t) is measurement  

white noise  with PSD 2r  independent of w(t) and x(0). Obtain the solutions to these 

equations.  

Exercise 8.5. Write the equations for the estimate and a posteriori variance for the 

Kalman-Bucy filter in the filtering of the Markov process (8.21) using measurements 

( ) ( ) ( )y t x t v t  , where v(t) is measurement white noise with PSD 2r  independent of 

w(t) and x(0). Obtain the solutions to these equations.  

Exercise 8.6. Obtain the formulas for a posteriori variance for the continuous 

problem of estimating a zero-mean random value with variance 2

0  by measurements 

( ) ( )y t x v t  , where ( )v t  is the white noise with PSD 2r , independent of x. Obtain a 

similar formula for discrete analog of the continuous problem and compare these 

formulas.  

Exercise 8.7. Formulate the problem of integrated processing of aircraft height 

measurements by the measurements  
SNS SNS( ) ( ) ( )y t h t h t   ; 
BA BA( ) ( ) ( )y t h t h t    

from the satellite and barometric systems as a problem of optimal Kalman filtering in 

the form (8.1), (8.2) assuming that errors ( )lh t , ,l SNS BA  can be described by 

noncorrelated random processes, each being a sum of white noise ( )lv t  with known 

PSD 2

lr  and exponentially correlated first-order Markov process ( )l t  with known 
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variance 2

l  and correlation interval 1/l l  , i.е., ( ) ( ) ( )l l lh t t v t   . 

Consider two variants of the problem. 

Variant 1. Let the aircraft height be presented as a sum of the first-order polynomial 

with unknown coefficients determining the initial height (0)h , constant vertical 

velocity (0)hV , and double integrated white noise of given PSD 2

hq . 

Variant  2. There is no a priori data on height variation, and the problem is solved 

in the invariant statement.  

Note.  To formulate these problems, use invariant and noninvariant processing 

schemes. 

Exercise 8.8. Write the Kalman-Bucy filter algorithm in the problem of estimating 

the vehicle position and speed if  

;

0,

X V

V




 

with only position measurements available, i.e.,  

y X v  , 

where ( )v t  is a zero-mean white noise with PSD 2r  noncorrelated with X.  

Obtain the formulas for error variance of position and speed estimation.  

Note. To derive the solution for the covariance matrix, it is recommended to 

proceed to the equation for inverse matrix (see Note 4 at the end of section 8.3). 

Exercise 8.9. Show that problem 8.3 can be formulated as the problem of 

estimating two constant values. Obtain the formula for the covariance matrix for this 

formulation.  

Test questions  

1. Give the definitions of mathematical expectation, variance, and correlation function 

for the random process. 

2. What kind of process is called a stationary process? What is the PSD of the process? 

How can the process variance be found using only its PSD? 

3. Give the definitions of the shaping filter for a random process. Provide formulas for 

the mathematical expectation and the covariance matrix for the random process 

described by the shaping filter. 

4. Formulate the problem of optimal linear filtering. 

5. Formulate the problem of optimal Bayesian filtering.  

6. Write the formulas for the continuous Kalman-Bucy filter and give your comments. 

7.  Compare the block diagrams of the shaping filter and the Kalman filter. 

8. Explain the procedure for proceeding from the continuous filtering problem to its 

discrete variant. 
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Appendices 

Appendix 1 

A1. Introduction to matrix analysis  

This appendix is the introduction to matrix analysis, in particular, the main matrix 

operations, often used in applied estimation, are considered. The materials of this 

appendix is borrowed from [2, 11, 12]. 

A matrix is a rectangular array of numbers, symbols, or expressions, arranged in n 

rows and m columns. An example of matrix A is 

11 1

1

1

. . .

. . . . .

. . .

. . . . .

. . .

m

i ij im

n nm

a a

a a aA

a a

 
 
 
 
 
 
 
 

.       (A1.1) 

The following notations are used for matrices: 

 ijA a ;  ( , )A A i j ;  [ , ]A A i j , 1.i n , 1.j m . 

A column vector 

1

.

.

n

a

a

a

 
 
 
 
 
 

,           (A1.2) 

and a row vector 

1[ ,..... ]na a a       (A1.3) 

are the special kind of n×1 and 1×n matrix. 

A square matrix. A square matrix is a matrix with an identical number of rows and 

columns of dimension n×n. 

A diagonal matrix. A square matrix D of dimension n in which all the elements 

outside the main diagonal are zero is called a diagonal matrix. 
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11

22

1 1

0 . 0 0

0 . 0 0

. . . . .

0 0 . 0

0 0 . 0

n n

nn

d

d

D

d

d

 

 
 
 
 
 
 
 
 

.    (A1.4) 

The diagonal matrix is often defined as  iiD diag d , 1.i n . 

An identity matrix. An identity matrix is a diagonal matrix in which all the 

elements on the main diagonal are equal to 1. Such matrix is usually denoted by E , or 

nE , where n is the dimensions of this matrix, i.e., 

1 0 . 0 0

0 1 . 0 0

. . . . .

0 0 . 1 0

0 0 . 0 1

E

 
 
 
 
 
 
 
 

.     (A1.5) 

Transpose of a matrix. Let  , 1. , 1.ijA a i n j m    be an nm matrix, then 

transpose A  is an m n matrix, which is defined as 

 т , 1. , 1.jiA a j m i n   .    (A1.6) 

The rows of such a matrix are the columns of A , but the rows of A  are the columns 

of тA . 

An upper triangular matrix is a matrix where non-zero elements are on and above 

the main diagonal 

* * . * *

0 * . * *

. . . . .

0 0 . * *

0 0 . 0 *

A

 
 
 
 
 
 
 
 

.     (A1.7) 

A lower triangular matrix has non-zero elements on and below the main diagonal. 

Symmetric matrix. A square matrix of dimension n is a symmetric matrix if  
тA A .      (A1.8) 

Block matrix. A block matrix is the following one: 
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11 1

1

1

. . .

. . . . .

. . .

. . . . .

. . .

m

i ij im

n nm

A A

A A AA

A A

 
 
 
 
 
 
 
 

,    (A1.9) 

where ijA , 1. , 1.i n j m   are matrices, i.e., the matrix formed from blocks or submatrix 

is called a block matrix. 

A block diagonal matrix is a matrix in which the blocks on the main diagonal are 

non-zero. 

A trace of a matrix. The trace of a square matrix A  is defined to be the sum of 

elements on the main diagonal, i.e., 

1

n

ii

i

TrA a


 .        (A1.10) 

Sometimes it is denoted as  

1

n

ii

i

SpA a


 .        (A1.11) 

This notation comes from German ‘Spur’. 

Matrix addition. Let , ,A B C  be the matrices of nm dimension. The elements of 

C  matrix, corresponding to the sum A  and B  , 

C A B  ,          (A1.12) 

are defined as 

, 1. , 1.ij ij ijc a b i n j m    .            (A1.13) 

Multiplication of matrix A by scalar   is the multiplication of each element of 

the matrix by the scalar, i.e., 

 ijA a   .           (A1.14) 

Matrix multiplication. Let A  and B  be nm and m l  matrices, then the elements 

of n l  matrix C , corresponding to the product AB, 

C AB ,         (A1.15) 

are defined as 
1

, 1. , 1.
m

ij ik kj

k

c a b i n j l


   . 

Therefore, the matrix multiplication is correct if the number of columns in the first 

matrix is equal to the number of rows in the second, i.e.,  

C AB ,             (A1.16) 
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and it has the following structure: 

11 1 11 1

11 1

1

1 1

. . . . .
. . .

. . . . . . . . .
. . . . .

. . . . . . . . .
. . . . .

. . . . . . . . .
. . .

. . . .. .

C A

B

m l

m

l lm

n nm n nl

lm

c c a a
b b

n n l

b b
c c a a

 
    

     
            
     
              

 
m











. 

In this case, we say that the matrices have consistent dimensions.  

As a result of multiplication of 1 n  row тa  by 1n  column b , we have a scalar. 

At the same time, we have a square matrix from multiplication of column b  and row a: 

1 1 1

т

1

. .

. . . .

. . . .

. .

n

n n n

b a b a

ba

b a b a

 
 
 
 
 
 

.    (A1.17) 

A vector norm is the value 

2 т

1

n

i

i

a a a a


  .        (A1.18) 

In general, matrix multiplication is non-commutative, i.e.,  

AB BA . 

If AB BA , the matrices are called commutative. 

The following equality т т( )a a Sp aa  is true. 

Conventional rules of matrix multiplication can be used to multiply block 

matrices, i.e., 

11 12 11 12 11 12 11 11 12 21 11 12 12 22

21 22 21 22 21 22 21 11 22 21 21 12 22 22

C C A A B B A B A B A B A B
C

C C A A B B A B A B A B A B

        
         

        
. 

The determinant of the square matrix  ijA a  of dimension n can be calculated using 

the determinants for the matrix of dimension 1n   as 

1 1

1

det( )
n

j j

j

A a A


 ,            (A1.19) 
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where 
1 jA  are cofactors, i.e., the determinants for the matrix of dimension 1n   

obtained by deleting the first row and the j-th column from matrix A and multiplying by 
1( 1) j . 

A similar representation can be obtained for an arbitrary i-th row: 

1

det( )
n

ij ij

j

A a A


 , 

where ijA  are the determinants of order 1n   obtained by deleting the i-th row and the 

j-th column and multiplying by ( 1)i j . 

For example, in the case of a two-dimensional matrix, it is easy to find that 

11 12

11 22 21 12

21 22

det
a a

a a a a
a a

 
  

 
. 

The determinant of the matrix is denoted as 

det( )A A . 

A square matrix is called non-singular if its determinant is not zero, i.e., 

det( ) 0A A  . 

Otherwise, we have a singular matrix. 

Let us introduce the following notation of the determinants formed of elements of a 

rectangular n m  matrix: 

1 1 1 2 1

2 1 2 2 2

1 2

1 2

1 2

...

......

... . . . .

...

p

p

p p p p

i k i k i k

i k i k i kp

p

i k i k i k

a a a

a a aii i
A

kk k

a a a

 
 

 
. 

Such a determinant is called a minor of order p if 1 21 ... pi i i n      and 

1 21 ... pk k k m     . 

If 1 1 2 2, ,.. p pi k i k i k   , such minors are called principal minors. 

The rank of the matrix is the largest order of any non-zero minor in the matrix. If 

r  is a rank of rectangular nm matrix, then, obviously, ,r n m . 

An inverse matrix. Let  ijA a  be a non-singular n n matrix. An inverse 1A  

matrix is the matrix satisfying 
1AA E  .            (A1.20) 

Let us denote the inverse matrix as  1

ijA B b   . 



 
 

150 

 

For the elements of the inverse matrix, the following equality is valid [2]: 

det( )

ji

ij

A
b

A
 , 11 11 1 1det( ) .. n nA a A a A   ,   (A1.21) 

where jiA  are cofactors. 

For example, in the case of a two-dimensional matrix, it is easy to find 
1

11 12 22 12

21 22 21 1111 22 21 12

1a a a a

a a a aa a a a


   

   
   

. 

The inverse matrix satisfies the following equality: 1A A E  , i.e., the matrix and 

the inverse matrix are commutative. 

Orthogonal matrix. A square matrix A  is orthogonal if  
тAA E .           (A1.22) 

A characteristic polynomial of a square matrix A  is the polynomial  

( ) det( )p A E   .        (A1.23) 

For example, in the case of a two-dimensional matrix, this polynomial looks as follows: 

11 12 2

11 22 11 22 12 21

21 22

( ) det( ) ( )
a a

p A E a a a a a a
a a

 
           

  
. 

The characteristic equation is defined as 

( ) det( ) 0p A E    . 

Eigenvalues of a matrix. Eigenvalues of a square matrix A of dimension n are 

defined as the n roots of the characteristic equation 

( ) det( ) 0p A E    .          (A1.24) 

A set of all eigenvalues is called a matrix spectrum. 

An eigenvector of a square matrix A is vector x, such that 

Ax x  ,      (A1.25) 

i.e., ( ) 0A E x  , where   is the eigenvalue. 

This equation means that the multiplication of the matrix by the eigenvector does 

not change its direction. Since the characteristic equation of the matrix of dimension n 

has n roots, every root (eigenvalue) has the eigenvector, respectively. Thereby, the 

matrix has n eigenvalues and eigenvectors. It should be noted that some eigenvalues 

may coincide, and but the same eigenvalues may correspond to different eigenvectors. 

The problem of finding them is known as an eigenvalue problem. 

Similarity transformation. Let A  and С  be nn square matrices, and С  is non-

degenerate. Then matrix B  is defined as  

    1B CAC .         (A1.26) 
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Matrices B  and A  are called similar matrices, and matrix С  is similarity 

transformation. It is easy to see that similar matrices have the same characteristic 

polynomial. 

Indeed, 
1 1 1

1

det( ) det( ) det( )det( )det( )

det( )det( ) det( ).

B E CAC CC A E C C

A E CC A E

  



     

   
 

It follows that similar matrices have the same eigenvalues. 

It can be easily verified that the determinant and the trace of the square matrix A  

could be represented using eigenvalues, i.e., 

1

n

i

i

TrA


  ,           (A1.27) 

 
1

det( )
n

i

i

A


  .            (A1.28) 

Therefore, similar matrices have the same determinants and traces. 

Diagonalization of symmetric matrices. Symmetric matrix A  can always be 

diagonalized by using an orthogonal matrix, i.e., there always exists an orthogonal 

matrix, such that 

 тT T E , т

1 ... ...j nT t t t    ,   (A1.29) 

where      т , 1.j ijTAT j n    ,           (A1.30) 

and ,j jt , 1.j n  are the eigenvalues and eigenvectors of matrix A , i.e., 

    j j jA t t  ,            (A1.31) 

moreover, т

i j ijt t   . Here, the value ij is the Kronecker delta  

1, ,

0, .
ij

i j

i j


  


              (А1.32) 

The above definition implies that there is an additional condition for norms of 

eigenvalues, i.e., its norms must be equal to 1. 

Note that if a matrix is not symmetric, it is not always possible to convert it into a 

diagonal matrix. However, an arbitrary square matrix can be converted to other 

matrices of special (normal or canonical) types, such as Jordan matrix, Frobenius 

matrix, etc.  

A quadratic form. Let A be a square matrix and x is a vector of dimension n. The 

quadratic form is determined as 

 
тy x Ax .          (A1.33) 

The quadratic form is called positive definite if for all nonzero vectors x, the 

quadratic form is positive, i.e., 
т 0, for 0y x Ax x   .           (A1.34) 
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In this case, matrix A  is called positive definite. 

If the strict inequality is replaced by  , then the quadratic form and the 

corresponding matrix are called nonnegative definite. 

Reversing the inequality sign, we get a negative definite quadratic form and a 

negative definite matrix.   

Matrix inequality. If the following inequality holds 
т т 0x Ax x Bx       (A1.35) 

or т ( ) 0x A B x   and the vector x is not zero, then we can say that matrix A>B. 

Similarly, you can introduce other types of inequalities. 

One can show that when some inequality holds, the same inequality is valid for its 

eigenvalue. So, if all eigenvalues of the square matrix A are positive or non-negative 

(negative or non-positive), i.e., 0j   or 0j   ( 0j   or 0j  ), 1.j n , then the 

corresponding inequalities are valid for the matrix, i.e., 0A  or 0A , ( 0A  or 

0A ).). 

Functions of matrices. Certain functions of square matrices can be given by power 

series. M matrix mA of degree m is defined as 

...m

m

A A A A   .     (A1.36) 

From the above definition, we can obtain the exponential of matrix, defined as 

0

exp( )
!

i

A

i

A
e A

i





  .    (A1.37) 

Functions ( )f A  of symmetric matrices can be obtained in different ways. Firstly, 

matrix A  must  be diagonalized by the orthogonal matrix, i.e., we get the following 

representation: 

 т , 1.jTAT diag j n     , 

from which it follows that тA T T  . 

Next, ( )f A  is defined as 
т( ) ( )f A T f T  ,     (A1.38) 

where  ( ) ( ) , 1.jf diag f j n    . 

The derivative and integral of a matrix, whose elements depend, for example, on 

time, i.e.,  ( ) ( ) , 1. , 1.ijA t a t i n j m   , is matrix  ( ) ( ) , 1. , 1.ijA t a t i n j m    or 

0 0

( ) ( ) , 1. , 1.

t t

ijA d a d i n j m
 

       
 

  ,  whose elements are the derivatives or 

integrals of the original matrix. 

 The derivative of the scalar-valued function ( )s x  of the vector argument is 

calculated by the formula:  
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т

1

( ) ( ) ( )
... .

n

ds x s x s x

dx x x

  
  

  
     (A1.39) 

Notation 
( )ds x

dx
 means that  

1

( )

( )
........

( )

n

s x

x
ds x

dx
s x

x

 
 
 

  
 

 
  

,          (A1.40) 

thereby, 
т

т

( ) ( )ds x ds x

dx dx

 
  
 

.         (A1.41) 

This implies that  
2 2

1 1 12

т т

2 2

1

( ) ( )
...

( ) ( )
....................

( ) ( )
...

n

n n n

s x s x

x x x x
d s x d ds x

dxdx dx dx
s x s x

x x x x

  
 
   

 
 

   
  
  
     

, 

т
2 2

T T

( ) ( )d s x d s x

dxdx dx dx

 
  
 

. (A1.42) 

The derivative of an m-vector-valued function of a vector argument 
т

1,( ... )nx x x  is defined as 

1 1

1

( ,... )

.
( )

.

( ,... )

n

m n

s x x

s x

s x x

 
 
 
 
 
 

.           (A1.43) 

Thus, 

              

1 1

1

т

1

( ) ( )
...

( )
....................

( ) ( )
...

n

m m

n

s x s x

x x
ds x

dx
s x s x

x x

  
  
 

  
 
 
 

   

, and 

1

1 1т

1

( ) ( )
...

( )
....................

( ) ( )
...

m

m

n n

s x s x

x x
ds x

dx
s x s x

x x

  
  
 

  
 
 
 
   

, (A1.44) 

i.e., 

тт

т

( ) ( )ds x ds x

dx dx

 
  
 

. 
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In general, if A  is a square symmetric matrix, then 
т

т ( )
[ ( ) ( )] 2 ( )

d dg x
g x Ag x Ag x

dx dx
 . 

The derivative of scalar function ( )s A  of a matrix (matrix gradient) is 

determined as  

( )

ij

ds A ds

dA da

  
  
  

. 

For example, for square matrix A, the following formulas are valid: 

( ( ))ds Sp A
E

dA
 , т т( ( ))ds Sp BAC

B C
dA

 ; 

т
т( ( ))

( )
ds Sp ABA

A B B
dA

  .    (A1.45) 

Block matrix inversion formula. Suppose 

т( )

x xy

xy y

P P
P

P P

 
  
 

,       (A1.46) 

where xP , yP , xyP  are nn, mm and nm  matrices; moreover, there are inverse 

matrices for xP , yP . In this case, inverse matrix 1P  is defined as  

1

т

A B
P

B C

  
  
 

,       (A1.47) 

where 

 
1

1
x xy y yxA P P P P


  

  
, 

   
1

1 1
x xy y yx xy yB P P P P P P


    

  
, 

 
1

1
y yx x xyC P P P P


  

  
. 

The following relations are valid: 

     
1 1 1

x x xy yx xA P P P CP P
  

  , 

   
1 1

xy y x xyB AP P P P C
 

    , 

     
1 1 1

y y yx xy yC P P P AP P
  

  . 

There are some useful matrix relations in Table A1.1. 

In particular, the so-called matrix inversion lemma is 

 
11

1 т 1 т тP H R H P PH HPH R HP


       ,    (A1.48) 
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where P, R are the square non-singular matrices of dimension n  and m , and H is an 

mn matrix. 

It follows from the lemma that 

 
1 11 1P R P P P R P
        ,   (A1.49) 

and 
2

1
2 2

2 2 2

1 q
r E q I E I

r nq r

  
       

.   (A1.50) 

The last formula is easy to get if  
1 2P r E  ,  1,1...1H  , 1 2R q  . 

Table A1.1 

Some useful matrix formulas 

Relation Note 

т т т( )AB B A                                (A1.51) 
A, B  matrices of consistent 

dimensions 

( ) ( ) ( )Tr ABC Tr BCA Tr CAB      (A1.52) 
A, B, С  arbitrary matrices of 

consistent dimensions 

1

( )
n

i

i

Tr A


                                 (A1.53) 
A  square matrix, 

i   eigenvalue of A 

det( ) det( )det( )AB A B                  (A1.54) 
A, B  square n-dimensional 

matrices  

1

det( )
n

i

i

A


                                 (A1.55) 
A  square matrix, 

i   eigenvalue of A  

1 1 1( )AB B A                               (A1.56) 
A, B  square non-singular n-

dimensional matrices  

 

1
1 1

1

T

T T

P H R H

P PH HPH R HP


 



   

  

         (A1.57) 

P, R  square non-singular 

matrices of dimensions n and m,  

H  mn matrix  

 
1 11 1P R P P P R P
            (A1.58) 

P, R  square non-singular n-

dimensional matrices 

2
1

2 2

2 2 2

1 q
r E q I E I

r nq r

  
       

(A1.59) 

I  – a square n-dimensional 

matrix of units; 2 2,r q   

positive values 

 

 

 



 
 

156 

 

Table A1.1 (continued) 

т
( )Ax A

x





, т т т( )x A A

x





          (A1.60) 

A   square symmetric matrix, 
т

1( ,... )nx x x   n -vector 

т( ) 2x Ax Ax
x





,  

т т

т
( ) 2x Ax x A

x





                           (A1.61) 

2
т

т
( ) 2x Ax A

x x




 
                         (A1.62) 

т
т ( )

[ ( ) ( )] 2 ( )
g x

g x Ag x Ag x
x x

 


 
, 

in particular, 

т

т

[( ) ( )]

2 ( )]

y Hx A y Hx
x

H A y Hx


  



 

              (A1.63) 

A   square symmetric matrix, 
т

1 1 1( ) ( ( ,... ),... ( ,... ))n m ng x g x x g x x

  m-vector valued function, 

x , y   n- and m-vectors,  

H mn-matrix 

т т

1 1 т 1

2

( ) ( )

x Ax x z

x A z A x A z z A z  

 

   
     (A1.64) 

A   square non-singular 

symmetric matrix, 

,x z   n-vectors 

Using 
т( )

x xy

xy y

P P
P

P P

 
  
 

 

find 1

т

A B
P

B C

  
  
 

                       (A1.65) 

 
1

1
y yx x xyC P P P P


  

  
 

   
1

1 1
x xy y yx xy yB P P P P P P


    

  

 
1

1
x xy y yxA P P P P


  

    
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Appendix 2 

A2. Random variables and vectors 

A2.1. Random variables  

A random variable (RV) is a variable whose value is not known in advance and you 

can only introduce a numeric measure (probability) of the fact (event) that this value 

belongs to a prescribed domain on real axes. 

We shall assume a random variable as given if the function enabling to determine 

the probability of any possible event is defined, i.e., we can calculate the probability 

that a random variable will belong to some interval or sets of intervals on real axes. 

Such a function defining stochastic properties of a random variable is known as a 

probability distribution function or cumulative distribution function (CDF), which 

is a scalar function ( )F x
x

 of a real-valued argument x . This function defines the 

probability that the random variable x  belongs to the open interval ( , )x  i.e., the 

probability that xx .  

Thus, 

 ( ) ( : )F x x x Pr x x .    (A2.1) 

Sometimes term a probability distribution or distribution function can be used 

instead of a probability distribution function if it is clear from the context.  

The CDF (A2.1) is a non-negative, non-decreasing, left-continuous function 

satisfying the following evident equalities: 

 ( ) ( : ) 0F     
x

Pr x x ;         (A2.2) 

 ( ) ( : ) 1F    
x

Pr x x .       (A2.3) 

In addition to the probability distribution function, the properties of random variables 

can be described by a probability density function (PDF), defined as 

( )
( )

dF x
p x

dx
 x

x
.       (A2.4) 

The lower subscript of the PDF indicates the random variable to which it 

corresponds, and hereafter, it can be omitted if it does not lead to misunderstanding.  

Integrating both parts of (A2.4) from   to x  and taking into account the (A2.2), 

we obtain 

( ) ( )

x

F x p u du


 x x
.      (A2.5) 

The probability density function is a non-negative ( ( ) 0f x x ) function satisfying 

the normalizing condition 
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( ) 1p u du





 x
.           (A2.6) 

For the probability of an event, in the case when 
1 2x x x , the following evident 

equations are valid: 

1 2 2 1 2 1( ) ( : ) ( : ) ( ) ( )x x x x F x F x       x xPr x Pr x x Pr x x    (A2.7) 

or          
2

1

1 2 2 1( ) ( ) ( ) ( )

x

x

x x F x F x p u du     x x x
Pr x .            (A2.8) 

Using formula (A2.4) , we can write  

0 0

( ) ( ) ( )
( ) lim lim

dx dx

F x dx F x x x dx
p x

dx dx 

    
 x x

x

Pr x
; 

thus, for small dx  

( ) ( ) ( ) ( )x x dx F x dx F x p x dx      x x xPr x .  (A2.9) 

A2.2. Stochastic characteristics of random variables 

In addition to CDF and PDF, stochastic (statistical) properties of random variables 

can be described by a set of stochastic numerical characteristics. The main ones are a 

mathematic expectation (mean), moments, variance, root-mean-square value, 

root-mean-square deviation (RMSD), also known as a standard deviation or 

standard. Speaking about an error, we use the term a root-mean-square error 

(RMSE). The relations between these characteristics and PDF are determined by 

equations presented in Table A2.1. 

Table  A2.1 

The main stochastic characteristics of a random variable  

Characteristic Definition 

Mathematic expectation (mean) ( ) ( )E x x xp x dx  x x                 (A2.10) 

Moment of n order ( ) ( )n nE x x p x dx x x
                   (A2.11) 

Central moment of n order ( ) ( ) ( )n nE x x x x p x dx  x x
    (A2.12) 

Variance 
2( ) ( )D x x p x dx  x

                  (A2.13) 

Root-mean-square deviation 

(RMSD)  
1/22( ) ( )x x p x dx   x

            (A2.14) 

Root-mean-square value (RMSV) 
2 2( ) ( )E x x p x dx x x              (A2.15) 

Notation. In the above equations, the limits of integration are assumed infinite. 
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Further, when the limits are not denoted, they are considered to be infinite. 

A random variable with a zero expected value is called a zero-mean random 

variable.  

Considering (A2.14), (A2.16), we can obtain the following useful formula for the 

variance of an RV: 

 2 2D E x x 
x

.    (A2.16) 

The variance of an RV determines the measure of PDF concentration in the the 

vicinity of the expected value. This fact is reflected in P.L. Chebyshev’s inequality. 

For RV x , with the mean value x  and variance D , where 0  , we can write the 

following:  

2
( )

D
x 


  Pr x . 

The validity of this inequality follows from the definition of the variance.  

Indeed, 

2

ε

2 2( ) ( ) ε ( ) ε ( ε).
x x

D x x p x dx p x dx x


  

      x
Pr x  

This implies that if the variance decreases, the probability that a random variable falls 

outside the domain ( )x x    x  decreases too.  

To solve the applied problems, an important characteristic of a random variable and 

the corresponding CDF and PDF is a quantile.  

A2.3. Gaussian random variables  

Gaussian RVs are most widely used in solving applied problems. A Gaussian or 

normal random variable is a variable for which CDF and PDF can be written as 

follows:  

2

1/2 2

1 ( )
( ) exp

(2 ) 2

x
t x

F x dt
  



 
  

 
x

;   (A2.17) 

2

1/2 2

1 ( )
( ) exp .

(2 ) 2

x x
p x

  

 
  

 
x

 

These functions are called a Gaussian (normal) probability distribution and a 

Gaussian (normal) probability density function. 

Further, for Gaussian PDF, we will use the following notation: 

2
2

1/2 2

1 ( )
( ) exp ( ; , )

(2 ) 2

x x
p x N x x 

  

 
   

 
x

. (A2.18) 

Gaussian CDF and PDF and their dependences on expected values and RMSD are 
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shown in Fig. A2.1. 

It follows that when the area, in which PDF is essential nonzero, decreases, the 

variance decreases too. It can be shown that 
2

20

1 ( )
lim exp ( )

22

x x
x x






 
   
 

, 

where ( )   is the delta-function. 

Note that for a Gaussian PDF, the median, the mean value and the mode are equal.  

 

 

 

Fx(x) 

px(x) 

x 

x  

Fig. A2.1. Graphs of CDF and PDF of Gaussian RV at different expected values 

( 0, 1, 2x x x   ) and RMSD σ 1; σ 0.5; σ 0.25     

For the Gaussian CDF corresponding to the zero-mean RV, the following formula 

is valid: 

( ) 1 ( )F x F x  
x x

. 

The odd central moments of the Gaussian random variable are zero, i.e.,  
2 1

( ) ( ) 0
k

x x p x dx


  x , 

and the following formula is valid for the even moments: 
2

2( ) ( ) 1 3 ..(2 1)
k

kx x p x dx k      x
, 1,2...k  .  (A2.19) 

CDF of Gaussian RV 

PDF of Gaussian RV 
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From the above formulas follows that parameters x  and 2  of the functions 

(A2.17), (A2.18) are the mathematical expectation and the variance of the Gaussian 

random variable.  

The probability values  x k x k x k           Pr x Pr x  of the Gaussian 

RV at different k are presented in Table A2.2 and in Fig. A2.2. 

 Table  A2.2 

Probability x k    Pr x  for the Gaussian random value  for different k  

k 1 2 3 4 

x k    Pr x  0.6827 0.9545 0.9973 0.9999 

 
 

x 

px(x) 

 

Fig. A2.2. Probability x k    Pr x  for the Gaussian RV if 

2( ) ( ;0, )p x N x 
x

, 1,2,3,4k   

From Table A2.2 follows that for the modulus of the zero-mean Gaussian RV, i.e., 

xx , the quantile of order 0.6827 equals to  , and the probability that the value of 

the zero-mean Gaussian RV belongs to the interval 3  is equal  to 0.997. Usually, the 

value which is equal to 3σ  is called a three-sigma value or a three- sigma error if an 

RV describes some measurement errors.  

The fact that for a Gaussian RV  

3x     Pr x =0.997    (A2.20) 
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is called a three-sigma rule. 

The following quantitative characteristics are often used for Gaussian RVs. 

An average absolute deviation is defined as the expected value of xx , i.e.,  

 
2

0.798E x E  


   
x u

x u .   (A2.21) 

A probable deviation (probable error)  , which is a quantile of order 
1

2
 for 

xx , i.e., 

x     Pr x =0,5.     (A2.22) 

In other words, it is such a value that probability of x  x  is equal to 

probability of x  x , i.e., it is a median for xx . For a standard Gaussian RV 

with zero mean and 1  , the probable deviation is given as 0.674  , so that for the 

zero-mean Gaussian RV with variance 2 , we obtain 

0.674  .         (A2.23) 

A2.4. Random vectors  

A random vector is a vector each component of which is a random variable. For a 

random vector т

1( ,... )nx x x , its properties are fully given by the joint CDF or joint 

PDF, defined as follows: 

1 1( ) ( ,..., );n nF x x x  x Pr x x    (A2.24) 

1

( )
( )

...

n

n

F x
p x

x x



 

x
x

;       (A2.25) 

1

1( ) ... ( ) ...
nx x

nF x p u du du
 

  x x .   (A2.26) 

Formula (A2.24) determines the probability of an event in which inequality j jxx , 

1. .j n  holds for each component. 

As in the one-dimensional case, a joint PDF is a nonnegative function which satisfies 

the normalizing condition 

1... ( ) ... 1np x dx dx

 

 

  x .    (A2.27) 

In addition, a joint PDF satisfies the consistency condition, which, at m<n, is 

written as 

1 2, ,..., 1 2 1 2 1 1( , ,..., ) ... ( , ,..., , ... ) ...
m m m m n m np x x x p x x x x x dx dx   x x x x ,   (A2.28) 
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and is a symmetric function of its arguments. The latter means that the PDF for vector 
т

1( ,... )nx x x  does not depend on the sequence in which its components are arranged, 

in particular, , ,( , ) ( , )
i j j ii j j ip x x p x xx x x x

. 

The probability for a random vector to belong to domain  , mathematical 

expectation x  and covariance matrix P , which is a generalization of the notion of 

variance to the multidimensional case, has the form: 

( ) ( ) ;p x dx


   x
Pr x     (A2.29) 

( ) ( );x xp x dx E x  x x
    (A2.30) 

т т т( )( ) ( ) ( )P x x x x p x dx E xx xx     x x
.       (A2.31) 

Here and in what follows, integrals are understood as multiples. If the integration 

domain is not indicated, as noted above, the limits for each component are assumed to 

lie in the range from  to  . The diagonal elements of the covariance matrix 

determine the variances of the corresponding random vector components. 

Mathematical expectation  , ( )( )
i j i i j jE x x x x 

x x
 for two random variables ix  and 

jx  is called a correlation coefficient. Thus, nondiagonal elements  

 , ,( )( ) ( )( ) ( , )
i j i jij i i j j i i j j i j i jP E x x x x x x x x p x x dx dx      x x x x

, i j , , 1.i j n  

determine the correlation coefficients between different  components. 

By virtue of PDF symmetry, equality ij jiP P  is valid, which means that the 

covariance matrix is symmetric, that is, тP P . An important property of the 

covariance matrix is the fact that it is a nonnegative definite matrix, that is, the one for 

which т 0x Px   for any 0x  . 

If the mathematical expectation of a random vector is zero, then, as in the scalar 

case, such a vector is called a zero-mean vector. 

If  , ( )( ) 0
i j i i j jE x x x x  

x x
, then random variables are called uncorrelated or 

orthogonal. Hence it follows that for a random vector whose components are not 

correlated with each other, the covariance matrix has a diagonal form. If we have two 

random vectors, then we can introduce a cross-correlation matrix defined as 
т( )( ) ( , )B x x y y p x y dxdy    x,y , 

where ( , )p x y
x,y

 is a joint PDF. If this matrix is equal to zero, then random vectors are 

defined as noncorrelated or orthogonal. 

The notion of independence of random variables is also important. Random variables 

are called independent if the joint PDF is equal to the PDF product for each of these 

random variables, i.e., 



 
 

164 

 

1

1

( ... ) ( )
i

n

n i

i

p x x p x


x x
. 

A definition for independent random vectors is introduced in a similar way. 

Independent random vectors are uncorrelated since 

 , ,( )( ) ( )( ) ( , )
i j i ji i j j i i j j i j i jE x x x x x x x x p x x dx dx      x x x x

( ) ( ) ( ) ( ) 0
i ji i i i j j j jx x p x dx x x p x dx    x x

. 

The converse proposition is generally not valid. 

The above notions defined for a two-dimensional vector т

1 2( )x x ,x  are presented in 

Table A2.3. 

Table   A2.3 

The main notions and stochastic characteristics for a two-dimensional random 

vector  

Notions and characteristics Definition  

Probability distribution 

function 1 1 2 2( ) ( , );F x x x  x Pr x x  

Relationship between PDF and 

CDF 

2

1 2

( )
( )

F x
p x

x x



 

x
, 

1 2

2 1( ) ( )

x x

F x p u du du
 

  x x
 

Normalizing condition 1 2( ) 1p x dx dx

 

 

  x
 

PDF symmetry  1 2 2 1( , ) ( , )p x x p x xx x
 

Consistency conditions 
1 1 1 2 2( ) ( , )p x p x x dx x x

 

2 2 1 2 1( ) ( , )p x p x x dx x x
 

Independence 
1 21 2 1 2( , ) ( ) ( )p x x p x p x

x x x
 

Noncorrelatedness 1 1 2 2( )( ) 0E x x x x  x  

Probability for a random vector 

to belong to domain   
1 2Pr( ) ( )p x dx dx



   x
x  

Mathematical expectation 1 2 1 2( , ) ( )
ii i i i ix x p x x dx dx x p x dx   x x

,  

1,2i   

Correlation coefficients 12 21 1 1 2 2 1 2 1 2( )( ) ( , )P P x x x x p x x dx dx    x
 

Variances of components 
2 2( ) ( )

ii i i i ix x p x dx   x , 1,2i   

Covariance matrix 
11 12

21 22

P P
P

P P

 
  
 

, 2

ii iP   , 1,2i  , т 0P P   
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A2.5. Gaussian random vectors 

A Gaussian random vector is a vector for which PDF is defined as 

 т 1

/2 1/2

1
( ) ( ; , ) exp 0.5( ) ( )

(2 ) (det )n
p x N x x P x x P x x

P

    


x
.  (A2.32) 

In this formula, x  and P  are a mathematical expectation and a covariance matrix 

which, as in the one-dimensional case, fully define the Gaussian PDF. 
Vectors are called jointly Gaussian if their joint distribution density is Gaussian. 

Note that situations are possible in which each vector or random variable is Gaussian 
individually, but their joint density is not. 

If jointly Gaussian vectors x  and y  are not correlated, i.e.,  
т{( )( ) } 0E x x y y  

x,y
, they are independent, and thus, 

( , ) ( ) ( )p x y p y p x
x,y y x

. 

In particular, this is easy to verify by the example when x  and y  are scalars since  

2 2
11

, 1/2 1/2

22 11 22 11 22

0 1 ( ) ( )
( , ) ; , exp

0 (2 ) 2 2

Px x x x y y
p x y N

Py y P P P P

       
        

      
x y

2 2

1/2 1/2 1/2 1/2

11 11 22 22

1 ( ) 1 ( )
exp exp

(2 ) 2 (2 ) 2

x x y y

P P P P

    
     

    
. 

As noted earlier, in a general case, this proposition is not true. 

Let us analyze the form of a two-dimensional Gaussian PDF. Assume that the 

covariance matrix is nondiagonal, i.e., 
2

1

2

2

*

*

r
Р

r

 
  

 
.         (A2.33) 

Introducing the normalized correlation coefficient in the form 

1 2

*r
r 

 
,               (A2.34) 

it is easy to see that  

2

1 1 21

2

2

1 2 2

1

1

1(1 )

r

P
rr



 
   

 
  

    

.    (A2.35) 

Therefore, the PDF for a two-dimensional Gaussian vector can be written as 
2 2

1 1 2 2

2 2 22
1 1 2 21 2

1 1 2
( ;0, ) exp

2(1 )2 1

x rx x x
N x P

rr

   
     

          
.   (A2.36) 

For different values of c , equation  



 
 

166 

 

2 2
21 1 2 2

1 2 2 2

1 1 2 2

2
( , )

x rx x x
g x x c   

   
         (A2.37) 

defines ellipses. It should be noted that the axes of these ellipses rotate relative to the 

vertical axis at a certain angle. As an example, Fig. A2.3 shows isolines for r = 0.75. 

 
 x2 

x1  

Fig. A2.3. PDF isolines for a zero-mean Gaussian vector for 1 2 1   . 

When navigation problems are solved on a plane, it is often assumed that the vehicle 

coordinates are a Gaussian random vector with a mathematical expectation at the point 

of its expected location. The uncertainty of the point location on the plane can be 

described with the use of the equal probability ellipses that were introduced above, in 

particular, the ellipse corresponding to equation (A2.32)  for 1c  . 

 

 

 

 

. 

 

 

 

Fig. A2.4. Error ellipse for a two-dimensional Gaussian vector 

with independent components. 

Since this ellipse intersects the axes at points coinciding with the values of the 

corresponding RMS, i.e., at 2 1 10,x x   , and at 1 2 20,x x   , it is called a root-

mean-square error ellipse, or a standard ellipse. In navigation applications, it is 

described using the ellipse parameters: major a  and minor b  semiaxes and 

directional angle  , which sets the orientation of the major semiaxis relative to the 

 

a 

b 

2x
 

1x  
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axis 
2x . These three parameters completely determine the covariance matrix of the two-

dimensional Gaussian PDF [24]. Figure A2.4 shows a special case when 2 b  , 

1 a  , 90  , and, therefore, 
2

2

0

0

a
P

b

 
  
 

,         (A2.38) 

that is, the dimensions of the ellipse semiaxes determine the RMS values for each 

coordinate. 
When estimating the accuracy of the vehicle position, it is very important to be able 

to characterize the uncertainty of position with a single value. It is for these purposes 
that the values of the probability for a point on the plane to appear in specific domain 
  are used. For a two-dimensional zero-mean Gaussian vector with PDF (A2.31), this 
probability is defined as 

1 2 1 222

1 2

1 1
( ) exp ( , )

2(1 )2 1
g x x dx dx

rr 

 
   

    
Pr x ,   (A2.39) 

where 1 2( , )g x x  is an equal probability ellipse (A2.32). 

If domain   is represented by 1 2( , )g x x , then, passing on to polar coordinates, it can 

be shown that 

2
2

1 2 2
( : ( , ) ) 1 exp

2(1 )

c
g x x c

r

 
    

 
Pr x .     (A2.40) 

For the case of independent random variables, at 1 2   , the ellipse turns into a 

circle with a radius R c   and, therefore, from (A2.35) it follows that the probability 

of finding a random vector within a circle with such a radius is determined by the 

Rayleigh distribution: 

 
2 2 2 2

2 21 2

1 22 2 2
: : ( ) 1 exp

2

x x R R
x x R F R

   
         
     

Pr x Pr x , R>0. (A2.41) 

The value R , which corresponds to 50% probability of finding the Gaussian random 

vector within a circle of a specified radius, i.e., the probability is 0.5, is called a 

circular error probable (CEP), and correspondingly, the circle is called a circle of 

equal probabilities. In the case when the ellipse is a circle, i.e., with independent 

random variables and the same RMS 1 2   , 50% probability of getting into the 

circle (Pr = 0.5) is achieved if its radius is equal to 1.177. For R = 3.4, Pr = 0.997. If 

this is not the case, then the radius of the circle at which 0.5 probability of getting into 

this circle is achieved, should be found using (A2.39). 

Sometimes the notion of a Distance Root-Mean-Square error (DRMS) is used. 
2 2

1 2DRMS    .          (A2.42) 
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Depending on the values of the covariance matrix or parameters of the ellipse, this 

value corresponds to 65–68% probability of getting into the circle with such a radius. 

Doubled radial RMS error (2DRMS) is also often used. It corresponds to the 

probability of getting into a circle with a radius equal to a doubled radial error. The 

exact value of the probability depends on the specific ratios of variances and the 

correlation coefficient, and its approximate value is determined as Pr = 0.95. 
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Appendix 3 

A3. Ordinary differential equations 

An ordinary differential equation in the Cauchy form is an equation of the form 

[5, 8, 12, 25]: 

( ) ( , ( ), ( ))x t F t x t u t ,     (A3.1) 

where т

1( ) ( ( ),... ( ))nx t x t x t  is an n-dimensional vector; 
т

1( ) ( ( )... ( ))pu t u t u t  is a p -

dimensional input vector, which can mean both control and disturbance; 
т

1(.) ( (.),... (.))nF F F  is an n-dimensional, in the general case, nonlinear vector-

function. Vector т

1( ) ( ( ),... ( ))nx t x t x t  is called a phase vector or state vector.  

In the cases when ( , ( ), ( )) ( ( ), ( ))F t x t u t F x t u t  does not explicitly depend on time, 

the equation is called stationary. If this equation depends on time, it is called 

nonstationary. 

When ( ) 0u t  , the equation is called homogeneous; when ( ) 0u t  , it is called 

inhomogeneous. 

Equation  

( ) ( ) ( ) ( ) ( )x t F t x t G t u t  ,         (A3.2) 

in which ( ), ( )F t G t  are matrices of the corresponding dimensions, is called a linear 

differential equation.  

If matrices ( ), ( )F t G t  depend on time, the equation is called a nonstationary linear 

differential equation.  

If matrices ,F G  do not depend on time, i.e., 

( ) ( ) ( )x t Fx t Gu t  ,       (A3.3) 

the equation is called a stationary linear differential equation.  

The solution of a differential equation is such a function of time ( )x t , 
0 0( )x t x , 

the substitution of which into the original differential equation turns it into an identity. 

The value of function 
0 0( )x t x  at the initial moment is called the initial condition. 

The fundamental, or transitional, matrix of the system of equations (A3.2) is a 

matrix that satisfies the equation 

0
0

( , )
( ) ( , )

d t t
F t t t

dt


         (A3.4) 

with the initial condition of the form 0 0( , )t t E  . 

The general solution to the differential equation (A3.2) satisfying the initial 

condition 
0 0( )x t x  has the form [5, 8]  

0

0 0( ) ( , ) ( ) ( , ) ( ) ( )d

t

t

x t t t x t t G u       .         (A3.5) 

file:///C:/Users/Nina/Desktop/Appendix%203.doc%23_Toc474796924
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The first summand represents the general solution of the linear homogeneous 

nonstationary differential equation 

( ) ( ) ( )x t F t x t . 

The second summand is a partial solution of the differential equation (A3.2) at 

0( ) 0x t  . This solution is called partial because it corresponds to zero initial 

conditions and depends on a specific type of input action ( )u t . 

To show that (A3.5) is a solution to (A3.3), it is necessary to use the following rule 

[8]: 

0 0

( , ) ( , ) ( , )

t t
d d

g t d g t t g t d
dt dt

       .   (A3.6) 

Differentiating (A3.8) and taking into account that 

0 0( , ) ( ) ( , )t t F t t t   , 

we have 

0

0 0( ) ( ) ( , ) ( ) ( , )G( ) ( ) ( ) ( , )G( ) ( )d

( ) ( ) G( ) ( ).

t

t

x t F t t t x t t t t u t F t t u

F t x t t u t

         

 


 

For stationary equations (A3.3), the fundamental matrix depends on the difference of 

the arguments and is a matrix exponent for F : 

0( )

0 0

0

1
( ) ( )

!

F t t i i

i

t t e F t t
i






     .    (A3.7) 

Since 0( )

0

0

1
( )

!

F t t i i

i

Fe F F t t
i






  , it is easy to see that 0( )F t t
e

  satisfies an equation of 

the type (A3.4). 

Thus, the general solution of the stationary linear differential equation (A3.3) can be 

written as 

0

0

( ) ( )

0( ) ( ) G ( )d

t

F t t F t

t

x t e x t e u
     .   (A3.8) 

Consider a linear matrix differential equation  

( ) ( ) ( ) ( ) ( ) ( )TP t F t P t P t F t Q t   .   (A3.9) 

It is easy to verify that the general solution to this equation is matrix 

0

0 0 0( ) ( , ) ( ) ( , ) ( , ) ( ) ( , )

t

T T

t

P t t t P t t t t Q t d         ,  (A3.10) 

where 
0( , )t t  is a fundamental matrix for equation ( ) ( ) ( )x t F t x t .  

Indeed, differentiating this relation, taking into account (A3.6), we derive 



 
 

171 

 

0 0

0 0 0 0 0 0( ) ( ) ( , ) ( ) ( , ) ( , ) ( ) ( , ) ( )

( ) ( ) ( , ) ( ) ( , ) ( , ) ( ) ( , ) ( ) .

T T T

t t

T T T

t t

P t F t t t P t t t t t P t t t F t

Q t F t t Q t d t Q t F t d

     

              
 

Taking into account (A3.10), we derive (A3.9). For the stationary case, (A3.10) has 

the form 

0 0

0

( ) ( ) ( ) ( )

0( ) ( )
T T

t

F t t F t t F t F t

t

P t e P t e e Qe d
      .       (A3.11) 
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