УНИВЕРСИТЕТ ИТМО

А.В. Новотельнова, А.В. Асач, А.С. Тукмакова

ОБЩАЯ ЭЛЕКТРОТЕХНИКА: ВИРТУАЛЬНЫЕ ИССЛЕДОВАНИЯ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ

Санкт-Петербург 2022 МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

УНИВЕРСИТЕТ ИТМО

А.В. Новотельнова, А.В. Асач, А.С. Тукмакова ОБЩАЯ ЭЛЕКТРОТЕХНИКА: ВИРТУАЛЬНЫЕ ИССЛЕДОВАНИЯ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ

УЧЕБНОЕ ПОСОБИЕ

РЕКОМЕНДОВАНО К ИСПОЛЬЗОВАНИЮ В УНИВЕРСИТЕТЕ ИТМО

по направлениям подготовки 13.03.01, 16.03.03, 19.03.03 в качестве учебного пособия для реализации основных профессиональных образовательных программ высшего образования бакалавриата

УНИВЕРСИТЕТ ИТМО

Санкт-Петербург 2022 Новотельнова А.В., Асач А.В., Тукмакова А.С., Общая электротехника: виртуальные исследования электрических цепей. – СПб: Университет ИТМО, 2022. – 31 с.

Рецензент(ы):

Пронин Владимир Александрович, доктор технических наук, профессор, профессор (квалификационная категория " ординарный профессор") факультета энергетики и экотехнологий, Университета ИТМО.

В издании приведено описание лабораторных работ, выполняемых при изучении курса «Общая электротехника». Учебное пособие предназначено теоретического практического студентами для И освоения неэлектротехнических направлений подготовки раздела курса «Электрические цепи». Предназначено для самостоятельной работы бакалавров, обучающихся по программам 13.03.01 Теплоэнергетика и теплотехника (Бакалавриат); 16.03.03 Холодильная, криогенная техника и жизнеобеспечения (Бакалавриат), 19.03.01. Биотехнология системы (Бакалавриат).

УНИВЕРСИТЕТ ИТМО

ИТМО Университет _ национальный исследовательский университет, ведущий вуз России в области информационных, фотонных и биохимических технологий. Альма-матер победителей международных соревнований по программированию – ІСРС (единственный в мире семикратный чемпион), Google Code Jam, Facebook Hacker Cup, Яндекс.Алгоритм, Russian Code Cup, Topcoder Open и др. Приоритетные направления: IT, фотоника, робототехника, квантовые коммуникации, Life Sciences, трансляционная медицина, Art&Science, Science Communication. Входит в ТОП-100 по направлению «Автоматизация и управление» Шанхайского предметного рейтинга (ARWU) и занимает 74 место в мире в британском предметном рейтинге QS по компьютерным наукам (Computer Science and Information Systems). С 2013 по 2020 гг. лидер Проекта 5-100.

> © Университет ИТМО, 2022 © Новотельнова А.В., Асач А.В., Тукмакова А.С., 2022

ВВЕДЕНИЕ

Пособие предназначено для студентов неэлектротехнических направлений подготовки бакалавров, изучающих курс «Общая электротехника».

Исследования проводятся в программном продукте *Electronics Workbench* v.5.12. Для проведения виртуальных исследований необходим персональный компьютер и соответствующее программное обеспечение. Модельный эксперимент проводится на экране монитора.

Программа содержит обширную библиотеку компонентов электронной аппаратуры, источников питания постоянного и переменного тока, коммутационные элементы, индикаторы и пр.

Программная среда *Electronics Workbench* v.5.12 позволяет проводить анализ виртуальных электрических схем, подключая к участкам цепи измерительные приборы (цифровые амперметры, вольтметры, осциллографы и пр.).

Общие сведения, необходимые для начала работы с программой, приведены в Приложении I.

Результаты проделанной работы оформляются в индивидуальном отчете. Отчет выполняется в печатном или рукописном виде.

Форма оформления и разделы отчета приведены в Приложении II.

Защита лабораторных работ происходит дистанционно в виде тестирования в ЦДО.

ЛАБОРАТОРНАЯ РАБОТА № 1. ИССЛЕДОВАНИЕ НЕРАЗВЕТВЛЕННОЙ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ СИНУСОИДАЛЬНОГО ТОКА. РЕЗОНАНС НАПРЯЖЕНИЙ

Цель работы

Исследовать электрическое состояние линейной неразветвленной электрической цепи синусоидального тока при различных потребителях электрической энергии; приобрести навыки расчета параметров отдельных элементов электрической цепи синусоидального тока.

Программа работы

- 1. Произвести предварительный расчет для определения резонансного значения емкости.
- Экспериментально исследовать электрическое состояние неразветвленной электрической цепи, содержащей активную, емкостную и индуктивную нагрузки.
- 3. Экспериментально определить значение емкости, при котором наступает резонанс напряжений. Сравнить расчетное и экспериментально полученное значения емкости C_{pe3} .
- 4. Построить векторные диаграммы тока и напряжений для трех различных значений емкости.
- 5. Построить графические зависимости тока и напряжений на участках цепи и зависимости мощности (активной, реактивной и полной) и коэффициента мощности от величины емкости.
- 6. Проанализировать полученные данные и сформулировать выводы по результатам работы. В выводах объяснить полученные зависимости и сопоставить их с теорией.

Виртуальная установка

С использованием виртуального эксперимента производится анализ электрических процессов в неразветвленной электрической цепи, состоящей из источника переменного напряжения и нагрузки - катушки индуктивности и конденсатора.

Электрическая схема (рис. 1-1) состоит из источника переменного напряжения синусоидального тока и подключенных к нему последовательно соединенных пассивных элементов (активного сопротивления R, индуктивного элемента L и емкостного элемента C и контрольно-измерительных приборов (амперметра и вольтметров).

Последовательно соединенные *R*- и *L*- элементы представляют собой модель реального элемента -катушки индуктивности.

Рисунок 1-1 - Схема виртуальной установки для исследования неразветвленной электрической цепи синусоидального тока

Порядок выполнения работы

1. Открыть программу *Electronics Workbench* v.5.12.

2. Собрать компьютерную модель схемы (см. рис. 1-1).

На рабочее поле программы поместить пиктограммы элементов схемы и измерительных приборов. Группы элементов расположены в панели библиотеки компонентов в верхней части экрана программы. Собрать модель электрической схемы рис. 1-1. Соединение элементов производится с помощью мыши.

Значения параметров источников (эдс E фазы, частота f и значение начальной α) и элементов схемы R и L приведены в таблице 1.1. Выбор выполняемого студентом или группой студентов варианта проводится преподавателем.

Таблина 1.1

					Гаолица 1.1
N⁰	<i>E</i> , B	α, °	<i>f</i> , Гц	<i>R</i> , Ом	<i>L</i> , Гн
варианта					
1	20	0	50	100	0,8
2	20	0	50	100	0,9
3	20	0	50	100	1,0
4	20	0	50	110	1,1
5	20	0	50	110	1,2
6	30	0	50	110	0,8
7	30	0	50	120	0,9
8	30	0	50	120	1,0
9	30	0	50	120	1,1
10	30	0	50	120	1,2
11	40	0	50	100	0,8
12	40	0	50	100	0,9
13	40	0	50	100	1,0
14	40	0	50	110	1,1

N⁰	<i>E</i> , B	α, °	<i>f</i> , Гц	<i>R</i> , Ом	<i>L</i> , Гн
варианта					
15	40	0	50	110	1,2

4. По умолчанию режим работы измерительных приборов (вольтметры и амперметр) в программе предполагает проведение измерений постоянных токов и напряжений (режим DC). В работе исследуется электрическая цепь переменного тока. Для измерения значений переменного напряжения на участках цепи или тока необходимо зайти во вкладку изменения параметров измерительного прибор и задать режим работы AC (Alternating Current). Открытие вкладки производится правым кликом по знаку измерительного прибора Значения внутренних сопротивлений измерительных приборов оставить заданными по умолчанию (1 мОм для амперметра и 1 МОм для вольтметров).

5. Изменяя емкость конденсатора от 1 мкФ до 30 мкФ, измерять с помощью вольтметров pV2 и pV3 величины напряжения $U_{\rm K}$, U_C . Ток I измерять с помощью амперметра pA. Данные измерений занести в п.1-7 таблицы 1.2.

В п.8 следует внести данные, полученные при достижении резонанса напряжений.

										Табли	ица 1.2				
N⁰	С,	Pe	зульта	ТЫ		Результаты вычислений									
опыт	мкΦ	ИЗ	вмерени	ий											
а		Ι,	<i>U</i> _κ ,	U_c ,	Хс,	XL,	Ζ,	cosφ	<i>P</i> ,	<i>Q</i> ,	<i>S</i> ,				
		А	В	В	Ом	Ом	Ом		Вт	вар	BA				
1	1														
2	5														
3	10														
4	15														
5	20														
6	25														
7	30														
8															

7. Используя экспериментальные данные произвести вычисления следующих величин:

емкостное сопротивление

$$X_c = \frac{1}{2\pi f c};$$

индуктивное сопротивление

$$X_L = 2\pi f L;$$

полное сопротивление

$$Z = E/I$$
;

коэффициент мощности электрической цепи

$$cos \varphi = R/Z.$$

7. Произвести расчет потребляемой нагрузкой мощности цепи: активной

$$P = UI\cos\varphi;$$

реактивной

$$Q = I^2 (X_L - X_C);$$

полной

S = UI.

9. Рассчитать угол сдвига фаз между током и напряжением на участке цепи, содержащем катушку индуктивности:

$$\varphi_{\rm K} = \arccos R/Z_{\rm K},$$

где Z_K –полное сопротивление катушки, равное

$$Z_{\rm K} = \sqrt{R^2 + X_L^2}.$$

10. Используя расчетное значение $\phi_{\rm K}$, построить векторные диаграммы для случаев *C*=5 мк Φ ; *C*=*C*_{pe3}; *C*=30 мк Φ .

Перед построением диаграммы выбрать масштаб длин векторов токов и напряжений, ориентируясь на полученные экспериментальные данные.

Построение векторной диаграммы следует начать с расположения на плоскости вектора тока *I*.

Затем под углом $\phi_{\rm K}$ построить вектор падения напряжения на катушке индуктивности $\dot{U}_{\rm K}$. Вектор падения напряжения на емкостном элементе \dot{U}_{c} расположить на диаграмме с отставанием от вектора \dot{I} на 90°. Вектор напряжения \dot{U} построить как сумму векторов $\dot{U}_{\rm K}$ и \dot{U}_{c} (рис. 1-2). На векторных диаграммах указать масштаб построения (в мА/см и В/см).

Рисунок 1-2 - Векторная диаграмма токов и напряжений.

11. Построить графики зависимостей:

- тока I и напряжений на участках цепи $U_{\rm K}$ и $U_{\rm C}$ от величины емкости C;

- активной *P*, реактивной *Q* и полной *S* мощности цепи и коэффициента мощности цепи соsф от величины емкости *C*.

Вопросы

1. Условия возникновения резонанса напряжений.

- 2. Активная, реактивная и полная мощность.
- 3. Коэффициент мощности.
- 4. Треугольники напряжений, сопротивлений и мощности.
- 5. Способы построения векторных диаграмм.

ЛАБОРАТОРНАЯ РАБОТА № 2 ИССЛЕДОВАНИЕ РАЗВЕТВЛЕННОЙ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ СИНУСОИДАЛЬНОГО ТОКА. РЕЗОНАНС ТОКОВ

Цель работы

Исследовать электрическое состояние линейной разветвленной электрической цепи синусоидального тока и резонанс токов при различных потребителях электрической энергии.

Программа работы

1. Исследовать электрическое состояние разветвленной электрической цепи при различных значениях емкости.

2. Экспериментальным путем найти значение емкости, при котором наступает резонанс токов.

3. Произвести расчет значений проводимости и коэффициента мощности цепи. Построить графики зависимостей токов от величины емкости и векторные диаграммы токов и напряжений.

4. Проанализировать результаты и составить заключение.

Виртуальная установка

Электрическая схема лабораторной установки для исследования линейной разветвленной электрической цепи синусоидального тока приведена на рис 2-1.

Рисунок 2-1 - Схема виртуальной установки для исследования линейной разветвленной электрической цепи переменного тока

Схема состоит из источника питания переменного тока, параллельно соединенных катушки индуктивности и емкостного элемента и контрольно-измерительных приборов.

Модель реальной катушки индуктивности представлена в схеме в виде активного сопротивление R и индуктивности L, соединенных последовательно.

Порядок выполнения работы

1. Ознакомиться с электрической схемой, приборами и элементами (см. рис. 2-1).

2. Запустить программу *Electronics Workbench* v.5.12.

3. Поместить на рабочее поле программы модели элементов схемы и измерительных приборов и собрать компьютерную модель схемы (рис. 2-1).

4. Параметры элементов схемы и источника питания приведены в таблице 2.1. Задать их значения в соответствии с согласованным с преподавателем вариантом:

				Таблица 2.1
N⁰	Е, В	<i>f</i> , Гц	<i>R</i> , Ом	<i>L</i> , Гн
варианта				
1	100	50	100	0,8
2	100	50	100	0,9
3	100	50	100	1,0
4	100	50	110	1,1
5	100	50	110	1,2
6	150	50	110	0,8
7	150	50	120	0,9
8	150	50	120	1,0
9	100	50	120	1,1
10	100	50	120	1,2
11	40	50	100	0,8
12	40	50	100	0,9
13	40	50	100	1,0
14	40	50	110	1,1
15	40	50	110	1,2

5. Измерительные приборы (амперметры и вольтметр) перевести в режим работы *AC* (измерение переменного напряжения или тока). Значения внутренних сопротивлений измерительных приборов оставить заданными по умолчанию (1 мОм для амперметров и 1 МОм для вольтметра).

6. Запустить режим моделирования и изменяя величину емкости *С* в диапазоне от 1 мкФ до 30 мкФ произвести измерения. Занести данные измерений в п.1-7 таблицы 2.2.

						<u>Таблица 2.</u> 2			
No	C , мк Φ	Резул	ьтаты измер	оений	Результаты				
опыта				вычислений					
		<i>I</i> , A	<i>I</i> к, А	<i>Y</i> , См	cosφ				
1	1								
2	5								
3	10								
4	15								
5	20								
6	25								
7	30								
8									

7.Экспериментальным путем изменяя значение емкости найти значение C_{pes} , при котором наступает резонанс токов. Произвести при этом значении измерение токов на участках цепи. В п.8 таблицы 2.2 следует внести данные, полученные при достижении резонанса токов.

8. По результатам измерений осуществить расчет полной проводимости цепи *Y*

$$Y=\frac{I}{E},$$

9. Рассчитать значения параметров катушки индуктивности.

Индуктивное сопротивления катушки индуктивности:

$$x_L = 2\pi f L.$$

Полное сопротивления катушки индуктивности

$$Z_{\kappa} = \sqrt{R^2 + x_L^2}.$$

Активная проводимость катушки индуктивности

$$g_{\kappa} = \frac{R}{Z_{\kappa}^2}.$$

10. Коэффициент мощности соѕф электрической цепи:

$$\cos\varphi = \frac{g_{\kappa}}{Y}.$$

11. Построить:

а) графики зависимостей токов на участках цепи от величины емкости *C*;

б) векторные диаграммы токов и напряжений, используя экспериментальные данные для значений емкости 5 мкФ, 30 мкФ и при резонансном значении емкости C_{pe3} .

Вопросы

1 Резонанс токов: условия возникновения и последствия для электрического состояния цепи.

2. Проводимость электрической цепи (активная, реактивная полная).

3. Треугольники токов и проводимостей.

4. Законы Кирхгофа для цепей переменного тока.

ЛАБОРАТОРНАЯ РАБОТА № 3. ИССЛЕДОВАНИЕ ТРЕХФАЗНОЙ ЦЕПИ ПРИ СОЕДИНЕНИИ ПРИЕМНИКОВ ЗВЕЗДОЙ

Цель работы

Исследовать электрическое состояние трехфазной электрической цепи с потребителем электрической энергии, соединенным звездой в различных режимах, приобрести навыки расчета параметров трехфазных электрических цепей.

Программа работы

1. Исследовать электрическое состояние трехфазной электрической цепи при соединении фаз приемника звездой в различных режимах работы.

2. Произвести расчет значений мощности потребляемой трехфазным приемником.

3. Построить векторные диаграммы токов и напряжений.

4. Проанализировать результаты и составить заключение.

Виртуальная установка

Схема виртуальной установки приведена на рис.3-1.

Схема включает в себя источник трехфазного синусоидального тока, подключенные к нему приемники (сопротивления *R1*, *R2*, *R3*), соединенные по схеме звезда, и контрольно-измерительные приборы.

Подключение нейтрального провода производится замыканием ключа *S*. Переключатель *S* по умолчанию управляется клавишей ПРОБЕЛ.

Измерение линейных напряжений производится вольтметрами *pV1*, *pV2*, *pV3*, фазных – вольтметрами *pV5*, *pV6*, *pV7*.

Измерение линейных токов проводится амперметрами *pA1*, *pA2*, *pA3*. Ток в нейтральном проводе измеряет амперметр *pA4*.

Напряжение смещения нейтрали U₀ измеряется вольтметром *pV4*.

Порядок выполнения работы

1. Ознакомиться с электрической схемой, приборами и элементами (см. рис. 3-1).

2. Получить исходные данные для выполнения лабораторной работы. Запустить программу *Electronics Workbench v.*5.12.

3. Используя панель групп библиотеки компонентов и мышь, поместить на рабочее поле программы *Electronics Workbench v.5.12* модели элементов схемы и измерительных приборов.

Собрать модель электрической схемы и подключенных к ней измерительных приборов в соответствии с рис. 3-1.

4. Установить начальные параметры элементов схемы и источников в соответствии с вариантом. Значения параметров источников (эдс E фазы, частота f и значение начальных фаз α) и активных сопротивлений фаз R при симметричной нагрузке приведены в таблице 3.1.

	_		_		, ,	Габлица3.1
N⁰	<i>E</i> , B	<i>f</i> , Гц	α _A , °	α_{B} , °	α_{C} , °	<i>R</i> , Ом
варианта						
1	127	50	0	120	240	100
2	127	50	0	120	240	200
3	127	50	0	120	240	300

N⁰	<i>E</i> , B	<i>f</i> , Гц	α _A , °	α _B , °	α _C , °	<i>R</i> , Ом
варианта						
4	127	50	0	120	240	400
5	220	50	0	120	240	100
6	220	50	0	120	240	200
7	220	50	0	120	240	300
8	220	50	0	120	240	400
9	380	50	0	120	240	100
10	380	50	0	120	240	200
11	380	50	0	120	240	300
12	660	50	0	120	240	100
13	660	50	0	120	240	200
14	660	50	0	120	240	300
15	660	50	0	120	240	400

5. Измерительные приборы перевести в режим работы *AC* (измерение переменного напряжения или тока). Остальные параметры оставить заданными по умолчанию;

6. Изменяя величины сопротивлений фаз и переключая нейтральный провод выключателем *S* (переходя из трехпроводного в четырёхпроводной режим), произвести измерения согласно программе работы.

Данные измерений занести в табл. 3.2.

7. Рассчитать значение $\frac{U\pi}{U\Phi}$ по данным опытов №1 и №2.

8. Рассчитать активные мощности, потребляемые фазами приемника и мощность трехфазной цепи по формулам:

$$P_a = U_a I_a;$$

$$P_b = U_b I_b;$$

$$P_c = U_c I_c;$$

$$P_a = P_a + P_b + P_c.$$

8. Для всех исследованных режимов работы построить в масштабе векторные диаграммы напряжений и токов.

				Таолица 5.2							.∠										
№ ПП	ние	Состояние нагрузки	Сс ф	опротивл аз прием	ение ника				Р	езул	ьтать	ы изм	иерени	ий				Рез выч	ульта 1исле	аты ний	
	Соедине фаз		R1	R2	R3	I _A , A	I_B , , A	IC , A	I ₀ , A	$egin{array}{c} U_a \ , \ B \end{array}$	U_b , B	$egin{array}{c} U_c \ , \ B \end{array}$	U _{AB} , B	U_{BC} , B	UCA , B	U ₀ , B	<u> </u>	<i>Ра</i> , Вт	<i>Р</i> _{<i>b</i>} , Вт	<i>Р</i> _{<i>c</i>} , Вт	<i>Р</i> , Вт
1	Y	Симметри- чная нагрузка	R	R	R																
2	Y_0	Симметри- чная нагрузка	R	R	R																
3	Y	Несиммет- ричная нагрузка	R	0.75R	0.5R																
4	<i>Y</i> ₀	Несимметр ичная нагрузка	R	0.75R	0.5R																
5	Y	Обрыв фазы С	R	R	100 МОм																
6	Y_0	Обрыв фазы С	R	R	100 МОм																
7	Y	Короткое. замыкание фазы А	0,1 Ом	0,5 <i>R</i>	0,5 <i>R</i>																

Вопросы

1. Трехфазная система токов.

2. Соединение фаз трехфазной цепи звездой.

3. Симметричной и несимметричная нагрузка фаз.

4. Линейные и фазные напряжения и токи при соединении звездой

5. Мощность отдельных фаз и мощность трехфазного приемника.

6.Способы построения векторных диаграмм токов и напряжений соединения звездой.

ЛАБОРАТОРНАЯ РАБОТА № 4. ИССЛЕДОВАНИЕ ТРЕХФАЗНОЙ ЦЕПИ ПРИ СОЕДИНЕНИИ ПРИЕМНИКОВ ТРЕУГОЛЬНИКОМ

Цель работы

Исследовать электрическое состояние трехфазной электрической цепи с потребителем электрической энергии, соединенным треугольником в различных режимах; приобрести навыки расчета параметров трехфазной электрической цепи при соединении фаз треугольником.

Программа работы

1. Исследовать электрическое состояние трехфазной электрической цепи при соединении фаз приемника треугольником в различных режимах работы.

2. Произвести расчет значений мощности потребляемой трехфазным приемником.

3. Построить векторные диаграммы токов и напряжений.

4. Проанализировать результаты и составить заключение.

Виртуальная установка

Схема виртуальной установки для исследования трехфазной цепи при соединении приемников по схеме треугольник представлена на рис.4-1.

Исследуемая схема состоит из трехфазного генератора переменного тока и подключенных к нему приемников, соединенных треугольником и контрольно-измерительных приборов.

В схеме амперметрами *pA1*, *pA2*, *pA3* измеряются линейные токи *I*_A, *I*_B, *I*_C.

Для измерения фазных токов *I*_{ab}, *I*_{bc}, *I*_{ca} используются амперметры *pA4*, *pA5*, *pA6*.

Для измерения напряжений U_{ab} , U_{bc} , U_{ca} используются вольтметры pV1, pV2 и pV3 соответственно.

Рисунок 4-1 - Схема трехфазной цепи при соединении фаз приемника треугольником

Порядок выполнения работы

1. Ознакомиться с электрической схемой, приборами и элементами (см. рис. 4-1).

2. Запустить программу *Electronics Workbench* v.5.12. Переместив на рабочее поле необходимые элементы схемы и измерительных приборы собрать модель виртуальной установки.

3. Задать параметры элементов схемы и источников питания в соответствии с вариантом выполнения работы. Исходные данные приведены в таблице 4.1.

Таблица	4.1	
гаолица	1.1	

					1 40.	тица 4.1
N⁰	Е, В	<i>f</i> , Гц	α _A , °	α_{B}, \circ	α _C , °	<i>R</i> , Ом
варианта						
1	127	50	0	120	240	100
2	127	50	0	120	240	200
3	127	50	0	120	240	300
4	127	50	0	120	240	400
5	220	50	0	120	240	100
6	220	50	0	120	240	200

N⁰	<i>E</i> , B	<i>f</i> , Гц	α _A , °	α _B , °	α_{C} , °	<i>R</i> , Ом
варианта						
7	220	50	0	120	240	300
8	220	50	0	120	240	400
9	380	50	0	120	240	100
10	380	50	0	120	240	200
11	380	50	0	120	240	300
12	660	50	0	120	240	100
13	660	50	0	120	240	200
14	660	50	0	120	240	300
15	660	50	0	120	240	400

4. Вольтметры и амперметры перевести в режим работы измерения переменного напряжения или тока (*AC*). Значения внутренних значений сопротивлений амперметров и вольтметров оставить заданными по умолчанию.

5. Запустить моделирование и последовательно установить различные режимы работы приемников, соединенных треугольником. Изменяя величину сопротивлений фаз, произвести измерения значений линейных и фазных токов и напряжений. Данные измерений занести в табл. 4.2.

6. Произвести расчеты мощности отдельных фаз и мощности трехфазной цепи по формулам:

$$P_{ab} = U_{ab}I_{ab};$$

$$P_{bc} = U_{bc}I_{bc};$$

$$P_{ca} = U_{ca}I_{ca};$$

$$P = P_{ab} + P_{bc} + P_{ca}.$$

7. Значение отношения линейного тока к фазному $\frac{I_{\pi}}{I_{\Phi}}$ рассчитать для случая симметричной нагрузки по данным опыта №1.

8. Построить в масштабе векторные диаграммы напряжений и токов трехфазного приемника в исследованных режимах.

Таблица 4.2

№ опыт	Состояние нагрузки	Co	противл фазы	ение		Результаты измерений								Pe	Результаты вычислений			
а		<i>R1</i>	R2	R3	<i>I</i> _{<i>A</i>} , A	$I_B,$ A	<i>I</i> _{<i>C</i>} , A	I _{ab} , A	$I_{bc},$ A	I _{ca} , A	$U_{AB},$ B	$U_{BC},$ B	<i>U</i> _{<i>CA</i>} , В	$\frac{I_{\pi}}{I_{\phi}}$	<i>Р_{аb}</i> , Вт	<i>Р_{bc}</i> , Вт	<i>Р_{са}</i> , Вт	Р _{цепи} , Вт
1	Симметри чная нагрузка	R	R	R														
2	Несиммет ричная нагрузка	R	0.75 <i>R</i>	0.5 R														
3	Обрыв фазы СА	R	0.75 <i>R</i>	100 МОм														
4	Обрыв фаз <i>АВ</i> и <i>СА</i>	R	100 МОм	100 МОм														
5	Обрыв линейного провода фазы С	R	0.75 <i>R</i>	0.5 R														

Вопросы

1. Способ соединения трехфазной цепи треугольником

2. Линейные и фазные напряжения и токи при соединении фаз, треугольником.

3. Метод, используемый при построении векторных диаграмм.

4. Аварийные режимы в трехфазных цепях.

ПРИЛОЖЕНИЕ 1

ИСПОЛЬЗОВАНИЕ ПРОГРАММЫ ELECTRONICS WORKBENCH ДЛЯ ВИРТУАЛЬНЫХ ЛАБОРАТОРНЫХ РАБОТ

Программа *Electronics Workbench* v.5.12 используется для создания, моделирования и анализа работы цифровых и аналоговых схем.

В программе представлена большая библиотека настраиваемых электрических компонентов и электронных устройств.

Рабочее окно программы представлено на рис. П-1.

Рисунок П-1 - Рабочее окно программы Electronics Workbench v.5.12

В верхней части окна расположена строка меню и панель инструментов (рис. П-2).

Рисунок П-2 - Вид строки меню и панели инструментов

Команды для работы с создаваемыми и редактируемыми файлами, находятся в меню *File*. Команды редактирования схем и копирования экрана – в меню *EDIT*.

В меню *Circuit* расположены команды подготовки и преобразования электрических схем и задания параметров моделирования.

Доступ к базе данных элементов осуществляется через панель компонентов. Она состоит из пиктограмм группы компонентов (рис.П-3).

Electronics V	Norkbench
File Edit Cir	rcuit Analysis Window Help
₽ =	
Untitled	Basic
	
	■ Sources <u> 宝</u> 宝 ① ② ② ③ ③ ③ ③ ③ ③ ③ ③ ③ ③ ③ ③ ③

Рисунок П-3 - Вид фрагмента окна программы *Electronics Workbench* v.5.12 с отрытыми меню групп *Basic*, *Sources* и *Indicators*

По щелчку мыши на пиктограмму открывается база данных компонентов этой группы. Переместить элемент на рабочее поле. Зажав

изображение компонента на панели левой кнопкой мыши и перенести его в рабочее поле.

Используемые в программе *Electronics Workbench* v.5.12 условнографические обозначения соответствуют американским стандартам и отличаются от принятых в Единой системе конструкторской документации (ЕСКД).

Условно-графические обозначения некоторых элементов, приборов и источников питания, используемых в лабораторных работах приведены в таблице П-1.

Элемент	Условно-графическое обозначение элемента		
	<i>Electronics</i> Workbench v.5.12	ЕСКД	
Резистор	-~~~-		
Конденсатор			
Катушка индуктивности		L 	
Переключатель		S	
Заземление			
Источник переменного напряжения	-(+?)-		
Вольтметр			
Амперметр	– <u> </u>	pA - A	

Таблица П-1 Условно-графические обозначения элементов схемы

Соединение элементов схемы проводниками в соответствии с исследуемой электрической схемой выполняется с помощью мыши. При подведении указателя мыши к одному из выводов соединяемого элемента на конце вывода появится черная точка. При появлении такого символа необходимо зажать левую кнопку мыши и перенести указатель мыши до вывода другого элемента, соединение с которым вы хотите осуществить.

При правильном соединении между выводами элементов появится ломанная прямая черная линия («провод»).

Для создания узла необходимо либо выбрать элемент «*Connector*» в группе компонентов «*Basic*», либо осуществить соединение вывода элемента уже существующим на схеме «проводом». В таком случае узел соединения будет добавлен автоматически.

Для установки значений параметров элементов схемы необходимо правым кликом мыши по знаку соответствующего элемента схемы вызвать окно параметров элемента (например, резистора) (рис. П-4), либо вызвать данное меню двойным щелчком левой кнопкой мыши. Ввести с клавиатуры необходимое значение и с помощью мыши ввести необходимые единицы измерения.

	Resistor Properties Label Value Fault Display Analysis S	etup	? ×
100 Ohm -////-	Resistance (R): First-order temperature coefficient (TC1): Second-order temperature coefficient (TC2): Resistance tolerance:	100 Ω 0 №/°C 0 №/°C Global %	↓ ✓ Use global tolerance
			ОК Отмена

Рисунок П–4 - Вид окна параметров элемента при задании параметров резистора

Включение собранной схемы (запуск режима моделирования работы

<u>[]</u>

В

электрической схемы) производится нажатием на пиктограмму правом верхнем углу экрана и переводом её в положение «1».

Остановка процесса моделирования производится повторным нажатием кнопки-пиктограммы и переводом ее в состояние «0».

Если выполнение виртуальных исследований производится в компьютерном классе, завершить работу с программой следует без сохранения созданного файла.

ПРИЛОЖЕНИЕ 2

ФОРМА ОТЧЕТА О ВЫПОЛНЕНИИ РАБОТЫ

федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский университет ИТМО»

Лабораторная работа № «Название лабораторной работы»

Выполнил:_____

Группа_____

Проверил:_____

202_

Цель работы

Описание цели лабораторной работы.

Схема виртуальной установки

Схема с использованными при моделировании значениями параметров элементов (может быть скопирована из открытого окна программы).

Постановка задачи

Задача, которая решается при выполнении этой лабораторной работы.

Теоретическая часть

Краткие теоретические сведения о теме лабораторной работы. Электрическая схема. Использованные при расчетах формулы.

Результаты

Результаты работы представляются в виде заполненных таблиц, графиков, векторных диаграмм.

Заключение

Описание того, что было сделано в лабораторной работе. Обсуждение полученных результатов и сопоставление экспериментальных данных с теоретическими сведениями.

СПИСОК ЛИТЕРАТУРЫ

- 1. Иванов И. И., Соловьев Г. И., Фролов В. Я. Электротехника и основы электроники: Учебник. 7-е изд., перераб. и доп. СПб.: Издательство «Лань», 2012. 736 с.: ил.- Режим доступа: <u>https://e.lanbook.com/book/93764</u>.
- 2. Белов, Н.В. Электротехника и основы электроники [Электронный ресурс]: учеб. пособие / Н.В. Белов, Ю.С. Волков. Электрон. дан. Санкт-Петербург: Лань, 2012. 432 с. Режим доступа: <u>https://e.lanbook.com/book/3553</u>.
- Афанасьева, Н. А. Электротехника и электроника : учебное пособие / Н. А. Афанасьева, Л. П. Булат. — Санкт-Петербург : НИУ ИТМО, 2005. — 178 с. — ISBN 5-89565-117-8. — Текст : электронный // Лань : электронно-библиотечная система. — URL: <u>https://e.lanbook.com/book/43730</u> (дата обращения: 02.09.2021). — Режим доступа: для авториз. пользователей.

Содержание

Введение	3
Лабораторная работа № 1 Исследование неразветвленной электрическ цепи синусоидального тока. Резонанс напряжений	юй 4
Лабораторная работа № 2 Исследование разветвленной электрической синусоидального тока. Резонанс токов	цепи 9
Лабораторная работа № 3 Исследование трехфазной цепи при соеди приемников звездой	нении 13
Лабораторная работа № 4 Исследование трехфазной цепи при соедине	нии
приемников треугольником	17
Приложение	23
Использование программы <i>Electronics Workbench</i> для виртуальных	
лабораторных работ	23
Приложение 2 Форма отчета о выполнении работы	28
Список литературы	30

Новотельнова Анна Владимировна Асач Алексей Владимирович Тукмакова Анастасия Сергеевна

Общая электротехника: виртуальные исследования электрических цепей Учебное пособие

В авторской редакции Редакционно-издательский отдел Университета ИТМО Зав. РИО Н.Ф. Гусарова Подписано к печати Заказ № Тираж Отпечатано на ризографе

Редакционно-издательский отдел Университета ИТМО 197101, Санкт-Петербург, Кронверкский пр., 49, литер А