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1. Crystal 

A crystal is a body with a crystalline structure, that is, a structure characterized 

by a periodic arrangement of atoms, as opposed to an amorphous structure with a much 

more chaotic arrangement of atoms (Figure 1.1). Many substances acquire a crystalline 

structure at not very high temperatures, that is crystallize, as, if a certain distance 

between any two atoms provides a certain minimum of energy, then we can expect the 

formation of a phase within which the distances between neighboring atoms are equal 

to the given optimal and, thus, they are the same, which determines the periodicity of 

the structure.  

The key feature of crystals is the anisotropy of physical properties. Anisotropy 

(from the Greek ἄνισος - unequal and τρόπος - direction) - unevenness of properties in 

different directions - is a direct consequence of the ordered arrangement of atoms. 

Indeed, in an amorphous structure there are no geometrically distinguished directions, 

therefore, physical properties at the macroscopic level will be isotropic, and, at the 

same time, in a crystal different directions are not equivalent, which not only obviously 

follows from the images of the crystal structure, but also has many visual 

manifestations. 

 

Figure 1.1 - Schematic representation of the structure of quartz 

(crystalline) and glass (amorphous). 



 
 

5 

 

The word "crystal" itself comes from the Greek κρύσταλλος (literally "frozen", 

"ice"), the word related to Greek κρύος "cold, frost". Rock crystal (Figure 1.2), a 

transparent variety of quartz, was called so in ancient times and is called so nowadays. 

Colorless crystals found high in the mountains, as previously assumed, are ice, petrified 

as a result  of exposure to sub-zero temperatures for centuries. This point of view is 

well illustrated by the following lines of the Roman poet Claudian (c. 390 AD): 

At furious Alpine winter, ice turns to stone. 

The sun is then unable to melt such a stone. 

 

Figure 1.2 - Druse of rock crystal. 

A notable feature of rock crystal is the correct shape of individual parts, which 

significantly distinguishes them from ordinary stones. In particular, for this reason 

various magical properties were attributed to it, which were also subsequently 



 
 

6 

 

attributed to other findings of a similar type. This fact led to the use of the word crystal 

in relation to various natural objects that have the shape of a polyhedron, since it was 

assumed that they all had some common magical feature of their nature. The 

development of this assumption in the course of natural science evolution turned out to 

be very fruitful, which led to the emergence of crystallography - the science of crystals, 

their structure, and properties. 

The faceting of natural crystals is a visual manifestation of the anisotropy 

peculiar to their physical properties, that is, a direct consequence of their specific 

structure. At the same time, amorphous bodies (Greek ἀ “non-” + μορφή “form”), 

which have an amorphous structure, are formed shapeless under similar conditions. For 

this reason, the term "crystal", which was used to designate minerals of the correct 

form, began to be used to designate bodies with an ordered, "crystalline" structure.  

In the context of the terminology established in modern physics, it must be taken 

into account that, for example, glass, which has been mechanically shaped into a 

polyhedron, does not become a crystal, since its shape in this case does not reflect its 

internal properties and is not due to its structure. At the same time, the crystals used in 

modern technology often have the shape of thin plates, acquired as a result of 

mechanical cutting and grinding, which is why they do not cease to be crystals, since 

the shape of the plate arises as a result of highly anisotropic external influences and is 

also not a reflection of the internal structure that preserves its strict periodicity. 

The authorship of the ordered structure theory for natural crystals, as the reason 

for their regular shape, is attributed to Girolamo Cardano (XVI century), but only in the 

XX century this assumption received direct experimental confirmation, first in 1912 in 

the form of X-ray diffraction patterns, then in the second half of the 20th century in the 

form of direct images of the crystal structure in an electron microscope (Figure 1.3). 
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Figure 1.3 - X-ray diffraction pattern and electron microscopic image of 

the crystal structure. 

It is noteworthy that by this time a powerful theory of periodic three-dimensional 

structures had already been formed, which had gone through a centuries-old path in its 

development from Johannes Kepler's treatise "On Hexagonal Snowflakes" (1612), 

where he developed Cardano's hypothesis, to the conclusion about 230 space symmetry 

groups made by E.S. Fedorov (1890), which underlies modern crystallography. 

2. Spatial lattice 

A crystal is characterized by a periodic arrangement of atoms. Periodicity in the 

mathematical sense of the word is the property of an object to coincide with itself with 

some displacement. For example, by definition, the function f of the argument t is 

periodic with period T if f(t+T)=f(t) for any t, that is, the graph of the function will 

completely coincide with itself when it moves along the abscissa axis by the amount T. 

It is useful to pay attention to an important property that follows directly from the 

definition, which is that f(t+2T)= f(t) (because f(t+2T)= f(t+T) as well as  f(t+T)= f(t)), 

and f(t-T)= f(t), and in general f(t+nT)= f(t) for any integer n. That is, the original 

definition of periodicity automatically implies an infinite cyclicity of function values.  
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The spatial periodicity of the crystal structure means that when it is moved, in 

other words, when it is translated to some vector, the structure will coincide with itself 

(Figure 2.1). It is obvious that such translation vectors must connect similar points of 

the structure. The set of all translation vectors or the set of equivalent points of the 

structure, that is, interconnected by translation vectors, form a three-dimensional lattice 

is the spatial lattice of a given crystal structure.  

 

 

 

 

 

Figure 2.1 - Crystal structure of NaCl and some of the translation 

vectors. A fragment of the spatial lattice of the structure and its atomic 

motif. 

If a certain geometric operation transforms an object into itself, then one speaks 

of the presence of a symmetry (Greek συμμετρία = “proportionality”; from συν- 

“together” + μετρέω “measure”), and this transformation is called a symmetry 

operation. Thus, a crystal structure is a structure that has translational symmetry, that 

is, symmetry with respect to translations. 
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A spatial lattice is a mapping of a set of translation operations, an auxiliary 

geometric construction that describes what is included in the concept of “structure 

periodicity”. Note, that crystals of different structure may well have identical lattices. 

The very same crystal structure can be represented as a spatial lattice, in each node of 

which a group of non-equivalent atoms, the so-called atomic motif, is located. 

For simple substances, the image of the crystal structure can be essentially 

identical to the image of the spatial lattice, if all atoms are in equivalent positions, as, 

for example, in the case of the structure of copper (Figure 2.2). In this case, the atomic 

motif consists of only one atom. 

 

Figure 2.2 - Image of the crystal structure of copper and its spatial 

lattice. 

But even in the case of simple substances, the relationship between structure and 

lattice can be somewhat more complicated. For example, in the structure of graphite, 

the vector connecting two nearest atoms is not a translation vector, since with such a 

displacement the structure does not coincide with itself (Figure 2.3). In other words, 

two neighboring atoms are in nonequivalent positions in this case. Translation vectors 

in such a structure, for example, will be a vector connecting an atom with the next 
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closest neighbor, or a vector equal to three times the vector connecting two nearest 

atoms. 

 

Figure 2.3 - The displacement of the structure by a vector connecting 

two identical atoms is not always a valid translation, so, for example, in 

the basal plane of graphite there are two non-equivalent positions of 

atoms. 

In addition, when translating vertically to a vector connecting two adjacent 

layers, there will be an incomplete coincidence for the positions of the atoms due to the 

displacement between layers in the structure of graphite (Figure 2.4). For this reason, 

the spatial lattice of graphite, that is, the set of points corresponding to the equivalent 

positions of atoms, will differ significantly in appearance from the image of the crystal 

structure. In this case, the atomic motif will contain four carbon atoms. 
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Figure 2.4 - Graphite structure and spatial lattice of graphite. 

It is important to note that the term crystal lattice is widely used, which is a 

synonym for spatial lattice in crystallography. However, due to the fact that the lattices 

of some simple structures are indistinguishable from the images of the latter, this term 

partially merges with the concept of crystal structure and is sometimes used in this 

sense, including scientific literature, which we will consider as an incorrect 

identification. 

3. Elementary cell 

A spatial lattice, due to the nature of translational symmetry, can be represented 

as a dense packing of parallelepipeds. At the same time, the choice of an elementary 

parallelepiped from which a spatial lattice can be made is fundamentally ambiguous 

(Figure 3.1), which is even better illustrated on a flat grid. 
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Figure 3.1 - The ambiguity of the choice of an elementary cell in a 

spatial lattice or a flat grid. 

The selected elementary box is called the elementary cell. The edges of the 

elementary cell, since they connect the nodes of the lattice, are translation vectors. The 

elementary cell is determined by three vectors - the main translation vectors ( ). 

The cell is characterized by the lengths of these vectors and the angles between them. 

There are 6 values in total: a, b, c, α, β, γ are the parameters of the cell (Figure 3.2).  

 

Figure 3.2 - Elementary cell. 
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An elementary cell is called primitive if each cell contains one lattice node. 

Usually, the smallest possible cell is chosen, but at the same time it should reflect the 

symmetry of the lattice as much as possible and have as many right angles as possible. 

For some structures non-primitive cells are more suitable, as it is the case for face-

centered cubic lattice, when primitive elementary cells do not have the symmetry of a 

cube, in contrast to a correctly chosen non-primitive one (Figure 3.3). 

 

Figure 3.3 - The choice of a non-primitive elementary cell in a face-

centered cubic lattice is more preferable. 

Regardless of whether a primitive or non-primitive cell is chosen, their dense 

packing constitutes the original spatial lattice. 

4. Crystallographic indexing 

The main translation vectors define the crystallographic coordinate system. 

Thus, the choice of an elementary cell determines the coordinate system in which the 

positions of the lattice nodes or atoms of the structure will be indicated, therefore, it is a 

very important aspect. In general, a≠b≠c and α≠β≠γ, and the coordinate system is 

oblique. However, in many structures it is possible to select a unit cell, at least some of 
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whose angles are straight and/or some edges are equal in length, which is a more 

preferable option. This is what determines the rules for selecting elementary cells. 

4.1. Node indexing 

Let us choose one of the lattice nodes as the origin of the crystallographic 

coordinate system. Any other lattice node is determined by the radius vector 

. In this case, the vertices of various cells of the lattice will be 

characterized by integers m, n, p, which is the convenience of such a coordinate system. 

The numbers m, n, p are node indices, together with the elementary cell they determine 

its physical coordinates in space. Node indices are usually written without commas in 

double square brackets, with a minus sign placed above the digit to shorten the entry, 

for example: . 

The vertices of the elementary cell closest to the reference point correspond to 

the indices . In this case, the node at the origin has indices .  

For example, the third index of all nodes lying in the ab plane is 0 (Figure 4.1). 

 

Figure 4.1 - An example of lattice nodes indexing. 
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If the cell is non-primitive, that is, it contains nodes inside itself, their indices 

will be, respectively, fractional (Figure 4.2). The coordinates of atoms inside the cell 

can also be expressed as fractional indices. 

 

Figure 4.2 - An example of indicating nodes within a non-primitive cell. 

4.2. Direction indication 

Nodal rows in the lattice correspond to atomic rows in the structure, which 

appear, for example, as edges of crystalline polyhedra. Since the various nodal rows of 

the same direction in the lattice are identical, the characteristic of the row is precisely 

its direction. 
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Raw direction indices  are the coordinates of the vector connecting two 

nodes in this raw, expressed in the crystallographic system: , 

are written in single square brackets (Figure 4.3). In this case, the indices are reduced 

by a common divisor and converted to an integer form if necessary. Note, for example, 

that the indices  correspond to the main translations  and, 

consequently, to the directions of the coordinate axes. 

 

 

Figure 4.3 - Examples of direction indices in the lattice. 

It is useful to note that many different directions belong to each plane of the 

lattice. For example, in the plane parallel to the lower face of the elementary cell, that 

is, to the vectors , lie all directions in which the third index is equal to zero 

(Figure 4.4). 
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Figure 4.4 - Directions belonging to the plane ab lattice, parallel to the 

lower face of the unit cell. 

4.3. Plane Indices 

Nodal planes, which appear, for example, as faces of a crystalline polyhedron, 

are also characterized mainly by their orientation, since all planes of the same 

inclination in the lattice are identical. 

At the end of the 18th century, René Just Haüy derived the "law of rational 

relations" (Hauy's law), which states that the double ratio of the lengths of the segments 

cut off on the axes by the continuations of the two faces of the crystal is equal to the 

ratio of small integers. It was this law that allowed Haüy to suggest that crystals are 
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composed of "integrating molecules" in the form of a parallelepiped, long before direct 

observation of the structure of crystals. 

The ratio of the segments cut off on the axes by planes belonging to the same 

system of planes, that is, parallel to each other, is the same for the entire system, but 

different for different systems (Figure 4.5). In the case of a spatial lattice, this ratio for 

the pair of axes depicted in the figure will be the number ma/nb, where m and n are 

integers, a and b are lattice parameters, with m/n most likely being the ratio of small 

integers (1 :1 and 1:2 in the above example). On a macroscopic scale, the lattice 

parameters are imperceptible and the numbers m and n cannot be determined, but 

nevertheless, the double ratios of the segments lengths of the axes, that is, (m1a / n1b): 

(m2a / n2b) = (m1/n1): (m2/n2), will still be treated as small integers, since the lattice 

parameters a and b in this expression will cancel out. 

 

Figure 4.5 - An explanation of Haüy's law. 
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In modern crystallography, the slope of the plane is characterized by the lengths 

of the segments cut off by the plane on the coordinate axes, measured in the units of the 

corresponding lattice parameters (Figure 4.6), that is, a set of three numbers m, n, p (in 

this figure, for example, ,  , ,  etc.). If we bring the numbers 

mnp to an integer form, reducing also by a common divisor, then we get a set of indices 

qrs (112 in the above example) common to the entire system of planes. Indices qrs are 

the so-called Weiss parameters.  

The Weiss parameters correspond to what is obtained when using the Haüy  

approach, if we take as a basic plane - the plane with indices (111) (the so-called "unity 

plane").  

 

Figure 4.6 - Determining the indices for the system of planes. 
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In crystallography Miller indices are more widely used , which are the 

reciprocals of the Weiss parameters, also reduced to an integer form: 

 
(4.1) 

In our example, we get ; Miller indices are written in 

parentheses - (221). Such indexes have a number of advantages. For example, the 

Weiss parameters of the planes parallel to the faces of the unit cell are equal to 1∞∞, 

∞1∞, ∞∞1, respectively, since such planes are parallel to the corresponding 

crystallographic axes and do not intersect with them. The Miller indices of such planes 

will be (100), (010), (001), respectively, which is a somewhat more descriptive 

expression (Figure 4.7). 

 

Figure 4.7 - Examples of indexing planes on the example of a cubic cell. 
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Different directions can be parallel to the same plane, and different planes can be 

parallel to the same direction. It can be seen in the figure that, for example, the planes 

(010), (100), (110) are all parallel to the direction [001], that is, the vertical edge of the 

cell. The set of planes parallel to one direction is called the zone, and the direction 

 to which these planes are parallel is called the zone axis. In particular, the planes 

(010), (100), (110) belong to the same zone, the axis of this zone is [001]. The zone 

appears on crystalline polyhedra as a set of mutually parallel faces, a typical example is 

the side faces of hexagonal prisms of rock crystal or crystals similar in structure (Figure 

4.8). 

 

Figure 4.8 - Faces that have a common direction make up the zone. 
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 The main advantage of the Miller indices, defined through the inverse ratios of 

the lengths of the segments cut off by the plane on the crystallographic axes, is the 

following. Let us try to find out whether some direction  belongs to some plane 

with Miller indices . The latter implies that this plane intersects the 

crystallographic axes at the points , or is parallel to such a plane (  are 

the main translations, the basis of the crystallographic coordinate system). The 

direction [uvw], defined by the vector , is parallel to the plane (hkl) if it 

is perpendicular to the normal to it. The normal to the plane can be obtained by the 

cross product of two vectors lying in our plane, for example,  and 

. Then the condition of direction [uvw] being parallel to the plane (hkl) 

takes the form , which, as it is easy to 

show, reduces to a simple expression: 

 (4.2) 

This expression - the rule of zones, allows one to easily determine both the 

indices of planes parallel to one direction, that is, belonging to the same zone, and the 

indices of directions lying in a certain plane. Thus, the Miller indices, determined in a 

very non-obvious way, have a significant analytical advantage. 

4.4. Reciprocal lattice 

This simplicity of the zone rule is not accidental. It can be noted that the 

expression  resembles the condition of orthogonality of two vectors 

in a rectangular coordinate system.  

In the Cartesian coordinate system, the plane, generally defined by the relation 

 (  is the radius vector,  is the normal to the plane,  is a constant), cuts off 

the segments X, Y, Z on the axes that satisfy the equation of the plane: 
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(4.3) 

Thus, it directly follows that the reciprocals of the lengths of the segments of the 

axes are equal to the coordinates of the vector parallel to the normal of the given plane. 

However, the zone rule is also applicable in the case of oblique crystallographic 

coordinate systems. We should determine a kind of a system in which the numbers h, k, 

l are the coordinates of the normal to the planes . Let us find its basis, which we 

denote as .  

According to our condition, the vector  must be perpendicular to 

the vectors lying in the plane , for example,  and , and this 

must be true for any h, k, l, which leads to the following table of scalar products for the 

vectors of the desired basis and the original one: 

 

*    

 1 0 0 

 0 1 0 

 0 0 1 

 

(4.4) 

Thus, for example, the vector  must be perpendicular to vectors  and , that 

is, be parallel to their vector product . The length of the vector  is determined 
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from the condition , which leads to the expression . Note that 

 is equal to the unit cell volume V. Thus, we get: 

 
(4.5) 

 

The vectors  define a new crystallographic coordinate system and a 

new lattice - the reciprocal lattice. The dimension of the reciprocal lattice is inverse to 

the dimension of the original lattice - . 

Integer indices h, k, l define the coordinates of the reciprocal lattice nodes, thus, 

the reciprocal lattice nodes correspond to the planes of the spatial lattice. 

Basic properties of the reciprocal lattice: 

1. The reciprocal lattice vector  is as perpendicular 

to the plane (hkl) of the direct lattice. 

2. The modulus of the reciprocal lattice vector is equal to the reciprocal of the 

interplanar distance: . 

3. The volume of the unit cell of the reciprocal lattice is the reciprocal of the 

unit cell of the direct lattice: . 

4. The reciprocal lattice to the reciprocal lattice is the original direct lattice. 

In other words, the basis inverse to the inverse basis  is the 

original basis . 

The second property is of particular importance in structural crystallography. In 

particular, it shows that if the unit cell decreases (under the action of mechanical 

stresses or for other reasons), then the reciprocal lattice, on the contrary, expands. It 

also follows that systems of planes with large indices are characterized by smaller 

interplanar distances (Figure 4.9). 
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Figure 4.9 - Reducing the interplanar distance with increasing indices. 

The reciprocal lattice is a fundamental characteristic of a crystal, just like the 

spatial lattice. The reciprocal lattice is of great importance for the analysis of diffraction 

on crystal structures of X-rays, electrons and neutrons, since such diffraction patterns 

are images of the reciprocal lattice. This is explained quite simply, as the reciprocal 

lattice is actually the Fourier image of the spatial lattice, which is not surprising, 

because some properties of the reciprocal lattice correspond to the properties of the 

Fourier transform. At the same time, in practice, the diffraction of quanta with a small 

wavelength is Fraunhofer diffraction, that is, the Fourier image of the object on which 

the radiation is scattered, and, thus, are images of the reciprocal lattice. For the same 

reason, the reciprocal lattice is also important for the analysis of the movement of 

various particles and quasiparticles in crystals, since it is simply a representation of the 

crystal in the reciprocal space, that is, in the momentum space. 
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5. Basic formulas of structural crystallography 

Knowing the indices of the vector, for example, , and the lattice 

parameters a, b, c, α, β, γ, we can calculate its length as the length of the vector 

: 

 (5.1) 

The formula is greatly simplified if, for example, the unit cell is a rectangular 

parallelepiped, that is, α=β=γ=90°, therefore, . The length 

of the vector  is then: 

 (5.2) 

The expression becomes even simpler if the unit cell has the shape of a cube, that 

is, a=b=c and α=β=γ =90° 

 (5.3) 

The angle between two directions can be calculated as the angle between 

corresponding vectors  and : 

 
( 5.4) 

 

This expression is also simplified in the case of α=β=γ=90° to: 

 
(5.5) 

and for a cubic elementary cell – up to: 

 
(5.6) 
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A similar approach is applicable for planes. For example, the period of the 

system of planes  is equal to the inverse modulus of the corresponding reciprocal 

lattice vector , thus: 

 
(5.7) 

In general case, this also implies extremely cumbersome expressions, which are 

simplified at α=β=γ=90° to: 

 

In the case of a cubic unit cell, the interplanar distance  is: 

 
(5.8) 

The angle between two planes  and  can be defined as the angle 

between the two corresponding reciprocal lattice vectors: 

 
(5.9) 

Which for α=β=γ=90° simplifies to: 

 

(5.10) 

and for a cell in the form of a cube: 

 
(5.11) 

Condition of orthogonality for two directions or two planes is  , that 

is, the numerator in the corresponding expressions must be equal to zero. Obviously, in  
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general case of an oblique cell, it is practically impossible to find two directions or two 

systems of planes perpendicular to each other, since the cell parameters are relatively 

arbitrary values. Even in the case of α=β=γ=90°, only vectors parallel to different faces 

of the elementary cell can be perpendicular, when most of the indices are equal to zero.  

Only in a structure characterized by a cubic cell, this is quite common, since finding 

two triples of integers, for example,  and , satisfying the condition 

 is quite possible (for example, the directions  and 

 or [112] and ). 

The possibility of calculating the angle between some direction  and the 

plane  is also of interest. The angle between the vector  and 

the normal to the plane , taking into account the matrix of 

ratios for the vectors  and , equals: 

 
(5.12) 

In general case, moduli of vectors are calculated using rather cumbersome 

expressions, but it is essential that  for . This is the 

aforementioned zone rule, since the cosine is zero if the  perpendicular to the 

normal of the plane, that is, parallel to the plane itself. In this case, if the condition of 

orthogonality for the direction is  to the plane  will have the form 

. Naturally, there are practically no nodal rows perpendicular to the planes in 

an arbitrary lattice, and only with a cubic elementary cell this equation will have a 

solution in integers. It is easy to show that in a cubic lattice  only if 

, ,  or they differ by a common factor, i.e. . That is, in a 

cubic lattice, for example, the direction  is perpendicular to the plane . 
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6. Miller-Brave Indices 

Lattices of many crystals have rather high symmetry. If one can choose a cubic 

elementary cell, then the planes with indices , ,  will correspond to 

different faces of the cube. For example, indexes , , ,  etc. 

correspond to the diagonal planes of the cube, which are also similar to each other, and 

the indices , , ,  correspond the directions along the main 

diagonals of the cube. Thus, similar directions and planes, including similar crystal 

faces, will be described by similar sets of indices. It does not always make sense to 

distinguish such planes or faces from each other, therefore, a simplified generalized 

notation of indices in curly brackets is used to designate them. For example,  

means the faces of a cube, and  means its diagonal planes. It is true also for 

directions, but the notation in angle brackets is used –  edges of the cube,  

its main diagonals, etc. 

In hexagonal lattices, like those of graphite, the unit cell, which must be 

parallelepiped, is chosen as a rhombic prism with an angle of 120° at the base (Figure 

6.1). 

 

Figure 6.1 - Unit cell of a hexagonal lattice. 
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The Miller indices of the faces of a hexagonal prism, which is easy to distinguish 

in such lattices, will be ,  and . That is, not exactly similar sets of 

indices correspond to similar faces. Moreover, the indices of three similar planes 

cutting rhombic prisms along the major diagonal are , , . That is, in 

hexagonal lattices, the indices  and  correspond to planes of a completely 

different type, which significantly distinguishes them from the case of cubic lattices 

and creates prerequisites for errors. 

In order to correct this peculiarity of indexing in hexagonal lattices, the following 

trick is used. The fourth coordinate axis is introduced along the translation vector e at 

an angle of 120° to the vectors a and b (Figure 6.2). Another index i is determined 

along with this axis,  like the others, according to the rules of Miller indices, that is, by 

the length of the segment cut off by the plane on it. Such sets of four indices -  - 

are called Miller-Bravais indices. 

 

Figure 6.2 - The principle of determining the Miller-Bravais indices by 

adding the fourth coordinate axis. 
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Since the complementary axis is the bisector of the a and b, it is easy to show 

(since ) that the Miller-Bravais indices  obey the following 

rule: 

   or    (6.1) 

Moreover, the indices h, k and l remain the same as in conventional indexing. For 

example, the plane of the hexagonal grid itself (001) will acquire indices (0001). Thus, 

the plane indices in the three-index Miller system and the four-index Miller-Bravais 

system have a transparent relationship: 

Miller Miller-Bravais Miller Miller-Bravais 

    

    

    

Moreover, in the new system, similar planes are denoted by similar sets of 

indices, and essentially different planes - by essentially different indices. This allows 

using the generalized expressions , , etc. (Figure 6.3). 

   

Figure 6.3 - Examples of indexing planes with Miller-Brave indices. 
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Thus, in order to obtain the Miller-Bravais indices of any plane, we should add 

one more index . To return to the three-index system, simply remove the 

third index from the record. 

This is not the case with the Miller-Bravais indices of vectors and directions. The 

direction indices are determined in the same four-axis coordinate system, but since the 

decomposition of a vector in a basis of four vectors is not unique, we require that the 

resulting four indices  satisfy the condition  , like the indices of 

the planes. Thus, the indices of the vector  are determined by the following pair of 

conditions: 

 (6.2) 

From equation (6.2) it follows a non-trivial relationship between the indices of 

directions  in the three-index system and the new indices : 

 
6.3 

Thus, the basic translations , ,   having originally indices , , and 

 respectively, will be written as , , . In addition, the 

long diagonals of rhombuses , ,  turn into , ,  

respectively. In the case of indicating exactly the direction, and not a specific vector, 

the multipliers are omitted (Figure 6.4). 
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Figure 6.4 - Examples of matching direction indices. 

It is important that in the case of directions, the Miller-Brave indices possess 

their main advantage - similar directions are characterized by similar sets of indices. It 

also makes easier to use generalized notation for directions, such as  for axes in 

the basal plane. Axis c has no analogues due to the symmetry of the structure, the 

indices of this direction are written only in the standard way –  (Figure 6.5). 
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Figure 6.5 - Examples of recording direction indices. 

In addition, it can be shown that the four-index system ensures the 

implementation of the zone rule: 

 (6.4) 

At the same time, for directions lying in the base plane and for planes 

perpendicular to it, that is, if the last index is 0 , a number of relations similar to those 

in the cubic lattice are satisfied. Condition of orthogonality for two directions of the 

type  is: 

 (6.5) 

Condition of orthogonality of two planes of type  is: 

 (6.6) 

The plane  will also be perpendicular to the direction with the same 

indices . 
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The combination of advantages of the Miller-Brave index system determines 

their wide application for describing crystals with such lattices. 

7. Tasks 

1.  A vector , where  are the main 

translations. Find the indices of the nodal raw parallel to the given vector. 

2. Find the indices of the nodal row passing through two lattice nodes with 

indices  and . 

3. The plane cuts along the crystallographic axes segments equal to 2a, 3b, c. 

Find its Miller indices. 

4. Find the indices of the plane passing through three lattices , , 

and . 

5. A new basis was chosen in the lattice: the vectors , , and . 

Find new indices of direction  and plane . 

6. Find the indices  of the axis for the zone containing the planes  

and . Formula for calculating the zone axis is: 

 

7. Find the indices of the plane containing the rows  and . 

8. Are planes ,  and  of the same zone? 

9. Find the angle between the directions  and  in the cubic lattice. 

10. Find the angle between directions  and  in the cubic lattice. 

11. Find the angle between directions  and  in the cubic lattice. 

12. Find the cosine of the angle between directions  and  in the 

cubic lattice. 

13. Silicon has a crystalline structure with a cubic cell, cell parameter a= 5.43 

Å. Determine the interplanar spacing for planes  and . 
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14. Derive a formula for the interplanar distance  in a hexagonal lattice 

with parameters a and c. 

15. Prove that the zone rule holds for the Miller-Brave indices. 
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