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1. Crystal
A crystal is a body with a crystalline structure, that is, a structure characterized

by a periodic arrangement of atoms, as opposed to an amorphous structure with a much
more chaotic arrangement of atoms (Figure 1.1). Many substances acquire a crystalline
structure at not very high temperatures, that is crystallize, as, if a certain distance
between any two atoms provides a certain minimum of energy, then we can expect the
formation of a phase within which the distances between neighboring atoms are equal
to the given optimal and, thus, they are the same, which determines the periodicity of
the structure.

The key feature of crystals is the anisotropy of physical properties. Anisotropy
(from the Greek évicoc - unequal and tpomog - direction) - unevenness of properties in
different directions - is a direct consequence of the ordered arrangement of atoms.
Indeed, in an amorphous structure there are no geometrically distinguished directions,
therefore, physical properties at the macroscopic level will be isotropic, and, at the
same time, in a crystal different directions are not equivalent, which not only obviously
follows from the images of the crystal structure, but also has many visual

manifestations.
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Figure 1.1 - Schematic representation of the structure of quartz

(crystalline) and glass (amorphous).



The word "crystal" itself comes from the Greek kpOotarrog (literally "frozen",
"ice"), the word related to Greek kpvog "cold, frost". Rock crystal (Figure 1.2), a
transparent variety of quartz, was called so in ancient times and is called so nowadays.
Colorless crystals found high in the mountains, as previously assumed, are ice, petrified
as a result of exposure to sub-zero temperatures for centuries. This point of view is
well illustrated by the following lines of the Roman poet Claudian (c. 390 AD):

At furious Alpine winter, ice turns to stone.

The sun is then unable to melt such a stone.

Figure 1.2 - Druse of rock crystal.

A notable feature of rock crystal is the correct shape of individual parts, which
significantly distinguishes them from ordinary stones. In particular, for this reason

various magical properties were attributed to it, which were also subsequently
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attributed to other findings of a similar type. This fact led to the use of the word crystal
in relation to various natural objects that have the shape of a polyhedron, since it was
assumed that they all had some common magical feature of their nature. The
development of this assumption in the course of natural science evolution turned out to
be very fruitful, which led to the emergence of crystallography - the science of crystals,
their structure, and properties.

The faceting of natural crystals is a visual manifestation of the anisotropy
peculiar to their physical properties, that is, a direct consequence of their specific
structure. At the same time, amorphous bodies (Greek & “non-" + popen “form”),
which have an amorphous structure, are formed shapeless under similar conditions. For
this reason, the term "crystal”, which was used to designate minerals of the correct
form, began to be used to designate bodies with an ordered, "crystalline" structure.

In the context of the terminology established in modern physics, it must be taken
into account that, for example, glass, which has been mechanically shaped into a
polyhedron, does not become a crystal, since its shape in this case does not reflect its
internal properties and is not due to its structure. At the same time, the crystals used in
modern technology often have the shape of thin plates, acquired as a result of
mechanical cutting and grinding, which is why they do not cease to be crystals, since
the shape of the plate arises as a result of highly anisotropic external influences and is
also not a reflection of the internal structure that preserves its strict periodicity.

The authorship of the ordered structure theory for natural crystals, as the reason
for their regular shape, is attributed to Girolamo Cardano (XVI century), but only in the
XX century this assumption received direct experimental confirmation, first in 1912 in
the form of X-ray diffraction patterns, then in the second half of the 20th century in the

form of direct images of the crystal structure in an electron microscope (Figure 1.3).



Figure 1.3 - X-ray diffraction pattern and electron microscopic image of

the crystal structure.

It is noteworthy that by this time a powerful theory of periodic three-dimensional
structures had already been formed, which had gone through a centuries-old path in its
development from Johannes Kepler's treatise "On Hexagonal Snowflakes" (1612),
where he developed Cardano's hypothesis, to the conclusion about 230 space symmetry

groups made by E.S. Fedorov (1890), which underlies modern crystallography.

2.  Spatial lattice
A crystal is characterized by a periodic arrangement of atoms. Periodicity in the

mathematical sense of the word is the property of an object to coincide with itself with
some displacement. For example, by definition, the function f of the argument t is
periodic with period T if f(t+T)=f(t) for any t, that is, the graph of the function will
completely coincide with itself when it moves along the abscissa axis by the amount T.
It is useful to pay attention to an important property that follows directly from the
definition, which is that f(t+2T)= f(t) (because f(t+2T)= f(t+T) as well as f(t+T)= f(t)),
and f(t-T)= f(t), and in general f(t+nT)= f(t) for any integer n. That is, the original
definition of periodicity automatically implies an infinite cyclicity of function values.

7



The spatial periodicity of the crystal structure means that when it is moved, in
other words, when it is translated to some vector, the structure will coincide with itself
(Figure 2.1). It is obvious that such translation vectors must connect similar points of
the structure. The set of all translation vectors or the set of equivalent points of the
structure, that is, interconnected by translation vectors, form a three-dimensional lattice

IS the spatial lattice of a given crystal structure.

Figure 2.1 - Crystal structure of NaCl and some of the translation
vectors. A fragment of the spatial lattice of the structure and its atomic
motif.

If a certain geometric operation transforms an object into itself, then one speaks
of the presence of a symmetry (Greek ocvpuetpio = “proportionality”; from cvv-
“together” + petpéw “measure”), and this transformation is called a symmetry
operation. Thus, a crystal structure is a structure that has translational symmetry, that

IS, symmetry with respect to translations.



A spatial lattice is a mapping of a set of translation operations, an auxiliary
geometric construction that describes what is included in the concept of “structure
periodicity”. Note, that crystals of different structure may well have identical lattices.
The very same crystal structure can be represented as a spatial lattice, in each node of
which a group of non-equivalent atoms, the so-called atomic motif, is located.

For simple substances, the image of the crystal structure can be essentially
identical to the image of the spatial lattice, if all atoms are in equivalent positions, as,
for example, in the case of the structure of copper (Figure 2.2). In this case, the atomic

motif consists of only one atom.
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Figure 2.2 - Image of the crystal structure of copper and its spatial

lattice.

But even in the case of simple substances, the relationship between structure and
lattice can be somewhat more complicated. For example, in the structure of graphite,
the vector connecting two nearest atoms is not a translation vector, since with such a
displacement the structure does not coincide with itself (Figure 2.3). In other words,
two neighboring atoms are in nonequivalent positions in this case. Translation vectors

in such a structure, for example, will be a vector connecting an atom with the next
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closest neighbor, or a vector equal to three times the vector connecting two nearest

atoms.

Figure 2.3 - The displacement of the structure by a vector connecting
two identical atoms is not always a valid translation, so, for example, in
the basal plane of graphite there are two non-equivalent positions of

atoms.

In addition, when translating vertically to a vector connecting two adjacent
layers, there will be an incomplete coincidence for the positions of the atoms due to the
displacement between layers in the structure of graphite (Figure 2.4). For this reason,
the spatial lattice of graphite, that is, the set of points corresponding to the equivalent
positions of atoms, will differ significantly in appearance from the image of the crystal

structure. In this case, the atomic motif will contain four carbon atoms.

10



Figure 2.4 - Graphite structure and spatial lattice of graphite.

It is important to note that the term crystal lattice is widely used, which is a
synonym for spatial lattice in crystallography. However, due to the fact that the lattices
of some simple structures are indistinguishable from the images of the latter, this term
partially merges with the concept of crystal structure and is sometimes used in this
sense, including scientific literature, which we will consider as an incorrect

identification.

3. Elementary cell
A spatial lattice, due to the nature of translational symmetry, can be represented

as a dense packing of parallelepipeds. At the same time, the choice of an elementary
parallelepiped from which a spatial lattice can be made is fundamentally ambiguous

(Figure 3.1), which is even better illustrated on a flat grid.
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Figure 3.1 - The ambiguity of the choice of an elementary cell in a

spatial lattice or a flat grid.

The selected elementary box is called the elementary cell. The edges of the
elementary cell, since they connect the nodes of the lattice, are translation vectors. The
elementary cell is determined by three vectors - the main translation vectors (a, b, c).
The cell is characterized by the lengths of these vectors and the angles between them.

There are 6 values in total: q, b, ¢, a, f5, y are the parameters of the cell (Figure 3.2).

Figure 3.2 - Elementary cell.
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An elementary cell is called primitive if each cell contains one lattice node.
Usually, the smallest possible cell is chosen, but at the same time it should reflect the
symmetry of the lattice as much as possible and have as many right angles as possible.
For some structures non-primitive cells are more suitable, as it is the case for face-
centered cubic lattice, when primitive elementary cells do not have the symmetry of a

cube, in contrast to a correctly chosen non-primitive one (Figure 3.3).

Figure 3.3 - The choice of a non-primitive elementary cell in a face-

centered cubic lattice is more preferable.

Regardless of whether a primitive or non-primitive cell is chosen, their dense

packing constitutes the original spatial lattice.

4.  Crystallographic indexing
The main translation vectors define the crystallographic coordinate system.

Thus, the choice of an elementary cell determines the coordinate system in which the

positions of the lattice nodes or atoms of the structure will be indicated, therefore, it is a
very important aspect. In general, a# b# ¢ and a#f#y, and the coordinate system is

oblique. However, in many structures it is possible to select a unit cell, at least some of
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whose angles are straight and/or some edges are equal in length, which is a more

preferable option. This is what determines the rules for selecting elementary cells.

4.1. Node indexing
Let us choose one of the lattice nodes as the origin of the crystallographic

coordinate system. Any other lattice node is determined by the radius vector
R = ma +nb + pc. In this case, the vertices of various cells of the lattice will be
characterized by integers m, n, p, which is the convenience of such a coordinate system.
The numbers m, n, p are node indices, together with the elementary cell they determine
its physical coordinates in space. Node indices are usually written without commas in
double square brackets, with a minus sign placed above the digit to shorten the entry,
for example: [100], [111], [112], [101],[112].

The vertices of the elementary cell closest to the reference point correspond to
the indices [100], [010], [001]. In this case, the node at the origin has indices [000].
For example, the third index of all nodes lying in the ab plane is 0 (Figure 4.1).

“X

N

Figure 4.1 - An example of lattice nodes indexing.
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If the cell is non-primitive, that is, it contains nodes inside itself, their indices
will be, respectively, fractional (Figure 4.2). The coordinates of atoms inside the cell

can also be expressed as fractional indices.
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Figure 4.2 - An example of indicating nodes within a non-primitive cell.

4.2. Direction indication
Nodal rows in the lattice correspond to atomic rows in the structure, which

appear, for example, as edges of crystalline polyhedra. Since the various nodal rows of
the same direction in the lattice are identical, the characteristic of the row is precisely

its direction.
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Raw direction indices [uvw] are the coordinates of the vector connecting two
nodes in this raw, expressed in the crystallographic system: R; — Ry = ua + vb + we,
are written in single square brackets (Figure 4.3). In this case, the indices are reduced
by a common divisor and converted to an integer form if necessary. Note, for example,
that the indices [100],[010],[001] correspond to the main translations a, b,c and,

consequently, to the directions of the coordinate axes.

e TN

)

Figure 4.3 - Examples of direction indices in the lattice.

It is useful to note that many different directions belong to each plane of the
lattice. For example, in the plane parallel to the lower face of the elementary cell, that
is, to the vectors a and b, lie all directions in which the third index is equal to zero

(Figure 4.4).
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Figure 4.4 - Directions belonging to the plane ab lattice, parallel to the

lower face of the unit cell.

4.3. Plane Indices
Nodal planes, which appear, for example, as faces of a crystalline polyhedron,

are also characterized mainly by their orientation, since all planes of the same
inclination in the lattice are identical.

At the end of the 18th century, René Just Haily derived the "law of rational
relations™ (Hauy's law), which states that the double ratio of the lengths of the segments
cut off on the axes by the continuations of the two faces of the crystal is equal to the

ratio of small integers. It was this law that allowed Haiiy to suggest that crystals are
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composed of "integrating molecules” in the form of a parallelepiped, long before direct
observation of the structure of crystals.

The ratio of the segments cut off on the axes by planes belonging to the same
system of planes, that is, parallel to each other, is the same for the entire system, but
different for different systems (Figure 4.5). In the case of a spatial lattice, this ratio for
the pair of axes depicted in the figure will be the number ma/nb, where m and n are
integers, a and b are lattice parameters, with m/n most likely being the ratio of small
integers (1 :1 and 1:2 in the above example). On a macroscopic scale, the lattice
parameters are imperceptible and the numbers m and n cannot be determined, but
nevertheless, the double ratios of the segments lengths of the axes, that is, (m;a / nib):
(mza / nob) = (ma/ny): (ma/ny), will still be treated as small integers, since the lattice

parameters a and b in this expression will cancel out.

Figure 4.5 - An explanation of Haiiy's law.
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In modern crystallography, the slope of the plane is characterized by the lengths
of the segments cut off by the plane on the coordinate axes, measured in the units of the

corresponding lattice parameters (Figure 4.6), that is, a set of three numbers m, n, p (in
this figure, for example, %:51: 1, 1:1:2, %:3:3, 2:2:4 etc.). If we bring the numbers

mnp to an integer form, reducing also by a common divisor, then we get a set of indices
grs (112 in the above example) common to the entire system of planes. Indices grs are
the so-called Weiss parameters.

The Weiss parameters correspond to what is obtained when using the Haiiy
approach, if we take as a basic plane - the plane with indices (111) (the so-called "unity

plane™).

. - - » 0
0 A g

Figure 4.6 - Determining the indices for the system of planes.
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In crystallography Miller indices are more widely used , which are the

reciprocals of the Weiss parameters, also reduced to an integer form:

(4.1)

1 11 . . . . .
In our example, we get i 7 2:2:1; Miller indices are written in

parentheses - (221). Such indexes have a number of advantages. For example, the
Weiss parameters of the planes parallel to the faces of the unit cell are equal to 1oooo,
woloo, ooo0l, respectively, since such planes are parallel to the corresponding
crystallographic axes and do not intersect with them. The Miller indices of such planes
will be (100), (010), (001), respectively, which is a somewhat more descriptive

expression (Figure 4.7).

Zy  fo;)

Figure 4.7 - Examples of indexing planes on the example of a cubic cell.
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Different directions can be parallel to the same plane, and different planes can be
parallel to the same direction. It can be seen in the figure that, for example, the planes
(010), (100), (110) are all parallel to the direction [001], that is, the vertical edge of the
cell. The set of planes parallel to one direction is called the zone, and the direction
[uvw] to which these planes are parallel is called the zone axis. In particular, the planes
(010), (100), (110) belong to the same zone, the axis of this zone is [001]. The zone
appears on crystalline polyhedra as a set of mutually parallel faces, a typical example is
the side faces of hexagonal prisms of rock crystal or crystals similar in structure (Figure
4.8).

Figure 4.8 - Faces that have a common direction make up the zone.

21



The main advantage of the Miller indices, defined through the inverse ratios of
the lengths of the segments cut off by the plane on the crystallographic axes, is the

following. Let us try to find out whether some direction [uvw] belongs to some plane

with Miller indices (hkl). The latter implies that this plane intersects the
crystallographic axes at the points %a,i b,%c, or is parallel to such a plane (a, b, c are

the main translations, the basis of the crystallographic coordinate system). The
direction [uvw], defined by the vector ua + vb + we, is parallel to the plane (hkl) if it

is perpendicular to the normal to it. The normal to the plane can be obtained by the

cross product of two vectors lying in our plane, for example, &a— ib) and
&a — %c) Then the condition of direction Juvw] being parallel to the plane (hkl)

takes the form (ua + vb + wc) - &a — ib) X Ga — %c) = 0, which, as it is easy to

show, reduces to a simple expression:
uh+vk+wl =0 (4.2)

This expression - the rule of zones, allows one to easily determine both the
indices of planes parallel to one direction, that is, belonging to the same zone, and the
indices of directions lying in a certain plane. Thus, the Miller indices, determined in a
very non-obvious way, have a significant analytical advantage.

4.4. Reciprocal lattice

This simplicity of the zone rule is not accidental. It can be noted that the
expression uh + vk +wl = 0 resembles the condition of orthogonality of two vectors
in a rectangular coordinate system.

In the Cartesian coordinate system, the plane, generally defined by the relation
r-n = C (r is the radius vector, 7 is the normal to the plane, C is a constant), cuts off

the segments X, Y, Z on the axes that satisfy the equation of the plane:
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X . =C —_— = =
e, - n _}X e, n=mn,
C
YeJ,-nzC—}?ze_._,-nzny (4.3)
Z C ¢
. e — — = . —
e, n 7 e, n=mn,

Thus, it directly follows that the reciprocals of the lengths of the segments of the
axes are equal to the coordinates of the vector parallel to the normal of the given plane.

However, the zone rule is also applicable in the case of oblique crystallographic
coordinate systems. We should determine a kind of a system in which the numbers h, k,

| are the coordinates of the normal to the planes (hkl). Let us find its basis, which we
denote as a”, b”, c”.

According to our condition, the vector ha™ + kb™ + l¢™ must be perpendicular to

the vectors lying in the plane (hkl), for example, &a — ib) and &a — Ilc) and this

must be true for any h, k, I, which leads to the following table of scalar products for the

vectors of the desired basis and the original one:

a | 1|00 (4.4)
b|0o|1]|0
c | 001

Thus, for example, the vector @® must be perpendicular to vectors b and c, that

is, be parallel to their vector product b X ¢. The length of the vector a™ is determined
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from the condition a*a = 1, which leads to the expression a* = %€ Note that

abxc

a - b X c is equal to the unit cell volume V. Thus, we get:
. bXc X cXa i} axb
a=—T"-"b=—"-—;¢€=—7T—
a-bxc a-bxc a-bxXc

(4.5)
The vectors a”, b*,and ¢~ define a new crystallographic coordinate system and a

new lattice - the reciprocal lattice. The dimension of the reciprocal lattice is inverse to

the dimension of the original lattice - [m] — [i].

Integer indices h, k, | define the coordinates of the reciprocal lattice nodes, thus,
the reciprocal lattice nodes correspond to the planes of the spatial lattice.
Basic properties of the reciprocal lattice:
1. The reciprocal lattice vector Hy,, = ha™ + kb™ + lc” is as perpendicular
to the plane (hkl) of the direct lattice.

2. The modulus of the reciprocal lattice vector is equal to the reciprocal of the

interplanar distance: |Hpzi| = f
3. The volume of the unit cell of the reciprocal lattice is the reciprocal of the

unit cell of the direct lattice: V* = ﬁ

4. The reciprocal lattice to the reciprocal lattice is the original direct lattice.

ES

In other words, the basis inverse to the inverse basis a*, b*,c” is the

original basis a, b, c.

The second property is of particular importance in structural crystallography. In
particular, it shows that if the unit cell decreases (under the action of mechanical
stresses or for other reasons), then the reciprocal lattice, on the contrary, expands. It
also follows that systems of planes with large indices are characterized by smaller

interplanar distances (Figure 4.9).
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(010) (320)

Figure 4.9 - Reducing the interplanar distance with increasing indices.

The reciprocal lattice is a fundamental characteristic of a crystal, just like the
spatial lattice. The reciprocal lattice is of great importance for the analysis of diffraction
on crystal structures of X-rays, electrons and neutrons, since such diffraction patterns
are images of the reciprocal lattice. This is explained quite simply, as the reciprocal
lattice is actually the Fourier image of the spatial lattice, which is not surprising,
because some properties of the reciprocal lattice correspond to the properties of the
Fourier transform. At the same time, in practice, the diffraction of quanta with a small
wavelength is Fraunhofer diffraction, that is, the Fourier image of the object on which
the radiation is scattered, and, thus, are images of the reciprocal lattice. For the same
reason, the reciprocal lattice is also important for the analysis of the movement of
various particles and quasiparticles in crystals, since it is simply a representation of the

crystal in the reciprocal space, that is, in the momentum space.
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5. Basic formulas of structural crystallography
Knowing the indices of the vector, for example, [uvw], and the lattice

parameters a, b, ¢, a, B, y, we can calculate its length as the length of the vector

ua + vbh + we:

= (ua+vh+wec)? =+ula? + v2b? + wic? + 2uvabcosy + 2vwhccos a (8. ddwaccos g

The formula is greatly simplified if, for example, the unit cell is a rectangular
parallelepiped, that is, a=8=y=90°, therefore, cos & = cos f = cosy = 0. The length

of the vector [uvrw] is then:

R =+Ju?a? + v2h? + wic? (5.2)

The expression becomes even simpler if the unit cell has the shape of a cube, that

Is, a=b=c and a=f=y =90°

R =Ju?+v2+w?a (5.3)

The angle between two directions can be calculated as the angle between

corresponding vectors Ry = w,a+v;b+w;cand R; = u,a+ v, b+ w,c;

R,-R (uya + vy b+wyc)(ua+ vob+ woc)
cos@ = 1 z 1 1 1 2 2 2 _ (5 4)
- — 5 5 .
IRy IRzl [luy@a+ b+ wic)? [ (uza+ v,b + woc)?
_ Lyl 8¢ + I 1 54 + Wy ot + LG 1y + Uplh GBoos ¥+ LWy + 1R Wobocos @ 4+ (1, Wy + UpWs joccos §
- Jula® + vTET 4wl + Juyraboor ¥ + 2ipwyberar o + Jugwnaccor f o ude? 4 oRET 4 wie? + Ju maboory + D wpbocor @ + Jujwar cog

This expression is also simplified in the case of a=£=y=90° to:

u U, a® + v, v,b% + wyw, c?

cos @ = 5.5
Jiza? + v +w2ct JiZa? + v2b? + wic? (5:5)
and for a cubic elementary cell — up to:
u U, a® + v, v,b% + wyw, c?
cos @ = (5.6)

\fuﬁaz +v2b? +w] cz\fu%az + v b? +wic?
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A similar approach is applicable for planes. For example, the period of the
system of planes (hkl) is equal to the inverse modulus of the corresponding reciprocal
lattice vector Hy;; = ha”™ + kb” + Ic”, thus:

1
J(ha* + kb* + 1c*)?

Aprr = (5.7)
In general case, this also implies extremely cumbersome expressions, which are
simplified at a=£=y=90° to:
1

dhkl =
2 2 2
J%+£+L
a bh? = ¢

In the case of a cubic unit cell, the interplanar distance dpy; is:
a

VhZ+ k2 + 12

(5.8)

dhk! =

The angle between two planes (hik11;) and (hzk215) can be defined as the angle
between the two corresponding reciprocal lattice vectors:

Hy, kg1, " Huykot,
|Hh1k111”thszz|

cos@ = (5.9)

Which for a=#=y=90° simplifies to:

hih, kik, I I
a2 -+ bz “+
CGS@ =
Pttt

and for a cell in the form of a cube:
hih, + kiks+ 1,1,
JRE+EZ+ 12 hZ+ k2 + 12

cos @ =

(5.11)

Condition of orthogonality for two directions or two planes is cos ¢ = 0, that

IS, the numerator in the corresponding expressions must be equal to zero. Obviously, in
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general case of an oblique cell, it is practically impossible to find two directions or two
systems of planes perpendicular to each other, since the cell parameters are relatively
arbitrary values. Even in the case of a=£=y=90°, only vectors parallel to different faces
of the elementary cell can be perpendicular, when most of the indices are equal to zero.
Only in a structure characterized by a cubic cell, this is quite common, since finding

two triples of integers, for example, [ujviwi] and , satisfying the condition
w,u, + v,v, + wyw, = 0, is quite possible (for example, the directions [110] and
[110]or [112] and [111]).

The possibility of calculating the angle between some direction [uvw] and the
plane (hkl) is also of interest. The angle between the vector R = ua + vb + we and
the normal to the plane Hy,; = ha” + kb” + Ic”, taking into account the matrix of

ratios for the vectors a, b,c and a”, b”, c¢*, equals:

uh + vk + wil
|R|[H p |

cos @ = (5.12)

In general case, moduli of vectors are calculated using rather cumbersome
expressions, but it is essential that cos ¢ =0 for uh + vk +wl = 0. This is the
aforementioned zone rule, since the cosine is zero if the [uvw] perpendicular to the
normal of the plane, that is, parallel to the plane itself. In this case, if the condition of
orthogonality for the direction is [uvw] to the plane (hkl) will have the form
cos ¢ = 1. Naturally, there are practically no nodal rows perpendicular to the planes in
an arbitrary lattice, and only with a cubic elementary cell this equation will have a
solution in integers. It is easy to show that in a cubic lattice [uvw] L (hkl) only if
u=nh, v=k, w=1or they differ by a common factor, i.e. uvw oc hkl, That is, in a

cubic lattice, for example, the direction [111] is perpendicular to the plane (111),
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6. Miller-Brave Indices
Lattices of many crystals have rather high symmetry. If one can choose a cubic

elementary cell, then the planes with indices (100), (010), (001) will correspond to
different faces of the cube. For example, indexes (110), (110),(011), (011) etc.
correspond to the diagonal planes of the cube, which are also similar to each other, and
the indices [111], [111], [111], [111] correspond the directions along the main

diagonals of the cube. Thus, similar directions and planes, including similar crystal
faces, will be described by similar sets of indices. It does not always make sense to
distinguish such planes or faces from each other, therefore, a simplified generalized
notation of indices in curly brackets is used to designate them. For example, {100}
means the faces of a cube, and {110} means its diagonal planes. It is true also for
directions, but the notation in angle brackets is used — (100) edges of the cube, (111)
its main diagonals, etc.

In hexagonal lattices, like those of graphite, the unit cell, which must be

parallelepiped, is chosen as a rhombic prism with an angle of 120° at the base (Figure
6.1).

y = 120"

m
C
a; AN §
a
Figure 6.1 - Unit cell of a hexagonal lattice.
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The Miller indices of the faces of a hexagonal prism, which is easy to distinguish
in such lattices, will be (100), (010) and (110). That is, not exactly similar sets of
indices correspond to similar faces. Moreover, the indices of three similar planes

cutting rhombic prisms along the major diagonal are (110), (210), (120). That is, in

hexagonal lattices, the indices (ITD) and (110) correspond to planes of a completely
different type, which significantly distinguishes them from the case of cubic lattices
and creates prerequisites for errors.

In order to correct this peculiarity of indexing in hexagonal lattices, the following
trick is used. The fourth coordinate axis is introduced along the translation vector e at
an angle of 120° to the vectors a and b (Figure 6.2). Another index i is determined
along with this axis, like the others, according to the rules of Miller indices, that is, by
the length of the segment cut off by the plane on it. Such sets of four indices - (hkil) -

are called Miller-Bravais indices.

Figure 6.2 - The principle of determining the Miller-Bravais indices by
adding the fourth coordinate axis.
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Since the complementary axis is the bisector of the a and b, it is easy to show
(since sin % = sin 120° ) that the Miller-Bravais indices (hkil) obey the following

rule:

h+k+i=0 or i=—h—k (6.1)

Moreover, the indices h, k and | remain the same as in conventional indexing. For
example, the plane of the hexagonal grid itself (001) will acquire indices (0001). Thus,
the plane indices in the three-index Miller system and the four-index Miller-Bravais

system have a transparent relationship:

Miller Miller-Bravais Miller Miller-Bravais
(100) (1010) (210) (2110)
(010) (0110) (120) (1210)
(110) (1100) (110) (1120)

Moreover, in the new system, similar planes are denoted by similar sets of

indices, and essentially different planes - by essentially different indices. This allows

using the generalized expressions {1010}, {1121}, etc. (Figure 6.3).

S

T
1
|
1

NN

ERIMIMN

///’ .
% 7 %
{1070}  {nzo} {1011} {ro72}  {m21} {122}

Figure 6.3 - Examples of indexing planes with Miller-Brave indices.
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Thus, in order to obtain the Miller-Bravais indices of any plane, we should add
one more index i = —h — k. To return to the three-index system, simply remove the
third index from the record.

This is not the case with the Miller-Bravais indices of vectors and directions. The
direction indices are determined in the same four-axis coordinate system, but since the
decomposition of a vector in a basis of four vectors is not unique, we require that the
resulting four indices [uvtw] satisfy the condition u+v +t = 0, like the indices of
the planes. Thus, the indices of the vector R are determined by the following pair of

conditions:
R=ua+vb+te+we u+tv+t=0 (6.2)

From equation (6.2) it follows a non-trivial relationship between the indices of

directions [u'v'w'] in the three-index system and the new indices [uvtw]:

L@ -v) v=1@v ) t= @ +v) w=w 63

Thus, the basic translations a, b, e having originally indices [100], [010], and
[110] respectively, will be written as g[zﬁc:], g[TZT{]], g[ﬁZ{]]. In addition, the

long diagonals of rhombuses [110], [120], [210] turn into [1100], [0110], [1010]

respectively. In the case of indicating exactly the direction, and not a specific vector,

the multipliers are omitted (Figure 6.4).
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[001)

[} [0021] (io1]
2 8
iy Y [2113] {o11)
[1213] [1213)
(021] (021]
4 [2423]

P4
/
/< [010]

N g

+U N ¥,
[010] |~

[1210] +y [1210]

(100] [110]

2110] +X 135 [1120]
[1010]

Figure 6.4 - Examples of matching direction indices.

It is important that in the case of directions, the Miller-Brave indices possess
their main advantage - similar directions are characterized by similar sets of indices. It
also makes easier to use generalized notation for directions, such as {115{]} for axes in
the basal plane. Axis ¢ has no analogues due to the symmetry of the structure, the

indices of this direction are written only in the standard way — [0001] (Figure 6.5).



[0001] (1123 >

<1120>

Figure 6.5 - Examples of recording direction indices.

In addition, it can be shown that the four-index system ensures the
implementation of the zone rule:
uh + vk + it + wl = 0 (6.4)

At the same time, for directions lying in the base plane and for planes
perpendicular to it, that is, if the last index is 0 , a number of relations similar to those
in the cubic lattice are satisfied. Condition of orthogonality for two directions of the
type (uvt0) is:

u,u, + v, v, +tyt, =0 (6.5)

Condition of orthogonality of two planes of type {hki0} is:
hoh, + k ok, +ii,= 0 (6.6)

The plane (hki0) will also be perpendicular to the direction with the same
indices [hki0].
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The combination of advantages of the Miller-Brave index system determines

their wide application for describing crystals with such lattices.

7. Tasks
1.

8.
9.

b . . .
A vector R = E +E+§ is given, where a,b,and ¢ are the main

translations. Find the indices of the nodal raw parallel to the given vector.

Find the indices of the nodal row passing through two lattice nodes with

indices [111] and [110].

. The plane cuts along the crystallographic axes segments equal to 2a, 3D, c.

Find its Miller indices.
Find the indices of the plane passing through three lattices [110], [101],
and [O11].
A new basis was chosen in the lattice: the vectors [110], [011], and [101].
Find new indices of direction [111] and plane (111).
Find the indices [uvw] of the axis for the zone containing the planes (111)
and (132). Formula for calculating the zone axis is:

w=kyl,—koly; v=1I1h,—Lh;w=hk,— hyk,

Find the indices of the plane containing the rows [110]and [111].
Are planes (111), (120) and (011) of the same zone?

Find the angle between the directions [110] and [110] in the cubic lattice.

10.Find the angle between directions [110] and [101] in the cubic lattice.

11.Find the angle between directions [110] and [100] in the cubic lattice.

12.Find the cosine of the angle between directions [111] and [111] in the

cubic lattice.

13.Silicon has a crystalline structure with a cubic cell, cell parameter a= 5.43

A. Determine the interplanar spacing for planes (111) and (112).
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14.Derive a formula for the interplanar distance d;;; in a hexagonal lattice
with parameters a and c.

15.Prove that the zone rule holds for the Miller-Brave indices.
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