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1. Diffraction methods of structural diagnostics 

Diffraction is related to waves scattering on various objects, it may manifest 

violation of the geometric optics law. Diffraction is a visual reflection of the photons or 

particles wave nature. The phenomenon of diffraction strongly depends on the 

microstructure of the object, namely, on the distribution of tiny inhomogeneities, the 

size of which is of the order of the wavelength. Thus, diffraction is used to study such 

small details. For example, the diffraction of the room light on a CD surface, which is 

easily observed with the naked eye, makes it possible to deduce the period of tracks 

using only a ruler. On the other hand, the period can be directly obtained only using 

quite expensive microscopes, since the eye as an instrument does not allow these tracks 

to be evaluated directly due to their small size.  

 

  

Figure 1.1 - Diffraction effects on a CD observed with the naked eye, 

and an image of CD surface structure obtained using a microscope. 

This characteristic of diffraction effects has been actively applied in the studies 

of the atomic structure of various materials for more than 100 years. However, the 

wavelength of the radiation used for these purposes should be comparable with the 

interatomic distances or be even less, that is, make a few angstroms (1 Å = 0.1 nm) 

maximum. 

The energy E of a photon with a wavelength of 1 Å is , that 

is, such radiation lies far beyond the visible light, in the so-called X-ray range. That is 

why X-ray diffraction is used for structural diagnostics. 

The diffraction of various particles is also widely used, for example, that of 

electrons and neutrons, the wavelength of which is determined by de Broglie formula 
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, where  is the momentum of the particle. Particles have a much greater 

momentum than photons at the same energies due to the presence of the rest mass. 

Thus, particles are characterized by much shorter wavelengths. For example, the 

electron wavelength at an energy of 10,000 eV will be less than 0.1 Å, and the neutron 

wavelength will be even 50 times smaller. 

The following simple example allows to estimate the scale of the difference in 

the case of electrons. External electrons in atoms have the energy, the order of 

magnitude of which corresponds to Rydberg constant, that is, it is some eV. The 

wavelength of these electrons corresponds to the size of atoms, it has the order of  Bohr 

radius (≈1 Å), since this radius is actually determined by the condition that the electron 

wavelength coincides with the length of its orbit. 

In the above case, the wavelength of photons with an energy of the order of a few 

electron volts lies in the range of 100 nm–1 μm, that is, it is hundreds and thousands of 

times longer than the wavelength of the electrons with the same energies (≈1 Å). This 

difference is directly related to the so-called "fine structure constant" , and thus 

it is a fundamental characteristic of the photon emission when the electronic state 

changes. 

It can be noted that the wavelength of photons that are emitted during the 

changes in the state of external electrons lies in the vicinity of the so-called. "visible 

range", that is, in the part of electromagnetic spectrum where the window of our eyes 

spectral sensitivity is located. The spectral sensitivity maximum of the human organs of 

vision is located approximately at a wavelength of 550 nm, in the green light area; the 

visible range itself represents the energies of 2-3 eV. This determines the ability to 

observe the typical  flame colors, since it is the changes in the state of external 

electrons characterize the flame color. The chemical reactions, among them  

combustion as a special case, represent a change in the orbits of the external electrons 

of atoms with the formation of their new combinations, molecules. As a result of such a 

fusion, especially in the case of exogenous reactions, that is, those releasing heat, an 

electron, that was previously in the ground state in its atom, is often in the state from 

which a transition to a lower energy is possible within a molecule. This is accompanied 

by a release of energy, often by emission of an electromagnetic radiation quantum. In 

addition, the phenomenon of fluorescence, well known from practice, that is, in many 

cases observed with the naked eye, is related to a change in the state of external 

electrons. 

(This is not a coincidence. More strictly speaking, it is by pure chance that the 

spectral sensitivity of our eyes appears to be in the region of the energy scale with the  

values typical for a change in the state of the external electrons. Our organs of vision 

are primarily tuned to the maximum of the Sun's spectrum, determined by its surface 

temperature. However, it is the favorable location of its spectrum in this region that 

results in the significant effect of solar radiation on terrestrial biological processes. For 



 
 

6 

 

example, photosynthesis in plants, which is essentially a chemical reaction induced by 

photons, as well as the fact that light detectors of the spectral range discussed can be 

built on the simple principle of changing the electronic state of a molecule. To give an 

example, this is implemented in our eyes, and therefore, the very fact of writing this 

book results from the transition energies of the external electrons lying in the vicinity of 

the photons energy in the visible range. Some electronic transitions are beyond this 

range, which leads to the emission of the so-called ultraviolet or infrared radiation, 

however, their energies are anyway of the order of Rydberg constant, that is, the 

binding energy of an electron in a hydrogen atom.) 

An important effect is that our eye, as an instrument, is tuned to the wavelengths 

of hundreds to thousands ( ) times the size of atoms. This results in the fact 

that direct visual observation of the matter structure is impossible. For this reason, 

structural diagnostics involves using technically sophisticated approaches, with 

diffraction methods based on the use of radiation with a rather short wavelength among 

them. 

2. Diffraction on three-dimensional objects 

Let’s consider a monochromatic wave with a complex amplitude 

. Here and below, we will rely on the definition of the wave 

vector length , where  is the wavelength. The coherently scattered wave  is 

described by the following integral equation: 

 
(2.1) 

Where  is the local scattering amplitude, a function describing the object. 

That is, each point of the object is a source of spherical waves with a wave vector 

 and  the amplitude proportional to the amplitude of the propagating wave at 

a given point (taking into account the incident and the scattered waves) and to the 

scattering ability of the object. 

Coherent scattering implies the consistency of both the amplitude and phase of 

the emerging spherical wave with the scattering wave and, therefore, requires the 

equality of the frequencies of the scattered and the original waves, that is, the equality 

of the energies of quanta or particles before and after scattering. Thus, coherent 

scattering corresponds to elastic scattering. 

In the general case, this integral equation (since  is both on the left side and 

under the integral sign) is rather challenging to solve. If we assume that the amplitude 

of the scattered wave is much smaller than the amplitude of the incident wave, that is, 

, then equation (2.1) can be simplified to: 
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(2.2) 

In this case,  is calculated by simple integration. It can be noted that here we 

neglected the repeated scattering of the scattered wave , as if this wave, when 

propagating through the object, no longer creates the corresponding spherical waves. 

Thus, this approximation corresponds to single scattering of particles or quanta and is 

referred to as the single scattering approximation or, in quantum mechanics, the first 

Born approximation. 

This approximation, under certain conditions, cannot accurately predict the 

intensities of diffraction maxima, when scattered by crystalline structures, but allows to 

accurately determine their location, that is, to reveal the typical directions of scattering. 

Therefore, the single scattering approximation in the perspective of diffraction theory is 

referred to as  kinematic approximation. 

In the cases where the kinematic approximation does describe the diffraction 

pattern quite well, we deal with kinematic diffraction, for example, if the object is thin 

enough and multiple scattering is unlikely. If a more accurate solution of equation (2.1) 

taking into account multiple scattering is required, we refer to dynamic diffraction. 

When there are significant deviations of the observed pattern from that described by the 

kinematic approximation, this is called dynamic diffraction effects. 

In practice, the distance from the object to the scattered wave recorder is usually 

much larger than the size of the object itself, that is, in the integrand . This 

condition corresponds to the so-called Fraunhofer diffraction and allows to simplify 

formula (2.2) taking into account  to the following: 

 
(2.3) 

Where , the change of the wave vector upon scattering 

in the direction , is the so-called diffraction vector. Thus, the amplitude of the 

scattered wave at a large distance is determined by the Fourier transform of the spatial 

distribution of the object's scattering density. The Fourier image of the object lies in the 

reciprocal space, the diffraction vectors are vectors in reciprocal space as well as the 

wave vectors of the incident and scattered waves. The set of allowed diffraction vectors 

in the case of coherent scattering, since  , lies on a sphere, the Ewald 

sphere (Figure 2.1).  

Taking into account the density distribution of the object in reciprocal space, the 

so-called scattering amplitude – , the shape of the 

diffraction pattern can be predicted, since the scattering amplitude in the direction n is 

proportional to   within the kinematic approximation, which thus provides 
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a powerful tool for understanding the principles of formation of diffraction patterns 

from various materials and structures. 

 

Figure 2.1 - Ewald sphere and the correspondence of the reciprocal 

space point to the scattering direction and, thus, to the point in the 

observed diffraction pattern. 

3. Typical Properties of the Fourier Transform in the One-Dimensional Case 

Understanding the basic properties of  Fourier transform of various functions is 

necessary for realizing the relationship between structural features and observed 

diffraction patterns. Fourier transform  is: 

 
(3.1) 

It is important that Fourier transform is the linear operation, that is 

. 

It is useful to perceive Fourier transform as a decomposition of the original 

function into a frequency spectrum. In the case of  temporal signal transformation the 

function is decomposed by temporal frequencies, and in the case of  spatial function 

transformation it is decomposed by spatial frequencies. Anyway, Fourier image shows 

how much of which frequency there is in the spectrum of our object. 

The function  can be restored from  by inverse Fourier transform : 

 
(3.2) 

Inverse Fourier transform is very close in its definition to the direct transform. In 

fact, if we apply the direct Fourier transform to  instead of the inverse transform, 

then we get : 
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(3.3) 

Thus, direct and inverse transformations of an object are identical in their form. 

This plays a special role in the diffraction patterns. To give an example, if we know 

what  Fourier image of an object looks like, then we immediately understand what  

Fourier image from Fourier image will look like – as the original object. Therefore, by 

defining Fourier transform of one function, we immediately solve two problems and  

we know at the same time Fourier transform of the function corresponding to the 

obtained Fourier image. Further, we will understand the comparison of an object with 

its Fourier image as a bidirectional relationship. 

Consider the Fourier transforms of some simple functions. The transformation of 

the Gaussian function will also be a Gaussian function: 

 (3.4) 

Since the Fourier transform is a linear transformation, an increase in the 

amplitude of the original function leads to a proportional increase in the amplitude of 

the Fourier image. 

There is another important property of the Fourier transform always holds: 

scaling the original function  leads to the corresponding scaling of the 

Fourier transform, but in the opposite direction, . This directly follows 

from the definition: 

 
(3.5) 

So, shrinking of the original function leads the Fourier transform expansion and 

vice versa (Figure 3.1). 

 

Figure 3.1 - Scaling Fourier image with scaling the original function. 

This property can be regarded as an expression of a more general principle – 

more sharply / rapidly changing functions are characterized by larger amplitudes in the 
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region of the high spatial frequencies. As a detailed explanation, when stretched, the 

function becomes flatter, and its Fourier transform loses its amplitude at high spatial 

frequencies, which is manifested in the form of its compression, and vice versa. 

Two important interrelated properties of the Fourier transform: 

 
(3.6) 

Thus, differentiation enhances high-frequency components, and integration, on 

the contrary, weakens. This is well known for everyone evolved in mathematical data 

processing. 

Of particular importance is the following special case, the Fourier transform of 

Dirac delta function : 

 
(3.7) 

That is, the transformation from a delta function is a constant, and vice versa, a 

transformation from a constant is a delta function at zero, . In other words, 

an infinitely short pulse contains all possible frequencies equally, and the constant is a 

function with single frequency – zero. 

The antiderivative of the delta function is the Heaviside function , which is 

discontinuous at zero. According to (3.7) and (3.6) its Fourier image is equal to  

(Figure 3.2). 

 

Figure 3.2 - Fourier transform from the Heaviside function. 

The antiderivative of the Heaviside function will actually be a function of , it 

is continuous, but has a kink at zero, that is, a discontinuity in the first derivative. The 

Fourier image in this case will be described by the function . 

The next antiderivative will have a discontinuity only in the second derivative, its 

Fourier image is . 

It is important to note that the smoothness of a function is directly related to the 

rate of decrease in the amplitude of its Fourier transform at infinity, this is also a 

manifestation of the general principle mentioned above. Infinitely differentiable 
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functions decrease faster than any power, like the Gaussian function whose Fourier 

transform decreases exponentially. 

Moreover, due to the similarity of direct and inverse transformations, the 

following is also true: the slower the function decreases, the fewer continuous 

derivatives its Fourier image has. 

A typical example is the Fourier transform of the Lorentz function: 

 
(3.8) 

 

Figure 3.3 – Lorentz function and its Fourier transform. 

Lorentz function is infinitely differentiable, so its Fourier transform decreases 

exponentially. However, the function itself decays like  and the second derivative of 

Fourier transform will contain a delta function, i.e. the first derivative will have a jump 

like  Heaviside function, and  Fourier transform itself will have a kink. Fourier 

transform of a function with a kink will not decrease faster than the second degree. 

Thus, any breaks, discontinuities of the function, and the like lead to a much 

slower decrease in the Fourier transform, power-law instead of exponential. Again, the 

more abrupt changes / drops are present in the original function, the higher the 

amplitude of the high-frequency components of the spectrum. 

The most obvious manifestation is the well-known difference between the sound 

of a harpsichord and a piano. The vibrations of a string can be represented as the sum of 

vibrations of its individual modes, the so-called "harmonics", each of them 

corresponding to the vibration of a wave, an integer number of half-periods of which 

fits the length of the string (Figure 3.4). The frequency of the harmonic is proportional 

to this number. 
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Figure 3.4 - String harmonics. 

At the initial pull of the string, we set the initial amplitudes of various harmonics, 

which are defined as the spectrum of the string profile at t=0. The hammer in the piano 

is rounded, in the harpsichord the string is driven by a thin needle - a plectrum.  

 

 

Figure 3.5 - The shapes of the percussion elements in the piano and 

harpsichord are significantly different. 

The plectrum creates a sharper kink in the profile of a stretched string, which 
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results in a greater proportion of high frequencies in Fourier transform of its profile and 

a greater amplitude of high harmonics in its sound. This results in the typical  "tinkling" 

sound of the harpsichord. 

In structural diagnostics, this principle is manifested - heavier atoms, with a high  

charge, create sharper local changes in the potential or in the electron density, and 

therefore, scatter various types of radiation at larger angles. 

Of particular interest is the case of periodic functions. The Fourier transform of 

the simplest periodic function – a constant – is a delta function concentrated at zero – 

. The Fourier transform of the function  will be a delta function concentrated 

at the point : 

 
(3.9) 

Fourier transform of the harmonic functions with period , for example, 

, due to the equality  , will be: 

  (3.10) 

Fourier transform of  will be: 

 
(3.11) 

In diffraction patterns, especially in the case of radiation used in structural 

diagnostics, unfortunately, we register the signal intensity, that is, the square of the 

amplitude modulus, rather than the complex amplitude. Let us consider the two latter 

results as follows (Figure 3.6). 

 

Figure 3.6 - Fourier transform from harmonic functions. In the first case 

a purely imaginary function, in the second one it is real, while the 

squares of the moduli of each of them coincide. 
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The sine and cosine graphs differ from each other only by a shift along the . If 

we shift some function along the axis by a certain amount , then its 

Fourier transform will change simply by the phase factor , and 

the modulus of this complex function will not change which is what the figure shows. 

Also, the diffraction pattern will not change if the object is slightly moved. 

In addition, it can be noted that the Fourier transform of real functions is always 

somewhat symmetric, more precisely Hermitian, since in this case , where 

the bar over the expression means complex conjugation. It can be expressed by the 

following: 

 
(3.12) 

Thus, the modulus of the Fourier transform of real functions is strictly symmetric 

, as well as the density distribution in the reciprocal space of any 

physical object. 

Consider the Fourier transform of other periodic functions. For example, 

 and . It is easy to show that: 

 

 

(3.13) 

With successive exponentiation, our periodic function becomes a sequence of 

increasingly sharp impulses. This corresponds to the ever higher frequencies emerging 

in its composition, which is manifested in the shape of Fourier transform (Figure 3.7). 

 

Figure 3.7 - Fourier transforms from  and 

. 
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The spectrum of a periodic function always consists of a set of delta functions 

concentrated at frequencies that are multiples of , that is, it consists of "harmonics". 

The amplitude of these "harmonics", that is, the coefficients at the corresponding delta 

functions, correspond to the coefficients of the Fourier series of the given periodic 

function. 

Figure 3.7 illustrates the fundamental idea that periodic objects in reciprocal 

space are represented as an ordered set of points where density is concentrated, and that 

the diffraction pattern from periodic objects consists of bright spots, in the ideal case 

corresponding to a delta function. 

Of particular importance is the Fourier transform of a periodic function in the 

form of an infinite sequence of delta functions with period d, 

, which is also an infinite sequence of delta functions with 

period 1/d: 

 

(3.14) 

This is not an obvious result, but it is in full agreement with the characteristic 

features of the Fourier transform. First, as the period of the original sequence changes, 

the Fourier transform will rescale itself accordingly in the opposite direction. Secondly, 

any delta function essentially contains all kinds of frequencies, and the amplitude of the 

Fourier transform does not tend to zero at infinity. Thirdly, the resulting Fourier 

transform does not contain frequencies other than multiples of the frequency of the 

original periodic function (Figure 3.8). 

 

Figure 3.8 - Fourier transform from a periodic sequence of delta 

functions. 

Consider an important property of the Fourier transform in relation to the 

convolution operation. The convolution of two functions  and  is the 

following function of : 

 
(3.15) 
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It is easy to show that the Fourier transform of the convolution of two functions 

is the product of the corresponding Fourier transforms: 

 (3.16) 

And, by the way, on the contrary, the Fourier transform of the product of two 

functions is the convolution of the corresponding Fourier images. 

The convolution of any function with a delta function concentrated at zero will 

equal the original function: 

 
(3.17) 

The convolution of the function  with the delta function shifted to the point 

, that is, with , will be the function  shifted exactly the same, that is, 

: 

 
(3.18) 

Moreover, the convolution operation is linear, that is 

. 

A convolution, for example, of a Gaussian function  with a periodic 

sequence of delta functions  will therefore be a periodic sequence of 

Gaussian functions: 

 

(3.19) 

 

The Fourier transform of such a periodic function will be equal to the product of 

the Fourier transforms of the original convolution components, that is: 

 

(3.20) 

 

Where the coefficient A is a value of the order of unity, in the context of the 

analysis of diffraction patterns it does not affect their appearance. Thus, the amplitude 

of the original delta functions in the Fourier transform is modulated accordingly to the 

Fourier transform of the Gaussian function. Moreover, it can be noted that if , 

that is, the width of the Gaussian function is less than the period, then the changes in 

the resulting Fourier transform are less significant than in the case of  , when 

almost all components are significantly weakened, except for the corresponding zero 

frequency, which happens as a result of the overlap of adjacent Gaussian functions 

(Figure 3.9). 
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Figure 3.9 - Fourier transform from periodic functions. 

Thus, the amplitude of Fourier components of a periodic function is determined 

by Fourier transform of the profile of one period. In diffraction patterns, the intensity 

ratio of different diffraction reflections is determined by the scattering density profile 

within the unit cell. 

In the case of a period profile described by a Gaussian function, the amplitude of 

the Fourier components decays exponentially. Let’s consider other periodic functions. 

Of particular interest is the case of a piecewise constant function, which can be 

obtained as a convolution with a meander. The Fourier transform of the meander is a 

function of the form  , which is of great importance in structural diagnostics. More 

precisely, for a symmetrical meander with height 1 and width D: 

 

(3.21) 

 

 The amplitudes of the spectrum component are modulated accordingly (Figure 

3.10). 
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Figure 3.10 - Fourier transform of a periodic piecewise linear function. 

The smaller the width of the meander, the wider the modulating function, and the 

closer the form of the Fourier transform will be to the original one. If the width of the 

meander D equals the period d, then the individual meanders will merge into a solid 

line, and the resulting function will turn into a constant. This corresponds to the case 

when at the locations of the harmonics in the region of spatial frequencies turn out to be 

exclusively the zeros of the function  and only the component corresponding to 

the zero frequency is preserved. 

It can be noted that a piecewise linear function contains a series of 

discontinuities, for this reason the amplitude of its Fourier transform decreases as  in 

strict accordance with the previously stated representations. If the shape of the peaks is 

slightly smoother, for example, in the form of a meander smoothed by convolution with 

a Gaussian function, then the Fourier transform is also modulated by the Gaussian 

transform, and the amplitude of the oscillations will decrease faster. 

Thus, the Fourier transform of periodic functions is easily estimated if one 

imagines what the transformation of one period looks like. Another approach to the 

analysis of the form of Fourier transforms is also important. Let us determine the 

Fourier transform shape of a periodic function confined along x axis. It can be done by 

multiplication of the original periodic function by a meander of a sufficiently large 

width. The Fourier transform from multiplication will be the convolution of the 

corresponding Fourier transforms, and since the spectrum of a periodic function is a 

sequence of delta functions, the resulting spectrum will be a sequence of Fourier 

transforms from a meander (Figure 3.11): 

 

(3.22) 
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Figure 3.11 - Fourier transform from a finite set of peaks. 

The following is important: the trimming of the periodic function leads to a 

modification of the peaks shape in the reciprocal space, the delta functions are 

broadened, turning into Fourier transforms from the trimming profile. In this case, the 

width of the peaks in the reciprocal space obviously corresponds to the width of the 

remaining portion of the original periodic function. A simple rule is that the peak in the 

reciprocal space is as many times narrower than the distance between the peaks as there 

are whole periods in the original function. The distance between the peaks does not 

change and corresponds to the period. The diffraction peaks from crystals of finite size 

behave similarly: the smaller the crystallite, the more the diffraction reflections are 

broadened. This peak broadening effect is called shape effect, as it is related to the 

shape of the crystallite. The most important point is the following – the shape effect is 

the same for all peaks in the reciprocal space since it is the result of convolution. 

Before proceeding to the features of Fourier transform from three-dimensional 

objects, including from three-dimensional lattices, we can summarize the above using 

the example of flat optical diffraction gratings: 

1. The intensity ratio for different diffraction orders is determined by the 

reflectance profile of the diffraction grating period. If the edges of the 

diffraction grating line are sharp enough, then the amplitude decreases 

inversely with the order of reflection, and the intensity decreases inversely 

with the square of the order. If the reflectivity varies sinusoidally, there 

will only be first-order reflections. 

2. The angular divergence of the reflection is inversely proportional to the 

number of lines in the grating, which thus determines its resolution. 

3. A small shift of the diffraction grating only changes the phase in the 

reflections without changing the appearance of the final diffraction pattern. 

These conclusions, which are well-known facts from the physics of diffraction 

gratings, are presented here to emphasize the importance of being familiar with the 

properties of Fourier transform. 
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4. Fourier transform of 3D objects 

Fourier transform of 3D scattering density distribution  is a 3D complex 

function : 

 
(4.1) 

Consider Fourier transforms, that is, representations in reciprocal space, of the 

simplest three-dimensional objects. A rectangular parallelepiped can be defined as the 

product of three meanders of different widths Dx, Dy and Dz in mutually normal 

directions. Thus, in the space limited by the parallelepiped the density will be 1 and it 

will be zero outside it: 

 

 

Figure 4.1 – Mathematical description of a rectangular parallelepiped. 

The Fourier transform of such a figure is calculated quite easily, since our 

function  in this case is factorized, that is, it is presented as a product of functions 

of independent variables. In general, if  , then Fourier 

transform from it will be the product of the three corresponding one-dimensional 

transformations: 

 

(4.2) 

Thus, a rectangular parallelepiped with dimensions  in reciprocal 

space will be have the following density distribution: 

 
(4.3) 

It is important that the scale of this object along any of the axes will be inversely 

proportional to the original dimensions, that is, a thin plate will be represented by a rod, 

and vice versa, the rod will be represented in reciprocal space by a thin plate. In this 
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case, there will be density oscillations in the directions normal to the original faces 

(Figure 4.2). 

 

Figure 4.2 - Fourier transform of a parallelepiped, section in the plane 

 parallel to the plane . 

Similarly, Fourier transform from an ellipsoid will be characterized by the radial 

oscillations due to the abrupt limits of the figure, while the proportions of the figure 

will be inverse to the original proportions (Figure 4.3). 

 

Figure 4.3 - Fourier transform from the disks and the rod. 

If the dimensions of a disk/plate tend to infinity, then the rod in reciprocal space 

will become infinitely thin. If, in this case, the thickness of the disk tends to zero, then 

the length of the rod tends to infinity. In other words, Fourier transform of a plane is a 

straight line normal to the given plane. Indeed, if the density of the original object is 

concentrated in the XY plane and distributed uniformly there, that is, it exists only at z= 

0 and is equal to zero in the rest of the space, it can be described by the function , 

more precisely, by the function , since we mean a three-dimensional 

function. In this case, the three-dimensional Fourier transform will be: 



 
 

22 

 

 
(4.4) 

Thus, the density will be concentrated on the straight line , that is, the 

axis  parallel to the z and normal to the XY plane, and will be zero in all other space. 

Similarly, Fourier transform of a line is the plane normal to the given line (Figure 

4.4). 

 

Figure 4.4 - Fourier transform from a plane and a straight line. 

Consider a periodic sequence of planes with the period d. It is described by an 

infinite sum  like a periodic sequence of delta functions in the one-

dimensional case, with the only difference that here we mean a three-dimensional 

function that is constant on x and y, that is, it just describes continuous planes at z=nd. 

Fourier transform will be: 

 

(4.5) 

The result is a line  axis z, whose density is 0 everywhere except for a 

series of points   (Figure 4.5).  

Thus, a periodic system of planes in reciprocal space corresponds to a chain of 

point nodes in the direction normal to these planes, the so-called systematic row. 

Let us multiply the two systems of planes, for example, parallel to the XY plane 

and the XZ plane – , the density distribution 

will be a grid of lines , i.e., parallel to the x. Fourier transform in this 

case will also represent the product: 
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(4.6) 

 

 

Figure 4.5 - Fourier transform from a system of planes. 

In fact, it will also be a grid of lines parallel to the axis  or x, however, 

multiplying by  will leave only the points in the plane , that is, parallel to the 

YZ plane. Thus, Fourier transform from a regular grid of lines is a flat grid of point 

nodes, which can also be represented as a convolution of a systematic series of one 

system of planes with the systematic series of the second system of planes (Figure 4.6). 

 

Figure 4.6 - Fourier transform from a grid of lines. 

If this construction is multiplied by a system of planes going in the third 

direction, then it is rows of point nodes that will remain from the straight lines, that is, 

we will get a three-dimensional lattice. At each node of the flat grid of Fourier 

transform, a systematic series will appear in the direction normal to the grid plane, 

which is also a three-dimensional grid. Thus, a three-dimensional lattice in reciprocal 
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space is represented by a three-dimensional lattice, the so-called reciprocal lattice. 

However, the nodal rows of the reciprocal lattice run normal to the planes of the 

original one, while the period of the nodal rows is inversely proportional to the period 

of the planes. 

If the initial lattice is specified using the crystallographic basis , then the 

reciprocal lattice will be described using the following basis: 

 
(4.7) 

 

The vectors of a given basis, as is shown, are normal to the planes of the original 

lattice, the period of any systematic series that can be built in such a basis is inversely 

proportional to the period of the corresponding planes (Figure 1.1) . 

 

Figure 4.7 - Direct and reciprocal lattices, the third axis is normal to the 

plane of the figure. 

The point nodes, that is, those described by delta functions are observed only 

when the original object is of infinite sizes. A finite object can be obtained by 

multiplying an infinite object by the function of a sufficiently large box. As a result of 

this multiplication, Fourier image of the finite fragment of the lattice will be described 

by a convolution with Fourier transform of the cutting function. Thus, each node of the 

reciprocal lattice will turn into Fourier image of the parallelepiped (Figure 4.8). With a 

high aspect ratio of the shape of our crystal, for example, a disk or a rod, the nodes of 

the reciprocal lattice will take the form of a rod or disk, respectively, normal to the 

original ones. In general, any abrupt edges of a crystal will correspond to oscillating 

streaks of the nodes in reciprocal space. 
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Figure 4.8 - Reciprocal lattice nodes of the finite crystal. 

5. Kinematic diffraction on crystalline structures 

Diffraction patterns produce an image of radiation scattering. In kinematic 

approximation, that is, in the approximation of single scattering, this pattern is 

determined by the cross section of crystal Fourier image by the Ewald’s sphere. 

Crystalline bodies are represented in reciprocal space in the form of the so-called 

reciprocal lattice, a three-dimensional grid of regularly spaced nodes. Therefore, bright 

narrow diffracted beams, the so-called, diffraction reflections are typical for diffraction 

by crystals (Figure 5.1). Each diffraction reflection corresponds to a specific reciprocal 

lattice node. 

If radiation is monochromatic, that is, it has a strictly defined wavelength and, 

thus, the strictly defined modulus of the wave vector, then the thickness of the Ewald 

sphere is zero. In this case, diffraction reflections appear only for a strictly limited  

orientation of the lattice with respect to the direction of the incident beam. This 

fundamentally differs diffraction on three-dimensional gratings from that on two-

dimensional or one-dimensional ones, in the latter case, many diffraction reflections are 

observed simultaneously for a plane monochromatic wave. 

In the case of a non-monochromatic particle/quantum beam, there will be 

multiple Ewald spheres of various radii in reciprocal space (Figure 5.2). 

In this case, multiple diffraction reflections will be simultaneously observed for 

any orientation of the lattice. However, each reflection will correspond to the 

intersection of a certain node by an Ewald sphere of a certain radius, and, therefore, in 

each reflection the beam will have a certain wavelength. It is in this way that crystals, 

like any three-dimensional gratings, can be used to monochromatize radiation. 
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Figure 5.1 - Ewald sphere and reciprocal crystal lattice. 

 

Figure 5.2 - A non-monochromatic beam corresponds to a finite volume 

covered by Ewald spheres of various radii. 

From the above analysis, it follows that to obtain diffraction reflection, it is 

essential that the corresponding node of the reciprocal lattice is not removed from the 

origin of coordinates by more than the diameter of Ewald sphere, that is, , 

where  is the reciprocal lattice vector, the allowed diffraction vector on the lattice. 
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This condition can be expressed as follows – , where  is the period of the 

planes corresponding to a given node of the reciprocal lattice. In other words, to obtain 

diffraction on a crystal structure, the radiation wavelength must be sufficiently small, 

no more than twice the lattice period. 

For a detailed study of the reciprocal space structure, in particular, the shape of 

the reciprocal lattice nodes, only monochromatic radiation is used, corresponding to an 

almost ideally thin Ewald sphere. In this case, to obtain some information about the 

density distribution in the reciprocal space, as mentioned above, it is necessary to 

consistently tilt the sample by measuring the intensity of the scattered radiation. It is 

possible to obtain a density scan in the region limited by the diameter of the sphere, 

which is determined by the wavelength of the radiation used. 

A bright diffraction reflection occurs when Ewald sphere crosses any node of the 

reciprocal lattice. Let the vector connecting the origin in reciprocal space to this node, 

the diffraction vector in this case, be equal to . The wave vector of the diffraction 

reflection will be , where  is the wave vector of the incident radiation. 

Then the half angle between  and  will be determined by the following relationship 

- , otherwise, taking into account  and , where  is the 

period of the planes corresponding to the node , we get . However, any 

system of planes corresponds to a systematic row of reciprocal lattice nodes for which 

, where  is any integer. Thus, it is possible to obtain an expression for the 

possible scattering angles on a certain system of planes of the period : 

 (4.7) 

This expression is called Wulf-Bragg formula. Since the system of planes itself is 

normal to the vector , the formula describes the incidence angles at which intense 

diffraction reflections emerges, the so-called, Bragg angles. 

Bragg angle depends on the wavelength; the shorter the wavelength, the smaller 

the angle, which generally corresponds to a decrease in the scattering angle with 

increasing particle energy. Thus, when using particles with a shorter wavelength, the 

diffraction pattern narrows, however, the dimensions of the reciprocal lattice remain 

unchanged, since they are related solely to the geometry of the object. That is, the 

analysis of diffraction patterns is based on independent determination of the shape of an 

object in reciprocal space and the scheme of a diffraction experiment that allows 

scanning the density distribution in reciprocal space. 
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Figure 5.3 - Determination of Bragg angle. 

In view of the above, it is interesting to consider the features of diffraction by 

low-dimensional objects. For example, according to the analysis described earlier 

(Figure 4.6), the 3D Fourier transform of a 2D crystal will be a regular grid of rods. 

Indeed, a two-dimensional crystal is ultra-thin three-dimensional. With a decrease in 

the thickness of the crystal the nodes of the reciprocal lattice are extended until they 

merge into solid straight lines when one atomic layer is the only thing that remains 

from the crystal (Figure 5.4). 

In this case, almost regardless of the orientation of the crystal, the diffraction 

pattern will contain many diffraction reflections, since Ewald sphere in any case 

crosses the rods that are not too far from the center. This essentially differs diffraction 

by two-dimensional crystals from that by three-dimensional crystals. 

It is also interesting to evaluate the form of the reciprocal lattice of a crystal in 

which only two atomic layers remain. The easiest way to do this is to add Fourier 

transforms from the first and second layers taking into account the shift between them. 

 (4.6) 

Thus, the presence of two identical layers leads to the appearance of a periodic 

density modulation along the third axis. The more layers, the sharper the modulation 

data will be, most pronounced in the case of a bulk crystal, when diffraction reflection 

occurs only at strictly defined angles of incidence.  

Obviously, based on Figure 4.5, we can say that the diffraction pattern from a 

one-dimensional crystal will be a series of concentric circles. 

To summarize, the diffraction pattern is described by the intersection of Ewald 

sphere with the reciprocal lattice of the crystal. The position of Ewald sphere in the 

reciprocal space is determined by the radiation wavelength and the orientation of the 

beam towards to the crystal. The reciprocal lattice consists of nodes, the shape of which 

is determined by the shape of the crystal, and their location in space is determined by 
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the lattice of the crystal. The weight of each node is determined by the distribution of 

the scattering density within the unit cell of the crystal, that is, its structure, as well as 

by the type of scattering radiation. 

 

Figure 5.4 - Reciprocal lattice of single-layer and two-layer two-

dimensional crystals. 

The most significant difference in the diffraction of electrons, X-rays and 

neutrons is that different types of radiation are scattered by different entities that make 

up the object. Roughly, electrons scatter on electric potential, X-ray quanta on electron 

density, and neutrons scatter only on atomic nuclei. Thus, the scattering density profile 

for these types of radiation will be somewhat different, that is, the ratio of the intensity 

of various reflections will be different, too. 

 The scale of the diffraction pattern or, in other words, the characteristic 

scattering angles, also depends on the wavelength. The radiation normally used is that 

whose wavelength is close to interatomic distances (X-ray quanta ≈10 keV, that is, ≈1 

Å, or thermal neutrons), so that the characteristic scattering angles are of the order of 1 

rad. The maximum angles minimize the relative error in measuring their magnitude. 

Significantly smaller scattering angles, about 10-2 rad, are usually typical for electron 

diffraction, since it is high-energy electrons (≈100 keV) with a wavelength of ≈3 pm 

are mainly used due to the strong absorption of charged particles by matter. This 

increases their penetration depth at least up to ≈1 μm, but reduces the accuracy of 

diffraction data measurements. 

X-ray diffraction is perhaps the most widely used method of structural 

diagnostics and is known to have the highest accuracy in determining the lattice 

parameters. Electron diffraction, on the other hand, makes it possible to obtain 

diffraction patterns from individual nanovolumes of a material, resulting, among other 

things, from the presence of a charge and, thus, high cross sections of various 

interaction processes with a substance. Neutron diffraction, despite the difficulties and 

limitations due to using the corresponding sources, has a significant advantage. The 

neutron scattering cross section for various elements does not depend much on the 

atomic number  in comparison with the dependence, for example, on  for 

electrons, or a similar strong dependence for X-ray quanta. For this reason, the 



 
 

30 

 

influence of light elements, especially hydrogen, on X-ray or electron diffraction 

patterns is insignificant or even practically immeasurable, while neutron diffraction 

provides much more information about their location in the structure.  

6. Dynamic Diffraction 

Kinematic approach provides a basis for the analysis of diffraction patterns, 

however, multiple scattering can lead to special effects that also need to be considered. 

As mentioned above, equation (2.1) cannot be solved in a general case, nevertheless, in 

particular cases, a fairly informative analysis can be carried out.  

Dynamic diffraction, that is, diffraction considering two-, three-, etc. multiple 

scattering from crystalline materials is described as follows. Single scattering in this 

case creates a discrete set of diffraction reflections, then, each of the reflections is also 

scattered into a similar series of reflections when propagating through the object, and so 

on. The most typical case, when using highly coherent radiation, is the occurrence of 

only one diffraction reflection, then, due to the geometry of the process, the secondary 

reflection is codirectional with the primary beam. Thus, the assumption that only one 

reflection exists is called the two-beam approximation. If we neglect the absorption and 

assume the strict Bragg conditions, the amplitude variations of the primary beam and 

the diffracted beam are described by the following equations: 

 

 

4.6 

The equations describe continuous transition of the amplitude of the primary 

beam  to the diffracted beam  and a similar transition of the diffraction reflection to 

the primary beam. The parameter  determines the growth rate of the reflection 

amplitude, that is, the scattered wave, is directly related to the scattering cross section 

by the angle  and is an analog to the refractive index. 

The solution to this equation implies functions oscillating with a period , 

which under the initial conditions  and  gives: 

 

 

(4.6) 

In practice, this leads to intensity oscillations of both the transmitted and the 

reflected beams with the thickness of the sample, which manifests itself in the form of 

thickness contours on images of the wedge-shaped edges of the crystals: 
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Figure 6.1 - Thickness contours on the images of wedge-shaped 

fragments of crystals in an electron microscope and in X-ray 

topography. 

When the thickness of the crystal equals  , the intensity of the primary beam 

becomes equal to 0, that is, it is completely extinguished, so the value  is referred to 

as extinction length. Electrons extinction length for various reflections in various 

materials is about 10-100 nm, for X-ray quanta it is several orders of magnitude larger, 

and even more for neutrons, which is an additional advantage of using the latter, since 

this simplifies the analysis of diffraction data. On the other hand, it can be noted that 

for all types of radiation at sufficiently small thicknesses, the amplitude of diffraction 

reflection grows proportionally to the thickness. Significant deviations from kinematic 

approximation arise only at the thicknesses when the amplitude of the scattered wave 

becomes comparable with the amplitude of the primary beam. 

In the case of excitation of several diffraction reflections, the change in their 

amplitude is described by a more sophisticated system of differential equations, the 

solutions of which also vary nonmonotonically with the thickness. The most prominent 

feature in this case may be the occurrence of reflections that are not observed in the 

kinematic approximation as a result of double diffraction, that is, the diffraction of a 

diffracted beam. 

Coherent scattering on crystalline structures creates a discrete set of beams - 

diffraction reflections. Incoherent scattering, for example, due to inelastic processes, 

localizes a quantum, which leads to the formation of a wave that spreads from a given 

point of the sample and does not interfere with other waves. Incoherent scattering thus 

creates a continuous, diffused, background in diffraction patterns. However, in the case 

of subsequent coherent scattering of this wave there are features appearing in the 

diffuse background associated with the crystalline structure of the substance, the so-

called Kikuchi lines. Since a sufficiently large thickness is required to observe the 

effects of double scattering, the Kikuchi lines are more typical for electron diffraction, 

since the extinction lengths in this case are relatively small. 
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