
Sergei Shavetov & Andrei Zhdanov

COMPUTER VISION

St. Petersburg

2022

MINISTRY OF SCIENCE AND HIGHER EDUCATION
OF THE RUSSIAN FEDERATION

ITMO UNIVERSITY

S.V. Shavetov, A.D. Zhdanov

COMPUTER VISION

STUDY GUIDE

RECOMMENDED FOR USE
AT ITMO UNIVERSITY

within the Master’s Program 15.04.06 Robtics and AI

St. Petersburg

2022

S.V. Shavetov, A.D. Zhdanov. Computer Vision. — St. Petersburg:
ITMO University, 2022. — 115 p.

Reviewer:
V.S. Gromov, PhD, Control Systems and Robotics Faculty, ITMO
University, St. Petersburg, Russia.

The study guide is devoted to the basics of computer vision. Four
practical assignments of increasing complexity are presented, ranging
from images segmentation to face detection. The study guide is
intended for master students studying in 15.04.06 Mechatronics and
Robotics.

ITMO University — is a national research university, a leading Rus-
sian university in the field of information, photonic and biochemical
technologies. The university is alma mater of the winners of inter-
national programming competitions: ICPC (the world’s only seven-
time champion), Google Code Jam, Facebook Hacker Cup, Yan-
dex.Algorithm, Russian Code Cup, Topcoder Open, etc. IT, photonics,
robotics, quantum communications, translational medicine, Life Sci-
ences, Art&Science, Science Communication are priority areas of uni-
versity. It is included in the TOP-100 in the direction of «Automation
and Control» of the Academic Ranking of World Universities (ARWU)
and ranks 74th in the world in the British QS subject ranking for com-
puter science (Computer Science and Information Systems). ITMO
University is Leader of Project 5-100 from 2013 to 2020.

© ITMO University, 2022
© S.V. Shavetov, A.D. Zhdanov, 2022

Contents

Practical Assignment №1. Images Segmentation 5
Objective . 5
Guidelines . 5
Brief Theory . 5

Images Binarization 5
Images Segmentation 11

Procedure of Practical Assignment Performing 37
Content of the Report 38
Questions to Practical Assignment Report Defense . . . 38
Appendix 1.1. MATLAB’s bwareaopen() implementa-

tion with OpenCV 39
Appendix 1.2. MATLAB’s imfill(‘holes’) implemen-

tation with OpenCV 41
Appendix 1.3. MATLAB’s entropyfilt() implementa-

tion with OpenCV 43
Practical Assignment №2. Hough Transform 46

Objective . 46
Guidelines . 46
Brief Theory . 46
Procedure of Practical Assignment Performing 55
Content of the Report 56
Questions to Practical Assignment Report Defense . . . 56
Appendix 2.1. Clasic Hough line transform with

OpenCV and C++ 57
Appendix 2.2. Classic Hough transform for lines with

SciKit and Python 59
Practical Assignment №3. Features Detectors 60

Objective . 60
Guidelines . 60
Brief Theory . 60

SIFT detector . 62
ORB detector . 70
Feature point descriptors matching 73

Procedure of Practical Assignment Performing 92
Content of the Report 93

3

Questions to Practical Assignment Report Defense . . . 93
Practical Assignment №4. Face Detection using Viola-Jones

Approach . 95
Objective . 95
Guidelines . 95
Brief Theory . 95
Procedure of Practical Assignment Performing 108
Content of the Report 109
Questions to Practical Assignment Report Defense . . . 110

List of references . 111

4

Practical Assignment №1
Images Segmentation

Objective

Study of the basic methods for images segmentation into semantic
areas.

Guidelines

Before getting started, students should be familiar with the basic
functions of the MATLAB [1] or OpenCV [2] for working on of color
spaces transformation of images, and methods for determining thresh-
olds. Practical assignment is designed for 4 hours.

Brief Theory

Images Binarization

The simplest way to segment an image into two classes (background
and object pixels) is binarization. Binarization can be performed by
thresholding or by double thresholding. In the first case:

𝐼𝑛𝑒𝑤(𝑥,𝑦) =

{︃
0, 𝐼(𝑥,𝑦) 6 𝑡,

1, 𝐼(𝑥,𝑦) > 𝑡,
(1.1)

where 𝐼 — source image, 𝐼𝑛𝑒𝑤 — binarized image, 𝑡 — binarization
threshold. Binarization by this method in the MATLAB can be done
using functions im2bw() (old) or imbinarize().

Listing 1.1. Binarization with MATLAB.

1 I = imread(‘pic.jpg ’);
2 L = 255;
3 t = 127 / L; %norm to 0...1
4 Inew = im2bw(I, t);

In OpenCV thresholding is performed with cv::threshold() func-
tion in C++ and cv2.threshold() function in Python. It takes an
image to process, threshold parameter, the value to set for thresh-
olded image pixels and thresholding method as its parameters. Simple

5

threshold binarization according to formula (1.1) is performed by using
THRESH_BINARY method.

Listing 1.2. Binarization with OpenCV and C++.

1 cv::Mat I;
2 I = cv:: imread("pic.jpg",
3 cv:: IMREAD_GRAYSCALE);
4 double t = 127;
5 cv::Mat Inew;
6 cv:: threshold(I, Inew , t, 255,
7 cv:: THRESH_BINARY);

Listing 1.3. Binarization with OpenCV and Python.

1 I = cv2.imread("pic.jpg",
2 cv2.IMREAD_GRAYSCALE)
3 t = 127
4 ret , Inew = cv2.threshold(I, t, 255,
5 cv2.THRESH_BINARY)

Double threshold binarization (range binarization):

𝐼𝑛𝑒𝑤(𝑥,𝑦) =

⎧⎪⎨⎪⎩
0, 𝐼(𝑥,𝑦) 6 𝑡1,

1, 𝑡1 < 𝐼(𝑥,𝑦) 6 𝑡2,

0, 𝐼(𝑥,𝑦) > 𝑡2,

(1.2)

where 𝐼 — source image, 𝐼𝑛𝑒𝑤 — binarized image, 𝑡1 and 𝑡2 — upper and
lower binarization thresholds. Binarization by this method in the MAT-
LAB can be done using function roicolor(). To convert a color image
to grayscale one, you can previously use the function rgb2gray().

Listing 1.4. Double threshold binarization with MATLAB.

1 I = imread(‘pic.jpg ’);
2 t1 = 110;
3 t2 = 200;
4 Igray = rgb2gray(I);
5 Inew = roicolor(Igray , t1, t2);

OpenCV does not provide special function for double thresholding,
however it can be done by subsequent call of two threshold functions
with different methods. First would set all values above t2 to zeros

6

(THRESH_TOZERO_INV method), and second would set all values below
t1 to zeros as well (THRESH_BINARY method).

Listing 1.5. Double threshold binarization with OpenCV and
C++.

1 cv::Mat I;
2 I = cv:: imread("pic.jpg", cv:: IMREAD_COLOR);
3 double t1 = 127;
4 double t2 = 200;
5 cv::Mat Igray , Inew;
6 cv:: cvtColor(I, Igray , cv:: COLOR_BGR2GRAY);
7 cv:: threshold(Igray , Inew , t2, 255,
8 cv:: THRESH_TOZERO_INV);
9 cv:: threshold(Inew , Inew , t1, 255,

10 cv:: THRESH_BINARY);

Listing 1.6. Double threshold binarization with OpenCV and
Python.

1 I = cv2.imread("pic.jpg", cv2.IMREAD_COLOR)
2 t1 = 127
3 t2 = 200
4 Igray = cv2.cvtColor(I, cv2.COLOR_BGR2GRAY)
5 ret , Inew = cv2.threshold(Igray , t2 , 255,
6 cv2.THRESH_TOZERO_INV)
7 ret , Inew = cv2.threshold(Inew , t1 , 255,
8 cv2.THRESH_BINARY)

Binarization thresholds 𝑡, 𝑡1 and 𝑡2 can either be set manually or
calculated using special algorithms. In the case of automatic threshold
calculation, the following algorithms can be used.

1. Finding the maximum 𝐼𝑚𝑎𝑥 and minimum 𝐼𝑚𝑖𝑛 intensity values
of the original grayscale image and finding their arithmetic mean. The
arithmetic mean will be the global binarization threshold 𝑡:

𝑡 =
𝐼𝑚𝑎𝑥 − 𝐼𝑚𝑖𝑛

2
. (1.3)

2. Finding the optimal threshold 𝑡 based on the modulus of the
each pixel brightness gradient. For this, the modulus of the gradient is

7

first calculated at each point (𝑥,𝑦):

𝐺(𝑥,𝑦) = max {|𝐼(𝑥 + 1, 𝑦) − 𝐼(𝑥− 1, 𝑦)|, |𝐼(𝑥,𝑦 + 1) − 𝐼(𝑥,𝑦 − 1)|} ,
(1.4)

then the optimal threshold 𝑡 is calculated:

𝑡 =

∑︀𝑋−1
𝑥=0

∑︀𝑌−1
𝑦=0 𝐼(𝑥,𝑦)𝐺(𝑥,𝑦)∑︀𝑋−1

𝑥=0

∑︀𝑌−1
𝑦=0 𝐺(𝑥,𝑦)

. (1.5)

3. Calculation of the optimal threshold 𝑡 by statistical method
Otsu [3] which divides all pixels into two classes 1 and 2. This method
minimizing the variance within each class 𝜎2

1(𝑡) and 𝜎2
2(𝑡), and maxi-

mizing the variance between classes.
The algorithm for calculating the threshold by the Otsu method:

1. Computing an image histogram of intensities, and probability
𝑝𝑖 =

𝑛𝑖

𝑁
for each intensity level, where 𝑛𝑖 — number of pixels

with intensity level 𝑖, 𝑁 — the number of pixels in the image.

2. Setting the initial threshold 𝑡 = 0 and threshold 𝑘 ∈ (0, 𝐿), which
divides all pixels into two classes, where 𝐿 is the maximum value
of the image intensity. In the loop for each value of threshold
from 𝑘 = 1 to 𝑘 = 𝐿− 1:

(a) Computing probabilities of two classes 𝜔𝑗(0), and arithmetic
mean 𝜇𝑗(0), where 𝑗 = 1,2:

𝜔1(𝑘) =

𝑘∑︁
𝑠=0

𝑝𝑠, (1.6)

𝜔2(𝑘) =

𝐿∑︁
𝑠=𝑘+1

𝑝𝑠 = 1 − 𝜔1(𝑘), (1.7)

𝜇1(𝑘) =

𝑘∑︁
𝑠=0

𝑠 · 𝑝𝑠
𝜔1

, (1.8)

𝜇2(𝑘) =

𝐿∑︁
𝑠=𝑘+1

𝑠 · 𝑝𝑠
𝜔2

. (1.9)

8

(b) Interclass variance calculation 𝜎2
𝑏 (𝑘):

𝜎2
𝑏 (𝑘) = 𝜔1(𝑘)𝜔2(𝑘)(𝜇1(𝑘) − 𝜇2(𝑘))2. (1.10)

(c) If the calculated value 𝜎2
𝑏 (𝑘) is greater than the current

value 𝑡, then assign the value of the interclass variance to
the threshold 𝑡 = 𝜎2

𝑏 (𝑘).

3. Optimal threshold 𝑡 corresponds to the maximum 𝜎2
𝑏 (𝑘).

Threshold 𝑡 by Otsu method in the MATLAB can be done using
function graythresh():

Listing 1.7. Binarization by the Otsu method with MATLAB.

1 I = imread(‘pic.jpg ’);
2 t = graythresh(I);
3 Inew = im2bw(I, t);

or using the otsuthresh() function based on the image histogram:
Listing 1.8. Binarization by the Otsu method based on the his-

togram with MATLAB.

1 I = imread(‘pic.jpg ’)
2 Igray = rgb2gray(I);
3 [counts ,x] = imhist(Igray);
4 t = otsuthresh(counts);
5 Inew = imbinarize(Igray , t);

In OpenCV thresholding by Otsu is performed with the same
cv::threshold() function in C++ and cv2.threshold() function in
Python. To use the Otsu thresholding method you have to use the
THRESH_OTSU parameter as a thresholding method.

Listing 1.9. Binarization by the Otsu method based on the his-
togram with OpenCV and C++.

1 cv::Mat I;
2 I = cv:: imread("pic.jpg", cv:: IMREAD_COLOR);
3 cv::Mat Igray , Inew;
4 cv:: cvtColor(I, Igray , cv:: COLOR_BGR2GRAY);
5 cv:: threshold(Igray , Inew , 0, 255,
6 cv:: THRESH_OTSU);

9

Listing 1.10. Binarization by the Otsu method based on the his-
togram with OpenCV and Python.

1 I = cv2.imread("pic.jpg", cv2.IMREAD_COLOR)
2 Igray = cv2.cvtColor(I, cv2.COLOR_BGR2GRAY)
3 ret , Inew = cv2.threshold(Igray , 0, 255,
4 cv2.THRESH_OTSU)

4. Adaptive methods that do not work with the entire image, but
only with its fragments. Such approaches are often used when working
with images that represent non-uniformly illuminated objects. Thresh-
old 𝑡 by the adaptive method in the MATLAB can be calculated using
the adaptthresh() function:

Listing 1.11. Binarization by adaptive method with MATLAB.

1 I = imread(‘pic.jpg ’);
2 Igray = rgb2gray(I);
3 t = adaptthresh(Igray);
4 Inew = imbinarize(Igray , t);

In OpenCV adaptive thresholding is performed with
the cv::adaptiveThreshold() function in C++ and
cv2.adaptiveThreshold() function in Python. It supports two
adaptive thresholding algorithms: ADAPTIVE_THRESH_MEAN_C for
simple rectangular kernel mean and ADAPTIVE_THRESH_GAUSSIAN_C
for a kernel with Gauss weights. Kernel size is defined by blockSize
parameter (is set to 11 in the following example).

Listing 1.12. Binarization by adaptive method with OpenCV and
C++.

1 cv::Mat I;
2 I = cv:: imread("pic.jpg", cv:: IMREAD_COLOR);
3 cv::Mat Igray , Inew;
4 cv:: cvtColor(I, Igray , cv:: COLOR_BGR2GRAY);
5 cv:: adaptiveThreshold(Igray , Inew , 255,
6 cv:: ADAPTIVE_THRESH_GAUSSIAN_C ,
7 cv:: THRESH_BINARY , 11, 2);

Listing 1.13. Binarization by adaptive method with OpenCV and
Python.

1 I = cv2.imread("pic.jpg", cv2.IMREAD_COLOR)

10

2 Igray = cv2.cvtColor(I, cv2.COLOR_BGR2GRAY)
3 Inew = cv2.adaptiveThreshold(Igray , 255,
4 cv2.ADAPTIVE_THRESH_GAUSSIAN_C ,
5 cv2.THRESH_BINARY , 11, 2)

In addition to the considered methods, there are many others, for
example, the methods of Bernsen, Eikwell, Niblack, Yanowitz and
Brookstein, etc.

Images Segmentation

Let’s consider several basic methods of image segmentation.

Algorithm based on the Weber principle
The algorithm is designed for segmentation of grayscale images.

Weber principle assumes that the human eye does not perceive well
the difference in gray levels between 𝐼(𝑛) and 𝐼(𝑛) + 𝑊 (𝐼(𝑛)), where
𝑊 (𝐼(𝑛)) — Weber function, 𝑛 — class number, 𝐼 — piecewise non-
linear grayscale function. The Weber function can be calculated using
the formula:

𝑊 (𝐼) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
20 − 12𝐼

88
, 0 6 𝐼 6 88,

0,002(𝐼 − 88)2, 88 < 𝐼 6 138,
7(𝐼 − 138)

117
+ 13, 138 < 𝐼 6 255.

(1.11)

You can merge grayscale levels from a range [𝐼(𝑛),𝐼(𝑛) + 𝑊 (𝐼(𝑛))]
replacing them with a single intensity value.

The segmentation algorithm consists of the following steps:

1. Initialization initial conditions: first class number 𝑛 = 1,
grayscale level 𝐼(𝑛) = 0.

2. Calculation value 𝑊 (𝐼(𝑛)) according to the Weber formula and
value assign 𝐼(𝑛) to all pixels whose intensity is in the range
[𝐼(𝑛),𝐼(𝑛) + 𝑊 (𝐼(𝑛))].

3. Search for pixels with intensity higher 𝐺 = 𝐼(𝑛)+𝑊 (𝐼(𝑛))+1. If
found, then increase the class number 𝑛 = 𝑛+ 1, assign 𝐼(𝑛) = 𝐺
and go to the second step. Otherwise, finish the algorithm. The
image will be segmented into 𝑛 classes with the intensity 𝑊 (𝐼(𝑛)).

11

Segmentation of RGB images by skin color
The general principle of this approach is to determine the criterion

for the proximity of the pixels intensity to the skin tone. It is quite
difficult to describe skin tone analytically, since its description is based
on human perception of color, changes with lighting, differs among
different nationalities, etc.

There are several analytical descriptions for images in the RGB
color space that allow a pixel to be assigned to the «skin» class if the
following conditions are met at uniform day light illumination:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑅 > 95,

𝐺 > 40,

𝐵 > 20,

max𝑅,𝐺,𝐵 − min𝑅,𝐺,𝐵 > 15,

|𝑅−𝐺| > 15,

𝑅 > 𝐺,

𝑅 > 𝐵,

(1.12)

or under flash light or daylight lateral illumination:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑅 > 220,

𝐺 > 210,

𝐵 > 170,

|𝑅−𝐺| 6 15,

𝐺 > 𝐵,

𝑅 > 𝐵,

(1.13)

or using normalized RGB values:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑟 = 𝑅
𝑅+𝐺+𝐵 ,

𝑔 = 𝐺
𝑅+𝐺+𝐵 ,

𝑏 = 𝐵
𝑅+𝐺+𝐵 ,

𝑟
𝑔 > 1,185,

𝑟𝑏
(𝑟+𝑔+𝑏)2 > 0,107,

𝑟𝑔
(𝑟+𝑔+𝑏)2 > 0,112.

(1.14)

12

Algorithm based on CIE Lab color space
In the Lab color space [4], the value of lightness is separated from

the value of the chromatic components of the color (hue, saturation).
The lightness is given by the L coordinate, which can range from 0
(dark) to 100 (light). The chromatic component of a color is given
by two Cartesian coordinates a (means the color position in the range
from green (−128) to red (127)) and b (means the color position in
the range blue (−128) to yellow (127)). A binary image is obtained
with zero coordinates a and b. The algorithm general idea is to divide
a color image into segments of dominant colors.

Let’s choose the following color image as the initial data:

Figure 1.1. Original color image

First of all, in order to reduce the illumination effect on the segmen-
tation result, we transform a color image from the RGB color space
to the Lab space. This transformation in MATLAB can be performed
by the rgb2lab() function.

Listing 1.14. Segmentation based on Lab color space with MAT-
LAB.

1 I = imread(‘pic2.jpg ’);
2 Ilab = rgb2lab(I);
3 L = Ilab (:,:,1);
4 a = Ilab (:,:,2);
5 b = Ilab (:,:,3);

The next step is to determine the number of colors into which the
image will be segmented, and define areas containing pixels of approx-
imately the same color. Regions can be interactively defined for each
color as polygons using the roipoly() function:

6 numColors = 3;

13

7 sampleAreas = false ([size(I, 1)
8 size(I, 2) numColors]);
9 for i=1:1: numColors

10 [BW , xi , yi] = roipoly(I);
11 sampleAreas (:,:,i) = roipoly(I, xi, yi);
12 end

Figure 1.2. An example of a highlighted red area of four points

After that, it is required to determine the color marks for each
segment by calculating the average color value in each selected area.
Mean values can be calculated using the mean2() function:

13 colorMarks = zeros ([numColors , 2]);
14 for i=1:1: numColors
15 colorMarks(i,1) = ...
16 mean2(a(sampleAreas (:,:,i)));
17 colorMarks(i,2) = ...
18 mean2(b(sampleAreas (:,:,i)));
19 end

Then we use the principle of nearest neighborhood to classify pix-
els by calculating Euclidean metrics between pixels and marks: the
smaller the distance to the mark, the better the pixel fits this segment.
The Euclidean metric for two color coordinates is calculated by the for-
mula:

√︀
(𝑎(𝑥,𝑦) − 𝑎𝑚𝑎𝑟𝑘)2 + (𝑏(𝑥,𝑦) − 𝑏𝑚𝑎𝑟𝑘)2. To find the minimum

distance, we will use the min() function. Here is a listing for finding
segment labels label for each pixel:

20 distance = zeros ([size(a), numColors]);
21 colorLabels = zeros ([1, numColors]);
22 for i = 1:1: numColors
23 distance(:, :, i) = ...

14

24 ((a - colorMarks(i, 1)).^2 + ...
25 (b - colorMarks(i, 2)).^2).^0.5;
26 colorLabels (:, i) = i;
27 end
28 [~, label] = min(distance , [], 3);
29 label = colorLabels(label);

Thus, the matrix label of dimension equal to the original image
will contain class identifiers for each pixel. To segment an image into
segmentedFrames fragments, use the following listing:

30 rgbLabel = repmat(label , [1 1 3]);
31 segmentedFrames = ...
32 zeros([size(I), numColors], ‘uint8 ’);
33 for i=1:1: numColors
34 color = I;
35 color(rgbLabel ~= colorLabels(i)) = 0;
36 segmentedFrames (:,:,:,i) = color;
37 end

a) b)

Figure 1.3. Segmented areas: a) red, b) yellow

Place the distribution of segmented pixels on the coordinate plane
(𝑎,𝑏):

38 plotColors = {‘red ’, ‘green ’, ‘yellow ’};
39 figure
40 for i=1:1: numColors
41 plot(a(label == i), b(label==i), ...
42 ‘.’, ‘MarkerEdgeColor ’, ...
43 plotColors{i}, ...
44 ‘MarkerFaceColor ’, plotColors{i});

15

45 axis on, axis normal , hold on
46 end
47 title(‘Segmented Pixels Distribution ’);

Figure 1.4. Distribution of segmented pixels on a coordinate plane (𝑎,𝑏)

The same algorithm can be implemented with OpenCV libraries
and C++ programming language. First to select points in the
image we have to define the mouse callback function [5]. The
cv::EVENT_LBUTTONDBLCLK is processed to take only double clicks into
an account.

Listing 1.15. Mouse callback function definition with OpenCV
and C++.

1 void MouseHandler(int event , int x, int y,
2 int flags , void *param)
3 {
4 if (event != cv:: EVENT_LBUTTONDBLCLK)
5 return;
6 if (param == NULL)
7 return;
8 ((std::vector <cv::Vec2i > *)param)->
9 push_back(cv::Vec2i(x, y));

10 }

Conversion from BGR to Lab color space can be performed by
cv::cvtColor() function with parameter cv::COLOR_BGR2LAB. The
resulting images after each algorithm step are the same with MATLAB

16

implementation, so they are omitted in the following examples with
OpenCV.

Please note that opposite ot MATLAB OpenCV uses BGR to
store color images. So we should use BGR2LAB converter.

Listing 1.16. Segmentation based on Lab color space with
OpenCV and C++.

1 cv::Mat I;
2 I = cv:: imread("pic2.jpg",
3 cv:: IMREAD_COLOR);
4 // Convert to CIE Lab
5 cv::Mat Ilab0;
6 cv:: cvtColor(I, Ilab0 , cv:: COLOR_BGR2Lab);
7 // Split an image into layers
8 std::vector <cv::Mat > Ibgr , Ilab;
9 cv::split(I, Ibgr);

10 cv::split(Ilab0 , Ilab);
11 // L = Ilab [0]
12 // a = Ilab [1]
13 // b = Ilab [2]

To define target segmentation colors we can redefine the
OpenCV image viewer mouse callback function with the
cv::setMouseCallback() function. Then we have to call the
events processing for 20 milliseconds by using the cv::waitKey(20)
function until the desired number of points is accumulated in an
array. After the desired number of points is collected the callback
can be removed by passing an empty callback function to the
cv::setMouseCallback() function. By defining the different callback
behavior we can define different type of regions. Alternatively the
cv::selectROI() function can be used to select a single rectangular
region of interest and cv::selectROIs() function to select multiple
rectangular regions of interest.

14 cv:: imshow("Image", I);
15 std::vector <cv::Vec2i > sampleAreas;
16 cv:: setMouseCallback("Image", MouseHandler ,
17 &sampleAreas);
18 while (sampleAreas.size() < 3)
19 cv:: waitKey (20);

17

20 cv:: setMouseCallback("Image", NULL);

To calculate the mean color for each of selected image points we
can use OpenCV cv::mean() function and circular mask which can
be created by drawing a white circle with cv::circle() function on a
black background. Means are calculated both for Lab and BGR color
spaces. BGR one would be needed to create a pixel color distribution
plot later on.

21 std::vector <cv::Vec2d > colorMarks;
22 std::vector <cv::Vec3b > colorMarksBGR;
23 for (int i = 0; i < sampleAreas.size (); i++)
24 {
25 cv::Mat mask =
26 cv::Mat::zeros(Ilab [0].rows ,
27 Ilab [0].cols , CV_8U);
28 cv:: circle(mask , sampleAreas[i], 10,
29 cv:: Scalar (255) , -1);
30 cv:: Scalar a = cv::mean(Ilab[1], mask);
31 cv:: Scalar b = cv::mean(Ilab[2], mask);
32 colorMarks.push_back(
33 cv::Vec2d(a[0], b[0]));
34 cv:: Scalar B = cv::mean(Ibgr[0], mask);
35 cv:: Scalar G = cv::mean(Ibgr[1], mask);
36 cv:: Scalar R = cv::mean(Ibgr[2], mask);
37 colorMarksBGR.push_back(
38 cv::Vec3b ((uchar)B[0], (uchar)G[0],
39 (uchar)R[0]));
40 }

Next, for each pixel an Euclidean distance between the pixel color in
(𝑎, 𝑏) color space and previously selected averaged colors is calculated.

41 std::vector <cv::Mat > distance;
42 for (int i = 0; i < colorMarks.size (); i++)
43 {
44 cv::Mat tmp , tmp2;
45 cv:: subtract(Ilab[1], colorMarks[i][0],
46 tmp , cv:: noArray(), CV_64F);
47 cv:: multiply(tmp , tmp , tmp);

18

48 cv:: subtract(Ilab[2], colorMarks[i][1],
49 tmp2 , cv:: noArray(), CV_64F);
50 cv:: multiply(tmp2 , tmp2 , tmp2);
51 cv::sqrt(tmp + tmp2 , tmp);
52 distance.push_back(tmp);
53 }

After that the minimum distance is estimated for each image pixel.

54 cv::Mat distance_min = distance [0]. clone ();
55 for (int i = 1; i < distance.size (); i++)
56 cv::min(distance_min , distance[i],
57 distance_min);

When all distances are calculated, it became possible to calculate
labels by finding the distance image id which is equal to a minimum
for each image pixel.

58 cv::Mat labels =
59 cv::Mat::zeros(Ilab [0].rows , Ilab [0].cols ,
60 CV_8U);
61 for (int i = 0; i < colorMarks.size (); i++)
62 {
63 cv::Mat mask = distance[i] == distance_min;
64 labels.setTo(cv:: Scalar(i), mask);
65 }

After the labels for each of the image pixel are calculated it became
possible to segment the source image to a set of segmented images
stored in segmentedFrames.

66 std::vector <cv::Mat > > segmentedFrames;
67 for (int i = 0; i < colorMarks.size (); i++)
68 {
69 cv::Mat Itmp = cv::Mat::zeros(I.rows ,
70 I.cols , I.type ());
71 I.copyTo(Itmp , labels == i);
72 segmentedFrames.push_back(Itmp);
73 }

19

Finally, we can place distribution of image pixel colors to a plot in
the (𝑎, 𝑏) coordinate system. The plot pixel color is defined by a mean
BGR which was calculated before and stored to colorMarksBGR array.

74 cv::Mat Iplot (256, 256, CV_8UC3 ,
75 cv:: Scalar (255, 255, 255));
76 for (int i = 0; i < colorMarks.size (); i++)
77 {
78 cv::Mat Itmp =
79 cv::Mat::zeros(I.rows ,
80 I.cols , I.type ());
81 Mat mask = labels == i;
82 for (int x = 0; x < mask.cols; x++)
83 for (int y = 0; y < mask.rows; y++)
84 if (mask.at <uchar >(y, x) != 0)
85 Iplot.at <cv::Vec3b >(
86 Ilab [1].at<uchar >(y, x),
87 Ilab [2].at<uchar >(y, x)) =
88 colorMarksBGR[i];
89 }

The same algorithm can be implemented with OpenCV libraries and
Python programming language. Conversion from BGR to Lab color
space can be performed by cv2.cvtColor() function with parameter
cv2.COLOR_BGR2LAB.

Please note that opposite ot MATLAB OpenCV uses BGR to
store color images. So we should use BGR2LAB converter.

Listing 1.17. Segmentation based on Lab color space with
OpenCV and Python.

1 I = cv2.imread("pic2.jpg", cv2.IMREAD_COLOR)
2 Ilab = cv2.cvtColor(I, cv2.COLOR_BGR2LAB)
3 Ilab = cv2.split(Ilab)
4 # L = Ilab [0]
5 # a = Ilab [1]
6 # b = Ilab [2]

To define target segmentation colors we can redefine the
OpenCV image viewer mouse callback function with the
cv2.setMouseCallback() function. Then we have to call the

20

events processing for 20 milliseconds by using the cv2.waitKey(20)
function until the desired number of points is accumulated in an array.
The cv2.EVENT_LBUTTONDBLCLK is processed to take only double clicks
into an account. After the desired number of points is collected the
callback can be removed by passing an empty callback function to the
cv2.setMouseCallback() function. By defining the different callback
behavior we can define different type of regions. Alternatively the
cv2.selectROI() function can be used to select a single rectangular
region of interest and cv2.selectROIs() function to select multiple
rectangular regions of interest.

7 sampleAreas = []
8 def MouseHandler(event , x, y, flags , param):
9 if event != cv2.EVENT_LBUTTONDBLCLK:

10 return
11 sampleAreas.append ((x, y))
12
13 cv2.imshow("Image", I)
14 cv2.setMouseCallback(’Image’, MouseHandler)
15 while len(sampleAreas) < 3:
16 cv2.waitKey (20)
17 cv2.setMouseCallback(’Image’,
18 lambda *args : None)

To calculate the mean color for each of selected image points we can
use NumPy mean() function and circular region of interest which can
be created by drawing a white circle with cv2.circle() function on a
black background. Means are calculated both for Lab and BGR color
spaces. BGR one would be needed to create a pixel color distribution
plot later on.

19 colorMarks = []
20 colorMarksBGR = []
21 for pix in sampleAreas:
22 mask = np.zeros_like(Ilab [0])
23 cv2.circle(mask , pix , 10, 255, -1)
24 a = Ilab [1]. mean(where = mask > 0)
25 b = Ilab [2]. mean(where = mask > 0)
26 colorMarks.append ((a, b))
27 colorMarksBGR.append(

21

28 I[mask > 0, :]. mean(axis =(0)))

Next, for each pixel an Euclidean distance between the pixel color in
(𝑎, 𝑏) color space and previously selected averaged colors is calculated.
After that the minimum distance is estimated for each image pixel.

29 distance = []
30 for color in colorMarks:
31 distance.append(np.sqrt(
32 np.power(Ilab [1] - color [0], 2) +
33 np.power(Ilab [2] - color [1], 2)))
34 distance_min = np.minimum.reduce(distance)

When all distances are calculated, it became possible to calculate
labels by finding the distance image id which is equal to a minimum
for each image pixel.

35 labels = np.zeros_like(Ilab[0],
36 dtype = np.uint8)
37 for i in range(len(colorMarks)):
38 mask = distance_min == distance[i]
39 labels[mask] = i

After the labels for each of the image pixel are calculated it became
possible to segment the source image to a set of segmented images
stored in segmentedFrames.

40 segmentedFrames = []
41 for i in range(len(colorMarks)):
42 Itmp = np.zeros_like(I)
43 mask = labels == i
44 Itmp[mask] = I[mask]
45 segmentedFrames.append(Itmp)

Finally, we can place distribution of image pixel colors to a plot in
the (𝑎, 𝑏) coordinate system. The plot pixel color is defined by a mean
BGR which was calculated before and stored to colorMarksBGR array.

46 Iplot = np.full ((256 , 256, 3), 255,
47 dtype = np.uint8)
48 for i in range(len(colorMarks)):
49 Itmp = np.zeros_like(I)

22

50 mask = labels == i
51 Iplot[Ilab [1][mask], Ilab [2][mask], :] = \
52 colorMarksBGR[i]

Algorithm based on 𝑘-means clustering
The idea of the method is to determine the centers of 𝑘-clusters and

assign to each cluster the pixels closest to these centers. All pixels are
considered as vectors 𝑥𝑖, 𝑖 = 1,𝑝. The segmentation algorithm consists
of the following steps:

1. Randomly determining 𝑘 vectors 𝑚𝑗 , 𝑗 = 1,𝑘, which are declared
as initial centers of clusters.

2. Updating mean values of the vectors 𝑚𝑗 by calculating distances
from each vector 𝑥𝑖 to each 𝑚𝑗 and their classification according
to the criterion of minimal distance from the vector to the cluster,
recalculation of average values 𝑚𝑗 across all clusters.

3. Repetition of steps 2 and 3 until the cluster centers stop changing.

The implementation of the method is very similar to the previous
approach and contains a number of similar actions (using original im-
age fig. 1.1). We will work in the Lab color space, so the first step is
transformation from the RGB space to Lab:

Listing 1.18. Segmentation based 𝑘-means clustering method with
MATLAB.

1 I = imread(‘pic2.jpg ’);
2 Ilab = rgb2lab(I);
3 L = Ilab (:,:,1);
4 a = Ilab (:,:,2);
5 b = Ilab (:,:,3);

Consider the coordinate plane (𝑎,𝑏). Let’s form a three-dimensional
array ab, and then use the reshape() function to turn it into a two-
dimensional vector containing all the pixels of the image:

6 ab(:,:,1) = a;
7 ab(:,:,2) = b;
8 nrows = size(I, 1);
9 ncols = size(I, 2);

10 ab = reshape(ab , nrows * ncols , 2);

23

Clustering by the 𝑘-means method in the MATLAB can by realized
by the kmeans() function. Similarly to the previous method, we divide
the image into three areas of the corresponding colors. We use the Eu-
clidean metric (parameter ‘distance’ with value ‘sqEuclidean’ and
repeat the clustering procedure three times (parameter ‘Replicates’
with value 3) to improve accuracy):

11 k = 3;
12 [ids , centers] = kmeans(ab , k, ‘distance ’,...
13 ‘sqEuclidean ’, ‘Replicates ’, 3);
14 label = reshape(ids , nrows , ncols);

Figure 1.5. Classes labels

The label matrix of size equal to the original image will con-
tain class identifiers for each pixel. To segment an image into
segmentedFrames fragments, use the following listing:

15 segmentedFrames = cell(1, 3);
16 rgbLabel = repmat(label , [1 1 3]);
17 for i = 1:1:k
18 color = I;
19 color(rgbLabel ~= i) = 0;
20 segmentedFrames{i} = color;
21 figure , imshow(segmentedFrames{i});
22 end

The L array contains the lightness value of the image. Using this
data, for example, segmented red areas can be divided into light red
and dark red segments.

The same algorithm can be implemented with OpenCV libraries
and C++ programming language. To convert from BGR to Lab color
space the cv::cvtColor() function can be used. Then image is split

24

a) b)

Figure 1.6. Segmented areas: a) red, b) yellow

into layers using cv::split() function. The resulting images after
each algorithm step are the same with MATLAB implementation, so
they are omitted here.

Listing 1.19. Segmentation based 𝑘-means clustering method with
OpenCV and C++.

1 cv::Mat I;
2 I = cv:: imread("pic2.jpg",
3 cv:: IMREAD_COLOR);
4 cv::Mat Ilab0;
5 cv:: cvtColor(I, Ilab0 , cv:: COLOR_BGR2Lab);
6 std::vector <cv::Mat > Ilab;
7 cv::split(Ilab0 , Ilab);
8 // L = Ilab [0]
9 // a = Ilab [1]

10 // b = Ilab [2]

By merging 𝑎 and 𝑏 layers of Lab representation of our source
image with cv::merge() function and reshaping by using the
cv::Mat::reshape() function we create the two-dimensional array of
the image pixel colors. Function cv::convertTo() is used to convert
reshaped array to float values (parameter CV_32F.

11 cv::Mat ab;
12 cv::merge (&(Ilab [1]), 2, ab);
13 ab = ab.reshape(0, 1);
14 ab.convertTo(ab , CV_32F);

This two-dimensional array can be then passed to cv::kmeans()
function that performs the 𝑘-means clustering. Parameter allows us

25

to define stop criteria (object of cv::TermCriteria type) and number
of attempts to select a set of starting points. In the following code
stop criteria is defined as not more than 10 iterations of difference
between steps less than 1. Starting points are selected randomly (due
to cv::KMEANS_RANDOM_CENTERS is used) and selection is done 10 times.
After algorithm execution is finished, the returned labels parameter
is reshaped back to an original image shape.

15 int k = 3;
16 cv::Mat labels;
17 cv:: kmeans(ab, k, labels ,
18 cv:: TermCriteria(cv:: TermCriteria ::EPS +
19 cv:: TermCriteria ::COUNT , 10, 1.0),
20 10, cv:: KMEANS_RANDOM_CENTERS);
21 labels = labels.reshape(0, Ilab [0]. rows);

Then, using the generated labels it is possible to segment our image
to a set of images or masks.

22 std::vector <cv::Mat > segmentedFrames;
23 for (int i = 0; i < k; i++)
24 {
25 cv::Mat Itmp =
26 cv::Mat::zeros(I.rows , I.cols ,
27 I.type ());
28 I.copyTo(Itmp , labels == i);
29 segmentedFrames.push_back(Itmp);
30 }

The same algorithm can be implemented with OpenCV libraries
and Python programming language. To convert from BGR to Lab
color space the cv2.cvtColor() function can be used.

Listing 1.20. Segmentation based 𝑘-means clustering method with
OpenCV and Python.

1 I = cv2.imread("pic2.jpg", cv2.IMREAD_COLOR)
2 Ilab = cv2.cvtColor(I, cv2.COLOR_BGR2LAB)
3 Ilab = cv2.split(Ilab)
4 # L = Ilab [0]
5 # a = Ilab [1]
6 # b = Ilab [2]

26

By merging 𝑎 and 𝑏 layers of Lab representation of our source
image and using the NumPy reshape() function we create the two-
dimensional array of the image pixel colors.

7 ab = cv2.merge([Ilab[1], Ilab [2]])
8 ab = ab.reshape(-1, 2). astype(np.float32)

This two-dimensional array can be then passed to cv2.kmeans()
function that performs the 𝑘-means clustering. Parameter allows us to
define stop criteria and number of attempts to select a set of starting
points. In the following code stop criteria is defined as not more than
10 iterations of difference between steps less than 1. Starting points
are selected randomly (due to cv2.KMEANS_RANDOM_CENTERS is used)
and selection is done 10 times. After algorithm execution is finished,
the returned labels parameter is reshaped back to an original image
shape.

9 k = 3
10 criteria = (cv2.TERM_CRITERIA_EPS +
11 cv.TERM_CRITERIA_MAX_ITER , 10, 1.0)
12 ret , labels , centers = cv2.kmeans(ab, k,
13 None , criteria , 10,
14 cv2.KMEANS_RANDOM_CENTERS)
15 labels = labels.reshape ((Ilab [0]. shape))

Then, using the generated labels it is possible to segment our image
to a set of images or masks.

16 segmentedFrames = []
17 for i in range(k):
18 Itmp = np.zeros_like(I)
19 mask = labels == i
20 Itmp[mask] = I[mask , :]
21 segmentedFrames.append(Itmp)

Texture segmentation
In texture segmentation, three main methods are used to describe

texture: statistical, structural, and spectral. In the practical assign-
ment, we will consider a statistical approach that describes the segment
texture as smooth, rough, or grainy. Characteristics of parameters cor-
responding to textures are given in Table 1.1. Let’s consider an example

27

of an image shown in fig. 1.7, which has two types of textures. Their
separation in the general case cannot be performed using only simple
binarization.

Figure 1.7. Original grayscale image

We will consider the image intensity 𝐼 as a random variable 𝑧, which
corresponds to the distribution probability 𝑝(𝑧) calculated from the
image histogram. The Central moment of order 𝑛 of a random variable
𝑧 is the parameter 𝜇𝑛(𝑧) calculated by the formula:

𝜇𝑛(𝑧) =

𝐿−1∑︁
𝑖=0

(𝑧𝑖 −𝑚)𝑛𝑝(𝑧𝑖), (1.15)

where 𝐿 — number of intensity levels, 𝑚 — mean value of a random
variable 𝑧:

𝑚 =

𝐿−1∑︁
𝑖=0

𝑧𝑖𝑝(𝑧𝑖). (1.16)

The expression (1.15) implies that 𝜇0 = 1 and 𝜇1 = 0. To describe
the texture, the variance of a random variable is important, which
is equal to the second moment 𝜎2(𝑧) = 𝜇2(𝑧) and is a measure of
the brightness contrast. It can be used to calculate the features of
smoothness. Let introduce a measure of relative smoothness 𝑅:

𝑅 = 1 − 1

1 + 𝜎2(𝑧)
, (1.17)

which is zero for areas with constant intensity (zero variance) and ap-
proaches unity for large variances 𝜎2(𝑧). For grayscale images with
an intensity range [0, 255], it is necessary to normalize the variance to

28

Table 1.1. Texture parameter values
Texture 𝑚 𝑠 𝑅 ∈ [0,1]

Smooth 82,64 11,79 0,0020
Rough 143,56 74,63 0,0079
Periodical 99,72 33,73 0,0170

Texture 𝜇3(𝑧) 𝑈 𝐸
Smooth −0,105 0,026 5,434
Rough −0,151 0,005 7,783
Periodical 0,750 0,013 6,674

the range [0, 1], since the values of the variances will be too large for
the initial range. Normalization is carried out by dividing the variance
𝜎2(𝑧) by (𝐿 − 1)2. Standard deviation is also often used as a texture
characteristic:

𝑠 = 𝜎(𝑧). (1.18)

The third moment is histogram symmetry characteristic. To esti-
mate texture features, the entropy 𝐸 function is used, which determines
the spread of neighboring pixels intensities:

𝐸 = −
𝐿−1∑︁
𝑖=0

𝑝(𝑧𝑖) log2 𝑝(𝑧𝑖). (1.19)

Another important characteristic that describes the texture is the
uniformity measure 𝑈 , which evaluates the uniformity of the histogram:

𝑈 =

𝐿−1∑︁
𝑖=0

𝑝2(𝑧𝑖). (1.20)

After calculating any feature or set of features, it is necessary to de-
sign a binary mask. This mask is the basis for the image segmentation.
For example, you can use the entropy 𝐸 in the neighborhood of each
pixel (𝑥,𝑦). In MATLAB you can use the entropyfilt() function,
which by default uses a neighborhood of size 9 × 9. To normalize the
entropy function in the range [0, 1], we use the mat2gray() function.
For mask creation we should binarize the resulting normalized array
Eim using the Otsu method.

29

Listing 1.21. Texture segmentation with MATLAB.

1 I = imread(‘pic3.jpg ’);
2 E = entropyfilt(I);
3 Eim = mat2gray(E);
4 BW1 = imbinarize(Eim ,graythresh(Eim));

a) b)

Figure 1.8. a) Entropy of the original image, b) binarized image

After that, we use morphological filters. First, to remove connected
areas containing less than a given number of pixels (bwareaopen()
function). Then to remove internal form defects or «holes» (function
imclose() with a structural element of size 9 × 9). The remaining
large «holes» will be filled using the imfill() function. Thus, we get
a mask:

5 BWao = bwareaopen(BW1 ,2000);
6 nhood = true (9);
7 closeBWao = imclose(BWao ,nhood);
8 Mask1 = imfill(closeBWao ,‘holes ’);

Applying the resulting mask to the original image, select the seg-
ments of water and land.

We calculate the border between textures using the perimeter func-
tion bwperim():

9 boundary = bwperim(Mask1);
10 segmentResults = I;
11 segmentResults(boundary) = 255;

A similar approach can be applied to create a mask relative to land:

12 I2 = I;

30

a) b)

Figure 1.9. a) Result image after applying bwareaopen() function;
b) result image after applying imclose() function

a) b)

Figure 1.10. a) Texture of land, b) texture of water

13 I2(Mask1) = 0;
14 E2 = entropyfilt(I2);
15 E2im = mat2gray(E2);
16 BW2 = imbinarize(E2im , graythresh(E2im));
17 Mask2 = bwareaopen(BW2 ,2000);
18 boundary = bwperim(Mask2);
19 segmentResults = I;
20 segmentResults(boundary) = 255;

Let’s find the textures of land and water:

21 texture1 = I;
22 texture1 (~ Mask2) = 0;
23 texture2 = I;
24 texture2(Mask2) = 0;

Let us do the same segmentation with OpenCV and C++ pro-
gramming language. First we have to calculate entropy of the image.

31

a) b)

Figure 1.11. a) Result image after applying imfill() function, b) high-
lighted border by function bwperim()

a) b)

Figure 1.12. a) Result of segmentation relative to water, b) Result of
segmentation relative to land

OpenCV does not provide the corresponding function, so have to im-
plement this method by oneself. Please refer to Appendix 1.3 for an ex-
ample source codes with implementation of MATLAB‘s entropyfilt()
function with OpenCV and C++ programming language. The resulting
images after each algorithm step are the same with MATLAB imple-
mentation, so they are omitted here.

Listing 1.22. Texture segmentation with OpenCV and C++.

1 cv::Mat I;
2 I = cv:: imread("pic3.jpg",
3 cv:: IMREAD_GRAYSCALE);
4 cv::Mat E, Eim;
5 cv::Mat el = cv:: getStructuringElement(
6 cv::MORPH_RECT , cv::Size(9, 9));
7 entropy(I, E, el);
8 double Emin , Emax;

32

9 cv:: minMaxLoc(E, &Emin , &Emax);
10 Eim = (E - Emin) / (Emax - Emin);
11 Eim.convertTo(Eim , CV_8U , 255);
12 cv::Mat BW1;
13 cv:: threshold(Eim , BW1 , 0, 255,
14 cv:: THRESH_OTSU);

Next, the morphological filtering is performed with three steps:
at first, remove connected regions (equivalent to MATLAB’s
bwareaopen() function), secondly, remove internal defects with
closing operation (executed by cv::morphologyEx() function with
cv2.MORPH_CLOSE parameter) and rectangular structure element of size
9× 9 (created by cv::getStructuringElement() function with shape
parameter cv::MORPH_RECT), and, thirdly, fill remaining lagle «holes»
(equivalent to MATLAB‘s imfill(‘holes’) function).

MATLAB‘s bwareaopen(A, dim) and imfill(I,
‘holes’) can be easily implemented using OpenCV‘s
connectedComponentsWithStats(). Please refer to Appendix 1.1 and
Appendix 1.2 for example source codes with OpenCV and C++ or
Python programming language implementations of these functions.

15 cv::Mat BWao , closeBWao , Mask1;
16 bwareaopen(BW1 , BWao , 2000);
17 cv::Mat nhood = cv:: getStructuringElement(
18 cv::MORPH_RECT , cv::Size(9, 9));
19 cv:: morphologyEx(BWao , closeBWao ,
20 cv:: MORPH_CLOSE , nhood);
21 imfillholes(closeBWao , Mask1);

Next, using OpenCV cv::findContours() function it’s possible to
find shape contours and then draw them on a black background (with
cv::drawContours() function) to find the contour mask.

22 std::vector <std::vector <cv::Point > >
23 contours;
24 cv:: findContours(Mask1 , contours ,
25 cv::RETR_TREE , cv:: CHAIN_APPROX_NONE);
26 cv::Mat boundary =
27 cv::Mat::zeros(Mask1.rows , Mask1.cols ,
28 CV_8UC1);

33

29 cv:: drawContours(boundary , contours , -1,
30 255, 1);

Then it’s possible to apply the found border to the source image.

31 cv::Mat segmentResults = I.clone ();
32 segmentResults.setTo(cv:: Scalar (255) ,
33 boundary != 0);

So, the texture of water was found, and after excluding the water
area from the source image we can do the same steps to select the
remaining texture of the land.

34 cv::Mat I2 = I.clone ();
35 I2.setTo(0, Mask1 != 0);
36 // Entropy and binarization
37 cv::Mat E2, Eim2;
38 entropy(I2, E2 , element);
39 double Emin2 , Emax2;
40 cv:: minMaxLoc(E2 , &Emin2 , &Emax2);
41 Eim2 = (E2 - Emin2) / (Emax2 - Emin2);
42 Eim2.convertTo(Eim2 , CV_8U , 255);
43 cv::Mat BW2;
44 cv:: threshold(Eim2 , BW2 , 0, 255,
45 cv:: THRESH_OTSU);
46 // Filter
47 cv::Mat BW2ao , closeBW2ao , Mask2;
48 bwareaopen(BW2 , BW2ao , 2000);
49 cv:: morphologyEx(BW2ao , closeBW2ao ,
50 cv:: MORPH_CLOSE , nhood);
51 imfillholes(closeBW2ao , Mask2);
52 // Select boundary
53 std::vector <std::vector <cv::Point > >
54 contours2;
55 cv:: findContours(Mask2 , contours2 ,
56 cv::RETR_TREE , cv:: CHAIN_APPROX_NONE);
57 cv::Mat boundary2 =
58 cv::Mat::zeros(Mask2.rows , Mask2.cols ,
59 CV_8UC1);
60 cv:: drawContours(boundary2 , contours2 , -1,

34

61 255, 1);
62 cv::Mat segmentResults2 = I2.clone ();
63 segmentResults2.setTo (255, boundary2 != 0);

And select textures of water and land basing on either of masks.

64 cv::Mat texture1 = I.clone ();
65 texture1.setTo(0, Mask2 == 0);
66 cv::Mat texture2 = I.clone ();
67 texture2.setTo(0, Mask2 != 0);

Now let us do the same segmentation with Python program-
ming language. First we have to calculate entropy of the image.
OpenCV does not provide the corresponding function, however in
case of Python it can be found in SciPy library and is named
skimage.filters.rank.entropy(). The rectangular with 9 × 9 ker-
nel created by skimage.morphology.square() function will be used.
Since SkImage converts image to float64 we have to do a backward
conversion along with normalization to a [0, 1] range.

Listing 1.23. Texture segmentation with OpenCV and Python.

1 I = cv2.imread("pic3.jpg",
2 cv2.IMREAD_GRAYSCALE)
3 E = skimage.filters.rank.entropy(I,
4 skimage.morphology.square (9)). astype(
5 np.float32)
6 Eim = (E - E.min ()) / (E.max() - E.min())
7 ret , BW1 = cv2.threshold(
8 np.uint8(Eim * 255), 0, 255,
9 cv2.THRESH_OTSU)

Next, the morphological filtering is performed with three steps:
at first, remove connected regions (equivalent to MATLAB‘s
bwareaopen() function), secondly, remove internal defects with
closing operation (executed by cv2.morphologyEx() function with
cv2.MORPH_CLOSE parameter) and rectangular structure element of size
9× 9 (created by cv2.getStructuringElement() function with shape
parameter cv2.MORPH_RECT), and, thirdly, fill remaining lagle “holes”
(equivalent to MATLAB‘s imfill(‘holes’) function).

MATLAB‘s bwareaopen(A, dim) and imfill(I,
‘holes’) can be easily implemented using OpenCV‘s

35

connectedComponentsWithStats(). Please refer to Appendix 1.1 and
Appendix 1.2 for example source codes with OpenCV and Python
programming language implementation for these functions.

10 BWao = bwareaopen(BW, 2000)
11 nhood = cv2.getStructuringElement(
12 cv2.MORPH_RECT , (9, 9))
13 closeBWao = cv2.morphologyEx(BWao ,
14 cv2.MORPH_CLOSE , nhood)
15 Mask1 = imfillholes(closeBWao)

Next, using OpenCV cv2.findContours() function it’s possible to
find shape contours and then draw them on a black background (with
cv2.drawContours() function) to find the contour mask.

16 contours , h = cv2.findContours(Mask1 ,
17 cv2.RETR_TREE , cv2.CHAIN_APPROX_NONE)
18 boundary = np.zeros_like(Mask1)
19 cv2.drawContours(boundary , contours , -1,
20 255, 1)

Then it’s possible to apply the found border to the source image.

21 segmentResults = I.copy()
22 segmentResults[boundary != 0] = 255

So, the texture of water was found, and after excluding the water
area from the source image we can do the same steps to select the
remaining texture of the land.

23 I2 = I.copy()
24 I2[Mask1 != 0] = 0
25 # Entropy and binarization
26 E2 = skimage.filters.rank.entropy(I2 ,
27 skimage.morphology.square (9)). astype(
28 np.float32)
29 Eim2 = (E2 - E2.min()) / (E2.max() -
30 E2.min())
31 ret , BW2 = cv2.threshold(
32 np.uint8(Eim2 * 255), 0, 255,
33 cv.THRESH_OTSU)
34 # Filter

36

35 BW2ao = bwareaopen(BW2 , 2000)
36 nhood = cv2.getStructuringElement(
37 cv2.MORPH_RECT , (9, 9))
38 closeBW2ao = cv2.morphologyEx(BW2ao ,
39 cv2.MORPH_CLOSE , nhood)
40 Mask2 = imfillholes(closeBW2ao)
41 # Select boundary
42 contours2 , h = cv.findContours(Mask2 ,
43 cv2.RETR_TREE , cv2.CHAIN_APPROX_NONE)
44 boundary2 = np.zeros_like(Mask2)
45 cv.drawContours(boundary2 , contours2 , -1,
46 255, 1)
47 segmentResults2 = I2.copy()
48 segmentResults2[boundary2 != 0] = 255

And select textures of water and land basing on either of masks.

49 texture1 = I.copy()
50 texture1[Mask2 == 0] = 0
51 texture2 = I.copy()
52 texture2[Mask2 != 0] = 0

Procedure of Practical Assignment Performing

1. Binarization. Choose an arbitrary image. Perform the image
binarization using the considered methods. Depending on the
image, use upper or lower threshold binarization.

2. Segmentation 1. Select an arbitrary image containing the face(s).
Perform the image segmentation according to the Weber principle
(obligatory). Perform the image segmentation based on the skin
color and try different formulas with different photo illumination
conditions (optional).

3. Segmentation 2. Select an arbitrary image containing a limited
number of colored objects. Perform image segmentation in the
CIE Lab color space by the nearest neighbors method (obliga-
tory). Perform image segmentation in the CIE Lab color space
by the 𝑘-means method (optional).

37

4. Segmentation 3. Select an arbitrary image containing two het-
erogeneous textures. Perform texture segmentation of the image
(obligatory). Evaluate at least three parameters of the selected
textures, determine which class the textures belong to (optional).

Note. Please note that when doing the practical assignment you
are not allowed to use the “Lenna” image or any other image that was
used either in this book or during the presentation.

Content of the Report

1. Title page.

2. Objective.

3. Theoretical substantiation of the applied methods and functions.

4. Assignment steps:

(a) Original images;

(b) Code of the scripts;

(c) Comments;

(d) Resulting images.

5. Conclusion.

6. Answers to questions for the defense.

Questions to Practical Assignment Report Defense

1. When is it appropriate to use Weber segmentation?

2. What are the a and b color coordinates of the CIE Lab color
space in a grayscale image?

3. What is the reason for performing an image segmentation in the
CIE Lab color space and not in the original RGB one?

38

Appendix 1.1. MATLAB’s bwareaopen() implemen-
tation with OpenCV

Listing 1.24. Implementing MATLAB’s bwareaopen() function
implementation with OpenCV and C++ programming language.

1 // Remove small objects from a binary image
2 // @param[in] A Input image
3 // @param[put] C Output image
4 // @param[in] dim A minimum size of an area
5 // to keep
6 // @param[in] conn Pixel connectivity
7 // @return An image with components less
8 // then dim removed
9 void bwareaopen(const cv::Mat &A,

10 cv::Mat &C, int dim , int conn = 8)
11 {
12 if (A.channels () != 1 ||
13 A.type() != CV_8U)
14 return;
15 // Find all connected components
16 cv::Mat labels , stats , centers;
17 int num =
18 cv:: connectedComponentsWithStats(A,
19 labels , stats , centers , conn);
20 // Clone image
21 C = A.clone ();
22 // Check size of all connected components
23 std::vector <int > td;
24 for (int i = 0; i < num; i++)
25 if (stats.at <int >(i,
26 cv:: CC_STAT_AREA) < dim)
27 td.push_back(i);
28 // Remove small areas
29 if (todel.size() > 0)
30 if (img.type() == CV_8U)
31 {
32 for (int i = 0; i < C.rows; i++)
33 for (int j = 0; j < C.cols; j++)

39

34 for (int k = 0; k < td.size ();
35 k++)
36 if (labels.at <int >(i, j) ==
37 td[k])
38 {
39 C.at <uchar >(i, j) = 0;
40 continue;
41 }
42 }
43 else
44 {
45 for (int i = 0; i < C.rows; i++)
46 for (int j = 0; j < C.cols; j++)
47 for (int k = 0; k < td.size ();
48 k++)
49 if (labels.at <int >(i, j) ==
50 td[k])
51 {
52 C.at <float >(i, j) = 0;
53 continue;
54 }
55 }
56 }

Listing 1.25. Implementing MATLAB’s bwareaopen() function
implementation with OpenCV and Python programming language.

1 # Remove small objects from binary image
2 # @param[in] A Input image
3 # @param[in] dim A mininum size of an area
4 # to keep
5 # @param[int] conn Pixel connectivity
6 # @return An image with components less then
7 # dim removed
8 def bwareaopen(A, dim , conn = 8):
9 if A.ndim != 2 or A.dtype != np.uint8:

10 return None
11 # Find all connected components
12 num , labels , stats , centers = \

40

13 cv2.connectedComponentsWithStats(A,
14 connectivity = conn)
15 # Check size of all connected components
16 for i in range(num):
17 if stats[i, cv2.CC_STAT_AREA] < dim:
18 A[labels == i] = 0
19 return A

Appendix 1.2. MATLAB’s imfill(‘holes’) imple-
mentation with OpenCV

In the following implementation we assume that the binary image
is defined in 𝑢𝑖𝑛𝑡8 space using two colors: 0 and 255.

Listing 1.26. Implementing MATLAB’s imfill(‘holes’) func-
tion with OpenCV and C++ programming language.

1 // Implementation of MATLAB ‘s
2 // imfill(I, ’holes ’) function
3 // @param[in] I Image to process
4 // @param[out] Iout Output image
5 void imfillholes(cv::Mat &I, cv::Mat &Iout)
6 {
7 // Check input image data
8 if (I.channels () != 1 ||
9 I.type() != CV_8U)

10 return;
11 cv::Mat mask = I.clone ();
12 // Fill mask from all horizontal borders
13 for (int i = 0; i < I.cols; i++)
14 {
15 if (mask.at<uchar >(0, i) == 0)
16 cv:: floodFill(mask , cv::Point(i, 0),
17 cv:: Scalar (255) , NULL ,
18 cv:: Scalar (10), cv:: Scalar (10));
19 if (mask.at<uchar >(I.rows - 1, i) == 0)
20 cv:: floodFill(mask ,
21 cv::Point(i, I.rows - 1),
22 cv:: Scalar (255) , NULL ,

41

23 cv:: Scalar (10), cv:: Scalar (10));
24 }
25 // Fill mask from all vertical borders
26 for (int i = 0; i < I.rows; i++)
27 {
28 if (mask.at <uchar >(i, 0) == 0)
29 cv:: floodFill(mask , cv::Point(0, i),
30 cv:: Scalar (255) , NULL , cv:: Scalar (10),
31 cv:: Scalar (10));
32 if (mask.at <uchar >(i, I.cols - 1) == 0)
33 cv:: floodFill(mask ,
34 cv::Point(I.cols - 1, i), cv:: Scalar (255),
35 NULL , cv:: Scalar (10), cv:: Scalar (10));
36 }
37 // Use the mask to create an image
38 Iout = I.clone ();
39 Iout.setTo(cv:: Scalar (255), mask == 0);
40 }

Listing 1.27. Implementing MATLAB’s imfill(‘holes’) func-
tion with OpenCV and Python programming language.

1 # Implementation of MATLAB ‘s
2 # imfill(I, ’holes ’) function
3 # @param[in] I Image to process
4 # @return An image with holes removed
5 def imfillholes(I):
6 if I.ndim != 2 or I.dtype != np.uint8:
7 return None
8 rows , cols = I.shape [0:2]
9 mask = I.copy()

10 # Fill mask from all horizontal borders
11 for i in range(cols):
12 if mask[0, i] == 0:
13 cv.floodFill(mask , None ,
14 (i, 0), 255, 10, 10)
15 if mask[rows - 1, i] == 0:
16 cv.floodFill(mask , None ,
17 (i, rows - 1), 255, 10, 10)

42

18 # Fill mask from all vertical borders
19 for i in range(rows):
20 if mask[i, 0] == 0:
21 cv.floodFill(mask , None ,
22 (0, i), 255, 10, 10)
23 if mask[i, cols - 1] == 0:
24 cv.floodFill(mask , None ,
25 (cols - 1, i), 255, 10, 10)
26 # Use the mask to create a resulting image
27 res = I.copy()
28 res[mask == 0] = 255
29 return res

Appendix 1.3. MATLAB’s entropyfilt() implemen-
tation with OpenCV

In the following implementation we assume that the binary image
is defined in 𝑢𝑖𝑛𝑡8 space using single layer.

Listing 1.28. Implementing MATLAB’s entropyfilt() function
with OpenCV and C++ programming language.

1 // Entropy filter
2 // @param[in] I Input image
3 // @param[out] Iout Output image
4 // @param[in] el Structuring element
5 void entropy(cv::Mat &I, cv::Mat &Iout ,
6 cv::Mat &el)
7 {
8 // Check input image data
9 if (I.channels () != 1 ||

10 I.type() != CV_8U)
11 return;
12
13 // Convert to image with border
14 cv::Mat Icopy;
15 cv:: copyMakeBorder(I, Icopy ,
16 int((el.rows - 1) / 2),
17 int(el.rows / 2),

43

18 int((el.cols - 1) / 2),
19 int(el.cols / 2), cv:: BORDER_REPLICATE);
20
21 // Initialize output image
22 Iout = cv::Mat:: zeros(I.rows , I.cols ,
23 CV_32F);
24
25 // Initialize local histogram
26 double hist [256];
27 for (int i = 0; i < 256; i++)
28 hist[i] = 0;
29
30 // Calculate element size
31 int count = 0;
32 for (int i = 0; i < el.rows; i++)
33 for (int j = 0; j < el.cols; j++)
34 if (el.at<uchar >(i, j))
35 count ++;
36
37 // For each image pixel
38 for (int y = 0; y < I.rows; y++)
39 for (int x = 0; x < I.cols; x++)
40 {
41 // Calculate local histogram
42 for (int i = 0; i < el.rows; i++)
43 for (int j = 0; j < el.cols; j++)
44 if (el.at<uchar >(i, j))
45 hist[Icopy.at <uchar >(
46 y + i, x + j)] += 1;
47
48 // Calculate entropy
49 double val = 0;
50 for (int i = 0; i < 256; i++)
51 if (hist[i] > 0)
52 {
53 val -= hist[i] / count *
54 log2(hist[i] / count);
55 hist[i] = 0;

44

56 }
57 Iout.at<float >(y, x) = float(val);
58 }
59 }

45

Practical Assignment №2
Hough Transform

Objective

Study of the Hough transformation to find of geometric primitives.

Guidelines

Before getting started, students should be familiar with the func-
tions of the MATLAB or OpenCV for working with the Hough trans-
form and know the «voting» points approach. Practical assignment is
designed for 4 hours.

Brief Theory

The main principle of the Hough transform [6] is to find common
locus of points. For example, this approach is used when designing
a triangle along three given sides. At first one side of the triangle is
first laid off, after that the ends of the segment are considered as the
centers of circles with radii equal to the lengths of the second and third
segments. The intersection of the two circles is the common locus of
points, from where the segments are drawn to the ends of the first
segment. In other words, a voting of two points was held in favor of
the probable location of the third vertex of the triangle. As a result of
«voting» «winning» was the point that got two «votes» (the points on
the circles got one vote each, and outside them — zero).

1

2

3

1

2

3

Figure 2.1. Design of a triangle by given three sides

46

Let’s generalize this idea for working with real data, when the image
has a large number of special feature points participating in the vote.
Let assume that it is necessary to search a circle of known radius 𝑅
in a binary point set, and in this set there may also be false points
that do not lie on the desired circle. The set of possible circles centers
for the desired radius around each characteristic point forms a circle of
radius 𝑅, see Fig. 2.2. Thus, the point corresponding to the maximum
intersection of the number of circles will be the center of the required
radius circle.

R

Figure 2.2. Search a circle of known radius in a point set

The classical Hough transform, based on the considered point vot-
ing idea, was originally designed to select lines on binary images. The
Hough transform uses the parameter space to search for geometric prim-
itives. The most common parametric equation of lines is:

𝑦 = 𝑘𝑥 + 𝑏, (2.1)

𝑥 cos Θ + 𝑦 sin Θ = 𝜌, (2.2)

where 𝜌 — radius vector drawn from the origin to the line; Θ — incli-
nation angle of the radius vector.

Let the straight line in the Cartesian coordinate system be given by
the equation (2.1), from which it is easy to calculate the radius vector
𝜌 and angle Θ (2.2). Then in the Hough parameter space the line will
be represented by a point with coordinates (𝜌0,Θ0), see Fig. 2.3.

47

x

y

ρ

Θ

ρ

Θ

Θ0

ρ0

Figure 2.3. Representation of a straight line in Hough space

The Hough transform approach is for each point in the parame-
ter space the number of votes given for it is summed up. Therefore,
in discrete form, the Hough space is called accumulator and is a ma-
trix 𝐴(𝜌,Θ) that stores voting information. Through each point in the
Cartesian coordinate system, an infinite number of straight lines can be
drawn, the totality of which will generate a sinusoidal response function
in the parameter space. Thus, any two sinusoidal response functions in
the parameter space will intersect at the point (𝜌,Θ) only if the points
generating them in the initial space lie on a straight line, see fig. 2.4.
Based on this, we can conclude that in order to find straight lines in
the original space, it is necessary to find all the local maxima of the
accumulator.

The considered line search algorithm can be used in the same way
to search for any other curve described in space by some function with
a certain number of parameters 𝐹 = (𝑎1,𝑎2,...,𝑎𝑛,𝑥,𝑦), which will only
affect the dimension of the parameter space. Let us use the Hough
transform to search for circles of a given radius 𝑅. It is known that a
circle on a plane is described by the formula (𝑥−𝑥0)2 +(𝑦−𝑦0)2 = 𝑅2.
The set of centers of all possible circles of radius 𝑅 passing through
a feature point forms a circle of radius 𝑅 around that point. Due to
this the response function in the Hough transform for finding circles is
a circle of the same size centered at the voting point. Then, similarly
to the previous case, it is necessary to find the local maxima of the
accumulator function 𝐴(𝑥,𝑦) in the space of parameters (𝑥,𝑦), which
will be the centers of the required circles.

The Hough transform is invariant to shift, scaling, and rotation.
Taking into account that under projective transformations of three-

48

x

y

ρ

ρ

Θ

Θ

x

y

Figure 2.4. Voting procedure

dimensional space, straight lines always go only to straight lines (in the
degenerate case, to points), the Hough transform makes it possible to
detect lines invariantly not only to affine transformations of the plane,
but also to the group of projective transformations in space.

Let some image be given. Let select the contours using the Canny
algorithm and apply the Hough transform using the hough() MATLAB
function.

Listing 2.1. Search for straight lines by the Hough transform with
MATLAB.

1 I = imread(‘pic.png ’);
2 Iedge = edge(I, ‘Canny ’);
3 [H,Theta ,rho] = hough(Iedge);
4 figure , imshow(imadjust(mat2gray(H)),[],...
5 ‘YData ’,rho ,‘XData ’,Theta ,...
6 ‘InitialMagnification ’,‘fit ’);
7 xlabel(‘\rho ’), ylabel(‘\Theta ’)
8 axis on, axis normal , hold on

Let’s calculate the peaks using the houghpeaks() function in the
Hough space and plot them on the resulting image of the response
functions:

9 peaks = houghpeaks(H,100,‘threshold ’,...

49

10 ceil (0.5* max(H(:))));
11 x = Theta(peaks (: ,2));
12 y = rho(peaks (: ,1));
13 plot(x,y,‘s’,‘color ’,‘white ’);

Based on the peaks, we determine the straight lines using the
houghlines() MATLAB function and plot them on the original image:

14 lines = houghlines(Iedge ,Theta ,rho ,peaks ,...
15 ‘FillGap ’,5,‘MinLength ’,10);
16 figure , imshow(I), hold on
17 for k = 1: length(lines)
18 xy = [lines(k). point1; lines(k). point2];
19 plot(xy(:,1),xy(:,2),‘LineWidth ’,2,...
20 ‘Color ’,‘green ’);
21 end

a) b)

c) d)

Figure 2.5. a) Source image, b) processed by the Canny algorithm, c)
parameter space, d) found lines

OpenCV library provides two implementations for the Hough trans-
form algorithm for search of the straight lines:

• cv::HoughLines(I, lines, rho, theta, threshold) C++
function (cv2.HoughLines(I, rho, theta, threshold) →

50

lines in Python) — perform the classic Hough line transform of
an image I and find straight lines. rho and theta parameters
define the subdivision of Hough parameter space for correspond-
ing axis. The threshold parameter defined the threshold, i.e.,
the number of votes that a line should get to be added to the
returned lines array. Each line in returned lines array is an
infinite line which is defined by rho and theta parameters.

• cv::HoughLinesP(I, lines, rho, theta, threshold,
minLineLength, maxLineGap) C++ function
(cv2.HoughLinesP(I, rho, theta, threshold,
minLineLength, maxLineGap) → lines in Python) — perform
the probabilistic Hough line transform of an image I and find
straight lines. The main function parameters are the same,
however two extra are added: these are minLineLength —
minimum line length, so no line shorter than this won’t be
selected, and maxLineGap — maximum gap between two points
of the line to consider them the same line but not two separate
ones. The returned lines array contains start and end points of
each of the found line segments.

To execute the Hough line transform in OpenCV first have to pre-
process an image to get edges by executing the Canny algorithm:

Listing 2.2. Search for straight lines by the classic Hough trans-
form with OpenCV and C++ programming language.

1 cv::Mat I;
2 I = cv:: imread(fn, cv:: IMREAD_COLOR);
3 cv::Mat Iedge;
4 cv::Canny(I, Iedge , 50, 200);

Then run the Hough line transform to get lines parameters:

5 vector <cv::Vec2f > lines;
6 cv:: HoughLines(Iedge , lines , 1, M_PI / 180,
7 100);

Finally, we can draw infinite lines by returned parameters by calling
cv::line() function:

8 cv::Mat Iout = I.clone ();

51

9 for (int i = 0; i < lines.size (); i++)
10 {
11 double rho = lines[i][0];
12 double theta = lines[i][1];
13 double a = cos(theta), b = sin(theta);
14 double x0 = a * rho , y0 = b * rho;
15 cv::Point pt1 , pt2;
16 pt1.x = int(x0 - 1000 * b);
17 pt1.y = int(y0 + 1000 * a);
18 pt2.x = int(x0 + 1000 * b);
19 pt2.y = int(y0 - 1000 * a);
20 cv::line(Iout , pt1 , pt2 ,
21 cv:: Scalar(0, 255, 0), 1, cv:: LINE_AA);
22 }
23 cv:: imshow("Classic", Iout);

The probabilistic Hough line transform is executed in a similar way:
Listing 2.3. Search for straight lines by the probabilistic Hough

transform with OpenCV and C++ programming language.

1 vector <cv::Vec4i > linesP;
2 cv:: HoughLinesP(Iedge , linesP , 1,
3 M_PI / 180, 50, 50, 4);

Then the linesP array will hold two points for each of the found
line segments which we can use to draw them on top of the source
image:

4 cv::Mat IoutP = I.clone ();
5 for (int i = 0; i < linesP.size (); i++)
6 {
7 cv::Vec4i l = linesP[i];
8 cv::line(IoutP , cv::Point(l[0], l[1]),
9 cv::Point(l[2], l[3]),

10 cv:: Scalar(0, 255, 0), 1, cv:: LINE_AA);
11 }
12 cv:: imshow("Probabilistic", IoutP);

Opposite to MATLAB, OpenCV does not allows you to see the
Hough parameter space, however the algorithm is rather simple and

52

can be implemented in the straightforward way as it is shown in the
Appendix 2.1.

a) b)

c) d)

e) f)

Figure 2.6. a) Source image processed by the Canny algorithm, b)
parameter space, c) found lines, d) found lines on top of the source
image, e) lines found with probabilistic method, f) lines found with
probabilistic method on top of the source image

With Python programming language the Hough line transform can
be done in the same way. First have to preprocess an image with Canny
algorithm:

Listing 2.4. Search for straight lines by the classic Hough trans-
form with OpenCV and Python programming language.

1 I = cv2.imread(fn, cv.IMREAD_COLOR)
2 Iedge = cv2.Canny(I, 50, 200, None , 3)

Then execute the Hough line transform:

53

3 lines = cv2.HoughLines(Iedge , 1, np.pi / 180,
4 100)

And, finally, display lines:

5 Iout = I.copy()
6 if lines is not None:
7 for i in range(0, len(lines)):
8 rho = lines[i][0][0]
9 theta = lines[i][0][1]

10 a, b = math.cos(theta), math.sin(theta)
11 x0 , y0 = a * rho , b * rho
12 pt1 = np.int32((x0 - 1000 * b,
13 y0 + 1000 * a))
14 pt2 = np.int32((x0 + 1000 * b,
15 y0 - 1000 * a))
16 cv2.line(Iout , pt1 , pt2 , (0, 255, 0),
17 1, cv.LINE_AA)
18 cv2.imshow("Classic", Iout)

The probabilistic Hough line transform is executed the same way,
but instead of infinite line parameters, the function returns line end-
points:

Listing 2.5. Search for straight lines by the probabilistic Hough
transform with OpenCV and Python programming language.

1 linesP = cv2.HoughLinesP(Iedge , 1,
2 np.pi / 180, 50, None , 50, 4)
3 IoutP = I.copy()
4 if linesP is not None:
5 for i in range(0, len(linesP)):
6 l = linesP[i][0]
7 cv2.line(IoutP , (l[0], l[1]),
8 (l[2], l[3]), (0, 255, 0), 1,
9 cv2.LINE_AA)

10 cv2.imshow("Probabilistic", IoutP)

The Hough paramete space can be displayed by using the
skimage.transform.hough_line() SciKit function:

Listing 2.6. Displaying the Hough transform parameter space with
SciKit and Python programming language.

54

1 angles = np.linspace(-np.pi / 2, np.pi / 2,
2 360, endpoint=False)
3 Ih , theta , rho = \
4 skimage.transform.hough_line(Iedge ,
5 theta = angles)
6 cv.imshow("Parameter␣space", cv.resize(
7 Ih.astype(np.float32) / np.max(Ih),
8 (Ih.shape[1], 400)))

Then the skimage.transform.hough_line_peaks() function can
be used to calculate peaks in the Ih Hough parameter space to find
lines. Please refer to an Appendix 2.2 for the full example of the classic
Hough line transform with SciKit library.

To search for circles by the Hough transform, you can use
the MATLAB function [centers, rad] = imfindcircles(I,R)
and function viscircles(centers, rad) for plotting circles. If
using OpenCV library, you can use the cv::HoughCircles()
function in C++ and cv2.HoughCircles() function in Python.
SciKit also provides function for Hough cirlces transform.
These are skimage.transform.hough_circle() function,
which is used to calculate the Hough parameter space, and
skimage.transform.hough_circle_peaks() function, which searches
for peak values in the Hough circles parameter space.

Procedure of Practical Assignment Performing

1. Search for lines. Select three arbitrary images containing lines.
Perform to search for straight lines using the Hough transform
both for the original image and for the image obtained using any
differential operator. Plot the found lines on the original image.
Mark the start and end points of the lines. Determine the lengths
of the shortest and longest lines, calculate the number of lines
found.

2. Search for circles. Select three arbitrary images containing cir-
cles. Search for circles of both a certain radius and from a given
range using the Hough transform, both for the original image and
for the image obtained using any differential operator. Plot the
found circles on the original image.

55

3. Optional. Implement the classic Hough transform algorithms for
lines and circles. Compare your implementation results with ones
obtained in the first two points of the assignment. Highlight the
selected points in the Hough parameter space.

Note. Please note that when doing the practical assignment you
are not allowed to use the “Lenna” image or any other image that was
used either in this book or during the presentation.

Content of the Report

1. Title page.

2. Objective.

3. Theoretical substantiation of the applied methods and functions.

4. Assignment steps:

(a) Original images;

(b) Code of the scripts;

(c) Comments;

(d) Resulting images.

5. Conclusion.

6. Answers to questions for the defense.

Questions to Practical Assignment Report Defense

1. What is the main principle of the Hough transform?

2. May the Hough transform be used to find arbitrary contours that
cannot be described analytically?

3. What are the recurrent and generalized Hough transforms?

4. What are the ways of parametrization in the Hough transform?

56

Appendix 2.1. Classic Hough line transform with
OpenCV and C++

Listing 2.7. Implementation of Hough transform parameter space
calculation for lines with OpenCV and C++ programming language.

1 // Transform an image to Hough parameter
2 // space for lines
3 // @param[in] I The image to transform
4 // @param[out] Ih The image in Hough
5 // parameter space with 32 bit
6 // signed integers
7 // @param[in] thetas The number of theta
8 // angles to use
9 // @param[in] rhos The number of rho vlaues

10 // to use
11 void HoughTransformSpace(cv::Mat &I,
12 cv::Mat &Ih , int thetas = 180,
13 int rhos = 400)
14 {
15 // Check input image data
16 if (I.channels () != 1 ||
17 I.type() != CV_8U)
18 return;
19
20 // Create matrix for Hough parameter space
21 Ih = cv::Mat:: zeros(rhos , thetas , CV_32S);
22
23 // Do voting for each image pixel
24 double theta_step = M_PI / thetas;
25 double rho_step =
26 2 * sqrt(I.rows * I.rows +
27 I.cols * I.cols) / rhos;
28 for (int i = 0; i < I.rows; i++)
29 {
30 for (int j = 0; j < I.cols; j++)
31 {
32 if (I.at<uchar >(i, j) == 255)
33 {

57

34 // Theta counter is changing
35 // from 0 to thetas
36 // At the same time the angle
37 // changes from -PI/2 to PI/2
38 for (int theta = 0; theta < thetas;
39 theta ++)
40 {
41 // Calculate rho for given theta
42 // We add rows / 2 to get rid of
43 // negative numbers
44 int rho =
45 int((j * cos(theta *
46 theta_step - M_PI_2) +
47 i * sin(theta *
48 theta_step - M_PI_2)) /
49 rho_step) + Ih.rows / 2;
50 Ih.at<int32_t >(rho , theta)++;
51 }
52 }
53 }
54 }
55 }

Listing 2.8. Usage example of the HoughTransformSpace() func-
tion.

1 cv::Mat I;
2 I = cv:: imread(fn, cv:: IMREAD_COLOR);
3 cv::Mat Iedge;
4 cv::Canny(I, Iedge , 50, 200);
5 cv::Mat Ih;
6 HoughTransformSpace(Iedge , Ih, 360);
7 double Ih_min , Ih_max;
8 cv:: minMaxLoc(Ih , &Ih_min , &Ih_max);
9 Ih.convertTo(Ih , CV_32F , 1 / Ih_max);

10 cv:: resize(Ih , Ih , cv::Size(I.cols , 400));
11 cv:: imshow("Parameter␣space", Ih);

58

Appendix 2.2. Classic Hough line transform with
SciKit and Python

Listing 2.9. Implementation of classic Hough line transform with
calculation of parameter space using SciKit library and Python pro-
gramming language.

1 # Read an image from file and preprocess
2 I = cv.imread(fn, cv.IMREAD_COLOR)
3 Iedge = cv.Canny(I, 50, 200, None , 3)
4 Igray = cv.cvtColor(I, cv.COLOR_BGR2GRAY)
5 # Do Hough transform
6 angles = np.linspace(-np.pi / 2, np.pi / 2,
7 360, endpoint=False)
8 Ih , theta , rho = \
9 skimage.transform.hough_line(Iedge ,

10 theta = angles)
11 cv.imshow("Parameter␣space", cv.resize(
12 Ih.astype(np.float32) / np.max(Ih),
13 (Ih.shape[1], 400)))
14 # Find lines with Hough transform
15 Ih , theta , rho = \
16 skimage.transform.hough_line_peaks(Ih,
17 theta , rho , 0, 0)
18 # Create and output image
19 Iout = I.copy()
20 if theta is not None:
21 for i in range(0, len(theta)):
22 a = math.cos(theta[i])
23 b = math.sin(theta[i])
24 x0 , y0 = a * rho[i], b * rho[i]
25 pt1 = np.int32((x0 - 1000 * b,
26 y0 + 1000 * a))
27 pt2 = np.int32((x0 + 1000 * b,
28 y0 - 1000 * a))
29 cv.line(Iout , pt1 , pt2 , (0, 255, 0), 1,
30 cv.LINE_AA)
31 # And with source colors
32 cv.imshow("Classic", Iout)

59

Practical Assignment №3
Features Detectors

Objective

Study of feature point detectors and descriptors.

Guidelines

Before getting started, students should be familiar with the func-
tions of the MATLAB or OpenCV for working with the feature points
detectors and descriptors. Practical assignment is designed for 4 hours.

Brief Theory

First of all we have to understand what are the image feature points.
Let us look at Fig. 3.1

Figure 3.1. Building image [7]

60

As you can see it have 6 patches (named by letters from 𝐴 to 𝐹). If
you try searching for these patches on the source image you will find out
that it’s not possible to locate position of patches 𝐴 and 𝐵 since they
are taken somewhere from a repeating pattern of the sky or the building
wall. If you look at patches 𝐶𝐷 and 𝐷 you would also face a problem
of locating them since they are located somewhere at the edge of a
building. However if you take patches 𝐸 or 𝐹 you would easily locate
them since they are corners. Such type of points which are easily to
locate on an image are called feature points. From formal point of view,
feature points can be defined as points that are significantly different
from their neighborhood. So, if you move a sliding windows by one
pixel from a feature point you would get a completely different image,
see Fig. 3.2.

Figure 3.2. Feature points

There are a lot of algorithms designed to detect and descript feature
points, including:

• Harris corner detector [8].

• Shi-Tomasi corner detector [9].

61

• Scale-Invariant Feature Transform (SIFT) detector and descriptor
[10].

• Speeded-Up Robust Features (SURF) detector and descriptor
[11].

• Features from Accelerated Segment Test (FAST) detector [12].

• Binary Robust Independent Elementary Features (BRIEF) de-
scriptor [13].

• Oriented FAST and Rotated BRIEF (ORB) detector and descrip-
tor [14].

In the scope of the current practical assignment we will use SIFT
and ORB feature point detectors and descriptors for image matching.

SIFT detector

SIFT stands for Scale-Invariant Feature Transform [10]. The algo-
rithm was patented, however in 2020 the patent has expired, so now it
can be used freely in any applications.

One of the serious problems of traditional corner detectors, e.g.,
Harris detector, is that they are not scale-invariant. Depending on a
scale they may result in different feature points being detected, see
Fig. 3.3.

Figure 3.3. Dependence of the corner feature on the scale

To calculate the characteristic scale of feature points, the ideas of
the Laplacian of Gaussian (LoG) method are used. It can be calculated
as a scale-space maximum response of the Laplacian of Gaussian of an

62

image with varying the 𝜎 value, which is calculated by convolution of
of the variable-scale Gaussian 𝐺(𝑥, 𝑦, 𝜎) with an input image 𝐼(𝑥, 𝑦):

𝐿(𝑥, 𝑦, 𝜎) = 𝐺(𝑥, 𝑦, 𝜎) * 𝐼(𝑥, 𝑦)

𝐺(𝑥, 𝑦, 𝜎) =
1

2𝜋𝜎2
𝑒

−𝑥2+𝑦2

2𝜎2
(3.1)

where * is a convolution operation in 𝑥 and 𝑦.
To detect scale-space maxima efficiently the Difference of Gaussian

(DoG) method was proposed, which is computed with the following
formula with a predefined constant multiplier 𝑘 by simple image sub-
traction, see Fig. 3.4:

𝐷(𝑥, 𝑦, 𝜎) = (𝐺(𝑥, 𝑦, 𝑘𝜎) −𝐺(𝑥, 𝑦, 𝜎)) * 𝐼(𝑥, 𝑦) =

= 𝐿(𝑥, 𝑦, 𝑘𝜎) − 𝐿(𝑥, 𝑦, 𝜎)
(3.2)

Figure 3.4. Difference of Gaussian calculation

Maxima of the DoG convolution for a pixel can be calculated by
comparing a pixel with its 26 neighbors in current and adjacent scales
as it is shown on Fig. 3.5

63

Figure 3.5. Selecting DoG maxima

After an point location and its characteristic scale is found it’s lo-
cation is adjusted according to nearby image data. Low-contrast or
poorly-localized points are filtered out since they are highly sensitive
to noise.

Next, the characteristic orientation of the neighbor feature point
patch is estimated by calculating a histogram of gradients of the patch
and selecting a histogram maximum value. In cases if several strong
maxima are detected, the feature point is considered as several points
with different orientations. Histogram contains 36 bins and covers 360∘.

Figure 3.6. Selecting characteristic orientation

Then the patch is rotated according to the characteristic orienta-
tion and a descriptor is built by computing 16 histograms for 4 × 4
subwindows of a 16 × 16 pixels window around the feature point, see
Fig 3.7.

So, SIFT descriptor contains 16 histograms, and each histogram
contains 8 bins, that gives total 128-dimensional vector for a feature
point descriptor.

64

Figure 3.7. SIFT descriptor

SIFT detector with MATLAB

MATLAB provides detectSIFTFeatures() function [15] to detect
images’ features using SIFT algorithm. Typically, this function works
with grayscale images.

Listing 3.1. Detecting SIFT feature points with MATLAB.

1 I = imread(‘figure.jpg ’);
2 Igray = rgb2gray(I);
3 points = detectSIFTFeatures(Igray);

Next detected strongest feature points can be displayed using
selectStrongest(points, points_number) MATLAB function.

Listing 3.2. Displaying 100 strongest SIFT feature points with
MATLAB.

4 imshow(I);
5 hold on;
6 plot(selectStrongest(points , 100));

You can add some extra parameters to display, for example, scale
and orientation of the feature.

Listing 3.3. Displaying 10 strongest SIFT feature points with the
scale and orientation with MATLAB.

7 figure;
8 imshow(I);
9 hold on;

65

10 plot(selectStrongest(points , 10, ...
11 ‘ShowScale ’,true , ‘showOrientation ’,true));

An example of 100 strongest SIFT feature points are shown in
fig. 3.8.

a) b) c)

Figure 3.8. SIFT feature detector with MATLAB: a) Source image,
b) 100 strongest SIFT feature points, c) 100 strongest SIFT feature
points with the scale and orientation

To obtain the descriptors of feature points you can use [features,
points] = extractFeatures(image, points) MATLAB function.

Listing 3.4. Obtaining descriptors of feature points.

12 [fp ,points] = extractFeatures(Igray ,points);

where variable fp consists of descriptors.

SIFT detector with OpenCV

OpenCV provides a C++ class cv::SIFT (cv2.SIFT in Python) to
work with the SIFT feature point detector [16]. An instance of this
class can be created by cv::SIFT::create() function with C++ and

66

cv2.SIFT_create() function with Python. Constructor allows speci-
fying additional detector parameters, e.g., the first parameter named
nFeatures allows limiting the number of detected features to a speci-
fied number of the most strong feature points. After a class instance is
created it provides following functions to work with SIFT detector:

• cv::SIFT::detect(I, fp, mask) C++ function
(cv2.SIFT.detect(I, mask) → fp in Python) — detect
feature points of the image I with region of interest defined by
mask and store them to the list fp.

• cv::SIFT::compute(I, fp, des) C++ function
(cv2.SIFT.compute(I, mask) → fp, des in Python) —
computes descriptors for a list feature points fp of the image I
and stores them to the list des. In case if descriptor can not
be calculated it is being removed. If two dominant orientations
are found then the feature point is duplicated with two separate
descriptors.

• cv::SIFT::detectAndCompute(I, mask, fp, des) C++ func-
tion (cv2.SIFT.detectAndCompute(I, mask) → fp, des in
Python) — unites function detect() and compute(). It detect
feature points of the image I with region of interest defined by
mask, computes their descriptors and store points to the list fp
and corresponding descriptors to the list des.

With OpenCV the SIFT detector is executed as following:
Listing 3.5. Detecting SIFT feature points with OpenCV and

C++.

1 cv::Mat I;
2 I = cv:: imread("pic.jpg", cv:: IMREAD_COLOR);
3 cv::Mat Igray;
4 cv:: cvtColor(I, Igray , cv:: COLOR_BGR2GRAY);
5 cv::Ptr <cv::SIFT > sift = cv::SIFT:: create ();
6 std::vector <cv::KeyPoint > Ifp;
7 sift ->detect(Igray , Ifp);

Listing 3.6. Detecting SIFT feature points with OpenCV and
Python.

67

1 I = cv2.imread("pic.jpg",
2 cv2.IMREAD_COLOR)
3 Igray = cv2.cvtColor(I,
4 cv2.COLOR_BGR2GRAY)
5 sift = cv2.SIFT_create ()
6 Ifp = sift.detect(Igray)

To limit the detector to detect only first 100 strongest features it
should be specified in the SIFT descriptor constructor:

Listing 3.7. Detecting 100 strongest SIFT feature points with
OpenCV and C++.

1 sift = cv::SIFT:: create (100);
2 sift ->detect(Igray , Ifp);

Listing 3.8. Detecting 100 strongest SIFT feature points with
OpenCV and Python.

1 sift = cv2.SIFT_create (100)
2 Ifp = sift.detect(Igray)

Next detected feature points can be displayed using
cv::drawKeypoints(I, fp, Iout, color, flags) C++ func-
tion (cv2.drawKeypoints(I, fp, Iout, color, flags) → Iout
in Python). By default color of each feature point is different and
only feature point position is displayed.

Listing 3.9. Displaying SIFT feature points with OpenCV and
C++.

1 cv::Mat Iout;
2 cv:: drawKeypoints(I, Ifp , Iout);
3 cv:: imshow("SIFT␣detector", Iout);

Listing 3.10. Displaying SIFT feature points with OpenCV and
Python.

1 Iout = cv2.drawKeypoints(I, Ifp , None)
2 cv2.imshow("SIFT␣detector", Iout)

The optional flags parameter value of cv::DRAW_RICH_KEYPOINTS
(cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS in Python) allows
drawing feature point size and orientation as well.

Listing 3.11. Displaying SIFT feature points in green color with
scale and orientation with OpenCV and C++.

68

1 cv::Mat Iout;
2 cv:: drawKeypoints(I, Ifp , Iout , color ,
3 cv:: DrawMatchesFlags :: DRAW_RICH_KEYPOINTS);
4 cv:: imshow("SIFT␣detector", Iout);

Listing 3.12. Displaying SIFT feature points in green color with
scale and orientation with OpenCV and Python.

1 Iout = cv2.drawKeypoints(I, Ifp , None ,
2 color = (0, 255, 0), flags =
3 cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)
4 cv2.imshow("SIFT␣detector", Iout)

An example of 100 strongest SIFT feature points detected with
OpenCV are shown in fig. 3.9.

a) b) c)

Figure 3.9. SIFT feature detector with OpenCV: a) Source image,
b) 100 strongest SIFT feature points in default colors, c) 100 strongest
SIFT feature points with the scale and orientation in green color

69

ORB detector

ORB detector [14] is a fusion of FAST feature point detector and
BRIEF descriptor with many modifications to enhance the detector
performance. First it uses FAST detector to find feature points, then
applies Harris corner measure to find top 𝑁 -points among them. It also
use pyramid to produce multiscale-features. Since the FAST feature
point detector is not rotation invariant the following method is used to
calculate the characteristic rotation of the point: the intensity weighted
centroid of the patch with located corner at center is calculated. The
direction of the vector from this corner point to centroid is considered as
the orientation of the feature point. To improve the rotation invariance,
moments are computed with 𝑥 and 𝑦 axis which should be in a circular
region of radius 𝑟, where 𝑟 is the size of the patch.

ORB uses BRIEF descriptors for its feature points. The BRIEF
descriptor [13] is a bit string description of an image patch constructed
from a set of binary intensity tests:

𝜏(𝑝, 𝑥, 𝑦) =

{︃
1, 𝑝(𝑥) < 𝑝(𝑦),

0, 𝑝(𝑥) > 𝑝(𝑦).
(3.3)

Then the BRIEF feature point descriptor defined as a binary can
be calculated from set of simple binary intensity tests as following:

𝑓𝑛(𝑝) =

𝑛∑︁
𝑖=1

2𝑖−1𝜏(𝑝, 𝑥𝑖, 𝑦𝑖). (3.4)

To get a better performance of the BRIEF descriptor for rotated
features, the descriptor is rotated according to the orientation of feature
points. For any feature set of 𝑛 binary tests at location (𝑥𝑖,𝑦𝑖), 𝑆2×𝑛

matrix is defined, which contains the coordinates of these pixels.

𝑆 =

(︂
𝑥1, ..., 𝑥𝑛

𝑦1, ..., 𝑦1

)︂
. (3.5)

Then using the orientation 𝜃 of a patch its rotation matrix 𝑅𝜃 is
calculated and used to rotate the 𝑆 matrix to get a rotated version 𝑆𝜃.

𝑆𝜃 = 𝑅𝜃𝑆. (3.6)

70

ORB quantize the angle to increments of 2𝜋/30 = 12 deg, so a
lookup table of precomputed BRIEF patterns can be calculated for
each possible angle. As long as the keypoint orientation 𝜃 is consistent
across views, the correct set of points 𝑆𝜃 will be used to compute its
descriptor.

𝑔𝑛(𝑝, 𝜃) = 𝑓𝑛(𝑝)|(𝑥𝑖, 𝑦𝑦) ∈ 𝑆𝜃. (3.7)

To compute a distance between two ORB descriptors a Hamming
distance can be used. The multi-probe Locality-sensitive hashing (LSH)
method is used for ORB descriptor matching.

ORB detector with MATLAB

MATLAB provides the similar to SIFT
detectORBFeatures(image) function [17]. This function works
with grayscale images also. The rest of listings are the same to the
listings 3.3–3.4. An example of 100 strongest ORB feature points are
shown in fig. 3.10.

ORB detector with OpenCV

OpenCV provides a class for detection of ORB feature points and
calculation of corresponding descriptors [18]. The class is named
cv::ORB in C++ and cv2.ORB in Python. A class instance is cre-
ated with cv::ORB::create() method in C++ (cv2.ORB_create()
in Python). Additional constructor parameters allows modifying de-
scriptor parameters, e.g., the first 𝑛𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 parameter specified the
number of features to extract from an image. The class interface is
the same with SIFT detector and allows detecting feature points and
computing their descriptors. With OpenCV the ORB detector for 100
strongest points is executed as following:

Listing 3.13. Detecting and displaying ORB feature points with
OpenCV and C++.

1 cv::Mat I;
2 I = cv:: imread(fn, cv:: IMREAD_COLOR);
3 cv::Mat Igray;
4 cv:: cvtColor(I, Igray , cv:: COLOR_BGR2GRAY);
5 cv::Ptr <cv::ORB > orb;

71

a) b) c)

Figure 3.10. ORB feature detector with MATLAB: a) Source image,
b) 100 strongest ORB feature points, c) 100 strongest ORB feature
points with the scale and orientation

6 orb = cv::ORB:: create (100);
7 orb ->detect(Igray , Ifp);
8 cv::Mat Iout;
9 cv:: drawKeypoints(I, Ifp , Iout , color ,

10 cv:: DrawMatchesFlags :: DRAW_RICH_KEYPOINTS);
11 cv:: imshow("ORB␣detector", Iout);

Listing 3.14. Detecting and displaying 100 strongest ORB feature
points with OpenCV and Python.

1 I = cv2.imread("pic.jpg",
2 cv2.IMREAD_COLOR)
3 Igray = cv2.cvtColor(I,
4 cv2.COLOR_BGR2GRAY)
5 orb = cv2.ORB_create (100)
6 Ifp = orb.detect(Igray)
7 Iout = \

72

8 cv2.drawKeypoints(I, Ifp , None ,
9 color = (0, 255, 0), flags =

10 cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)
11 cv2.imshow("ORB␣detector", Iout)

a) b) c)

Figure 3.11. ORB feature detector with OpenCV: a) Source image,
b) 100 strongest ORB feature points in default colors, c) 100 strongest
ORB feature points with the scale and orientation in green color

Feature point descriptors matching

The simplest way to match two sets of feature points is by using
a brute force method. In this case for each point of the first set an
item of the second set is selected which have the smallest distance. For
SIFT descriptor you can use the Euclidean 𝐿2 distance. As for the
ORB descriptor, since it is a binary mask, so the Hamming distance
between descriptors should be used instead.

Obviously, the brute force method works slow. To speed up the
descriptor matching an accelerating structure should be build on top of
the descriptors set, then when matching a descriptor from the search

73

query it is compared not with whole set, but only with descriptors
from some cluster. The simplest accelerating structure is KD-tree (𝑘-
dimensional tree) that is built on the space of training set descriptors.
In case if descriptor is defined as a binary mask, then it is preferable
to use Locality-Sensitive Hashing (LSH) method.

Using the first best match may result in a lot descriptor matches,
however a lot of them are false matches due to the fact that some feature
points are from repeating pattern (e.g., windows, water, clouds, etc.).
There are two possible solution to filter some of the not strong matches.

First solution is to use the cross checking, that requires the de-
scriptor to be matched in two directions: when matching two images it
should be the best match in forward and in backward directions.

The second solution is to use the 𝑘-nearest matching method. In
this case for each point several best matches are found sorted by the
distance, and the match is considered to be «good» if it is significantly
different from the next nearest match, so the distance between first
nearest match is significantly lower comparing to distance with the
second nearest match:

𝐷1 < 𝑟 ·𝐷2, (3.8)

where 𝐷1 is a distance to the first nearest match, 𝐷2 is a distance to
the second nearest match, and 𝑟 is difference ratio, which is advised to
be 0.75 by the SIFT method authors. Please note that the 𝑘-nearest
matching method is not compatible with the cross-checking since the
cross-check does not allow more than one match to be found

Using accelerating structures and 𝑘-nearest filtering we could get a
set of strong matches between images. Since when matching descrip-
tors we did not took the feature point positions into an account, so the
next step would be to calculate the geometric transformation between
images taking into an account that there may still be lot of outliers or
false matches. The most commonly used solution is to use the Ran-
dom Sequence Consensus (RANSAC) method. The general idea of the
method is to estimate not all data, but only a small sample, then build
a hypothesis basing on this sample and check how correct this hypoth-
esis is. After checking number of such hypothesis, we choose one that
best fits with most of the data.

74

1. On input we have a set of pairs of matched feature point coordi-
nates on two images: 𝑆 = {(𝑥, 𝑦)}|𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 , where 𝑋 is a
first image, and 𝑌 is a second image.

2. For each 𝑖 from 1 to 𝑁 build a hypothesis and check it:

(a) We build a hypothesis 𝜃𝑖 by selecting random pairs 𝑆𝑖 =
{(𝑥𝑖, 𝑦𝑖)}|(𝑥𝑖, 𝑦𝑖) ∈ 𝑆. In our case it is enough to select 4
points from each of 𝑋 and 𝑌 sets to build a matrix 𝑀 for
perspective transformation hypothesis.

(b) Evaluate the hypothesis 𝜃𝑖 by applying the perspective
transformation matrix 𝑀 to all points of the first 𝑋 set
and checking their matches with the points of the second
𝑌 set with some threshold. The number of matches is the
hypothesis evaluation score 𝑅(𝜃𝐼):

𝑅(𝜃) =
∑︁
𝑥∈𝑋

𝑝(𝜃, 𝑥, 𝑌),

𝑝(𝜃, 𝑥, 𝑌) =

{︃
1, |𝜀(𝜃, 𝑥, 𝑌)| 6 𝑇,

0, |𝜀(𝜃, 𝑥, 𝑌)| > 𝑇,

(3.9)

where 𝜀(𝜃, 𝑥) is the minimum distance from point 𝑥 to points
of the set 𝑌 with hypothesis 𝜃.

(c) If this is the first hypothesis, then store it as a current best
hypothesis 𝜃0. Else, check if the current hypothesis 𝜃𝑖 is
better than the best one found before 𝜃0, and, if so, then it
is stored as the new best hypothesis.

(𝑖 = 0) ∨ (𝑅(𝜃𝑖) > 𝑅(𝜃0)) ⇒ 𝜃0 = 𝜃𝑖. (3.10)

3. After finishing 𝑁 iterations, the 𝜃0 stores the best hypothesis. In
our case it is a perspective transformation matrix that transforms
the first image to the coordinate system of the second image.

The probability of choosing at least one sample without outliers
with the RANSAC method can be estimated as following:

𝑝 = 1 − (1 −𝑁(1 − 𝑒)𝑠)𝑁 , (3.11)

75

where 𝑝 is the probability of getting a good sample in N iterations, 𝑁
is the number of samples (iterations), 𝑠 is the number of points in the
sample, and 𝑒 is the ratio of outliers.

Since after estimating at least one hypothesis we can estimate the
ratio of outliers, this allows us to estimate required number of iterations
basing on the currently best hypothesis:

𝑁 =
log(1 − 𝑝)

log(1 − (1 − 𝑒)𝑠)
. (3.12)

The modification of RANSAC method that uses 𝑀 -estimator to
evaluate the hypothesis is called M-SAC. In this case each point score
𝑝(𝜃, 𝑥, 𝑌) depends on the minimum distance from point 𝑥 to points of
the set 𝑌 with hypothesis 𝜃:

𝑅(𝜃) =
∑︁
𝑥∈𝑋

𝑝(𝜃, 𝑥, 𝑌),

𝑝(𝜃, 𝑥, 𝑌) =

{︃
𝜀2(𝜃, 𝑥, 𝑌), |𝜀(𝜃, 𝑥, 𝑌)| 6 𝑇,

𝑇 2, |𝜀(𝜃, 𝑥, 𝑌)| > 𝑇.

(3.13)

Feature point descriptors matching with MATLAB

Let’s consider an example, see fig. 3.12. We have two figures: an
object and the scene with this object. Scene has some affine geometric
transformations.

a) b)

Figure 3.12. a) Figure 1 — object, b) Figure 2 — scene

At first step of matching, we should calculate descriptors of our
figures. See fig. 3.13

76

a) b)

Figure 3.13. a) An object with 30 strongest features, b) Scene with 100
strongest features

In MATLAB you can use the function matchFeatures(features1,
features2) for searching pairs of matched features, where features1
and features2 are arrays consists of descriptors for corresponding fig-
ures (figure1 and figure2, see fig. 3.12). After that, you should take
into account only putatively matched points (including outliers) from
these figures using array pairs.

Listing 3.15. Feature point descriptors matching

1 pairs = matchFeatures(features1 , features2);
2 matchedPoints1 = points1(pairs(:, 1), :);
3 matchedPoints2 = points2(pairs(:, 2), :);

To display matched features in MATLAB you can use built-in func-
tion showMatchedFeatures() with several parameters, see the list-
ing 3.16 and the result in fig. 3.14.

Listing 3.16. Feature point descriptors matching

4 showMatchedFeatures(figure1 , figure2 , ...
5 matchedPoints1 , matchedPoints2 , ...
6 ‘montage ’);

To filter outliers we can estimate the geometric transformation of
one figure with respect to the second one. In this step we should use
the function estimateGeometricTransform2D() with our putatively
matched points and specify the type of transformation.

Listing 3.17. Estimation of geometric transformation

77

Figure 3.14. Putatively matched points (including outliers)

7 [tform , inliersIds] = ...
8 estimateGeometricTransform2D (...
9 matchedPoints1 , ...

10 matchedPoints2 , ‘affine ’);
11 inlierPoints1 = ...
12 matchedPoints1(inliersIds , :);
13 inlierPoints2 = ...
14 matchedPoints2(inliersIds , :);

where tform — transformation matrix.
The result of using only inliers is shown in fig. 3.15.
At the final step we can try to find the object (tower from the

Figure 1) in the Figure 2 (main building of ITMO University). To
perform it let’s get the bounding polygon boxPolygon of the reference
image (Figure 1).

Listing 3.18. Bounding polygon for the object

15 boxPolygon = [1, 1;... % top -left
16 size(I1, 2), 1;... % top -right
17 size(I1, 2), size(I1, 1);... % bottom -right
18 1, size(I1, 1);... % bottom -left
19 1, 1]; % top -left
20 %again to close the polygon

78

Figure 3.15. Matched points (inliers only)

At the next step we should transform the polygon to
newBoxPolygon using transformation matrix tform and function
transformPointsForward() into the coordinate system of the target
image (scene). The transformed polygon indicates the location of the
object in the scene.

Figure 3.16. Detected object

Listing 3.19. Display the detected object

21 newBoxPolygon = ...

79

22 transformPointsForward(tform , boxPolygon);
23 figure;
24 imshow(I2);
25 hold on;
26 line(newBoxPolygon (:, 1), ...
27 newBoxPolygon (:, 2), ‘Color ’, ‘r’);

Feature point descriptors matching with OpenCV

Let’s do the same with OpenCV library. So, consider an example
from Fig. 3.12, which has two figures: an object (a tower) and the scene
with this object (the whole building). Scene has some affine geometric
transformations, so our goal is to match the object with the whole scene
and find this transformation.

At first have to load images and detect feature points. It’s worth
using detectAndCompute() function to calculate feature point descrip-
tors along with detection. The following code uses SIFT detector to
detect feature points and compute descriptors:

Listing 3.20. Detecting and computing SIFT feature points with
OpenCV and C++.

1 cv::Mat I1 , I2;
2 I1 = cv:: imread("pic1.jpg",
3 cv:: IMREAD_COLOR);
4 I2 = cv:: imread("pic2.jpg",
5 cv:: IMREAD_COLOR);
6 cv::Mat I1gray , I2gray;
7 cv:: cvtColor(I1 , I1gray ,
8 cv:: COLOR_BGR2GRAY);
9 cv:: cvtColor(I2 , I2gray ,

10 cv:: COLOR_BGR2GRAY);
11 std::vector <cv::KeyPoint > I1fp , I2fp;
12 cv::Mat I1des , I2des;
13 cv::Ptr <cv::SIFT > sift = cv::SIFT:: create ();
14 sift ->detectAndCompute(I1gray ,
15 cv:: noArray(), I1fp , I1des);
16 sift ->detectAndCompute(I2gray ,
17 cv:: noArray(), I2fp , I2des);

80

Listing 3.21. Detecting and computing SIFT feature points with
OpenCV and Python.

1 I1 = cv2.imread("pic1.jpg",
2 cv2.IMREAD_COLOR)
3 I2 = cv2.imread("pic2.jpg",
4 cv2.IMREAD_COLOR)
5 I1gray = cv2.cvtColor(I1,
6 cv2.COLOR_BGR2GRAY)
7 I2gray = cv2.cvtColor(I2,
8 cv2.COLOR_BGR2GRAY)
9 sift = cv2.SIFT_create ()

10 I1fp , I1des = \
11 sift.detectAndCompute(I1gray , None)
12 I2fp , I2des = \
13 sift.detectAndCompute(I2gray , None)

a) b)

Figure 3.17. Detected SIFT feature points. a) An object with default
strongest features, b) Scene with default strongest features

After feature points are detected and their descriptors are com-
puted, the next step is to match feature point descriptors on one image
with descriptors on the second one. OpenCV provides two feature point
descriptor matchers:

• cv::BFMatcher C++ class (cv2.BFMatcher in Python) — brute
force matcher. For each feature point descriptor of the first set of
points it find the best match in the second set by iterating though
all its feature point descriptors.

81

• cv::FlannBasedMatcher C++ class (cv2.FlannBasedMatcher
in Python) — Fast Library for Approximate Nearest Neighbors
matcher. It uses different algorithms for accelerated feature point
descriptors matching (KD-trees, 𝑘-means, LSH, etc.).

The brute force mathcer can be created either with a cross-check
filer or without. This is controlled by the second argument of the class
constructor named crossCheck. In the following examples it is turned
off. The brute force descriptor can be created as following:

Listing 3.22. Creating brute force descriptor matcher with
OpenCV and C++.

1 cv::Ptr <cv:: DescriptorMatcher > matcher;
2 bool crossCheck = false;
3 matcher = cv:: BFMatcher :: create(NORM_L2 ,
4 crossCheck);

Listing 3.23. Creating brute force descriptor matcher with
OpenCV and Python.

1 matcher = cv2.BFMatcher(crossCheck = False)

This descriptor matcher works well for SIFT descriptors, however
for ORB descriptors need to use the Hamming distance measure.

Listing 3.24. Creating brute force descriptor matcher with Ham-
ming distance with OpenCV and C++.

1 cv::Ptr <cv:: DescriptorMatcher > matcher;
2 bool crossCheck = false;
3 matcher = cv:: BFMatcher :: create(
4 cv:: NormTypes :: NORM_HAMMING , crossCheck);

Listing 3.25. Creating brute force descriptor matcher with Ham-
ming distance with OpenCV and Python.

1 matcher = cv2.BFMatcher(
2 cv2.NORM_HAMMING , crossCheck = False)

The FLANN matcher with kd-tree algorithm for SIFT descriptors
is created as following:

Listing 3.26. Creating FLANN 5 KD-trees descriptor matcher for
SIFT descriptors with OpenCV and C++.

82

1 cv::Ptr <cv:: DescriptorMatcher > matcher;
2 matcher =
3 cv::makePtr <cv:: FlannBasedMatcher >(
4 cv::makePtr <cv:: flann:: KDTreeIndexParams >(
5 5));

Listing 3.27. Creating FLANN 5 KD-trees descriptor matcher for
SIFT descriptors with OpenCV and Python.

1 FLANN_INDEX_KDTREE = 1
2 index_params = \
3 dict(algorithm = FLANN_INDEX_KDTREE ,
4 trees = 5)
5 matcher = \
6 cv2.FlannBasedMatcher(index_params ,
7 dict ())

In case of ORB descriptors it is recommended to use LSH algorithm:
Listing 3.28. Creating FLANN LSH descriptor matcher for ORB

descriptors with OpenCV and C++.

1 cv::Ptr <cv:: DescriptorMatcher > matcher;
2 matcher =
3 cv::makePtr <cv:: FlannBasedMatcher >(
4 cv::makePtr <cv:: flann:: LshIndexParams >(
5 6, 12, 1));

Listing 3.29. Creating FLANN LSH descriptor matcher for ORB
descriptors with OpenCV and Python.

1 FLANN_INDEX_LSH = 6
2 index_params = \
3 dict(algorithm = FLANN_INDEX_LSH ,
4 table_number = 6, key_size = 12,
5 multi_probe_level = 1)
6 matcher =
7 cv2.FlannBasedMatcher(index_params , dict ())

All OpenCV feature point matchers implement the
DescriptorMatcher interface. It has two main matching func-
tions:

83

• match(des1, des2, matches) C++ method (match(des1,
des2) → matches in Python) — match descriptors des1 and
des2. For each descriptor in des1 a one best match is found
in the des2 set and is returned in matches array.

• knnMatch(des1, des2, matches, k) C++ method
(match(des1, des2, k) → matches in Python) — match
𝑘-nearest descriptors des1 and des2. For each descriptor in
des1 k best matches are found in the des2 set and are returned
in matches array. Each item of matches array is an array con-
taining at maximum k matches. Please note that the 𝑘-nearest
matching method is not compatible with the cross-check in the
brute force matcher since the cross-check does not allow more
than one match to be found.

Straightforward descriptor matching can be executed as following:
Listing 3.30. Finding single best match for two sets of descriptors

with OpenCV and C++.

1 std::vector <cv::DMatch > matches;
2 matcher ->match(I1des , I2des , matches);

Listing 3.31. Finding single best match for two sets of descriptors
with OpenCV and Python.

1 matches = matcher.match(I1des , I2des)

Each match is an instance of cv::DMatch class containing following
data:

• queryIdx — an index of feature point in the first set (des1);

• trainIdx — an index of feature point in the second set (des2);

• imgIdx — an index of of image in the second set;

• distance — a distance measure between these two descriptors.

As it can be seen from Figures 3.18 — 3.19 using the first best
match may result in a lot descriptor matches and a lot of false matches
among them. So, it is worth using 𝑘-nearest matching to filter some
of the detected matches. In this case the match is considered to be
«good» if it is significantly different from the next nearest match, so the

84

Figure 3.18. 100 strongest matches with brute force method and SIFT
descriptors

distance between first nearest match is significantly lower comparing to
distance with the second nearest match. With OpenCV this method
can be implemented as following:

Listing 3.32. Finding 𝑘-nearest best match for two sets of descrip-
tors and filtering them with OpenCV and C++.

1 std::vector <cv::DMatch > matches;
2 std::vector <std::vector <cv::DMatch > >
3 knn_matches;
4 // Find KNN matches with k = 2
5 matcher ->knnMatch(I1des , I2des ,
6 knn_matches , 2);
7 // Select good matches
8 double knn_ratio = 0.75;
9 for (int m = 0; m < knn_matches.size (); m++)

10 if (knn_matches[m].size() > 1)
11 if (knn_matches[m][0]. distance <
12 knn_ratio *
13 knn_matches[m][1]. distance)
14 matches.push_back(knn_matches[m][0]);

85

Figure 3.19. 100 strongest matches with FLANN method and SIFT
descriptors

Listing 3.33. Finding 𝑘-nearest best match for two sets of descrip-
tors and filtering them with OpenCV and Python.

1 # Find KNN matches with k = 2
2 matches = \
3 matcher.knnMatch(I1des , I2des , k = 2)
4 # Select good matches
5 knn_ratio = 0.75
6 good = []
7 for m in matches:
8 if len(m) > 1:
9 if m[0]. distance < \

10 knn_ratio * m[1]. distance:
11 good.append(m[0])
12 matches = good

Figures 3.20 — 3.21 shows the result of using the 𝑘-nearest method
in combination with brute force and FLANN descriptor matchers.

The DescriptorMatcher interface also has functions which can be
used to train a matcher on set of images with corresponding descriptors
to match a single query (des1 in our case) with a set of image descrip-
tors (instead of single des2). This is the reason for index returned in

86

Figure 3.20. All matches with brute force method, 𝑘-nearest ratio filter
and SIFT descriptors

imgIdx parameter of the DMatch. However since we are matching only
two images we don’t need this extra data.

To display found matches a cv::drawMatches() C++ function can
be used (cv2.drawMatches() in Python). It combines two images into
one, draws feature points and match them with lines. To display only
top matches a matches array which we acquired after descriptor match-
ing can be sorted by distance value and its top part can be visualized:

Listing 3.34. Displaying top 10 matches with OpenCV and C++.

1 sort(matches.begin(), matches.end(),
2 [](const cv:: DMatch &a,
3 const cv:: DMatch &b)
4 {
5 return a.distance < b.distance;
6 });
7 int num_matches =
8 std::min(10, (int)matches.size ());
9 cv:: drawMatches(I1 , I1fp , I2, I2fp ,

10 std::vector <cv::DMatch >(matches.begin(),
11 matches.begin() + num_matches), Imatch ,
12 cv:: Scalar(0, 255, 0), cv:: Scalar(-1),

87

Figure 3.21. All matches with FLANN method, 𝑘-nearest ratio filter
and SIFT descriptors

13 std::vector <char >(0),
14 cv:: DrawMatchesFlags ::
15 NOT_DRAW_SINGLE_POINTS);

Listing 3.35. Displaying top 10 matches with OpenCV and
Python.

1 num_matches = 10
2 matches = sorted(matches ,
3 key = lambda x:x.distance)
4 Imatch = cv2.drawMatches(I1, I1fp , I2, I2fp ,
5 matches [: num_matches], None , flags =
6 cv2.DrawMatchesFlags_NOT_DRAW_SINGLE_POINTS ,
7 matchColor = (0 ,255 ,0))

Next, we need to filter the outliers and calculate the transfor-
mation matrix between two sets of matched feature points. This
can be done by the RANSAC (RANdom SAmples Consensus) al-
gorithm implemented in OpenCV cv::findHomography(I1pts,
I2pts, method, threshold, mask) → M C++ function
(cv2.findHomography(I1pts, I2pts, method, threshold) →
M, mask). This function calculates the transformation matrix 𝑀 from

88

the points of the first image I1pts to the second image I2pts with
given threshold. The inliers and outliers of best RANSAC hypothesis
are marked in mask. The cv::RANSAC (cv2.RANSAC in Python) method
is used. Its OpenCV implementation requires at least 10 pairs to work,
so this should be checked:

Listing 3.36. Executing RANSAC to calculate the transformation
matrix with OpenCV and C++.

1 const int MIN_MATCH_COUNT = 10;
2 if (matches.size() < MIN_MATCH_COUNT)
3 {
4 std::cout << "Not␣enough␣matches .\n";
5 return;
6 }
7 // Create arrays of point coordinates
8 std::vector <cv::Point2f > I1pts , I2pts;
9 for (int m = 0; m < matches.size (); m++)

10 {
11 I1pts.push_back(
12 I1fp[matches[m]. queryIdx].pt);
13 I2pts.push_back(
14 I2fp[matches[m]. trainIdx].pt);
15 }
16 // Run RANSAC method
17 std::vector <char > mask;
18 cv::Mat M = cv:: findHomography(I1pts , I2pts ,
19 cv::RANSAC , 5, mask);

Listing 3.37. Executing RANSAC to calculate the transformation
matrix with OpenCV and Python.

1 MIN_MATCH_COUNT = 10
2 if len(matches) < MIN_MATCH_COUNT:
3 print("Not␣enough␣matches.")
4 return
5 # Create arrays of point coordinates
6 I1pts = np.float32 ([I1fp[m.queryIdx].pt
7 for m in matches]). reshape(-1, 1, 2)
8 I2pts = np.float32 ([I2fp[m.trainIdx].pt
9 for m in matches]). reshape(-1, 1, 2)

89

10 # Run RANSAC method
11 M, mask = cv2.findHomography(I1pts , I2pts ,
12 cv2.RANSAC , 5)
13 mask = mask.ravel (). tolist ()

Now we can use the calculated transformation matrix M to display
a location of the tower on top of the building. To do this we have
to calculate the transformation of four corners of the first image and
transform them with perspective transformation matrix M:

Listing 3.38. Displaying the location of the first image on the
second one with OpenCV and C++.

1 std::vector <cv::Point2f > I1box , I1to2box;
2 // Image corners
3 I1box.push_back(cv:: Point2f(0, 0));
4 I1box.push_back(
5 cv:: Point2f(0, (float)I1.rows - 1));
6 I1box.push_back
7 (cv:: Point2f ((float)I1.cols - 1,
8 (float)I1.rows - 1));
9 I1box.push_back(

10 cv:: Point2f ((float)I1.cols - 1, 0));
11 cv:: perspectiveTransform(I1box , I1to2box , M);
12 // Convert to integers
13 std::vector <cv::Point2i > I1to2box_i;
14 for (int i = 0; i < I1to2box.size (); i++)
15 I1to2box_i.push_back(
16 cv:: Point2i(I1to2box[i]));
17 // Draw a red box on the second image
18 cv::Mat I2res = I2.clone ();
19 cv:: polylines(I2res , I1to2box_i , true ,
20 cv:: Scalar(0, 0, 255), 1,
21 cv:: LineTypes :: LINE_AA);
22 cv:: imshow("Search␣result", I2res);

Listing 3.39. Displaying the location of the first image on the
second one with OpenCV and Python.

1 # Image corners
2 h, w = I1.shape [:2]

90

3 I1box = np.float32 ([[0, 0], [0, h - 1],
4 [w - 1, h - 1], [w - 1, 0]]). \
5 reshape(-1, 1, 2)
6 I1to2box = \
7 cv2.perspectiveTransform(I1box , M)
8 # Draw a red box on the second image
9 I2res = cv2.polylines(I2 ,

10 [np.int32(I1to2box)], True , (0, 0, 255),
11 1, cv2.LINE_AA)
12 cv2.imshow("Search␣result", I2res)

Figure 3.22. Location of the object on the scene

Finally, after we have found a transformation and filtered outliers,
we can display inlier matches along with found transformation:

Listing 3.40. Displaying inlier matches with OpenCV and C++.

1 cv::Mat Itrans;
2 cv:: drawMatches(I1 , I1fp , I2res , I2fp ,
3 matches , Itrans , cv:: Scalar(0, 255, 0),
4 cv:: Scalar(-1), mask ,
5 cv:: DrawMatchesFlags ::
6 NOT_DRAW_SINGLE_POINTS);
7 cv:: imshow("Transformation", Itrans);

91

Listing 3.41. Displaying inlier matches with OpenCV and Python.

1 Itrans = \
2 cv2.drawMatches(I1 , I1fp , I2res , I2fp ,
3 matches , None , matchesMask = mask , flags =
4 cv2.DrawMatchesFlags_NOT_DRAW_SINGLE_POINTS ,
5 matchColor = (0 ,255 ,0))
6 cv2.imshow("Transformation", Itrans)

Figure 3.23. Inliers found by the RANSAC method

Procedure of Practical Assignment Performing

1. Feature points detection. Select three arbitrary images. Perform
to search for feature points using the SIFT and ORB feature point
descriptors.

2. Feature points matching. Select two pairs of images: first image of
each pair should have an object (e.g., some book) and the second
image should be a scene containing this object. Extract feature
points of an object and match them with feature points of a scene
containing this object. Calculate the transformation matrix using
RANSAC method and highlight the object position in the scene.

92

Show the inlier matches. Compare feature point descriptors for
the task of image matching.

3. Optional. Implement the simple automatic image stitching. Use
learned methods to calculate the transformation matrix between
two images and stitch them into a single panoramic image. Use it
to stitch three images into a single panoramic image. You may as-
sume that the order of the images is known (e.g., all three images
are shot with moving camera from left to right), so reordering is
not required.

Note. Please note that when doing the practical assignment you
are not allowed to use the “Lenna” image or any other image that was
used either in this book or during the presentation.

Content of the Report
1. Title page.

2. Objective.

3. Theoretical substantiation of the applied methods and functions.

4. Assignment steps:

(a) Original images;
(b) Code of the scripts;
(c) Comments;
(d) Resulting images.

5. Conclusion.

6. Answers to questions for the defense.

Questions to Practical Assignment Report Defense
1. How the characteristic orientation (rotation) of the feature point

can be estimated?

2. How to filter the not-strong feature point descriptor matches on
a repeating texture (e.g., windows, water, etc.)?

93

3. What is the minimum required sample size (the number of
matched pairs of feature points) to build an affine transforma-
tion hypothesis with RANSAC method? What is the minimum
required sample size to build a perspective transformation hy-
pothesis with RANSAC method?

4. How to use feature points for stitching a panoramic image?

94

Practical Assignment №4
Face Detection using Viola-Jones Approach

Objective
Study of Viola-Jones approach for detection of faces and part of

bodies in the images.

Guidelines
Before getting started, students should be familiar with the func-

tions of the MATLAB or OpenCV for working with the cascade object
detectors and Viola-Jones approach. Practical assignment is designed
for 4 hours.

Brief Theory
The Viola-Jones face detector method [19] is based on the following

concepts:

1. Haar-like feaures as weak classifiers.

2. Integral image representation for fast calculation of Haar-like fea-
tures.

3. AdaBoost training method to combine weak classifiers into a
strong classifier.

4. Combining of strong classifiers into a cascade classifier.

Haar-like features

Haar-like feature is a kind of a weak classifier. It can be defined as
the difference of the sum of pixels of areas inside the rectangle, which
can be at any position and scale within the original image. In a tradi-
tional Viola-Jones face detector algorithm 4 types of Haar-like features
that are shown in Fig. 4.1 are used. To calculate the value of the Haar-
like feature we need to calculate sums of pixels inside rectangular areas
of the image and do it as fast as possible.

𝑣𝑎𝑙𝑢𝑒 =
∑︁

(𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝑏𝑙𝑎𝑐𝑘 𝑎𝑟𝑒𝑎)−
∑︁

(𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝑤ℎ𝑖𝑡𝑒 𝑎𝑟𝑒𝑎). (4.1)

95

A

C D

B

Figure 4.1. Haar-like features used in Viola-Jones face detector

Obviously, the straightforward calculation of the sum of pixel values
in a rectangle would require number of sums that is equal to number
of pixels minus one. To speed up the feature calculation, an integral
image representation is used. In this representation each pixel stores
the sum of all pixel values that are positioned to the left and above of
the current pixel. To calculate the sum of pixel intensity values in an

(x, y)

Figure 4.2. Integral image

arbitrary rectangle we need to access four pixels of an integral image
which are located at the corners of the rectangle, see Fig. 4.3.

𝑠𝑢𝑚 = 𝐷 −𝐵 − 𝐶 + 𝐴, (4.2)

where 𝐷 is the bottom right corner of the rectangle, 𝐵 is a pixel one
pixel above the top right corner of the rectangle, 𝐶 is the pixel to one
pixel the left of the bottom left corner of the rectangle, and 𝐴 is a pixel
one pixel above and to the left of the top left corner of the rectangle.

96

A B

C D

Figure 4.3. Rectangular sum calculation with an integral image

The set of Haar-like features (which are weak classifiers) can be
combined with a weighted sum of their values to form a more complex
strong classifier. The training algorithm is called AdaBoost. It consists
of several boosting rounds, and each boosting round is a selection of a
best weak Haar-like feature to classify the training set with taking the
classification errors of the previous rounds into an account.

Figure 4.4. Combining weak classifiers into a strong classifier

Formally, the AdaBoost training scheme algorithm can be described
with following steps:

1. On an input we have a training set 𝑇 = {(𝑥𝑖, 𝑦𝑖)|𝑥𝑖 ∈ 𝑋, 𝑦𝑖 ∈
{−1,1}} and a set of all possible weak classifiers {ℎ}.

2. Initialize the weights for a training set items to be equal and sum
up to 1. 𝐷1(𝑖) = 1/𝑚, where 𝑚 is a number of training set items.

97

3. Do 𝐾 iterations:

(a) Choose ℎ𝑘 from a set of weak classifiers 𝐻, so that the
weighted classification error probability is minimal (the
probability of the wrong classification with taking weights
into an account):

𝜖𝑘 = 𝑃𝑟𝑖 𝐷𝑘
[ℎ𝑘(𝑥𝑖) ̸= 𝑦𝑖]. (4.3)

(b) Calculate the weight of the currently selected weak classifier
basing on its classification error probability:

𝛼𝑘 =
1

2
ln

(︂
1 − 𝜖𝑘
𝜖𝑘

)︂
. (4.4)

(c) Reweigh the training set with new weights:

𝐷𝑘+1(𝑖) =
𝐷𝑘(𝑖)

𝑍𝑘
·

{︃
𝑒−𝛼𝑘 , ℎ𝑘(𝑥𝑖) = 𝑦𝑖,

𝑒𝛼𝑘 , ℎ𝑘(𝑥𝑖) ̸= 𝑦𝑖.
(4.5)

4. After completing 𝐾 iterations build a strong classifier as a
weighted sum of weak classifiers that were selected during boost-
ing rounds:

𝐻(𝑥) = sign

(︃
𝐾∑︁

𝑘=1

𝛼𝑘ℎ𝑘(𝑥)

)︃
. (4.6)

Cascade classifiers

A strong classifier that have a required accuracy may require calcu-
lation of too much weak classifiers that would slow down the detection
speed taking into an account that most of scanned windows do not
contain faces. To speed up the detection rate a set of classifiers with
increasing complexity are organized in a cascade of classifiers. The
cascade contains a set of classifiers with an increasing complexity and
detection rate, see Fig. 4.5.

To be classified positively, a sliding window should pass all cascade
stages. In case if any classifier rejects the window, it is immediately
rejected and detector proceeds to the next window. As a result, that

98

False False False

True True True
Face

Non-FaceNon-FaceNon-Face

Image
Sub-Window

Classifier 1 Classifier 2 Classifier 3

Figure 4.5. Cascade classifier

most of negative windows are rejected fast with first fast classifiers in
the cascade.

The detection rate (true positive rate, TP) of a cascade classifier is
a multiplication of detection rates of all classifiers in a cascade:

𝑇𝑃 =
∏︁
𝑖

𝑇𝑃𝑖. (4.7)

The false positive rate (FP) is also a multiplication of false positives
of cascade classifiers;

𝐹𝑃 =
∏︁
𝑖

𝐹𝑃𝑖. (4.8)

As a result, to build a classifier with 0.9 true positive rate and 10−6

false negative, each classifier in a cascade should meet the requirement
of of 0.99 true positive and just 0.3 false positive.

Each classifier of the cascade is trained using the AdaBoost training
scheme with requirement to maximize the true positive detection rate
with keeping false positive within a given range. The training set is
modified between the boosting rounds to increase the complexity of
each cascade step.

Viola-Jones approach with MATLAB

MATLAB provides vision.CascadeObjectDetector object [20].
The cascade object detector uses the Viola-Jones algorithm to detect
people’s faces, noses, eyes, mouth, or upper body using special param-
eters of the object. Of course, you can train the custom detector on
your own objects using Image Labeler.

Listing 4.1. Create an object using CascadeObjectDetector.

99

1 faceDetector = vision.CascadeObjectDetector;

After that you should apply your detector faceDetector to the
image I. As a result, you will obtain the coordinates of the rectangular
bounding boxes around the faces in a format [x y width height],
that specifies in pixels the upper-left corner and size of the bounding
boxes.

Listing 4.2. Applying detector to the image with MATLAB.

2 I = imread(‘photo_faces.jpg ’);
3 bboxes = faceDetector(I);

Figure 4.6. Original image with faces

In the last step you should place bounding boxes to the image.
In MATLAB you can use the function insertObjectAnnotation(I,
shape, position, label[, optional parameters]). Let’s place
rectangular annotations to the faces and display it using imshow(I)
function. The result is shown in Fig. 4.7.

Listing 4.3. Applying detector to the image with MATLAB.

4 IFaces = insertObjectAnnotation(I, ...
5 ‘rectangle ’,bboxes ,‘Face ’);
6 imshow(IFaces);

MATLAB provides several pretrained classifiers, e.g. UpperBody,
EyePairSmall, Mouth, or Nose. The complete list you can find in [20].
Specify the region of interest (ROI) in the detector detector(I,roi)

100

Figure 4.7. Image with detected faces

you can find, for examples, eyes only in the regions of faces. To do that
you should use the optional parameter UseROI with value true in the
cascade object detector. For example, let’s detect eyes on the detected
faces.

Listing 4.4. Create an object with EyePairSmall classification
model and ROI.

7 eyesDetector = ...
8 vision.CascadeObjectDetector (...
9 ‘ClassificationModel ’,‘EyePairSmall ’,...

10 ‘UseROI ’,true);

Unfortunately, MATLAB doesn’t allow to apply the whole array of
bounding boxes from one detector to another one as ROI. So, let’s do
it step-by-step.

Listing 4.5. Eyes detector using ROI in faces.

11 counter = 1;
12 for i = 1:1: length(bboxes)
13 temp = eyesDetector(I, bboxes(i ,:));
14 if ~isempty(temp)
15 bboxes2(counter ,:) = temp;
16 counter = counter + 1;
17 end
18 end

101

After that we can put labels of eyes to the previous image with
faces’ annotations, see Fig. 4.8.

Listing 4.6. Display eyes in the image with faces.

19 IEyes = insertObjectAnnotation(IFaces ,...
20 ‘rectangle ’,bboxes2 ,‘Eyes ’,...
21 ‘Color ’,‘magenta ’);
22 imshow(IEyes)

Figure 4.8. Image with detected faces and eyes

Viola-Jones approach with OpenCV

To execute a cascade classifier OpenCV provides a class named
cv::CascadeClassifier in C++ and cv2.CascadeClassifier in
Python. Cascade is defined in an XML file and can be loaded to a
classifier object with the cv::CascadeClassifier::load(cv::String
file_name) C++ function (cv2.CascadeClassifier.load() in
Python). The creation of cascade classifier for faces is as following:

Listing 4.7. Create and load a cascade classifier faces with
OpenCV and C++.

1 cv:: CascadeClassifier detector;
2 cv:: String cascade_fn =
3 cv:: samples :: findFile(
4 "haarcascade_frontalface_default.xml");
5 detector.load(cascade_fn);

102

Listing 4.8. Create and load a cascade classifier faces with
OpenCV and Python.

1 detector = cv2.CascadeClassifier ()
2 cascade_fn = cv2.samples.findFile(
3 "haarcascade_frontalface_default.xml")
4 detector.load(cascade_fn)

Note. OpenCV library provides some built-in cascade descriptors
for faces, eyes, mouth, cat faces and Russian license plates which can
be found in data∖haarcascades∖ folder. See [21] for a complete list
of built-in cascades. Other cascade classifiers can be trained using the
cascade training tool which is out of the scope of the current assignment
You can refer to the 𝑡𝑟𝑎𝑖𝑛𝑐𝑎𝑠𝑐𝑎𝑑𝑒 OpenCV tool documentation [22] for
more information.

After a cascade is loaded it can be applied to an im-
age with cv::detectMultiScale(I, objs, scale_f, min_neighb)
C++ function (cv2.detectMultiScale(I, scale_f, min_neighb)
→ objs in Python). This function takes an argument of the 𝐼 im-
age to process. The returned list of rectangular areas that satisfied the
cascade classifier condition is stored in the objs list which is passed as a
second argument in C++ (or is returned by the detectMultiScale()
function in Python). Optional arguments allow specifying the addi-
tional cascade parameters which are the scale factor that is used when
increasing the windows size, minimum number of rectangles to be classi-
fied in the area when filtering for the false positive results and minimum
and maximum sizes of the detector area. The cascade classification is
executed as following:

Listing 4.9. Execute a cascade classifier for faces using scale factor
1.07 and 3 minimum required number of matches with OpenCV and
C++.

1 std::vector <cv::Rect > faces;
2 detector.detectMultiScale(Igray , faces ,
3 1.07, 3);

Listing 4.10. Execute a cascade classifier for faces using scale
factor 1.07 and 3 minimum required number of matches with OpenCV
and Python.

1 faces = detector.detectMultiScale(Igray ,

103

2 scaleFactor = 1.07, minNeighbors = 3)

Figure 4.9. Original image with faces

As result the faces array will store the list of rectangles for found
objects (faces). Then we can iterate over them all and display them on
the source image.

Listing 4.11. Display found faces with OpenCV and C++.

1 cv::Mat Iout = I.clone ();
2 for (int i = 0; i < faces.size (); i++)
3 cv:: rectangle(Iout , faces[i],
4 cv:: Scalar(0, 255, 255), 1);

Listing 4.12. Display found faces with OpenCV and Python.

1 Iout = I.copy()
2 for (x, y, w, h) in faces:
3 Iout = cv.rectangle(Iout , (x, y, w, h),
4 (0, 255, 255), 1)

As it can be seen from the resulting image, almost all faces were
detected, excepting the one which is rotated and could not be classified
by a cascade which was not trained to find this type of rotated faces
(see Fig. 4.10).

Now let us try to detect eyes on the found face. For this need we will
take a higher resolution image of face with eyes, shown on the Fig. 4.11

104

Figure 4.10. Image with detected faces highlighted

It’s obvious that we don’t need to scan the whole image for eyes
as there would be a lot of false-popsitive results, so we will define a
Region-Of-Interest (ROI) object as a face which was already found
and then search for eyes with taking the ROI into an account. In
C++ it can be implemented by creating a special cv::Mat object with
it’s constructor that takes and image and rectangular ROI defined by
cv::Rect object. This is exactly the object that is returned by the
cv::detectMultiScale() detector function. So, to find faces, first we
need to load a classifier for faces, then for each found face execute the
eyes detector with ROI.

Listing 4.13. Detect and display eyes with taking face areas into
an account with OpenCV and C++.

1 // Load eyes cascade
2 cv:: CascadeClassifier eye_detector;
3 cv:: String eye_cascade_fn =
4 cv:: samples :: findFile(
5 "haarcascade_eye.xml");
6 eye_detector.load(eye_cascade_fn);
7 // For each face use it as a ROI
8 // and detect eyes
9 for (int i = 0; i < faces.size (); i++)

10 {

105

Figure 4.11. Close up image of a face

11 Rect f = faces[i];
12 cv::Mat Iface = cv::Mat(Igray , f);
13 std::vector <cv::Rect > eyes;
14 eye_detector.detectMultiScale(Iface ,
15 eyes , 1.05);
16 for (int j = 0; j < eyes.size (); j++)
17 {
18 eyes[j].x += f.x;
19 eyes[j].y += f.y;
20 cv:: rectangle(Iout , eyes[j],
21 cv:: Scalar (147, 20, 255), 1);
22 }
23 }

When using the Python programming language it’s even easier to
define ROI. For this need a slice of the Numpy array should be done,
then this subarray is used as a normal image with all OpenCV functions.

Listing 4.14. Detect and display eyes with taking face areas into
an account with OpenCV and Python.

1 # Load eyes cascade
2 eye_detector = cv2.CascadeClassifier ()
3 cascade_fn = cv2.samples.findFile(

106

4 "haarcascade_eye.xml")
5 eye_detector.load(cascade_fn)
6 # For each face use it as a ROI
7 # and detect eyes
8 for (x, y, w, h) in faces:
9 Iface = I[y : y + h, x : x + w]

10 eyes = eye_detector.detectMultiScale(
11 Iface , scaleFactor = 1.05)
12 for (x2, y2, w2 , h2) in eyes:
13 Iout = cv.rectangle(Iout ,
14 (x + x2, y + y2 , w2 , h2),
15 color = (147, 20, 255))

The eyes detection result is shown in the Fig. 4.12.

Figure 4.12. Eyes detection result

As it can be seen, some false-positive eye positions are detected. To
overcome this problem we can modify the parameters of the cascade
(the minimum required number of matches or scale factor). However
you can notice that all false-positives are located at the bottom part of
the face, however eyes are always located at the top 2/3 of the face, so
we can modify the ROI definition taking this into an account.

Listing 4.15. Define ROI and top 2/3 of the face image with
OpenCV and C++.

107

1 cv::Mat Iface_top = cv::Mat(Igray ,
2 cv::Rect(f.x, f.y, f.width ,
3 f.height * 2 / 3));

Listing 4.16. Define ROI and top 2/3 of the face image with
OpenCV and Python.

1 Iface_top = \
2 Igray[y : y + h * 2 // 3, x : x + w]

Then, this Iface_top image can be used in detectMultiScale()
function of the cascade detector to get a better result shown in Fig. 4.13

Figure 4.13. Eyes detection result in top 2/3 of the face

The same approach can be used when detecting other parts of the
face, for example mouth is located at the botom 1/3 of the face and so
on.

Procedure of Practical Assignment Performing

1. Faces detection. Select three arbitrary images contains several
faces. Try to use images with a different number of faces and dif-
ferent scales. Perform to search faces using Viola-Jones approach.
Calculate the number of found faces on each image.

108

2. Body parts detection. Select three arbitrary images contains sev-
eral faces. Try to use images with a different number of faces and
different scales. Perform to search at least two parts of bodies in
the one image (e.g. eyes, mouths, noses). To increase the accu-
racy use ROI (upper part of bodies or faces). Calculate the found
elements in each category.

3. Optional 1. Implement the face detection in videostream using
pre-recorded video with faces.

4. Optional 2. Implement the face detection in live videostream
using web-camera.

Note. Please note that when doing the practical assignment you
are not allowed to use the “Lenna” image or any other image that was
used either in this book or during the presentation.

Content of the Report

1. Title page.

2. Objective.

3. Theoretical substantiation of the applied methods and functions.

4. Assignment steps:

(a) Original images;

(b) Code of the scripts;

(c) Comments;

(d) Resulting images.

5. Conclusion.

6. Answers to questions for the defense.

109

Questions to Practical Assignment Report Defense
1. What is the special image representation used in the Viola-Jones

approach?

2. What is the main advantage of Haar-like features for classifier
training?

3. Could you use Viola-Jones approach for detecting arbitrary ob-
jects and why?

110

List of references

[1] MATLAB - MathWorks. — https://www.mathworks.com/
products/matlab.html. — 2022. — [Online; accessed 01-Dec-
2022].

[2] Home - OpenCV. — https://opencv.org/html. — 2022. — [On-
line; accessed 01-Dec-2022].

[3] Otsu Nobuyuki. A threshold selection method from gray-level his-
tograms // IEEE transactions on systems, man, and cybernet-
ics. — 1979. — Vol. 9, no. 1. — P. 62–66.

[4] Colorimetry — Part 4: CIE 1976 L*a*b* colour
space | CIE. — https://cie.co.at/publications/
colorimetry-part-4-cie-1976-lab-colour-space-1. —
2022. — [Online; accessed 01-Dec-2022].

[5] Mouse as a Paint-Brush. — https://docs.opencv.org/4.6.0/
db/d5b/tutorial_py_mouse_handling.html. — 2022. — [Online;
accessed 01-Dec-2022].

[6] Hough Paul VC. Method and means for recognizing complex pat-
terns. — 1962. — Dec. 18. — US Patent 3,069,654.

[7] Wagoner Amy R., Schrader Daniel K., Matson Eric T. Survey
on Detection and Tracking of UAVs Using Computer Vision //
2017 First IEEE International Conference on Robotic Computing
(IRC). — 2017. — P. 320–325.

[8] Harris Chris, Stephens Mike et al. A combined corner and edge de-
tector // Alvey vision conference / Citeseer. — 1988. — 15 no. 50. —
P. 10–5244.

[9] Shi Jianbo et al. Good features to track // 1994 Proceedings of
IEEE conference on computer vision and pattern recognition /
IEEE. — 1994. — P. 593–600.

111

https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
https://opencv.org/html
https://cie.co.at/publications/colorimetry-part-4-cie-1976-lab-colour-space-1
https://cie.co.at/publications/colorimetry-part-4-cie-1976-lab-colour-space-1
https://docs.opencv.org/4.6.0/db/d5b/tutorial_py_mouse_handling.html
https://docs.opencv.org/4.6.0/db/d5b/tutorial_py_mouse_handling.html
https://doi.org/10.1109/IRC.2017.15
https://doi.org/10.1109/IRC.2017.15

[10] Lowe David G. Distinctive image features from scale-invariant
keypoints // International journal of computer vision. — 2004. —
Vol. 60, no. 2. — P. 91–110.

[11] Bay Herbert, Tuytelaars Tinne, Gool Luc Van. Surf: Speeded
up robust features // European conference on computer vision /
Springer. — 2006. — P. 404–417.

[12] Viswanathan Deepak Geetha. Features from accelerated segment
test (fast) // Proceedings of the 10th workshop on image analysis
for multimedia interactive services, London, UK. — 2009. — P. 6–8.

[13] Brief: Binary robust independent elementary features / Calon-
der Michael, Lepetit Vincent, Strecha Christoph, and Fua Pas-
cal // European conference on computer vision / Springer. —
2010. — P. 778–792.

[14] ORB: An efficient alternative to SIFT or SURF / Rublee Ethan,
Rabaud Vincent, Konolige Kurt, and Bradski Gary // 2011 Inter-
national conference on computer vision / IEEE. — 2011. — P. 2564–
2571.

[15] Detect SIFT Features. — https://www.mathworks.com/help/
vision/ref/detectsiftfeatures.html. — 2021. — [Online; ac-
cessed 20-May-2022].

[16] Introduction to SIFT (Scale-Invariant Feature Transform). —
https://docs.opencv.org/4.6.0/da/df5/tutorial_py_sift_
intro.html. — 2022. — [Online; accessed 01-Dec-2022].

[17] Detect ORB Features. — https://www.mathworks.com/help/
vision/ref/detectorbfeatures.html. — 2019. — [Online; ac-
cessed 20-May-2022].

[18] ORB (Oriented FAST and Rotated BRIEF). — https://docs.
opencv.org/4.6.0/d1/d89/tutorial_py_orb.html. — 2022. —
[Online; accessed 01-Dec-2022].

[19] Viola Paul, Jones Michael. Robust Real-time Object Detection //
International Journal of Computer Vision. — 2001.

112

https://www.mathworks.com/help/vision/ref/detectsiftfeatures.html
https://www.mathworks.com/help/vision/ref/detectsiftfeatures.html
https://docs.opencv.org/4.6.0/da/df5/tutorial_py_sift_intro.html
https://docs.opencv.org/4.6.0/da/df5/tutorial_py_sift_intro.html
https://www.mathworks.com/help/vision/ref/detectorbfeatures.html
https://www.mathworks.com/help/vision/ref/detectorbfeatures.html
https://docs.opencv.org/4.6.0/d1/d89/tutorial_py_orb.html
https://docs.opencv.org/4.6.0/d1/d89/tutorial_py_orb.html

[20] Cascade Object Detector. — https://www.mathworks.com/help/
vision/ref/vision.cascadeobjectdetector-system-object.
html. — 2012. — [Online; accessed 20-May-2022].

[21] OpenCV Haar cascades repository. — https://github.com/
opencv/opencv/tree/4.x/data/haarcascades. — 2020. — [On-
line; accessed 20-May-2022].

[22] Cascade Classifier Training. — https://docs.opencv.org/4.5.
5/dc/d88/tutorial_traincascade.html. — 2021. — [Online; ac-
cessed 20-May-2022].

113

https://www.mathworks.com/help/vision/ref/vision.cascadeobjectdetector-system-object.html
https://www.mathworks.com/help/vision/ref/vision.cascadeobjectdetector-system-object.html
https://www.mathworks.com/help/vision/ref/vision.cascadeobjectdetector-system-object.html
https://github.com/opencv/opencv/tree/4.x/data/haarcascades
https://github.com/opencv/opencv/tree/4.x/data/haarcascades
https://docs.opencv.org/4.5.5/dc/d88/tutorial_traincascade.html
https://docs.opencv.org/4.5.5/dc/d88/tutorial_traincascade.html

Sergei Shavetov
Andrei Zhdanov

Computer Vision

Study guide

Original version
Editorial-Publishing Department of ITMO University
EP Department Head N. Gusarova
Signed to print
Order No
Printed circulation
Risograph printing

Editorial-Publishing Department of
ITMO University
197101, St. Petersburg, Kronverkskiy pr., 49

	Practical Assignment №1. Images Segmentation
	Objective
	Guidelines
	Brief Theory
	Procedure of Practical Assignment Performing
	Content of the Report
	Questions to Practical Assignment Report Defense
	Appendix 1.1. MATLAB's bwareaopen() implementation with OpenCV
	Appendix 1.2. MATLAB's imfill(`holes') implementation with OpenCV
	Appendix 1.3. MATLAB's entropyfilt() implementation with OpenCV

	Practical Assignment №2. Hough Transform
	Objective
	Guidelines
	Brief Theory
	Procedure of Practical Assignment Performing
	Content of the Report
	Questions to Practical Assignment Report Defense
	Appendix 2.1. Clasic Hough line transform with OpenCV and C++
	Appendix 2.2. Classic Hough transform for lines with SciKit and Python

	Practical Assignment №3. Features Detectors
	Objective
	Guidelines
	Brief Theory
	Procedure of Practical Assignment Performing
	Content of the Report
	Questions to Practical Assignment Report Defense

	Practical Assignment №4. Face Detection using Viola-Jones Approach
	Objective
	Guidelines
	Brief Theory
	Procedure of Practical Assignment Performing
	Content of the Report
	Questions to Practical Assignment Report Defense

	List of references

