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Glossary of Abbreviations and Notation
DC - Discrete convolution
DFT - Discrete Fourier transformation
DSP — digital signal processing
FDFT — Fast discrete Fourier transformation
LSI system — Linear Space-Invariant system



Introduction

The great advancements in the design of microchips, digital systems and
computer hardware over the past 60 years gave rise to digital signal processing (DSP)
which has grown over the short time into a universal, multi-faceted, and developed
subject of study. The DSP has been applied in many disciplines ranging from
engineering to economics and from astronomy to social sciences. A complete analysis
of DSP aspects would require many volumes of publications, thus, this guidebook
focuses mainly on the fundamental DSP operations, namely, on the representation of
signals by mathematical models and on their processing by discrete-time systems. DSP
i1s considered with regard to Linear Space-Invariant (LSI) systems used in many
technical applications. Quite a few types of processing are possible for signals, with
DSP almost always being a linear operation, involving reshaping, transforming, or
manipulating the frequency spectrum of the signal.

Chapter 1 describes Fourier Transform and Discrete Fourier Transform as the
principal mathematical instruments for analyzing the spectral characteristics of
continuous-time signals. The Discrete Fourier Transform is deduced from the
continuous Fourier Transform through a sampling process. Besides, Chapter 1 presents
the Discrete Fourier transform (DFT) and the related Fast Fourier Transform (FFT)
method as mathematical tools for the analysis of signals and for implementation of
digital filters. The properties of the DFT and the relations between the DFT and the
continuous Fourier transform are discussed. These relations have many properties that
are far from being obvious, and using Discrete Fourier Transform and Fast Fourier
Transform is likely to end up with inaccurate spectral representations for the signals if
those properties are ignored. The chapter also deals with the "window" and the "zero
padding" approaches, which can facilitate processing signals of infinite and finite
duration.

Chapter 2 deals with the fundamental properties of Linear Space-Invariant
systems as the basis of the non-recursive filters. The topics considered include linearity,
time invariance, causality as the basic LSI system properties. Convolution equations are
used as the main mathematical model of an LSI system. According to the convolution
mathematical model, the LSI system is analyzed as a discrete object. Chapter 2
discusses two discrete convolution models. One of them is the discrete convolution in
the spatial domain, and the other one is convolution in the frequency domain. Some
properties of the LSI discrete convolution model that are far from being evident,
require a detailed consideration of the relation between the input signal and the impulse
response of the LSI system.

The most important mathematical tool for representing and processing discrete-
time signals is the convolution in frequency domain. The latter form is the subject of
Chapter 3. The chapter also deals with the convolution in frequency domain as a
discrete mathematical model of LSI systems and of non-recursive filters. According to the



convolution in frequency domain the LSI system is analyzed as a discrete object by
using the non-recursive algorithms. Chapter 3 discusses three kinds of non-recursive
algorithms. One of them is the non-recursive algorithm as a transformation of a
periodic input signal. Another non-recursive algorithm class is the transformation of an
aperiodic infinite signal. Some properties of the third algorithm that are far from being
obvious require a detailed consideration of the relation between the input impulse and
the impulse response of the LSI system.

The guidebook is recommended for the students of Digital Signal Processing in
Optoelectronics (within the course in Optical Engineering as part of the Master’s
Program 12.04.02 Applied Optics), and those of Optic-electronic systems simulation
and research (within the course in Electronic and Optic-electronic systems of the
Optical Engineering Program 12.05.01).

The applied part of this course implies calculating the parameters of digital
transformations. It includes three exercises as follows:

1. A digital Fourier transform as the tool of the signal analysts.

2. A digital convolution in Spatial Domain as a tool of the Linear Space-

Invariant (LSI) systems simulation and non-recursive filter synthesis.

3. A digital convolution in Frequency Domain as a tool of the Linear Space-

Invariant (LSI) systems simulation and non-recursive filter synthesis.

Every exercise is supposed to take 4 academic hours. Exercise 1 requires 1
academic hour for a study of the basic theoretical provisions, 2 hours are allocated for
creating an algorithm, writing and debugging the code, and 1 hour is left for analyzing
and processing the results. Results are assessed using a student’s report in accordance
with the requirements outlined in the relevant section of the guide, as well as its
approval by the teacher. The purpose of the report defense is to evaluate the
competencies and skills acquired and mastered by the student within the course.



1 Discrete Fourier Transform as tool of the signal spectrum analyzing

1.1 Discrete Fourier Transform as result of standard transform revising

The purpose of Fourier Transform is to extract some information from a signal
(for example, an image) and to prepare it for a certain task, for example, filtering,
transforming, viewing or transmitting.

Signal/noise ratio may be rather small, so the signal may need to be
preprocessed. Preprocessing can be done in the Spatial or in the Frequency domain
using a variety of techniques. Fourier transform is the main instrument for processing
in the Frequency domain.

Many algorithms based on Fourier transform can be applied for processing in the
Spatial domain as well.

Wavelet, Cosine, Walsh, Hadamard, and other famous transforms have the
Fourier transform properties.

Fourier transform is the fundamental procedure of harmonic analysis..

An unlimited non-periodic signal g(#) (Figure 1.1a) in the time domain ¢ is
transformed by a standard (also referred to as analog) Fourier Transform, which is
defined as an integral procedure:

S(f) = [ g(t)exp(=i (211) dt, (1.1)

where S(f) is the spectrum of the signal (Figure 1.1b), i is an imaginary unit, f is
the frequency (Hz). Spectrum S(f) is limited by the interval [-fiax+fmaxls fmax 1S the
largest frequency in the spectrum.

Inverse Fourier transform restore the signal g(z):

2(t) = [ S(fexpli 2T) df (1.2)

Digital processing approach can be implemented only to sampled signals,
therefore it is necessary to take the following steps.

1. Sampling the signal g(¢) in the Spatial domain by Space At (also referred to as
discrete time quant ) (Figure 1.1a)

2. Limiting the signal g(¢) by a time sampling period T (Figure 1.1a)

3. Sampling the spectrum S(f) in the Frequency domain by Space Af (discrete
frequency quant) (Figure 1.1Db).

4. Limiting the spectrum S(f) by a frequency sampling period F (Figure 1.1b).

These actions result in two arrays: g(k), k= 1..N is the array of the sampled signal
(Figure 1.1c¢) and S(n), n = 1..N is the array of the sampled spectrum (Figure 1.1d).
Here N is the number of samples in the arrays g(k) of the sampled signal g(z) and S(n)
of the sampled spectrum S(f).
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Figure 1.1 — Limitation and sampling of the signal and its corresponding spectrum: a)
unlimited non-periodic signal; b) spectrum; c) array of sampled signal; d) array of
sampled spectrum

The fundamental formula of the sampling processes is as follows:

Ats2f] : (1.3)

where At is the time quant of the sampled signal g(¢). This formula is derived
from Nyquist-Shannon-Kotelnikov theorem. According to the theorem, signal
information is not lost after sampling if the time quant Ar meets the condition (1.3).
Parameter f,,x of the theorem has a special name: Nyquist frequency of non-sampling
signal g(t).

Besides, the sampling process is described by formulas:

-1
Af—T, (1.4)
-
F=, (1.5)
f;nax :g’ (16)
F=(N-1)4Af, (1.7)
_I
N—2+1. (1.8)

The array g(k) of the sampled signal can be transformed into the array S(n) of the
spectrum by Discrete Fourier Transform (DFT) which is defined as:



S(n) = Nz_lg(k) Exp(—i inj%j (1.9)

k=0
Inverse Discrete Fourier Transform (IDFT) restores the array g(¢) of the sampled
signal:

N-1
g(k)=i@5(n) @Xp(i Qnd@j (1.10)
N n=0 N
In formulas (1.9), (1.10) g(k), k= 1..N is the array of the sampled signal g(z), and
S(n), n = 1..N is the array of the sampled spectrum S(z).
1.2 Sampling the Signal in the Spatial (time) Domain by the Time Quant

The sampling process transforms the features of the signal and the spectrum.
Firstly, the spectrum is transformed into an unlimited process on the frequency
scale (Figure 1.2a). As result, the limit of f,,, becomes the infinity [1, 2] :

lim(f, )=c. (1.11)
) IS O IS¢l ¢
F . F -
ﬁ é < 7
fmax_’ 0o

'fmax d fm ax fr

Figure 1.2 —Transformations spectrum as result of sampling: a) f.x of sampling
spectrum; b) sampling spectrum

Therefore, space At cannot be calculated according to the Nyquist-Shannon-
Kotelnikov theorem (1.3) in digital processing.

Secondly, the sampled signal g(k) and the spectrum S(n) are processed as
periodic objects. In digital processing the sampled signal has the period equal to the
sampling period 7, and the sampled spectrum has the period equal to the sampling
period F, respectively (Figure 1.2b).

The changes considered result in an error in digital processing. The result of the
digital processing is distorted due to the fact that the adjacent periods of the discrete
spectrum are combined and deformed (Figure 1.3). This phenomenon is called aliasing
[3,4].
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In signal processing applications the time quant At is calculated by the formula:

|S(ﬂ| A
1SEN
1 NOI7 < F s
m% \\
1 ( \ Y/ A
A / \ ! \
{ 4 \ 4 {
A SV \ 7 ‘
——” S a \/ PR ‘xh_-
0
N

Figure 1.3 — Aliasing error explaining

AtZE, (1.12)

where f, 1s the Nyquist frequency of the sampled spectrum.

Frequency f, fixes the point of the lager aliasing (Figure 1.3). Then f, can be
defined as:

At =—, (1.13)

where F is the sampling period of the spectrum.
The power of aliasing is measured by the coefficient K,;, which is defined as:

_[scr)

1~ ) 1.14
= Is0) (1.14)

where S(f,) 1s the value of the spectrum if the frequency is equal to the Nyquist
frequency f,, of the sampled spectrum, S(0) is the value of the spectrum at the
frequency f=0.

If the spectrum S(f) of the signal at the frequency f'= 0 has value S(f) = 0, then we
recommend using the largest value of the spectrum S(f) at the frequency f closest to
f=0.

The main steps of the calculations are:

- choosing the acceptable value of the coefficient Ky;

- calculating the Nyquist frequency of the sampled spectrum f, as the root of the
equation

20F
20[I]g(Ka,)=BEI]g[ ng+c, (1.15)

c

-calculating the proper time quant At using the formula (1.12).

11



In Equation (1.15) B and C are coefficients, f. is the cutting frequency.

The cutting frequency f. 1s the point of interest on the frequency axis of the
graphic spectrum S(f) in the logarithmic decimal scale.

The cutting frequency f. is defined by a 2-step algorithm.

1. The graph of the half spectrum S(f) for f > 0 (Figure 1.4a) is re-plotted in
another scale. Argument axis becomes the decimal logarithm of frequency Ig(f) , where
as the function axis becomes the spectrum module [S(f)| in decibel units according to
rule (Figure 1.4b)

_ |S(HI
|S(f)|dB—20D]g(— , (1.16),
|S(0)]
where S(0) is the value of the spectrum at the frequency f =0.
a) b) IS(®|.dB}
150 lg(f) (/)
q 0 2 »

\
\

Asymptote

0 f,I:IZ

Figure 1.4 — Cutting frequency calculation
2. The graph of the spectrum module [S(f)| in decibel units has a curve part and a
pseudo-line part. The line asymptote of the pseudo-line part and the argument axis 1g(f)
have a point of intersection (Figure 1.4b, dashed line). This point defines the logarithm
of cutting frequency 1g(f.).
Angle o of asymptote is calculated by the formula:
dB

tan(a )=20lr —, (1.17)
dec

where r is the rank of the spectrum.

The coefficients B,C in equation (1.15) and formulae for calculating the cutting
frequency f. are the functions of the rank r of the spectrum (Table 1.1).

In Table 1.1 1, is the duration of the impulse:

T, =1, 1, (1.18)
where #; and f, indicate the time of the beginning and the end of the impulse (Figures
1.5,1.6,1.7)

Parameter t. 1s the effective duration of the unlimited non-periodic signals
(Figures 1.8,1.10,1.11).

Rank r of the spectrum is determined at the first step of the calculation to meet

12



the features of the signal g(r) (Table 1.1).
Table 1.1 — Coefficients B,C and formulae for calculating the cutting frequency f.

Signal g(t) features | Spectrum Cutting frequency fc
rank
Single Impulse |Aperiodic
no B C |or Periodical [infinite
signal g(7) impulse
signal g(7)
1 2 3 4 5 6
Discontinuity of the 1 -19,5 | 8,58 1 1
signal nt 2t
(Figures 1.5,1.8) g ‘
Discontinuity of the 2 -39,55| 14,61 1 1
signal derivative il ATt
(Figures 1.6,1.10) g ‘
“Smooth” signal 3 -57,62| 18,69 1 1
(Figures 1.7,1.11) 3Nk, 61T,
A, 80 b)a &)
<>
0 (/ 2 0

 —
t] T, t t] I 12 t
p

Figure 1.5 - Discontinuity of the signal (circle marks): a) periodic signal, b) impulse

a)u TO b) A g([)

<>

i T, 4 t 2 t

Figure 1.6 — Discontinuity of the signal derivative (circle marks): a) periodic signal,
b) impulse

13



a) b)
gt) 10 8(t)
<
k \ vaar
0' 2] i — 5
4 t t] 12t
D T
Figure 1.7 — “Smooth” signal: a) periodic, b) Impulse
80 6., o(f)
> A < 3T,
t
t
-oo.<-- 0 T ;O
— — 00
\ —>
0/ t
Figure 1.8 — Discontinuity of the Iﬁigu're. 1_-9 —.DiSCOHFiHUitY of one-
infinite signal (circle mark) side infinite signal (circle mark)
g g()
6-7, 4 6-T,
—> < N <
— 00
— — 00
47 — > — — >
00 <— d t -00 <— 0 1A
Figure 1.10 — Discontinuity the Figure 1.11 — “Smooth” infinite
derivative of infinite signal (circle signal

mark)

Thus, the calculation of the time quant Ar of the sampling signal g(7) includes 5
stages.

1. Choosing the coefficient K, of the acceptable aliasing

2. Analyzing the graph of the signal g(¢) and choosing the rank r of the spectrum.

3. Calculating the cutting frequency f. using the formulae in Table 1.1 and
choosing the values of coefficients B,C.

4. Calculating Nyquist frequency f, as the root of the equation (1.15).

14



5. Calculating the time quant Ar using the formula (1.12).

1.3 Previous value of the Signal Sampling Period

The signal sampling period T (also referred to as the interval of signal limiting) is
defined in two stages: first, a preliminary value of 7% is calculated based on the
required value Af of the sampling interval in the spectrum; second, the preliminary
value T% is updated according to the type of signal.

Preliminary value of 7% of the signal sampling period is determined by the
formula following (1.4):

T%=—1 (1.19)

of
where Af is the sampling interval of the spectrum, which actually determines the
resolution in the frequency domain. As a rule, the required resolution Afis set based on
the envisaged application of the signal processing procedure for a specific project.
Formula (1.19) defines the minimum value of the signal sampling period; if a
smaller value is selected, part of the spectrum will be lost as a result of DFT. This
phenomenon is referred to as “picket-fence-effect” [5].

1.4 Signal Sampling Period of Infinite Aperiodic Signals. Leakage
phenomenon

The updated sampling period 7 has to meet the 3 conditions as follows:

T=mlt,, (1.20)
m=6, (1.21)
m=3, (1.22)

where T% i1s the preliminary value as defined (1.19), T. is the effective duration of
infinite aperiodic signals (Figures 1.8,1.10,1.11,1.11).

Condition ((1.21) is used for the unlimited signals specified on the time interval
(-00,+0), and expression (1.22) is used for one-side unlimited signals specified on
[0,+00), for instance, as in Figure 1.9.

Limiting the signal g(#) by the sampling period T results in the generation of
some discontinuity in the border points of the interval 7T (Figure 1.12a). These
discontinuities distort the DFT result: firstly, decreasing the value of the samples in the
low-frequency part of the spectrum and, secondly, generating parasitic oscillation in the
high-frequency part (Figure 1.12b). The spectrum in the Figure is shown by a solid line
before and a dashed line after the signal limitation. This phenomenon of oscillation
generation in the spectrum is referred to as leakage [6].

To reduce the error due to the leakage, it is necessary to smooth the
discontinuities of the signal by multiplying the original signal g(r) by the special
"window" function W(7):

g(1), = g(t) [(W(1), (1.23)

15



where g(t),, 1s the smoothed signal without any discontinuity at the border points of the
limiting interval T (Figure 1.12a, dashed line).

1) A A
Discontinuity Spectrum Spectrum
: . Oscillations Oscillations
Discontinuity
\/ z/
: > /’~\ll L T A WA >
T | t f
< v

Figu
re 1.12 — Discontinuity of the signal and the spectrum oscillations as a result of
limiting by interval T

The “window” function is a smooth function whose values are close to one in the
middle of the interval 7, and gradually decrease to zero at the edges of the interval.

There are many "window" functions, however, the simplest of them are the
Tukey "window" , which is a segment of a sine function on the edges of interval 7, and
is close to the value of one in the middle part (Figure 1.13a) and the Hann (Hanning)
"window", roudly corresponding to the function cos’(x) — Figure 1.13b. Hann
“window” is more effective than the Tukey “window" to eliminate parasitic oscillations
in the high-frequency part of the spectrum, however, it adds distortions in the low-
frequency part.

a) w4

\ 4

ol ¢

Figure 1.13 — Tukey and Hann “windows”

e}

1.5 Sampling Period of the Periodic Signal

The updated sampling period T has to meet the 2 conditions as follows:

T =mlTO, (1.24)
where 7% is the preliminary value ss defined by (1.19), 70 1s the period of the signal
g(t) (Figure 1.14), m is integer.

It is important that the number m of periods TO is integer. Ignoring this condition
will lead to a DFT error, because in that case the sampled signal would be processed as
a periodic object on the sampling period 7. It will generate some additional

16



discontinuity of the sampled signal. (Figure 1.14b).

a) a g(t) )4 g(1) Discontinuity
T T

“\:;__\\/’_“:/" //_/”_"\vkiﬁﬂi:\«

v
\

70 70

Figure 1.14 — Choosing sampling period T of periodic signal T

1.6 Sampling Period of a Single Impulse. Zero padding approach

The updated sampling period T has to meet the 2 conditions as follows:

rzt, (1.25)
where T,=1,-, 1s the impulse duration (Figures 1.15,1.16).
A

gt) \ &)

»
>

0 1 € > t
t 1, . 12
Figure 1.15 — First option of the Figure 1.16 — Second option of the
chosen sampling period chosen sampling period

Condition (1.25) has two options.
Firstly, if the values g(#,),g(#,) of signal in edge points #; and #, meet to condition

(for example, Figure 1.15):
g(t)g(12) <0, (1.26)
the sampling period T has to be chosen as equal to the impulse duration T, ((unless it
mismatches the rule (1.19)):
T=t,, (1.27)
Secondly, if the values g(#,),g(#;) of the signal in the edge points #; and t, meet
the condition:
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gt)lg(2)>0, (1.28)
the sampling period 7 is to be assembled of two parts. The first part of the signal array
is the sampled impulse, and the second part is to be filled with zero samples (Figure
1.16). This method is referred to as “zero padding” [7].

The sampling period 7T in the zero padding procedure is calculated by the
formula:

T, T,
T=TP+7’OI-T=TP+T' (129)

If zero padding is ignored, the result of DFT will be highly distorted.

Ignoring the zero padding condition will result in a DFT error, because in that
case the sampled signal will be processed as a periodic object on the sampling period 7.
As a result, the natural discontinuity of sampled signal will be radically distorted —
compare Figure 1.17 and Figure 1.18.

A &) Nature
T Discontinuity

. - -
N 7\ VAN
\ 4 \ 4 \
N / N 4 \
\ 4

4 \
\ Discontinuity is
> disappeared
4

Orz‘T >l 1]

Figure 1.17 — Zero padding rule is ignored

2 8(1) T Nature Discontinuity
is restored

-~
/7 \ *
/\ R S
\
, /

OtZ‘ ’;1' t

Ty

Figure 1.18 — Sampling period T matches the Zero padding rule

1.7 Calculation the Number N of the Samples in the Sampling Period 7.
Rules of the Fast Fourier Transform Algorithm

The number N of sampling is defined in three stages: first, a preliminary value of
the full number N% is calculated based on the required value T of the sampling period;
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second, the preliminary value N% is updated according to the rule of fast Fourier
algorithm; third, the number of sampling in the impulse part of the signal is calculated.
1. The preliminary number N% of sampling is calculated by the formula:

N% =1+1, (1.30)
At

where T is the sampling period, At is the time space (time quant).
2. The updated number N of sampling is calculated according to the 3 rules of the
Couley-Tyukey algorithm of the Fast Discrete Fourier Transform (FDFT)[8]:

N =>N%, (1.31)
N =2" (1.32)
N > 21, (1.33)

where M integer. For example, if N% = 78, is to be chosen 27=128, but not 20=64.
1.8 Calculation the Number of Samples in the Signal Array

The array of the infinite aperiodic signal has the number NI of samples, the same
as the number N in the sampling period. The number of the samples LB corresponding
to 1ts effective duration T. 1s calculated as:

LB =",

At
where T, 1s the effective duration of aperiodic signal, At is the space of sampling (the
time quant)

The number of samples LI corresponding to the duration T, a single impulse is
found as:

(1.34)

LI = Y (1.35)
At '
where At is the space of sampling (time quant)
The periodic signal has addition parameter SKV referred to as period-to-pulse
duration ratio:

SKV = T—O, (1.36)
Tp
where 70 is the period, T, is the duration of the impulse (Figure 1.5).
The number of samples NI corresponds to one period 70 and the number LI

corresponds to the duration T, of the impulse in one period:

NI =ﬂ, (1.37)
m
:ﬂ’ (1.38)
SKV

These formulas are to be used to calculate the number of samples in an array of
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the signal if the number of samples N in the sampling period of the signal is to be
calculated.

1.9 Restoration the conventional viewing of the spectrum. Mirror
Phenomena

A feature of the DFT is the unconventional placement of samples in the resulting
array of spectrum. In the conventional form, the spectrum values corresponding to
negative frequencies are located to the left of frequency f = 0, and the values for
positive frequencies are located to the right (Figurel.19a).

NI
2) . ®) Is()
’/Iv/"\»\‘ <
f n
foo 0 1 AR+l N
 —

Figure 1.19 — Mirror phenomena in spectrum array

In the spectrum array, as a result of the DFT, the placement of the spectrum
samples is different: the spectrum samples corresponding to negative frequencies are
located to the right relative to the samples for positive frequencies (Figure 1.19b). This
feature is called the mirror phenomenon.

Thus, convention view will be restored if the left and right parts of the spectrum
array S(n) is rearranged (see the arrow in Figure 1.19b)).

1.10 Example of an exercise

Example of the task
%$Digital signal processing in optoelectronics
%$Laboratory Exercise 1 (version 3)
$Fundamental properties and main equation for calculate
the parameters Discrete Fourier Transform

o\

o\

General Instructions

o\

o\

l1.Calculate the parameters of Discrete Fourier Transform
procedure

% 2. Create the program code (in MatLab technology) and
execute this procedure.
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o\°

3
3
3
(
3
3
3
3
3

Getting the following graphics
Sampling Signal in Spatial Domain
Updating Sampling Signal in Spatial Domain

.1.
2.
optional)

.3. Amplitude Spectrum in Frequency Domain

4. Phase Spectrum in Frequency Domain

5. Mirror phenomena correction of Amplitude Spectrum
.6. Mirror phenomena correction of Phase Spectrum

7. Energy Spectrum

Objectives
Signal g(t) 1is the infinite aperiodic signal ZUSA

A 81
AM

%$Signal parameters

o\

o\

o o o® o° o° o P oA° o° o° o°

o\

Effective duration 1., sec 25
Recognition df in frequency domain, Hz df =< 0,025
Coefficient Kal "aliasing" 0,00023

Calculate the parameters and fill the gaps

1. Spectrum rank r = [ 3 1
2. Cutting frequency, Hz fc = [0.0021]
3. Nyquist frequency of the Discrete Fourier
spectrum fg = [ 0.035]
4.Space sampling (discrete time quant), sec
dt = [ 14,28 ]
5.Preliminary sampling period T% , sec T% = [ 40 ]
Updated sampling period T, sec T = [ 150 ]
Preliminary number of samples N = [ 10.5 ]
Updated number of samples N = [ 16 ]
8. Discrete frequency quanta, Hz Af_ = [0.0067]
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% 9. Period of Discrete Spectrum, Hz F = [0.1067]

Calculation the parameters of DFT (Example)
1. Spectrum rank r definition (Table 1.1, column 1).
The signal is a “smooth” function, there is no discontinuity of the signal or
discontinuity of the derivative ¢. Therefore, spectrum rank r = 3.
2. Calculation of the cutting frequency fc (Table 1.1, column 6, row3 ):

f.= 1 __1 =0,001819 Hz
6[mlx, o625

3. of Nyquist frequency of the Discrete Fourier spectrum fg .
From the row 3 of the Table 1.1:
B =-57,62 C = 18,69
The solution of the equation (1.15):

200g(K,,) =B EI]g[z?fg ] +C

20[1g(0,00023) —18,69

1g(2 = +1g(0.001819) = -1,153
2LF,) o g )
-1,153
fe = 10 =0,035Hz
4. Definition of a space sampling (time quant) of the signal, formula (1.12):
At = ! = ! =14,28 sec
20F, 200,035
5. Calculation of the preliminary sampling period 7% of limiting, formula (1.19):
1 1
=—=——=40sec
Af 0,025
6. Calculation of the updated sampling period 7, conditions, ((1.20, (1.21).
T>T%
T = 6%*r,

T =6%25 =150 sec
7. Calculation of the preliminary number N% of the signal and spectrum samples,
formula (1.30).
_ T _ 150
T A 1428
8. Update the number N of the signal and spectrum samples, conditions, (1.31),
(1.32), (1.34):

+1=11L5=12

N>N% and N>8
N=2M
N=16
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9. Calculation of parameter LB of the signal array, formula (1.34):

=Lo D 9529
Ar 14,28
10. Calculation of discrete frequency quant Af of spectrum, formula (1.4).
If 1o =6,67007° Hz
T 15
1. Calculation of the period of the Discrete Spectrum F formula (1.7)

F = (N-1)-df = 15-6.67-10°=0,1 Hz
Notes: F' cannot be less than 2-f,.

Example of program code; Matlab technology [9]
1. Array of the sampling signal.
$Sampling signal array in spatial domain
$Program—Function ZUZA is used (look at chapter
“Appendix”)
IB = 2
N = 16
AM = 3.
A = ZUZA (N, AM, LB)
Graphic of the sampling signal A (Figure 1.20).
stem (A)
pause

o\°
N

D?TI | IT

o &0 100 150

Figure 1.20 — Signal sampling array

%3. Creating the array of the Tukey “window”.

W = TUKEY (16)
%4 . Avoiding Leakage phenomenon:

B = A.*W

Notes: For the impulse signal the ZEROF function is preferable.

For a periodic signal the SIGM should be implemented

%5. Graph of the signal after “window” approarch.
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stem (B)
pause
%6. Discrete Fourier Transform:
X = fft (B)
%7. Amplitude Spectrum in the Frequency Domain:
D = abs (X)
%8. Phase Spectrum in the Frequency Domain
E = angle (X)
%7. Graphs of the Spectrum in Frequency Domain and Phase Spectrum in the
Frequency Domain (Figure 1.21):

stem (D)
pause
stem (E)
pause
15 15 :
10 10 X[ X[ :
EIEI 2 T I ? ’!g @ g‘ W’EI @ 1”5 ? ‘Il T 16 -EIEIE h-EImEldh ?-EIIZT o TDTDZ? ADEAA 0.06
Figure 1.21 — Amplitude spectrum Figure 1.22 — Mirror corrected

Amplitude spectrum

%8. Mirror correction of Amplitude and Phase Spectrums
FA = fftshift (D)
EA = fftshift (E)
%9. Graphs of the Amplitude Spectrum and of the Phase Spectrum after Mirror
correction (Figure 1.22, 1.23):
stem (F,FA)
pause
stem (F, EA)
pause
9%10. Energy Spectrum (Figure 1.24)

EN = ENG(FA,16)
stem (F, EN)
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Figure 1.23 — Mirror corrected Phase

transform?
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spectrum
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o
006

Test questions
1. What is the difference between standard (analog) and discrete Fourier

004

-0.02

o

Figure 1.24 — Energy spectrum

2. Explain what is the Nyquist frequency of the sampled spectrum?
3. Explain what is aliasing phenomena?
4. What approach can be used to eliminate the influence of leakage?

5. What is the main rule of the Fast Fourier transform algorithm?

6. Why does the periodic signal sampling period have to consist of an integer

number of periods?

7. For which kind of signals should the zero padding be implemented?
9. What is the reason for using the “window” approach?
10. Explain why it is necessary to calculate sampling period in two stage?
11. Tick the corresponding boxes for DFT operation for these two signals

1

09}

08}

07

06

05}

04f

03

02
0

-02

04

-06

35

Spectrum rank Actions to avoid Phenomena DFT
2 3 «window» Zero padding Nothing
2 3 «window» Zero padding Nothing
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2 Discrete Convolution in the Spatial Domain as a procedure of the Signal
Transform by Linear Space-Invariant System

Digital Discrete Convolution is an approach to computer design, research, and
simulation of Linear Space-Invariant (LSI) systems. Besides, discrete convolution is a
digital processing procedure that is based on the transformation of a signal by a linear-
space invariant system. For example, a discrete digital convolution is the main
procedure of digital filtering by non-recursive filters [1,2].

2.1 Discrete Convolution as a result of standard transform revising

Transformation of an input signal g(¢) into an output signal y(r) by LSI system is
defined by standard convolution:

y(0) = [g(0) th(t - 1) Wit (2.1)

where g(7) is an input signal in the Spatial (time) domain; y(¢) is the output signal in the
Spatial domain, A(f) is the impulse response function of the LSI, it describes the LSI
properties (Figures 2.1).

y

LSI system —
g(") y(®)
h(t)

Figure 2.1 — Transformation the input signal by LSI
The impulse response function of LSI is output signal if input equals to Dirac
delta function, or A(t) = y(¢) if g(r) = d(¢) [10 ].
In digital processing a convolution procedure transforms a sampled input signal
g(?) into a sampled output signal y(¢).
In the Spatial domain a Discrete Convolution is the sampled revising of the
integral convolution (2.1):

y(m) =Y. g() Th(m =1, 2.2)

where g(7) is the sampled signal g(7) by space Ar (discrete time quant At ) in the Spatial
domain; A(i) - is the sampled impulse function A(¢), y(m) is the sampled output signal, m
is number of sample in the array of the output signal (Figure 2.2)

— | Discrete Convolution o
g() y(m)
h(i)

Figure 2.2 — Transformation the sampled input signal by discrete convolution
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2.2 Sampling the Input Signal and the Impulse Response Function by the
Time Quant

Calculation of the space At (time quant) of sampling in a discrete convolution
procedure concludes two stages.

1. The space At; of the sampling input signal g(¢) and the space Ar, of sampling
impulse response function h(f) are calculated according to th eDiscrete Fourier
Transform rules (Chapter 1.2).

2. The space At of the convolution procedure (2.1),(2.2) is chosen according to
the following rule:

At =min( At, ,At)), (2.3)

Ignoring this condition would result in the time scale mismatch phenomena.
Violation of the "duration of the input signal/duration of the impulse response " ratio
would result from this phenomenon.

2.3 Calculation of the Sampling Period of the Impulse Response
Function. Number of Samples. Fundamental property of Impulse Response
Function

The impulse response function A(f) as an operand of a discrete convolution can
be defined by only two kinds of functions:

- approximation of a single impulse (Figures 1.15, 1.16, for example);

- approximation ofan infinite aperiodic impulse (Figures 1.8,1.9,1.10,1.11, for

example).

Therefore, the sampling period 7, for impulse response function A(f) can be
calculated according to rule (1.27) if h(¢) is a single impulse and (1.20),(1.21) or
(1.20),(1.22) if h(z) 1s an aperiodic infinite impulse, respectively.

Number N, of samples in an array h(i) of an impulse response function
(Figure 2.2) is calculated by the formula:

T2
=22 4, 2.4
S.Y; 24

where At is the space (time quant) of a convolution procedure (see the formula (2.3)).
The impulse response function A(f) of LSI is the output signal if the input equals
Dirac delta function 6(¢). Therefore, according to th efundamental property of 6(z) [10]:

[h(e) G = [3(0) Gt =1, (2.5)
The discrete impulse response function has the same properties:

N

S hii) =1, (2.6)
i=1

where h(i), i = 1,...,N, are the samples of the impulse response function.
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2.4 Calculation of the Sampling Period of the Impulse Input Signal.
Number of Samples
The sampling period 7 for the impulse input signal g(¢) is calculated according
to formula (1.25).
The number N, of samples in the array g(i) of the input impulse signal
(Figure 2.2) is calculated by the formula:

S 2.7

.Y,
where At is the space (time quant) of a convolution procedure (see at the formula(2.3)).

Implementation of the algorithm convolution (2.2) in the space domain involves
3 main stages, which are executed in Matlab automatically [10].

1. Array g(i), i = 1,...,N, of the sampled input signal g(¢) is transformed into
array go(k), k= 1,...,(N1+2-N, - 2), where both N,-1 starting samples, and N,-1 final
samples have the zero value (Figure 2.3a, top part). N, is the number of samples in the
array h(l), [ =1,...,N, of response function.

Voo = I
g() %) —
/
h(_l)ll h(l)
1
N>-1 Nod /': .
roee o peeey— = =
1 N Ik 1
| |
l : 1: I ¢) Ne ’
' A h(-D) | !
Multi I'T _ I /L Aly(m)|
plicati | : |
| | |
on | shift | / | { {
— | i I
1 LAl L ..
N, N, ;1 N3

Figure 2.3 — Discrete convolution in the space domain

2. The array of the impulse response function A(/) is transform into the array A(-
[), see the solid and the dashed lines in Figure 2.3b, respectively.

3. Convolution according to the algorithm (2.2). In the first step, the samples of
the array h(-1), and the starting samples of the array go(k) are multiplied (Figure 2.3a,
bottom part). In the second step the results of multiplications are summed up. In the
third step this sum is transferred to the sample of the output signal array y(m). The
number of the sample m = 1. In the fourth step the samples of the array h(-/) are
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“shifted” by 1 number. These four steps are repeated, and the samples number m =
2,3,4... are calculated sequentially (Figure 2.3c). The computational process will be
terminated when the array A(-7) moves beyond the right finishing sample of the array
g(0).

As result of discrete convolution (2.2) the array y(m), m=1,...,N5 of the output
signal includes N5 samples:

N,=N,+N, -1, (2.8)
where N; N, are the number of samples in the arrays g(i) of the input signal and A(l) of
the impulse response function

2.5 Calculation of the Sampling Period of the Periodic Input Signal.
Number of Samples

If the input signal is a periodic signal, the convolution algorithm implemented in
Matlab technology creates error samples in the output signal array.

Let sampling period T be equal to one period T; of the input signal.

The number of sampling in the array g(i) of one sampled period of the input
signal is NI (i = 1,...,NI).

According to the Matlab algorithm, the array g(i), i = 1,...,NI of the sampled
period of the input signal is transformed into the array go(k), k= 1,...,(NI+2-N, - 2),
where N,-1 starting samples and N,-1 final samples have zero value (Figure 2.3a, top
part). N, is the number of samples in the array h(/), [ = 1,...,N, of the response function.

8 (T)/ To=T
Previous period <— > Next period

—0 o0
go(k) p
—

—0-0-0 T . L Jn Jn ) L d

NI

Added zeros : Iy : Added zeros
N>-1 - N>-1
2 L ACD N |2
a plicati} ~
on |
/1 shift i ,’1
— |
$~?4 IIITT 4 >
N:

Figure 2.4 — Discrete convolution of periodic input signal

However, the previous period and the next period of the input signals have been
set on the positions of the added zero samples. These periods will be damaged. As a
result, the samples in the output signal array will be incorrect.

The sampling period T, of the periodic input signal has to meet 3 conditions to
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avoid this error:

T,=plT,, (2.9)
p=3, (2.10)
T, =2IT, +T,, (2.11)

where p is integer, 75 is the sampled period of the impulse response function, 7 is the
period of the input signal (Figure 2.5).

The number of samples in the array of the output signal is calculated as:
N;=pINI+N, -1, (2.12)
where N3 is the number of samples in the array of output signals, NI is the number of
sampling in one period of input signal, N, is the number of samples in the array of the

impulse response function:
NI =E+1. (2.13)
At
If the sampling period 7} of the input signal has been chosen according to rules
(2.9), (2.10), (2.11), the array of the output signal includes correct samples — see
Figure 2.5, where p =3. Only N,-1 starting samples and N,-1 final samples in the array
of the output signal Y will be incorrect (Figure 2.6).

8(®) TO0
 SE— T,=3-T,
e
t
: NI | ko
|
: e :
|
| |
| |
| |
| |
| I
N2 ! N2

Figure 2.5 — Choosing the sampling period of the periodic input signal

A

N3

|
| Nyl
|

Np-1 N3-2N, -2

Figure 2.6 — Output signal for the periodic input signal
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The correct samples of the output signal array have to be cut into a separate array

y(m), m = 1,...,N, where N, is the number of correct samples in the output signal array
(Figure 2.7).

y(m) | |

LI

Figure 2.7 — True samples of the output signal

The number N, of correct samples in the output signal array is calculated by the
formula:

N,=N,-2[(N,-1)=p[NI - N, +1, (2.14)
where p is the number of periods of the input signal, NI is the number of samples in one
period, N, is the number of samples in the array of the impulse response function..

2.6 Calculation of the Sampling Period of th eAperiodic Infinite Input
Signal. Number of Samples

If the input signal is an aperiodic infinite signal, the convolution algorithm
implemented in the Matlab technology creates incorrect samples in the output signal
array. The reason for these errors is similar to that of a periodic signal (see paragraph
2.5).

The sampling period 7 of the input signal is selected according to the following
condition:

1,27, (2.15)
where T, is the effective duration of the input infinite signal, 7, is the sampling period
of the inpulse response function of the LSI system.

If 1. of the input signal meets the condition (2.15), the sampling period T of
input signal is calculated by the formula:

T =8IT1,, (2.16)
The number N; of samples in the array of the output signal is calculated as:
N,=8[LB+N, -1, (2.17)

where N, is the number of samples in the array of output signals, LB is the number of
samples that is equal to the effective duration of the infinite signal (see formula (1.34)).

If the sampling period 7 of the input signal has been chosen according to rules
(2.16) the array of the output signal includes correct samples — see Figure 2.5. Only N,-
1 starting samples and N,-1 final samples in the array of output signal Y will be
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incorrect (Figure 2.8).

The correct samples of the output signal array have to be cut into a separate
array y(m), m = 1,...,N, where N, is the number of correct samples in the output signal
array (Figure 2.8):

8 | T=6-7. | T,=8 1.
—> : | <
| |
| |
| t
| >
1 Ny-1 N>-1 N; k
' b !

Y Ar | :
ediliiih e
TNl Ne2WNeD) | Nyl |

|
N; '

Figure 2.8 — Output signal for an aperiodic infinite input signal

N,=N,-2[(N,-1)=8[LB—-N, +1, (2.18)
If T. of the input signal does not meet the condition (2.15) and T, < T3, a
symmetric algorithm of discrete convolution has to be used::

y(m) = Y (i) R (m =) (2.19)

Comparison of algorithms (2.2) and (2.19) results in the following rule: the
input signal parameters are to be calculated according to the formulas for calculating
the impulse response function, and the impulse response function parameters are to be
calculated according to the formulas of the input signal.

2.7 Example of exercise

Example of task
%$Digital signal processing in optoelectronics
%$Laboratory Task 2
$Fundamental properties and the main equation for
calculating the parameters of Discrete Convolution

o\°

o\°

o\°

General Instructions

o\

$For this laboratory exercise you have to calculate
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o\°

the parameters of Discrete convolution.

o\°

o\°

The transformation version is SPATIAL-DOMAIN
$CONVOLUTION

o\

%$Then generate the program code (in MatLab technology) and
execute this procedure.
$You will get the following graphics.
1. Sampling the Impulse Responce Function of the
Linear Space-Invariant System in the Spatial Domain
2. Sampling the Impulse Responce Function after
some transformation (optional) in the Spatial Domain
3. Sampling the Input Signal in the Spatial Domain
4. Sampling the Input Signal in the Spatial Domain after
additional Transformation (optional) in the Spatial
Domain
5. Sampling the Output Signal in the Spatial Domain
6. Sampling the Output Signal in the Spatial Domain after
the required Transformation (optional) in the Spatial
Domain

o® o° o° o o° A° o° o° o° o

o\

Input signal is the Impulse response function is
periodic triangle impulses the exponent
N — | h
________ AM
AM t t
1 N o 0 ° —>
Tp

o°

Input signal

Parameters: AM = 2, E =0

o\°

% Impulse duration T,, sec 0.05
% Period TO, sec 0.1
% Coefficient aliasing Kal 2.5e-4

o\°

o\°
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[o)

% Impulse response function

% Parameters AM = ?

$SEffective duration T,, sec. 0.029
$Coefficient aliasing Kal 0.01

% Exercises

% Fill the following gaps

%1. Spectrum rank for the Input Signal n0l = [2]
%2. Cutting frequency for the Input Signal, Hz

% fcl = [3.183]

%$3. Nyquist frequency of the Discrete Fourier spectrum for
the Input Signal fgl = [247.03]

4. Space sampling for the Input Signal (discrete time
quant), sec dtl = [2,0241e-3]

%5. Spectrum rank for the Impulse Response Function

% n02 = [1]
%$6.Cutting frequency for the Impulse Response Function, Hz
% fc2 = [11.8]

%7. Nyquist frequency of the Discrete Fourier spectrum for
the impulse Response Function, Hz

% fg2 = [1,727E3]
%$8. Space sampling for the Impulse Response Function
% (discrete time quanta), sec dt2 = [2,896e-4]
%9. Chosen optimal Space sampling for the Input Signal %
and the Impulse Response Function, sec dt = [2,896e—-4]
%10. Sampling Period of the Impulse Response Function, sec
T2 = [0,087
%$11. The number of the samples in the array of the Impulse
Response Function N2 = [301]
$12. Preliminary Sampling Period of the Input Signal,
sec T1% = [0,174]
%$13. Updated Sampling Period of the Input Signal,
% sec Tl = [0.3]
%$14. Number of samples in the interval T1 of the Input
Signal N1 = [1035]
%15. Number of samples for one period TO of the Input
signal NI = [345]
%16. Number of samples for one impulse by period
% LI = [173]
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o\°

17. Number of samples for the Output Signal

% N3 = [1336]
%$18. Number of the correct samples for Output Signal
S N4 = [736]

Calculation of the parameters of Convolution in the Spatial Domain (Example)
1. Calculation the optimal space sampling dt (discrete time quant dt)
According to DFT approach the discrete space sampling (time quant is calculated
(chapter 1.2).
1.1 Discrete time quant for an impulse by one period.
Impulse duration 1,=0.05 sec, space sampling is At; = 2,0241-10sec.
1.2 Discrete time quant for the impulse response function.
Effective duration 1.=0,0135 sec, space sampling is At, = 2,896-10"sec.
1.3 Optimal space sampling dt of convolution in accordance with the formula (2.3):

At = min{At,, At,} = 2,896-10sec

2. . Calculation of the Sampling Period 75 and the number of samplings N, for the one-
side infinite aperiodic impulse response function according to the formulae
((1.20),(1.21) and (2.4), (1.34):

T, =3-1.=3:0,029 = 0,087sec;

N, =0.087/2,896:10" + 1 = 301

LB =T1/At =0,029/2,896-10™*= 100

3. Calculation the Sampling Period 7 of periodic input signal g(¢) according to
formulae (2.9),(2.10),(2.11).

7% =2-T, + Ty=2-0.087+0,1 = 0,174sec

The choice is p =3

T,=3-Ty=3-0.1 =0,3 sec

4. Calculation of the number N; of samples of the periodic input signal g(¢) according to
formula (1.30):
Ny=Ty/At +1 =0,3/2,896:10" +1 = 1036

5. Calculation of the number NI of samples by 1 period and the number LI of the
impulse samples by the period according to formulae (1.36),(1.37),(1.38).

NI = Ty/At +1=0.1/2,896-10"" +1= 346

SKV=Ty/t,=0,1/0,05 =2

LI = NI/SKV =346/2 =173
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6. Calculation of the number N; of the output signal samples according to the formulae
(2.8),(2.12).
N3 = Ni+N,-1=1036+301-1 = 1336

7. Calculation of the number N, of correct samples in the output signal (formula (2.14)

).
Ny =N3-2-(N»-1) = 1336-2-(301-1) =736

Example of Matlab technology program code

1. Creating the array of the Impulse Response Function. Function EP.
Firstly, the amplitude AM of impulse response function is found.
This calculation is made several times
AM =1.0; LB = 100
H = EP (300, 2AM, LB)
sum (H)
The value AM is changed every time. The objective of this action is to find the
required value of the amplitude AM meeting the condition (2.6).
The resulting value AM = 0,0105 has been found.
Secondly, in the beginning of program code,the array of the Impulse Response
Function is generated (Figure 2.9). Function EP is used (see “Appendix”).
AM =0.0105; LB = 100
H = EP(301,AM, LB)
plot (H)
pause

1 1 1 1 1 1
0 50 100 150 200 250 300 350

Figure 2.9 — Impulse response function array

2. Creating the array of Impulse by one Period of the Input Signal.
A = SIG(173,72,72,2.0,0.0)
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plot (A)

pause
3. Creating the Array of the 3 periods of the Input Signal (Figure 2.10 ).
Function SIGM.

NI = 173, N1 = 1036, SKV = 2, M =3

G = SIGM(A,173,1036,2.0,3)

plot (G)

pause
4. Spatial-Domain Convolution. Creation the array YR of the Output Signal (Figure
2.11)

YR=conv (G, H)

plot (YR)

L . . L L
0 200 400 600 800 1000 1200

Figure 2.10 — Input signal array

5. The part of the array cut out of the region contains correct samples of the Output
Signal. Creating the correct Output Signal (Figure 2.12):

Y = SECTION(YR,1036,736,300)

plot (Y)

L L L | L L L
0 100 200 300 400 500 600 700 800

n n n L L "
0 200 400 600 800 1000 1200 1400

Figure 2.12 — Correct samples of
output signal
Test questions

Figure 2.11 — Output signal array

1. What is the difference between standard (analog) and discrete convolution?

37



2. Explain how to calculate the space At (time quant) in convolution algorithm?

3. Explain the reason of the errors in the Matlab convolution algorithm?

4. What approach can be used to find the correct part of the output signal if the
input signal is a periodic object?

5. What is the main rule of Fast Fourier transform algorithm?

6. What convolution parameters are calculated using the DFT approach?

7. What kind of system is simulated by the convolution approach?

8. Explain the fundamental properties of the impulse response function.
9. Tick the appropriate boxes for the signal transformed by LSI.

0 5 10 15 20 25 30 35

Input signal Impulse response function

Action Check-box

“Window” approach is implemented for the input signal

The sampling space At (time quant) of the input signal is equal to the
same space of the impulse response function

The number of samples in the input signal array is made equal to the
number of samples in the impulse response function array

Avoiding “mirror”, two halves of the output signal array are re
arranged

The array of the input signal includes several periods

Zero samples are added to the input signal array and to the impulse
response function array (avoiding the circular convolution)

The correct part of the output signal array is cut out

The number of sampling in the arrays of the input signal and the
impulse response function meet the condition “2 power M”, M is
integer.

“Window” approach is implemented for the impulse response
function or the input signal
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3 Discrete Convolution in the Frequency Domain as a procedure of the
Signal Transform by Linear Space-Invariant System

Digital Discrete Convolution in the Frequency Domain is an alternative approach
to computer design, research, and simulation of Linear Space-Invariant (LSI) systems
and non-recursive filters [1,2].

The difference between the convolution in the spatial domain and the
convolution in the frequency domain is the computational complexity of the procedure.
The speed of calculations using convolution in the frequency domain is definitely
greater than that of the calculations using convolution in the spatial domain. These are
the reasons for preferring convolution in the frequency domain for signal processing in
many applications.

On the other hand, signal processing errors when using convolution in the
frequency domain are greater than when calculating the output signal by convolution in
the spatial domain. Therefore, convolution in the spatial domain is used if the high
accuracy of digital processing is required [1,2].

3.1 Convolution in the Frequency Domain Algorithm

Signal processing by using the convolution algorithm in the frequency domain is
based on the fundamental property of Fourier transform. In accordance to this property,
the procedure of convolution of the two operands g(¢) and A(?) in the spatial domain is
equivalent to the product of the spectra S(f),H(f) of these operands in the frequency
domain:

[s(O e - Q= SOH(S) , (3.1)

where S(f),is the spectrum of the input signal and H(f) is the spectrum of the impulse
response function.

Discrete convolution in the frequency domain is the sampling view of the
algorithm (3.1):

Y(n)=S(n)[H(n) , 3.2)
where S(n) is the array of the sampled spectrum input signal g(¢), and H(n) 1s the array
of the sampled spectrum of the impulse response function, Y(n) is the array of the
spectrum output signal.

So a calculation of the transformed signal as the output of LSI system includes 4
stages as follows (Figure 3.1 ):

1. Calculation of the array S(n), n = 1,...,N of the spectrum input signal resulting
from DFT.

2. Calculation of the array H(n), n = 1,....N of the spectrum impulse response
function resulting from DFT.

3. Calculation of the array Y(n), n = 1,....N of the spectrum output signal
resulting from multiplication of the arrays S(n) and H(n).
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4. Calculation of the array y(m), m = 1,...,N of the output signal resulting from
the Inverse Fourier Transform (IDFT).

Convolution algorithm in the frequency domain has two main features:

- the arrays of the input signal g(i), the impulse response function /(i) and the
output signal y(i) have the same number N of sampling;

- the number N of samples in the arrays g(i), 4(i) and y(i) has to meet the rules
(1.30),(1.31),(1.32) of the algorithm of Fast Discrete Fourier Transform
(FDFT): N =2 power M, M is integer.

— 3 Discrete Convolution fo—_

g(@) y(m)
DFT A IDET
DFTﬂ
SG) s+ HG) = Y0

Figure 3.1 — Discrete convolution in the frequency domain

3.2 Convolution Periodic Input Signal in the Frequency Domain

1. The preliminary space At% of the convolution procedure is calculated
according to the rule (2.3).

2. Sampling period 7, for the impulse response function Ah(f) is calculated
according to the rules (1.27) if h(?) is a single impulse and (1.20),(1.21) or (1.20),(1.22)
if h(¢) 1s an aperiodic infinite impulse, respectively.

3. The sampling period 7; for the input periodic signal is defined by the
conditions:

T, =plT,, (3.3)

T,27,, (3.4)
where p is integer, T, is the sampled period of the impulse responds function, Ty is the
period of the input signal.

An example for p = 2 is shown in Figure 3.2.

4. Calculation the preliminary number N% of samples in the arrays of the input
signal, the impulse response function and the output signal:

T
N% =—+1. (3.5)
At

5. The updated number N of sampling is calculated according to the 3 rules
FDFT:

N=2N%, (3.6)
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N =2", (3.7)

N > 2" (3.8)
6. Updated space At of the convolution procedure is calculated as:
T
At =——. 3.9
N -1 G5
g(0) 70
< > N
—> <—
he) NI I

Figure 3.2 — Periodic input signal convolution

7. The parameters of the impulse by one period of the input signal are calculated
using formulas (1.36), (1.37), (1.38).

8. The number of samples LB corresponding to effective duration T. of the
aperiodic infinite impulse response function (Figure (3.2), dash line) is defined by the
formula:

TE

LB A (3.10)

The array h(i), i = 1,...,N is completely filled with its samples if the impulse
response function is an aperiodic infinite function.

If the impulse response function is a single impulse, only the part L/ of the array
h(i) 1s filled with its samples:

LI = Y (3.11)
At '
where T, is the duration of the impulse.
The other part of the array is filled with zero samples (Figure (3.2), solid line).
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3.3 Convolution Aperiodic Infinite Input Signal in the Frequency
Domain

Points 1 and 2 in the calculations are the same as those to the period signal
convolution (chapter 3.2).

3. The sampling period 7} for the input aperiodic infinite signal is defined by the
conditions:

T =pl1,, (3.12)
p26. (3.13)
T,2T,, (3.14)

where p is integer, T. is the effective duration of the infinite impulse responds function.
An example for p = 6 is shown in Figure 3.3.

(i) T
N
—> <
| t
wiy M ? i

Figure 3.3 — Aperiodic infinite input signal convolution

4. Calculation the preliminary number N% of samples in the arrays of the input
signal, the impulse response function and the output signal:

T
N% =—+1. (3.15)
At

5. The updated number N of sampling is calculated according to the 3 rules of
FDFT:

N2=N%, (3.16)
N =2", (3.17)
N >2Y" (3.18)

6. The updated space At of the convolution procedure is calculated as:
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A ! (3.19)
[ =—-. .
N -1
7. The number of samples LB corresponding to the effective duration T. of the
aperiodic infinite input signal (Figure 3.3, top part) is defined by the formula:
T
LB=—*, 3.20
As (3.20)
where T. is the effective duration of the aperiodic infinite input signal.
8. Point 8 corresponding to calculation of the parameters LB or LI of the impulse
response function is the same as that for the period signal convolution (chapter 3.2,
Figure 3.3, bottom part).

3.4 Convolution of a Single Impulse Input Signal in the Frequency
Domain

1. Space At (time quant) of the convolution procedure is calculated according to
the rule (2.3).

2. The number of samples LI in array g(¢f) of the impulse input signal is
calculated using the formula (1.27) — see Figure 3.4, top part.

3. The sampling period T, for the impulse response function A(?) is calculated
according to the rules (1.27) if h(¢) 1s a single impulse and to (1.20),(1.21) or
(1.20),(1.22) if h(¢) 1s an aperiodic infinite impulse, respectively.

g(@) I

> N
% &

N-LI

h(i) 1

N, NN, N l

Figure 3.4 — Alone impulse input signal convolution

4. The number of samples N, in the array A(r) of the impulse response function is
calculated using the formula (2.4) — see Figure 3.4, bottom part, the solid line refers to
the infinite impulse response function, the dashed line refers to the limited impulse
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response function.
5. The preliminary number N; of samples of the output signal is calculated
according to rule (2.8):

N;=LI+N, -1, (3.21)
where LI is the number of samples in the array g(¢) of the impulse input signal.

6. The number N; of sampling updated to the number N according to the 3 rules
of FDFT:

N=N,, (3.22)
N =2", (3.23)
N >2"1, (3.24)

where M is integer.

7. Part LI of array g(i) is filled with the samples of the impulse input signal. The
other part of the array is filled with N-LI zero samples (Figure 3.4, top part).

8. Part N, of array h(i) is filled with the samples of the impulse response function
as a limited impulse or an infinite impulse. The other part of the array is filled with
N — N, zero samples (Figure 3.4, bottom part).

Ignoring the points 5,6,7,8 would result in inter-period interference error or
circular convolution phenomena [11] and errors in output signal calculations.

3.5 Example of exercise

The example of the task is the same as in paragraph 2.7 regarding Convolution
in the Spatial Domain.
1. Calculation of the parameters At;, At, of Convolution in the Spatial Domain is
the same as in paragraph 2.7 regarding Convolution in the Spatial Domain.

At% = min{At,, At} = 2,896-10" sec

2. The sampling period 75 of the impulse response function is calculated in
paragraph 2.7 regarding Convolution in the Spatial Domain.
T, =31.=3-0,029 = 0,087 sec

3. The sampling 7 for the input periodic signal is defined by the conditions
(3.3):
T,=plT,and T, 27,
If Ty=0,1sec, T, =0,041 sec,p=1
As result, 77=0,1 sec

4. The preliminary number N% of samples in the arrays of the input signal is
calculated by the formula (3.8):
N% = T/At% +1=0,1/2,896:10 +1= 345

5. The updated number N of sampling is calculated according to the 3 rules of
FDFT (3.6),(3.7),(3.8):
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N=2" =512
6. The space At of the convolution procedure is updated using the formula (3.9):
At =T/(N-1) =0,1/511=1,957-10"* sec.

7. Calculation the parameters of impulse by one period of the input signal,
formulae (1.36), (1.37), (1.38):
SKV = Ty/1,=0,1/0,05 = 2
NI = N/p =N=512
LI=NI/SKV = 512/2=256

8. The number of samples LB corresponding to the effective duration T. of the
aperiodic infinite impulse response function is calculated by the formula (3.10):

LB=1JAt = 0,029/1,957-10* = 148

Example of the program code of Matlab technology
1. Firstly, the amplitude AM of impulse response function is found.

This calculation is made several times

AM =1.0; LB = 148

H = EP(512,AM, LB)

sum (H)
The value AM is changed every time. The objective of this action is to find the required
value of the amplitude AM meeting the condition (2.6).
The resulting value AM = (0.007 has been found.

Secondly, in the beginning of the program code the array of the Impulse Response
Function is generated (Figure 3.5). Function EP is used (see “Appendix”™).

AM =0.007; LB = 148

HO = EP(512,AM, LB)

plot (HO)

pause

0

L L L L L
0 100 200 300 400 500 600

Figure 3.5 — Impulse response function array

45



2. “Window” approach implemented

W=TUKEYS (512)

H =HO.*W
3. Creating the array of Impulse by one Period of Input Signal.

A = SIG(256,128,128,2.0,0.0)

plot (P1,A)

pause
4. Creating the Array of the 1 period of the Input Signal (Figure 3.6 ).
SIGM function.

NI = 256, N1 = 512, SKV = 2, M =1

G = SIGM(A,256,512,2.0,1)

plot (PG)

pause

5. Frequency-Domain Convolution. Calculation of the preliminary array YR of the
Output Signal (see chapter 3.1)

08

06

04r

02r

1 1 L L L
0 100 200 300 400 500 600

Figure 3.6 —One period input signal array

SG = fft (G)

SH = fft (H)

SY = SG.*SH

YR = 1ifft (SY)
6. Reducing the errors of the Convolution transform. Creating an array of the Output
signal without errors (Figure

Y = real (YR)

plot (Y)
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I
100

I I I
200 300 400

I
500 600

Figure 3.7 —Output signal array

Comparing the two options of the output signal in Figure 3.7 and Figure 2.12
shows that the convolution in the spatial domain creates some redundancy, due to the
in the frequency domain includes only one period.

Test questions

two periods of output signal formed. The output signal resulting from the convolution
convolution in frequency domain?

1. What is the difference between convolution in the spatial domain and
quant)?

2. Explain the features of the convolution algorithm in the frequency domain.
domain?

3. Explain the reason for the errors in Matlab convolution algorithm.

4. Why it is necessary to upgrade the value of the sampling space At (time

domain convolution?

5. What kind of system is simulated by the convolution approach?
6. What are the advantages and disadvantages of convolution in the frequency

7. Why is no correction of the mirror phenomenon required in the frequency
8. How to avoid the circular phenomena errors in the output signal array?
LSI (see Test questions in chapter before).

9. Tick the appropriate boxes in table by question 9 for the signal transformed by

S
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o
o
o 4
e}
" 4
= o]
12F <
11F

[
[
o
o
o
o
o
$
[
/ol

L 1
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%
5 2‘0 2‘5 3‘0
Input signal

50

Impul

150

200
se response function
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Conclusion

The methods for performing two fundamental procedures of digital signal
processing are considered: harmonic Fourier analysis and synthesis of linear invariant
systems. Discrete Fourier transform and discrete convolution are the bases for
designing and modeling electronic and optical linear elements.

The features of the transition from analog procedures to discrete algorithms are
analyzed. Computational and algorithmic methods are recommended to reduce the
errors of discrete procedures. Digital processing using the discrete Fourier transform 1is
found to be a direct change in the spectrum of the processed signal. The signal
transformation by a linear system is shown to be a discrete convolution (non-recursive
filtering) of a signal with a pulse characteristic of the filter. The described examples of
calculating the parameters and program code of discrete procedures in Matlab
technology will help in the practical application of the digital processing procedures
studied.
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Appendix
Basic operations and functions

Basic operations and functions

The following functions generate an array of the impulse signal

1. The array of the aperiodic infinite impulse

A function code is defined as follows:
A = NAME (L, AM, E),

where NAME is the name of the function;

A is the name of the generating array;

L is the number of samplings in array A;

AM is the amplitude or the value of the varied part of the signal;

E is the average level, or the value of the unchangeable part of the signal

1.1. Cosine to power 2 Impulse (cos*(x) or cos(x)*cos(x)). Figure A 1.1.
NAME of the function is CS2

AM

|
1 L
Figure. Al.1 Cosine to power 2 Impulse
1.1. Parabolic impulse. Figure A1.2.
NAME of the function is PARABOL

3

28

28

24

L L L L
1} a 0 15 20 25 30 35

Figure A1.2 Parabolic impulse
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1.3 Cosine impulse. Figure A1.3.
NAME of the function is CS

AM

| L
Figure A1.3 Cosine impulse

1.4 Trapezoid and Triangle impulses
NAME of the function is SIG.
The function code is defined as follows:
A = SIG(L,L1,L2,AM,E),
where L1, L2 are the numbers of the positions of the reference points for trapezoid —
see Figure Al.4.

AM

1 L, b L
Figure Al.4 Trapezoid and Triangle impulses

The parameter AM determines the “roof” size of the trapezoid, and the parameter
E determines the “basement” of the trapezoid.
Figure Al.4. corresponds to positive AM. For a negative AM the trapezoid is shaped
as « pressed through the roof ».
A triangle impulse would require L1 = L2 = L/2 - see Figure A1.5

AM |

Figure A1.5 Triangle impulse (option 1)
For a triangle impulse L1 = L2 = L — see Figure A1.6
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AM

1 ]_.1:]_.::]_.

Figure A1.6 Triangle impulse (option 2)
For a triangle impulse L1 = L2 = 1 —see Figure Al1.7

AM

Li—=1Ls-1 L
Figure A1.7 Triangle impulse (option 3)

2. Infinite aperiodic signals

The function code 1s defined as follows:
A = NAME (L, AM, LB)

where NAME is the name of the function,;

A 1s the name of the generated array;

L is the number of samplings in the signal array;

AM is the value of the amplitude, or the value of the varied part in the signal;
LB is the number referring to the effective duration of the signal;

Te

At

here T. is the effective duration of the signal;
At is the discrete time quanta (the space of the sampling)

LB =

2.1 Exponential impulse. Figure A2.1.
NAME of the function is EPN
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AM

‘
1 L

Figure A2.1 Exponential impulse

2.2. Inverse exponential impulse - see Figure A2.2
NAME of the function is EPNI

AM
| / —

Figure A2.2 Inverse exponential impulse

2.3 Impulse “Ringlet of Mary Agnese”. Figure A2.10
NAME of the function is ANEZI

/N

AM

1

Figure A2.3. Impulse “Ringlet of Mary Agnese”

2.4. “Ringlet of Mary Agnese” + Part of the Inverse exponent. Figure A2.4.
NAME of the function is ANEPM
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AM

Figure A2.4. Impulse “Ringlet of Mary of Agnese” + Part Inverse exponent

2.5 . Special exponential impulse. Figure A2.5
NAME of the function is EPSC

Am

Figure A2.5. Special exponential impulse

2.6. Exponential impulse. Figure A2.6.

NAME of the function 1s EP

AM

L

Figure A2.6 Exponential impulse
2.77. (1/2) part of the Gauss impulse - see Figure A2.7

Name of the function 1s GSS
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AM

1 L

Figure A2.7. (1/2) part impulse of Gauss

2.8. Harmonic signals. - Figure A2.8
Name of the function 1s GARM.
The function code is defined as follows:

A = GARM (L, TM, AM, E, FI)
= \AM
: =

1 L

Figure A2.8 Harmonic signal

where TM is the number of periods in an interval L;
FI is the phase angle (in radians). The parameters A, L, AM, E are similar to those
considered for other signals.

2.9 Impulse f(t) = (AM-t)/(t-t+a) - Figure A2.9
NAME of the function is DRF

—~—

Figure A2.9 Impulse f(t) = (AM-t)/(t-t+a)

3. Creating the array of the periodic signals
NAME of the function is SIGM
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B = SIGM (A, L, N, SKV, Ml)

where A is the name of an array containing 1 impulse. A is the input array;

L is the number of samplings in the array A;

B is the name of the periodic signal array (output array);
N is the number of samplings in the output array B;

SKV =1y

Tl’

here TO is the period (sec);

T, is the duration the impulse per one period (sec);
M1 is the number of the periods in the output array B.

The number N has to meet the condition:
N=(SKVIL)IMI1

The array of the original signal A is formed by the functions 1.1...2.7.
For example, let the original signal be an infinite periodic sequence of the

“cosine” impulse - see Figure A3.1.

T

™~

T, = 1.2 sec

»

TO = 1.5 sec

A

A

»
»

2*T0

Figure A3.1. Original infinite periodic sequence of the “cosine” impulse

It is necessary to generate an array including 2 periods of this signal. The

parameters of the signal are as follows.

The discrete time quanta is At = 0.0469 sec

1. Generation of a single ‘“cosine”

Appendix):

L = 1,/At = 1.2/0.0469 = 25.6 = 26

A = CS(26,1,0);
plot (A)
pause
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1 L

Figure. A3.1 Array of a single “cosine’ impulse

2. Generation of the two periods of the “cosine” signal array:
SKV=1.5/12=1.25
N =2*T0/ At = 2*1.5/0.0469 = 64
B = SIGM (A,26,64,1.25,2)
plot (B)
Result of the procedure is shown in Figure A3.2.

LN I

1 L N
Figure. A3.2 Periodic signal array

4. Function for create the array with “Zero padding” approach.
Name of the function is ZEROF.
B = ZEROF (A, L, N, LH)

where A is the name of the original signal array (input array) — see Figure A4.1;

L is the number of samplings in the array A;

B is the “zero padding” array (output array) — see Figure A4.2;

N is the number of samplings in the array B;

LH is the number of zero samples in the beginning of the array B. LH = 1 is
recommended.

A(L)

1 L
Figure. A4.1 Array of the original signal
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A(L) B(N)

| T T Oy o |
L FrrTrr1rrTr T

i
Figure. A4.1 “Zero padding” array

5. Function for creating WINDOW

5.1Tukey “window”.
The name of the function is TUKEY. Figure AS5.1

W =TUKEY (L)
where W is the array of the "window";
L is the number of samplings in the array W.

1 L
Figure. A5.1 Window Tukey

5.2 Hunn “window”.
Name of the function is HUNN. Figure AS5.2

W =HUNN(L)

1 L
Figure. AS5.2 Array of the HUNN window

where W is the array of the "window";
L is the number of samplings in the array W

5.3 One-side Tukey “window”.
The name of the function is TUKEYS. Figure A5.3
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w =TUKEYS (L)
W is the array of "1/2 window";
L is the number of samplings in the array W.

Figure. A5.3 Array of the TUKEYS window

5.4 One-side Hunn “window”.
The name of the function is HUNNS. Figure A5.4

W =HUNNS(L)
where W is the array of the "window";
L is the number of samplings in the array W.

1 L

Figure. A5.4 Array of the HUNNS window
5. Cutting a part of array
Name of the function is SECTION.

B = SECTION (A, L, N, LH)
where A is the name of an array of the original signal (input);
L is the number of samplings in the array A;

B is the array as part of the array A (output) — see Figure A6.1

N is the number of samplings in the array B;
LH is the number of the point in the array A after which comes the piece cut out

from the array A.
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Array B contains N points cut out starting from LH + 1 up to LH + N number
of points (Figure A6.2)

A(L)

Figure A6.1 Input array A(L)

B(N)

LH ' r

Figure A6.2 Array B as the part cut out of the array A
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Konsaxun Urope AnexceeBud

Digital signal processing. Basic procedures

Y4yeOHO-METOINUECKOE IMOCO0He

B aBTOpCKOM pemakuuu

Penakimonno-u3garensckuil oraen Y Husepcurera MTMO

3aB. PO H.®. I'ycaposa
IToanucano k neyaTu

3aka3 Ne

Tupax

OtnevaTano Ha pusorpade
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