
1

S. Normatov, P.V. Nesterov, T.A. Aliev,

A.A. Timralieva, A.S. Novikov, E.V. Skorb

PRACTICE-ORIENTED INTRODUCTION TO

MACHINE LEARNING: LINEAR REGRESSION,

DECISION TREE, AND SINGLE LAYER

PERCEPTRON MODELS

Saint Petersburg

2024

 2

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ

РОССИЙСКОЙ ФЕДЕРАЦИИ

УНИВЕРСИТЕТ ИТМО

S. Normatov, P.V. Nesterov, T.A. Aliev,

A.A. Timralieva, A.S. Novikov, E.V. Skorb

 PRACTICE-ORIENTED INTRODUCTION TO

MACHINE LEARNING: LINEAR REGRESSION,

DECISION TREE, AND SINGLE LAYER

PERCEPTRON MODELS

УЧЕБНО-МЕТОДИЧЕСКОЕ ПОСОБИЕ

РЕКОМЕНДОВАНО К ИСПОЛЬЗОВАНИЮ В УНИВЕРСИТЕТЕ ИТМО

по направлению подготовки 04.03.01, 18.03.01

в качестве Учебно-методическое пособие для реализации основных

профессиональных образовательных программ высшего образования

бакалавриата

 Санкт-Петербург

2024

 3

S. Normatov, P.V. Nesterov, T.A. Aliev, A.A. Timralieva, A.S. Novikov, E.V. Skorb, Practice-

Oriented Introduction to Machine Learning: Linear Regression, Decision Tree, and Single

Layer Perceptron models – СПб: Университет ИТМО, 2024. – 41 с.

Рецензент: Клюкин Илья Николаевич, кандидат химических наук, -, старший научный

сотрудник, Институт общей и неорганической химии имени Н. С. Курнакова РАН

This manual aims to provide some basic knowledge on Machine Learning algorithms for the

Infochemistry Scientific Center students. It is a practice-oriented tutorial which serves as

guideline for the beginners in their desire to build their own Machine Learning models. The

Database (DB) used in this work contains the energy values of chemical systems, obtained via

Quantum Chemical calculations. However, the protocol mentioned here not only applicable for

calculated data, but also for any type of tabular values (including experimental data). The

manual covers the main aspects of Machine Learning process, which include exploratory data

analysis (EDA), data preprocessing, training, validation, and visualization. The authors provide

some examples on three Machine Learning algorithms, namely: Linear Regression, Decision

Tree, and Single Layer Perceptron. These three algorithms are considered to be good starting

points (in that they are the least complex) in their respective classes: linear, tree-based, and

neural networks.

The manual can be useful for teaching Bachelor students of the “Infochemistry” educational

program at ITMO University and is within the modules of the following courses:

“Infochemistry”, “Artificial Intelligence and Machine Learning in Chemistry”.

ИТМО (Санкт-Петербург) — национальный исследовательский университет, научно-

образовательная корпорация. Альма-матер победителей международных соревнований

по программированию. Приоритетные направления: IT и искусственный интеллект,

фотоника, робототехника, квантовые коммуникации, трансляционная медицина, Life

Sciences, Art&Science, Science Communication.

Лидер федеральной программы «Приоритет-2030», в рамках которой реализовывается

программа «Университет открытого кода». С 2022 ИТМО работает в рамках новой

модели развития — научно-образовательной корпорации. В ее основе академическая

свобода, поддержка начинаний студентов и сотрудников, распределенная система

управления, приверженность открытому коду, бизнес-подходы к организации работы.

Образование в университете основано на выборе индивидуальной траектории для

каждого студента.

ИТМО пять лет подряд — в сотне лучших в области Automation & Control (кибернетика)

Шанхайского рейтинга. По версии SuperJob занимает первое место в Петербурге и

второе в России по уровню зарплат выпускников в сфере IT. Университет в топе

международных рейтингов среди российских вузов. Входит в топ-5 российских

университетов по качеству приема на бюджетные места. Рекордсмен по поступлению

олимпиадников в Петербурге. С 2019 года ИТМО самостоятельно присуждает ученые

степени кандидата и доктора наук.

© Университет ИТМО, 2024

© S. Normatov, P.V. Nesterov, T.A. Aliev, A.A. Timralieva, A.S. Novikov, E.V. Skorb, 2024

 3

Content

INTRODUCTION…………………………………………………………. 4

1 DATABASE……………………………………………………………... 6

2 EXPLORATORY DATA ANALYSIS………………………………….. 7

 2.1 Confidence Intervals…………………………………………………. 8

 2.2 Distribution Histograms……………………………………………... 11

 2.3 Correlation Matrix…………………………………………………… 14

 2.4 Statistical Significance (P-values)…………………………………… 16

 2.5 Box-and-Whiskers…………………………………………………… 17

 2.6 EDA: Results………………………………………………………… 20

3 MACHINE LEARNING………………………………………………… 21

 3.1 Data Preprocessing and Splitting…………………………………….. 21

 3.2 Model Building and Visualization…………………………………… 22

 3.2.1 Linear Regression……………………………………………… 23

 3.2.2 Decision Tree…………………………………………………... 25

 3.2.3 Single Layer Perceptron………………………………………... 32

 3.3 Machine Learning: Results…………………………………………... 41

REFERENCES…………………………………………………………….. 43

 4

INTRODUCTION

Machine Learning is amply applied in the field of Computational Chemistry

since it can make instant and accurate predictions of values, which describe the

behavior of chemical systems. For example, Quantum Chemical calculations,

depending on the level of theory, offer the highest accuracy currently available,

but on the other hand they can take from weeks to months to complete even on

supercomputers [1,2]. Ab Initio Molecular Dynamics, another type of

Computational Chemistry, although considered to be the best technique to model

and predict the evolution of chemical / biochemical systems over time, can be

actually much more computationally demanding, since the calculations are made

for each frame of the simulation [3]. Time is the main factor that limits the

application of this resource-intensive computational techniques. Machine

Learning algorithms not only have advanced the Computational Chemistry

techniques in terms of time (MLIP [4], ∆-DFT [5] etc.), but also in terms of system

design. AlphaFold, currently recognized as the best representative of this kind, is

AI-based software that accurately predicts the three-dimensional structures of

proteins based solely on 1their amino acid sequence [6]. The Royal Swedish

Academy of Sciences awarded the Nobel Prize in Chemistry 2024 to the authors

of the AlphaFold “for computational protein design” and “for protein structure

prediction” [7]. All the above advances highlight the importance and the

promising use of Machine Learning algorithms in the field of Computational

Chemistry.

This manual aims to provide some basic knowledge on Machine Learning

algorithms for the ITMO University students. It is a practice-oriented tutorial

which serves as a guideline for the beginners in their desire to build their own

Machine Learning models. Hence, readers are going to address multiple code

snippets and plots across the manual, for which authors will provide detailed

explanations in the corresponding sections. Besides, files with the codes have

been properly structured and documented, which would make the learning process

more comfortable and intuitively clear to comprehend. For educational purposes,

the authors favored using Jupyter Notebooks (“.ipynb”) over standard Python files

(“.py”) within Visual Studio Code (VSCode) due to the flexibility of the former

and their ability to make document-like notations. Visual Studio Code is a

versatile programming tool available for Windows, Linux and MacOS users at

https://code.visualstudio.com/Download.

The Database (DB) used in this work contains the energy values of chemical

systems, obtained via Quantum Chemical calculations. However, the protocol

mentioned here not only applicable for calculated data, but also for any type of

tabular values (including experimental data). The manual covers the main aspects

of the Machine Learning process, which include exploratory data analysis (EDA),

https://code.visualstudio.com/Download

 5

data preprocessing, training, validation, and visualization. The authors provide

some examples on three Machine Learning algorithms, namely: Linear

Regression, Decision Tree, and Single Layer Perceptron. These three algorithms

are considered to be good starting points (in that they are the least complex) in

their respective classes [8-10]: linear, tree-based, and neural networks. The code

lines for Exploratory Data Analysis and Machine Learning models along with the

database in a csv file freely available in GitHub repository at

https://github.com/Saadiallakh/Manual_for_ISC_ITMO.

The authors assume the readers to have some basic skills of the Python

programming language (at least with its syntax), which is the main prerequisite

for this tutorial. The authors also encourage the users to consult the official Python

[11], Scikit-Learn [12,13], and TensorFlow [14,15] web-sites to get an idea of the

recent updates on the programming language and the ML-specific libraries. To

reproduce the workflow of this manual, the readers are recommended to have all

the necessary libraries installed to keep them consistent with the versions, listed

in the “requirements.txt” file in the GitHub repository.

The manual can be useful for teaching Bachelor students of the

“Infochemistry” educational program at ITMO University and is within the

modules of the following courses: “Infochemistry”, “Artificial Intelligence and

Machine Learning in Chemistry”.

https://github.com/Saadiallakh/Manual_for_ISC_ITMO

 6

1 DATABASE

“Data.csv” file is a dataset that contains the energy values of dimers,

calculated using two quantum chemical approximations (Table 1). It includes 500

observations and 8 features, each of the latter representing one of the 4 molecular

descriptors: Gibbs Energy, Electronic Energy, Enthalpy and Entropy. Dimers

were generated manually from isolated molecules, selected from the QM9

database [16,17]. All of them consist of non-conjugated cyclic and heterocyclic

molecules with a neutral charge. The molecules feature a planar arrangement of

rings parallel to each other, with their sizes ranging from 3 to 6 members (Fig.

1A). Heterocyclic dimers contain only two types of heteroatoms: oxygen and

nitrogen (Fig. 1B).

Table 1

Feature types: The “hf_” (Hartree-Fock) set was calculated using fast but

inaccurate approximation, while “dft_” (Density Functional Theory) set was

calculated using accurate yet resource-intensive approximation.

Feature Type Level of theory

dft_gibbs_free_energy_ev Target Gibbs free energy calculated using DFT

dft_electronic_energy_ev Target Electronic energy calculated using DFT

dft_entropy_ev Target Entropy calculated using DFT

dft_enthalpy_ev Target Enthalpy calculated using DFT

hf_gibbs_free_energy_ev Training Gibbs free energy calculated using HF

hf_electronic_energy_ev Training Electronic energy calculated using HF

hf_entropy_ev Training Entropy calculated using HF

hf_enthalpy_ev Training Enthalpy calculated using HF

A) Number of Systems by Unit Size
B) Number of Systems by

Heteroatoms in the ring

Figure 1. A) Prevalence of systems with 4-membered cyclic dimers; B)

Prevalence of systems with non-heterocyclic dimers

 7

2 EXPLORATORY DATA ANALYSIS

Exploratory Data Analysis (EDA) is a crucial phase in the data analysis

process, focusing on understanding the dataset's structure, identifying patterns,

and preparing the data for further analysis. EDA employs various techniques,

including data visualization, summary statistics, and data cleaning, to uncover the

insights and inform the subsequent analytical steps. It is an iterative process that

helps analysts make informed decisions about the data and the appropriate

statistical methods to apply. Statistics covered in this manual are given in Fig. 2.

The key aspects of EDA are as follows:

• Data quality assessment: EDA involves checking for errors, outliers, and

missing data, which are all crucial for ensuring the dataset’s integrity [18,19].

• Descriptive statistics: Calculating summary statistics provides a basic

understanding of the data’s central tendency, dispersion, and distribution [20,21].

• Data visualization: Visual tools including plots and graphs are used to

identify patterns, trends, and relationships within the data, making complex

datasets more comprehensible [22,23].

Figure 2. Statistics calculated for dataset analysis

EDA

Distribution
Histograms

Box-and-
Whiskers

Statistical
significance

Correlation
matrix

Confidence
intervals

 8

1) Correlation Matrix in Machine Learning is a table showing the correlation

coefficients between variables. Each cell in the matrix represents the correlation

between two variables, providing insights into their linear relationships [24].

2) Distribution Histograms visualize normal, skewed (left or right), bimodal,

uniform or other distribution shapes. This visualization aids in understanding how

the data are spread and can highlight the outliers or anomalies [25].

3) Box-and-Whiskers diagrams provide a concise summary of data

characteristics, including central tendency, dispersion, and outliers, assuming no

normal distribution. The outliers are plotted as individual points beyond the

whiskers [26,27].

4) Statistical significance (p-value) is a measure used to determine the

significance of the results in null hypothesis testing (reject if p < 0.05) [28,29].

5) Confidence Intervals provide a range within which a population

parameter is expected to lie with a certain level of confidence [30].

2.1 Confidence Intervals

1) First of all, let us create a “EDA.ipynb” file and open it in the VSCode

code editor. This file will contain all the code lines for EDA as well as the

corresponding outputs (plots, graphs). Let us install and import the “Pandas”

library to read our “Data.csv” file. Leave the first line commented (that is, do not

delete the “#-#” symbols) if you have already installed “Pandas”.

If you have successfully executed the code, then the file contents will be

displayed right beneath the code lines (the so called “output”)

 9

2) As we can see, our “data” variable contains 500 rows and 9 columns,

which indeed reflects the contents of our “Data.csv” file. Now we have to install

(“!pip install scipy”) and import the “Scipy” library to calculate the 95%

confidence intervals.

 10

CODE ANALYSIS

1. Selecting columns

• “dft_columns” filters “data” columns to include only those that start with

“dft_”, storing their names in the list “dft_columns”.

2. Setting confidence level

• Lines 4 & 5 define a 95% confidence level, then calculate the corresponding

z-score (1.96 for 95%) using “stats.norm.ppf()”. This z-score is used in the

calculation of the margin of error for each interval.

3. Calculating confidence intervals

• Line 7 initializes an empty dictionary to store the results.

• Lines 9-11 loop over each “dft_” column, calculate its mean, and determine

the standard error (sample standard deviation divided by the square root of the

sample size).

4. Margin of error, Bounds, and Width

• “margin_error” line calculates the margin of error for each column by

multiplying the z-score by the standard error.

• Lines 13-14 derive the lower and the upper bounds for the 95% confidence

interval around the mean.

• “width” – width of the confidence interval - is the difference between the

upper and the lower bounds.

5. Storing results

• Lines 16-21 store the mean, the lower bound, the upper bound, and the width

for each “dft_” column in the “confidence_intervals” dictionary.

6. Converting to DataFrame

• Lines 23-24 convert the dictionary to a DataFrame, making it easier to view

and interpret each column’s statistics

3) Our code will output the calculated intervals for the target features.

Actually, we can use it to calculate the confidence intervals for the “hf_” features

as well. For this purpose, we simply have to change the “dft_” in the 3rd column

to the “hf_”.

 11

Finally, we get our Confidence Intervals for both sets: HF (“hf_”) and DFT

(“dft_”).

2.2 Distribution Histograms

1) We have to install and import the “Matplotlib” and “Seaborn” packages

to plot the Distribution Histograms for our dataset.

 12

CODE ANALYSIS

1. Import libraries

2. Define columns and titles

• “dft_columns” specifies a list of column names in “data” that will be

plotted

• “titles” is a dictionary that assigns custom titles for each “dft_” column

3. Setting up the plotting grid

• Line 16 creates a grid layout to display all histograms in a single figure

• “figsize” sets the overall size of the figure

• “rows” determines the number of rows in the grid layout for the subplots,

ensuring there are enough rows to fit all columns

4. Looping and plotting each histogram

• Loop iterates through each column in “dft_columns”, creating a subplot for

each

• Line 22 sets the title for each subplot using “titles[col]”

• Lines 23 & 24 set the x-axis label to the “Energy, eV” and y-axis label to

“Frequency”

5. Adjust layout and display

• “plt.tight_layout()” adjusts the layout to avoid overlap between subplots

• “plt.show()” displays the plot

2) The same code lines with some small adjustments can be used to plot the

Distribution Histograms for the “hf_” values. As a result, you will get a plot with

4 subplots illustrating the distribution of values in each set.

 13

 14

2.3 Correlation Matrix

1) We will use the “Seaborn” and “Matplotlib” libraries to plot the

Correlation Matrix between the “dft_” and “hf_” sets of values.

CODE ANALYSIS

1. Filter columns

• “dft_columns” and “hf_columns” are the lists of columns in “data” that

start with “dft_” and “hf_”, respectively. These are used to separate the

columns for a correlation analysis.

2. Calculate and subset Correlation Matrix

• “correlation_matrix” calculates the correlation matrix for the selected

columns and then subsets it so that the “dft_” columns are on the Y-axis and

“hf_” are on the X-axis

 15

3. Define custom labels for columns

• “dft_labels” and “hf_labels” dictionaries are defined to provide more

descriptive labels for the “dft_” and “hf_” columns

4. Custom colors

Lines 21 & 22 define color transitions in matrix

5. Plot the Correlation Matrix with heatmap

• “heatmap” creates a heatmap with “sns.heatmap()”.

• Lines 26 & 29 set the text parameters for the plot.

2) As a result, you get a 4×4 Correlation Matrix with the color scheme as

follows: blue color for the negative, green for the positive and white as a neutral

midpoint.

 16

2.4 Statistical Significance (P-values)

1) To calculate the p-values between the two sets of columns, we can use

Pandas for a quick and straightforward calculation. Additionally, we have to

import the “pearsonr” from “scipy.stats”

CODE ANALYSIS

1. Select columns

• “dft_columns” is a list of columns in “data” that begin with “dft_”,

indicating the features related to DFT (Density Functional Theory)

• “hf_columns” is a list of columns in “data” that begin with “hf_”,

indicating the features related to HF (Hartree-Fock)

2. Create an empty DataFrame for the p-values

• “p_values” is an empty DataFrame with the rows labeled by “dft_columns”

and the columns labeled by “hf_columns”. This structure will store the p-

values for each pairwise correlation between the “dft_” and the “hf_”

columns

3. Calculate p-values

• For each combination of a “dft_” column and “hf_” column, the code

calculates the p-value related to their Pearson correlation using “pearsonr”.

• “pearson(data[hf], data[dft])” returns the p-value “p_value”, which

represents the statistical significance.

 17

2) Code lines for p-values produce the following output

2.5 Box-and-Whiskers

1) To plot the Box-and-Whisker diagrams we use the “Matplotlib” and

“Seaborn” libraries. Additionally, we import “Math” to properly arrange the

plots

 18

CODE ANALYSIS

1. Column selection

• Line 3 selects columns in “data” that begin with “dft_”, storing them in the

“dft_columns” variable

2. Custom titles

• “dft_labels” is a dictionary that maps the “dft_” column names to custom

titles, which are used as subplot titles for clarity

3. Rows calculation

• “n_rows” calculates the number of rows needed to fit all the box plots in a

grid of 2 plots per row

4. Plot settings

• Line 11 sets a white grid background, a muted color palette, and a font

scaling for the plot

• Line 12 defines the figure size based on the number of rows needed, with a

fixed width of 15 units and a height proportional to “n_rows”

5. Plotting each column in a 2-column grid

• Line 14 iterates through each “dft_” column

• Line 15 creates a subplot with “n_rows” rows and 2 columns, positioning

each box plot in the grid

• “sns.boxplot()” creates the box plot for each “dft_” column with the

specified parameters

2) The same code lines can be used to plot the Box-and-Whiskers diagrams

for the training set of values. The code outputs should look like plots illustrated

below

 19

 20

2.6 EDA: Results

1) Distribution histograms

Generally, DFT and HF methods produce highly similar distributions across

all properties, suggesting that both methods are in agreement on the general

energetic and entropic characteristics of the system. The minor differences in the

entropy and slight distribution widths suggest that HF might predict slightly more

constrained states in terms of entropy, while DFT may allow for a somewhat

higher variability.

2) Box-and-Whiskers

Overall, the DFT calculations show less variability and tend to have lower

median values for most energy metrics compared to HF. This implies the DFT

might offer more consistent and potentially more stable results. The HF, on the

other hand, exhibits a wider range and more outliers, indicating a greater level of

fluctuation in its calculations.

3) Correlation Matrix

The DFT and the HF methods agree on entropy calculations but diverge more

on other properties. Within each method, properties are more consistently

correlated.

4) Confidence Intervals

The DFT and the HF provide close but systematically offset energy

predictions, while the entropy estimates are highly consistent between the

methods. This consistency and the confidence interval widths suggest reliability

in both methods but with a systematic preference for HF to predict slightly less

negative energies.

5) Statistical Significance (P-values)

The results confirm that the systematic differences observed in the energy

and entropy values between the DFT and the HF are statistically robust. This

supports a consistent trend of HF predicting slightly higher (less negative)

energies and slightly lower entropy compared to DFT, suggesting that the DFT

and the HF yield meaningfully different results, which is likely to result from

intrinsic methodological differences rather than from random variation.

 21

3 MACHINE LEARNING

After getting some insights into to the statistics of our database, we can move

on to building Machine Learning models. In this manual we cover three

algorithms: Linear Regression, Decision Tree, and Single Layer Perceptron. This

section of the manual includes three subsections: Data Preprocessing and

Splitting, Model Building and Visualization.

3.1 Data Preprocessing and Splitting

1) First of all, let us create a “Preprocessing.ipynb” file to start the data

preparation. As usual, we need to import the “Pandas” library and read our

“Data.csv” file.

2) Next, we specify the data that will be used to train the model along with

the data for testing the predictive accuracy of the model. We will use the “hf_”

set of values (X) to train our model and the “dft_enthalpy_ev” as the target (y).

3) Now we are ready to split our dataset into the training and testing sets. We

allocate 80% of data for training and 20% for testing. For this purpose, we import

“train_test_split” from the “Sklearn” library

 22

4) After that we normalize our data using StandardScaler(). This process is

crucial for ensuring that each feature contributes equally to the analysis [31,32].

Generally, it is a good idea to save the scalers to have a better future control on

the models.

3.2 Model Building and Visualization

For the sake of simplicity, we will not mention the preprocessing steps again

in this section. These steps are consistent across all the three models and are

included in the respective “.ipynb” files. Note that the preprocessing code must

be executed simultaneously with the model code.

RMSE, MAE, R2 and MSE are the accuracy metrics that we will use to

evaluate the performance of our models. Root Mean Squared Error (RMSE)

measures the average magnitude of the error between the predicted and the

observed values, providing a single value that represents the model’s prediction

error [33,34]. Mean Absolute Error (MAE) measures the average magnitude of

the errors in a set of predictions, without considering their direction [35,36]. R2,

or the coefficient of determination, is a statistical measure in Machine Learning

that quantifies the proportion of variance in the dependent variable that is

predictable from independent variables [37-39]. Mean Squared Error (MSE)

measures the average of the squares of the errors, that is, the average squared

difference between the estimated values and the actual values [40].

 23

3.2.1 Linear Regression

1) Now we can make a copy of the “Preprocessing.ipynb” and rename it to

the “LinearRegression.ipynb”. We have to import “LinearRegression” from

the “Sklearn” library to build our model. After that we train our model on the

training set.

2) Let us save the model weights to be able to later make predictions without

training process

3) Make predictions on the test set and calculate the evaluation metrics

4) The following results were obtained for the Linear Regression model

• MSE: 2.7446

• RMSE: 1.6567

• MAE: 1.4099

• R2: 1.0000

 24

5) Visualize and save the results

CODE ANALYSIS

1. Set up the plot

• Line 1 creates a new figure specified with dimensions

• Line 2 plots a scatter plot of “y_test” (actual values) versus “y_pred”

(predicted values) in blue with 60% transparency (“alpha=0.6”)

• Lines 5 & 6 label the x-axis as “Actual” and the y-axis as “Predicted”

• “plt.title” adds a title “Enthalpy, eV” with larger font size

• Line 8 disables the grid to give the plot a cleaner look

2. Adjust tick sizes

• Lines 10 & 11 set the font size for both x-axis and y-axis ticks to 14 for

consistency and readability

3. Display model metrics on the plot

 25

• “metrics_text” is a formatted string that displays model evaluation metrics

(MSE, RMSE, MAE, R2), each with four decimal places

• Lines 14 & 16 add this text to the upper left corner of the plot

(“transform=plt.gca().transAxes” anchors it relative to the plot area, and to

align the text at the top the “verticalalignment=’top’” is specified). “bbox”

– sets light green box surrounding the text for readability (with a gray border).

4. Save results to a csv

• “results” contains the DataFrame of Actual and Predicted values, which is

subsequently saved as “Linear_Regression(Act_vs_Pred).csv” file.

The plot itself with the accuracy metrics looks as follows:

3.2.2 Decision Tree

1) Let us make one more copy of the “Preprocessing.ipynb” file and

rename it to the “DecisionTree.ipynb”. Our models become more complex: now

 26

we have to find the best hyperparameter values to train our model (that is, we have

to perform the so called “hyperparameter tuning”).

Hyperparameters in Machine Learning are the crucial elements that define

the behavior and the performance of algorithms during the training process.

Unlike the model parameters, which are learned from the data, hyperparameters

are set before the learning process begins and can significantly influence the

model’s ability to generalize to unseen data [41-43]. In this manual, we have given

preference to the Optuna automatic hyperparameter optimization software

framework. Optuna is considered superior to GridSearchCV for hyperparameter

optimization due to its advanced features and its efficiency in exploring the

hyperparameter space [44,45].

We optimize the following hyperparameters:

• max_depth

• min_samples_split

• min_samples_leaf

• max_features

All of them are the parameters of “DecisionTreeRegressor” of the

“Sklearn” library, which we will import in our file. The “max_depth” controls

the maximum depth of the tree. The “min_samples_split” specifies the minimum

number of samples required to split an internal node. The “min_samples_leaf” is

a minimum number of samples required to be at a leaf node. The “max_features”

is the number of features to consider when looking for the best split. In this

manual, we skip the theory behind these hyperparameters, thus to get a better idea

about them we encourage readers to visit the official web-site of scikit-learn

library and go through the “DecisionTreeRegressor” page [46].

First, let us import all the necessary libraries

2) Now we have to create an “objective” function where we will specify all

the hyperparameters and conditions for their optimization

 27

CODE ANALYSIS

1. Define hyperparameter grid

• “trial.suggest_*” functions define the hyperparameter grid, which allows

Optuna to sample various values during each trial

2. Initialize the DecisionTreeRegressor

• The model is created using “DecisionTreeRegressor” with the parameters

suggested in the current trial, and “random_state=42” for reproducibility.

3. Set up cross-validation

• The “KFold” object performs 3-fold cross-validation (splitting the data into

3 parts) and shuffles the data before splitting to ensure varied splits across the

trials

4. Run cross-validation

• For each split of the data: 1) Data is divided into the training and validation

sets; 2) The model is trained on the training fold (“model.fit()”); 3)

Predictions are made on the validation fold; 4) MSE is calculated between the

 28

predicted values (“y_pred_cv”) and actual values (“y_valid_cv”). This MSE

is appended to the “mse_list”, which stores the MSE for each fold.

5. Return the mean MSE

• Finally, the function returns the mean of the MSE values across all folds.

3) Run the optimization. For the sake of time, we run only 50 trials, but to

get more accurate results, you would need to run from 1000 to 5000 trials.

If everything has been done correctly, the code will output the optimization

progress

4) Print the best hyperparameters

We get the following combination:

• Best trial value: 2068.5881528457116

• Best hyperparameters: {'max_depth': 12, 'min_samples_split': 7,

'min_samples_leaf': 1, 'max_features': 0.8}

 29

5) Let us save the optimization results

6) Retrieve the best hyperparameters to pass them for model training

7) Train the model with the best hyperparameters

8) Save the model weights

9) Make predictions on the test set and calculate the evaluation metrics

 30

10) The following results were obtained for the Decision Tree model

• MSE: 56.9403

• RMSE: 7.5459

• MAE: 1.1456

• R2: 1.0000

11) Visualize and save the results

CODE ANALYSIS

1. Set up the plot

• Line 1 creates a new figure specified with dimensions

• Line 2 plots a scatter plot of “y_test” (actual values) versus “y_pred”

(predicted values) in blue with 60% transparency (“alpha=0.6”)

• Lines 5 & 6 label the x-axis as “Actual” and the y-axis as “Predicted”

 31

• “plt.title” adds a title “Enthalpy, eV” with a larger font size

• Line 8 disables the grid to give the plot a cleaner look

2. Adjust tick sizes

• Lines 10 & 11 set the font size for both the x-axis and y-axis ticks to 14 for

consistency and readability

3. Display model metrics on the plot

• “metrics_text” is a formatted string that displays the model evaluation

metrics (MSE, RMSE, MAE, R2), each with four decimal places

• Lines 14 & 16 add this text to the upper left corner of the plot

(“transform=plt.gca().transAxes” anchors it relative to the plot area, and to

align the text at the top the “verticalalignment=’top’” is specified). “bbox”

– sets light green box surrounding the text for readability (with a gray border).

4. Save results to a csv

• “results” contains the DataFrame of Actual and Predicted values, which is

subsequently saved as “Decision_Tree(Act_vs_Pred).csv” file.

The plot for the Decision Tree with the accuracy metrics looks as follows:

 32

3.2.3 Single Layer Perceptron

Single Layer Perceptron is the simplest form of a neural network, primarily

used for linear regression and binary classification tasks. It consists of a single

layer of output nodes connected directly to the input features, without any hidden

layers. This simplicity makes it a foundational model in neural network research

[47].

 We will use the TensorFlow library to build the model and the Optuna

library to optimize the following hyperparameters:

• optimizer_name

• activation_function

• learning_rate

• num_neurons

• l1_reg

• l2_reg

Optimizers in Machine Learning are the algorithms designed to adjust the

parameters of the models to minimize the loss function, thereby improving the

model performance (“optimizer_name”). They play a crucial role in training

Neural Networks by determining the speed and the quality of convergence

[48,49]. Activation functions are critical components in Neural Networks, serving

as the decision-making elements that determine the output of a neural node

(“activation_function”). They introduce non-linearity into the network, enabling

it to learn some complex patterns and relationships within the data [50,51]. The

“learning_rate” is a hyperparameter that determines the step size at each iteration

while moving toward a minimum of the loss function [52]. Neurons in Neural

Networks are computational units inspired by biological neurons, designed to

process and transmit the information through the interconnected layers

(“num_neurons”). These artificial neurons form the building blocks of Neural

Networks, enabling them to perform some complex tasks including pattern

recognition and predictive modelling [53]. Regularization in Machine Learning is

a technique used to prevent overfitting by introducing some additional

information or constraints into the model. It modifies the loss function to include

the penalty term, which can help improve the model’s generalization to the unseen

data [54,55]. Two common forms of regularization are L1 [56,57] and L2 [58,59]

regularization, which are implemented the TensorFlow or similar frameworks.

1) Let us create a “SingleLayerPerceptron.ipynb” file to build our model.

This time we need to scale the “y” values as well. Single Layer Perceptron, like

most Neural Networks, relies on gradient descent to iteratively update weights

 33

to minimize the loss function [60-62]. Gradient descent can struggle if the scale

of the target variable is too large or too different from the scale of the features. In

contrast, Linear Regression and Decision Tree do not depend on gradient

descent, so they can more easily handle varying scales in the target variable.

Now we have to install and import all the necessary libraries and create the

“objective” function for Optuna optimization, but before doing so let us scale

the “y” values.

2) After this we install and import libraries

3) Create a function for optimization

 34

CODE ANALYSIS

1. Objective function for hyperparameter search

• The function “objective(trial)” defines the task of finding the best

combination of hyperparameters

• It uses Optuna’s “trial” object to sample various hyperparameter values

• The function returns the MSE across multiple folds of cross-validation,

aiming to minimize this value

2. Model definition with current hyperparameters

• A simple feedforward neural network is created with: an input layer matching

the shape of the input data; a single hidden layer with “num_neurons” and

the chosen “activation_function”; a regularization function (L1 and L2

regularization); an output layer with one neuron for regression.

3. Optimizer selection

• The optimizer is chosen based on the “optimizer_name”, and configured

with the suggested “learning_rate”.

4. Model compilation

• The model is compiled with: the chosen “optimizer” and Mean Squared

Error (“mean_squared_error”) as the loss function.

 35

5. Cross-validation setup with KFold

• The function uses 3-fold cross-validation (“KFold(n_splits=3”)) to ensure

the model’s performance is tested on different subsets of the data.

4) Run the optimization. For the sake of time, we run only 50 trials, but to

get more accurate results, you would need to run from 1000 to 5000 trials.

If everything has been done correctly, the code will output the optimization

progress

5) Print the best hyperparameters

We get the following combination:

• Best trial value: 2.221684143808076e-06

• Best hyperparameters: {'optimizer': 'RMSprop', 'activation_function':

'leaky_relu', 'learning_rate': 0.0002056507486431957, 'num_neurons': 199,

'l1_reg': 2.3245876147791472e-05, 'l2_reg': 4.371907855050314e-08}

 36

6) Save the optimization results

7) Retrieve the best hyperparameters to pass them for model training

8) Build and train the final model with the best hyperparameters

9) Choose the best optimizer and implement “EarlyStopping” to prevent

overfitting. After this compile the model

 37

10) Train the model with the best hyperparameters

11) Save the training and validation loss to the .txt file

12) Plot the training and validation curves

 38

You should get the following plot

13) Save the model weights

14) Make predictions on the test set

15) Inverse the scaled data

 39

16) Calculate the accuracy metrics

17) The following results were obtained for the Single Layer Perceptron

model

• MSE: 16.2898

• RMSE: 4.0361

• MAE: 2.8663

• R2: 1.0000

18) Visualize the results and save the “Actual VS Predicted” values in csv

format

 40

CODE ANALYSIS

1. Set up the plot

• Line 1 creates a new figure with dimensions specified

• Line 2 plots a scatter plot of “y_test” (actual values) versus “y_pred”

(predicted values) in blue with 60% transparency (“alpha=0.6”)

• Lines 5 & 6 label the x-axis as “Actual” and the y-axis as “Predicted”

• “plt.title” adds the title “Enthalpy, eV” with a larger font size

• Line 8 disables the grid to give the plot a cleaner look

2. Adjust tick sizes

• Lines 10 & 11 set the font size for both x-axis and y-axis ticks to 14 for

consistency and readability

3. Display model metrics on the plot

• “metrics_text” is a formatted string that displays the model evaluation

metrics (MSE, RMSE, MAE, R2), each with four decimal places

• Lines 14 & 16 add this text to the upper left corner of the plot

(“transform=plt.gca().transAxes” anchors it relative to the plot area, and to

align the text at the top the “verticalalignment=’top’” is specified). “bbox”

– sets light green box surrounding the text for readability (with a gray border).

4. Save results to a csv

• “results” contains the DataFrame of Actual and Predicted values, which is

subsequently saved as “SLP(Act_vs_Pred).csv” file.

 41

The plot for Single Layer Perceptron with the accuracy metrics looks as

follows:

3.3 Machine Learning: Results

After training and testing all the models, we can compare the accuracy

metrics to determine the best-fitting model for our dataset (Table 2).

Table 2

Accuracy metrics across all models

ML model MSE RMSE MAE R2

Linear Regression 2.7446 1.6567 1.4099 1.0000

Decision Tree 56.9403 7.5459 1.1456 1.0000

Single Layer

Perceptron
16.2898 4.0361 2.8663 1.0000

 42

• Mean Squared Error (MSE): The Linear Regression model has the lowest

MSE at 2.7446, indicating it produces the least squared error on average. In

contrast, the Decision Tree has a significantly higher MSE of 56.9403, suggesting

it is less effective at predicting the target variable. The Single Layer Perceptron

has a moderate MSE of 16.2898.

• Root Mean Squared Error (RMSE): RMSE values further reinforce the

above, with Linear Regression having an RMSE of 1.6567, indicating smaller

errors compared to the Decision Tree (7.5459) and the Single Layer Perceptron

(4.0361). RMSE is sensitive to larger errors and emphasizes larger discrepancies

in predictions.

• Mean Absolute Error (MAE): For MAE, the Decision Tree exhibits the

lowest value (1.1456), indicating it may have fewer overall errors despite its

higher MSE and RMSE. The Single Layer Perceptron has a higher MAE (2.8663)

compared to Linear Regression (1.4099), suggesting a lower accuracy of its

predictions.

 • R-squared (R2): All models have an R2 value of 1.0000, indicating a perfect

fit of the models to the training data. However, this metric alone can be

misleading, particularly in cases of overfitting, as seen with the Decision Tree.

In summary, while all models show a perfect fit with an R2 of 1.0000, the

Linear Regression model is overall the most reliable based on MSE, RMSE, and

MAE, suggesting it provides the best balance between the accuracy and the

predictive performance. The Decision Tree, despite its lower MAE, performs

poorly in terms of MSE and RMSE, indicating a potential overfitting. The Single

Layer Perceptron, while not as effective as Linear Regression, performs better

than the Decision Tree in terms of MSE and RMSE, but has a higher MAE.

Therefore, for this particular dataset, Linear Regression would be the preferred

model for making predictions.

43

REFERENCES

1 Borges R. M. et al. Quantum chemistry calculations for metabolomics:

Focus review // Chemical reviews. – 2021. – Vol. 121. – №. 10. – P. 5633-5670.

https://doi.org/10.1021/acs.chemrev.0c00901

2 Spiegel M., Gamian A., Sroka Z. A statistically supported antioxidant

activity DFT benchmark—the effects of Hartree–Fock exchange and basis set

selection on accuracy and resources uptake // Molecules. – 2021. – Vol. 26. – №.

16. – P. 5058. https://doi.org/10.3390/molecules26165058

3 Kar R. et al. Speeding-up Hybrid Functional-Based Ab Initio Molecular

Dynamics Using Multiple Time-stepping and Resonance-Free Thermostat //

Journal of Chemical Theory and Computation. – 2023. – Vol. 19. – №. 22. – P.

8351-8364. https://pubs.acs.org/doi/10.1021/acs.jctc.3c00964

4 Novikov I. S. et al. The MLIP package: moment tensor potentials with MPI

and active learning // Machine Learning: Science and Technology. – 2020. – Vol.

2. – №. 2. – P. 025002. https://doi.org/10.1088/2632-2153/abc9fe

5 Pauletti M., Rybkin V. V., Iannuzzi M. Subsystem density functional

theory augmented by a delta learning approach to achieve Kohn–Sham accuracy

// Journal of Chemical Theory and Computation. – 2021. – Vol. 17. – №. 10. – P.

6423-6431. https://pubs.acs.org/doi/10.1021/acs.jctc.1c00592

6 Jumper J. et al. Highly accurate protein structure prediction with

AlphaFold // nature. – 2021. – Vol. 596. – №. 7873. – P. 583-589.

https://doi.org/10.1038/s41586-021-03819-2

7 Chemistry Prize [Electronic resource]. URL:

https://www.nobelprize.org/prizes/chemistry/#:~:text=The%202024%20chemist

ry%20laureates,%E2%80%9Cfor%20protein%20structure%20prediction%E2%

80%9D

8 Maulud D., Abdulazeez A. M. A review on linear regression

comprehensive in machine learning // Journal of Applied Science and Technology

Trends. – 2020. – Vol. 1. – №. 2. – P. 140-147. https://doi.org/10.38094/jastt1457

9 Dehghani A. A. et al. Decision tree algorithms // Handbook of

hydroinformatics. – Elsevier, 2023. – P. 171-187. https://doi.org/10.1016/B978-

0-12-821285-1.00004-X

10 Du K. L. et al. Perceptron: Learning, generalization, model selection,

fault tolerance, and role in the deep learning era // Mathematics. – 2022. – Vol.

10. – №. 24. – P. 4730. https://doi.org/10.3390/math10244730

https://doi.org/10.1021/acs.chemrev.0c00901
https://doi.org/10.3390/molecules26165058
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00964
https://doi.org/10.1088/2632-2153/abc9fe
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00592
https://doi.org/10.1038/s41586-021-03819-2
https://www.nobelprize.org/prizes/chemistry/#:~:text=The%202024%20chemistry%20laureates,%E2%80%9Cfor%20protein%20structure%20prediction%E2%80%9D
https://www.nobelprize.org/prizes/chemistry/#:~:text=The%202024%20chemistry%20laureates,%E2%80%9Cfor%20protein%20structure%20prediction%E2%80%9D
https://www.nobelprize.org/prizes/chemistry/#:~:text=The%202024%20chemistry%20laureates,%E2%80%9Cfor%20protein%20structure%20prediction%E2%80%9D
https://doi.org/10.38094/jastt1457
https://doi.org/10.1016/B978-0-12-821285-1.00004-X
https://doi.org/10.1016/B978-0-12-821285-1.00004-X
https://doi.org/10.3390/math10244730

 44

11 Welcome to Python.org [Electronic resource]. URL:

https://www.python.org/

12 Pedregosa F. et al. Scikit-learn: Machine learning in Python // the Journal

of machine Learning research. – 2011. – Vol. 12. – P. 2825-2830.

13 scikit-learn: machine learning in Python — scikit-learn 1.5.2

documentation [Electronic resource]. URL: https://scikit-learn.org/stable/

14 Abadi M. et al. Tensorflow: Large-scale machine learning on

heterogeneous distributed systems // arXiv preprint arXiv:1603.04467. – 2016.

https://doi.org/10.48550/arXiv.1603.04467

15 TensorFlow. TensorFlow [Electronic resource]. URL:

https://www.tensorflow.org/

16 Ruddigkeit L. et al. Enumeration of 166 billion organic small molecules

in the chemical universe database GDB-17 // Journal of chemical information and

modeling. – 2012. – Vol. 52. – №. 11. – P. 2864-2875.

https://pubs.acs.org/doi/10.1021/ci300415d

17 Ramakrishnan R. et al. Quantum chemistry structures and properties of

134 kilo molecules // Scientific data. – 2014. – Vol. 1. – №. 1. – P. 1-7.

https://doi.org/10.1038/sdata.2014.22

18 Dhinakaran V. Exploratory Data Analysis (EDA) and Data Visualization

with Python. – 2018. http://dx.doi.org/10.17148/IJIREEICE.2024.12608

19 Galatro D., Dawe S. Exploratory Data Analysis // Data Analytics for

Process Engineers: Prediction, Control and Optimization. – Cham : Springer

Nature Switzerland, 2023. – P. 13-57. https://doi.org/10.1007/978-3-031-46866-

7_2

20 Sandfeld S. Exploratory Data Analysis // Materials Data Science:

Introduction to Data Mining, Machine Learning, and Data-Driven Predictions for

Materials Science and Engineering. – Cham : Springer International Publishing,

2023. – P. 179-206. https://doi.org/10.1007/978-3-031-46565-9_9

21 Kumar A., Saharia M. Exploratory Analysis of Hydrological Data //

Python for Water and Environment. – Singapore : Springer Nature Singapore,

2024. – P. 23-41. https://doi.org/10.1007/978-981-99-9408-3_4

22 Sahoo K. et al. Exploratory data analysis using Python // International

Journal of Innovative Technology and Exploring Engineering. – 2019. – Vol. 8.

– №. 12. – P. 4727-4735. https://doi.org/10.35940/ijitee.L3591.1081219

23 Quinn G. P., Keough M. J. Experimental design and data analysis for

biologists. 2nd ed. – Cambridge university press, 2023.

https://doi.org/10.1017/9781139568173.006

https://www.python.org/
https://scikit-learn.org/stable/
https://doi.org/10.48550/arXiv.1603.04467
https://www.tensorflow.org/
https://pubs.acs.org/doi/10.1021/ci300415d
https://doi.org/10.1038/sdata.2014.22
http://dx.doi.org/10.17148/IJIREEICE.2024.12608
https://doi.org/10.1007/978-3-031-46866-7_2
https://doi.org/10.1007/978-3-031-46866-7_2
https://doi.org/10.1007/978-3-031-46565-9_9
https://doi.org/10.1007/978-981-99-9408-3_4
https://doi.org/10.35940/ijitee.L3591.1081219
https://doi.org/10.1017/9781139568173.006

 45

24 Starmans M. P. A. et al. Radiomics: data mining using quantitative

medical image features // Handbook of medical image computing and computer

assisted intervention. – Academic Press, 2020. – P. 429-456.

https://doi.org/10.1016/B978-0-12-816176-0.00023-5

25 Nuzzo R. L. Histograms: A useful data analysis visualization // PM&R.

– 2019. – Vol. 11. – №. 3. – P. 309-312. https://doi.org/10.1002/pmrj.12145

26 Vignesh V. et al. Data analysis using box and whisker plot for stationary

shop analysis // 2017 International Conference on Trends in Electronics and

Informatics (ICEI). – IEEE, 2017. – P. 1072-1076.

https://doi.org/10.1109/ICOEI.2017.8300874

27 Cox N. J. Speaking Stata: Creating and varying box plots // The Stata

Journal. – 2009. – Vol. 9. – №. 3. – P. 478-496.

https://doi.org/10.1177/1536867X0900900309

28 Hirschauer N., Grüner S., Mußhoff O. The p-Value and Statistical

Significance Testing // Fundamentals of Statistical Inference: What is the

Meaning of Random Error?. – Cham : Springer International Publishing, 2022. –

P. 63-96. https://doi.org/10.1007/978-3-030-99091-6_6

29 Di Leo G., Sardanelli F. Statistical significance: p value, 0.05 threshold,

and applications to radiomics—reasons for a conservative approach // European

radiology experimental. – 2020. – Vol. 4. – P. 1-8.

https://doi.org/10.1186/s41747-020-0145-y

30 Nichelatti M. et al. L'intervallo di confidenza // Giornale di Clinica

Nefrologica e Dialisi. – 2013. – Vol. 25. – №. 4. – P. 335-338.

https://doi.org/10.33393/gcnd.2013.1070

31 Izonin I. et al. Towards data normalization task for the efficient mining

of medical data // 2022 12th International Conference on Advanced Computer

Information Technologies (ACIT). – IEEE, 2022. – P. 480-484.

https://doi.org/10.1109/ACIT54803.2022.9913112

32 Aldi F. et al. Standardscaler's Potential in Enhancing Breast Cancer

Accuracy Using Machine Learning // Journal of Applied Engineering and

Technological Science (JAETS). – 2023. – Vol. 5. – №. 1. – P. 401-413.

https://doi.org/10.37385/jaets.v5i1.3080

33 Srinivasan A. R. et al. Beyond RMSE: Do machine-learned models of

road user interaction produce human-like behavior? // IEEE Transactions on

Intelligent Transportation Systems. – 2023. – Vol. 24. – №. 7. – P. 7166-7177.

https://doi.org/10.1109/TITS.2023.3263358

https://doi.org/10.1016/B978-0-12-816176-0.00023-5
https://doi.org/10.1002/pmrj.12145
https://doi.org/10.1109/ICOEI.2017.8300874
https://doi.org/10.1177/1536867X0900900309
https://doi.org/10.1007/978-3-030-99091-6_6
https://doi.org/10.1186/s41747-020-0145-y
https://doi.org/10.33393/gcnd.2013.1070
https://doi.org/10.1109/ACIT54803.2022.9913112
https://doi.org/10.37385/jaets.v5i1.3080
https://doi.org/10.1109/TITS.2023.3263358

 46

34 Hodson T. O. Root-mean-square error (RMSE) or mean absolute error

(MAE): When to use them or not // Geoscientific Model Development. - 2022. –

Vol. 15. - №. 14. - P. 5481-5487. https://doi.org/10.5194/gmd-15-5481-2022

35 Lin D. et al. Machine learning-based error compensation for high

precision laser arbitrary beam splitting // Optics and Lasers in Engineering. –

2023. – Vol. 160. – P. 107245. https://doi.org/10.1016/j.optlaseng.2022.107245

36 Robeson S. M., Willmott C. J. Decomposition of the mean absolute error

(MAE) into systematic and unsystematic components // PloS one. – 2023. – Vol.

18. – №. 2. – P. e0279774. https://doi.org/10.1371/journal.pone.0279774

37 Chicco D., Warrens M. J., Jurman G. The coefficient of determination R-

squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in

regression analysis evaluation // Peerj computer science. – 2021. – Vol. 7. – P.

e623. https://doi.org/10.7717/peerj-cs.623

38 Redell N. Shapley decomposition of R-squared in machine learning

models // arXiv preprint arXiv:1908.09718. – 2019.

https://doi.org/10.48550/arXiv.1908.09718

39 Gao J. R-Squared (R2)–How much variation is explained? // Research

Methods in Medicine & Health Sciences. – 2024. – Vol. 5. – №. 4. – P. 104-109.

https://doi.org/10.1177/26320843231186398

40 Hodson T. O., Over T. M., Foks S. S. Mean squared error, deconstructed

// Journal of Advances in Modeling Earth Systems. – 2021. – Vol. 13. – №. 12. –

P. e2021MS002681. https://doi.org/10.1029/2021MS002681

41 Arnold C. et al. The role of hyperparameters in machine learning models

and how to tune them // Political Science Research and Methods. – 2024. – Vol.

12. – №. 4. – P. 841-848. https://doi.org/10.1017/psrm.2023.61

42 Yang L., Shami A. On hyperparameter optimization of machine learning

algorithms: Theory and practice // Neurocomputing. – 2020. – Vol. 415. – P. 295-

316. https://doi.org/10.1016/j.neucom.2020.07.061

43 Weerts H. J. P., Mueller A. C., Vanschoren J. Importance of tuning

hyperparameters of machine learning algorithms // arXiv preprint

arXiv:2007.07588. – 2020. https://doi.org/10.48550/arXiv.2007.07588

44 Almarzooq H., bin Waheed U. Automating hyperparameter optimization

in geophysics with Optuna: A comparative study // Geophysical Prospecting. –

2024. https://doi.org/10.1111/1365-2478.13484

45 Akiba T. et al. Optuna: A next-generation hyperparameter optimization

framework // Proceedings of the 25th ACM SIGKDD international conference on

knowledge discovery & data mining. – 2019. – P. 2623-2631.

https://doi.org/10.1145/3292500.3330701

https://doi.org/10.5194/gmd-15-5481-2022
https://doi.org/10.1016/j.optlaseng.2022.107245
https://doi.org/10.1371/journal.pone.0279774
https://doi.org/10.7717/peerj-cs.623
https://doi.org/10.48550/arXiv.1908.09718
https://doi.org/10.1177/26320843231186398
https://doi.org/10.1029/2021MS002681
https://doi.org/10.1017/psrm.2023.61
https://doi.org/10.1016/j.neucom.2020.07.061
https://doi.org/10.48550/arXiv.2007.07588
https://doi.org/10.1111/1365-2478.13484
https://doi.org/10.1145/3292500.3330701

 47

46 DecisionTreeRegressor [Electronic resource]. URL: https://scikit-

learn.org/dev/modules/generated/sklearn.tree.DecisionTreeRegressor.html

47 Singh J., Banerjee R. A study on single and multi-layer perceptron neural

network // 2019 3rd International Conference on Computing Methodologies and

Communication (ICCMC). – IEEE, 2019. – P. 35-40.

https://doi.org/10.1109/ICCMC.2019.8819775

48 Bashetty S. et al. Optimizers in Deep Learning: A Comparative Study and

Analysis // Int. J. Res. Appl. Sci. Eng. Technol. – 2022. – Vol. 10. – №. 12. – P.

1032-1039. https://doi.org/10.22214/ijraset.2022.48050

49 Abdulkadirov R., Lyakhov P., Nagornov N. Survey of optimization

algorithms in modern neural networks // Mathematics. – 2023. – Vol. 11. – №.

11. – P. 2466. https://doi.org/10.3390/math11112466

50 Janjua J. I. et al. Activation Function Conundrums in the Modern

Machine Learning Paradigm // 2023 International Conference on Computer and

Applications (ICCA). – IEEE, 2023. – P. 1-8.

https://doi.org/10.1109/ICCA59364.2023.10401760

51 Pantalé O. Comparing activation functions in machine learning for finite

element simulations in thermomechanical forming // Algorithms. – 2023. – Vol.

16. – №. 12. – P. 537. https://doi.org/10.3390/a16120537

52 Chamarty A. Fine-Tuning of Learning Rate for Improvement of Object

Detection Accuracy // 2020 IEEE India Council International Subsections

Conference (INDISCON). – IEEE, 2020. – P. 135-141.

https://doi.org/10.1109/INDISCON50162.2020.00038

53 Ma C. et al. Towards a mathematical understanding of neural network-

based machine learning: what we know and what we don't // arXiv preprint

arXiv:2009.10713. – 2020. https://doi.org/10.48550/arXiv.2009.10713

54 Tian Y., Zhang Y. A comprehensive survey on regularization strategies

in machine learning // Information Fusion. – 2022. – Vol. 80. – P. 146-166.

https://doi.org/10.1016/j.inffus.2021.11.005

55 Moradi R., Berangi R., Minaei B. A survey of regularization strategies

for deep models // Artificial Intelligence Review. – 2020. – Vol. 53. – №. 6. – P.

3947-3986. https://doi.org/10.1007/s10462-019-09784-7

56 Mazilu S., Iria J. L1 vs. L2 regularization in text classification when

learning from labeled features // 2011 10th international conference on machine

learning and applications and workshops. – IEEE, 2011. – Vol. 1. – P. 166-171.

https://doi.org/10.1109/ICMLA.2011.85

https://scikit-learn.org/dev/modules/generated/sklearn.tree.DecisionTreeRegressor.html
https://scikit-learn.org/dev/modules/generated/sklearn.tree.DecisionTreeRegressor.html
https://doi.org/10.1109/ICCMC.2019.8819775
https://doi.org/10.22214/ijraset.2022.48050
https://doi.org/10.3390/math11112466
https://doi.org/10.1109/ICCA59364.2023.10401760
https://doi.org/10.3390/a16120537
https://doi.org/10.1109/INDISCON50162.2020.00038
https://doi.org/10.48550/arXiv.2009.10713
https://doi.org/10.1016/j.inffus.2021.11.005
https://doi.org/10.1007/s10462-019-09784-7
https://doi.org/10.1109/ICMLA.2011.85

 48

57 Vidaurre Henche D. Regularization for sparsity in statistical analysis and

machine learning : dis. – Informatica, 2012.

https://doi.org/10.20868/UPM.thesis.14780

58 Michelucci U. Regularization // Applied Deep Learning with TensorFlow

2: Learn to Implement Advanced Deep Learning Techniques with Python. –

Berkeley, CA : Apress, 2022. – P. 111-144. https://doi.org/10.1007/978-1-4842-

8020-1_4

59 Sumi C. et al. Considerations about L2-and L1-norm regularizations for

ultrasound reverberation characteristics imaging and vectoral Doppler

measurement // 2022 44th Annual International Conference of the IEEE

Engineering in Medicine & Biology Society (EMBC). – IEEE, 2022. – P. 3882-

3886. https://doi.org/10.1109/EMBC48229.2022.9870991

60 Khakhar A., Buckman J. Neural Regression For Scale-Varying Targets //

arXiv preprint arXiv:2211.07447. – 2022.

https://doi.org/10.48550/arXiv.2211.07447

61 Hu C., Shi W. Impact of scaled image on robustness of deep neural

networks // arXiv preprint arXiv:2209.02132. – 2022.

https://doi.org/10.48550/arXiv.2209.02132

62 Schaul T. et al. Return-based scaling: Yet another normalisation trick for

deep rl // arXiv preprint arXiv:2105.05347. – 2021.

https://doi.org/10.48550/arXiv.2105.05347

https://doi.org/10.20868/UPM.thesis.14780
https://doi.org/10.1007/978-1-4842-8020-1_4
https://doi.org/10.1007/978-1-4842-8020-1_4
https://doi.org/10.1109/EMBC48229.2022.9870991
https://doi.org/10.48550/arXiv.2211.07447
https://doi.org/10.48550/arXiv.2209.02132
https://doi.org/10.48550/arXiv.2105.05347

 49

Норматов Саадиаллах

Нестеров Павел Вячеславович

Алиев Тимур Алекберович

Тимралиева Александра Акбулатовна

Новиков Александр Сергеевич

Скорб Екатерина Владимировна

Practice-Oriented Introduction to Machine

Learning: Linear Regression, Decision Tree, and Single

Layer Perceptron models

Учебно-методическое пособие

В авторской редакции

Редакционно-издательский отдел Университета ИТМО

 50

Зав. РИО Н.Ф. Гусарова

Подписано к печати

Заказ №

Тираж

Отпечатано на ризографе

 51

Редакционно-издательский отдел

Университета ИТМО

197101, Санкт-Петербург, Кронверкский пр., 49, литер А

