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INTRODUCTION 

 

Machine Learning is amply applied in the field of Computational Chemistry 

since it can make instant and accurate predictions of values, which describe the 

behavior of chemical systems. For example, Quantum Chemical calculations, 

depending on the level of theory, offer the highest accuracy currently available, 

but on the other hand they can take from weeks to months to complete even on 

supercomputers [1,2]. Ab Initio Molecular Dynamics, another type of 

Computational Chemistry, although considered to be the best technique to model 

and predict the evolution of chemical / biochemical systems over time, can be 

actually much more computationally demanding, since the calculations are made 

for each frame of the simulation [3]. Time is the main factor that limits the 

application of this resource-intensive computational techniques. Machine 

Learning algorithms not only have advanced the Computational Chemistry 

techniques in terms of time (MLIP [4], ∆-DFT [5] etc.), but also in terms of system 

design. AlphaFold, currently recognized as the best representative of this kind, is 

AI-based software that accurately predicts the three-dimensional structures of 

proteins based solely on 1their amino acid sequence [6].  The Royal Swedish 

Academy of Sciences awarded the Nobel Prize in Chemistry 2024 to the authors 

of the AlphaFold “for computational protein design” and “for protein structure 

prediction” [7]. All the above advances highlight the importance and the 

promising use of Machine Learning algorithms in the field of Computational 

Chemistry.    

This manual aims to provide some basic knowledge on Machine Learning 

algorithms for the ITMO University students. It is a practice-oriented tutorial 

which serves as a guideline for the beginners in their desire to build their own 

Machine Learning models. Hence, readers are going to address multiple code 

snippets and plots across the manual, for which authors will provide detailed 

explanations in the corresponding sections. Besides, files with the codes have 

been properly structured and documented, which would make the learning process 

more comfortable and intuitively clear to comprehend. For educational purposes, 

the authors favored using Jupyter Notebooks (“.ipynb”) over standard Python files 

(“.py”) within Visual Studio Code (VSCode) due to the flexibility of the former 

and their ability to make document-like notations. Visual Studio Code is a 

versatile programming tool available for Windows, Linux and MacOS users at 

https://code.visualstudio.com/Download.  

The Database (DB) used in this work contains the energy values of chemical 

systems, obtained via Quantum Chemical calculations. However, the protocol 

mentioned here not only applicable for calculated data, but also for any type of 

tabular values (including experimental data). The manual covers the main aspects 

of the Machine Learning process, which include exploratory data analysis (EDA), 

https://code.visualstudio.com/Download
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data preprocessing, training, validation, and visualization. The authors provide 

some examples on three Machine Learning algorithms, namely: Linear 

Regression, Decision Tree, and Single Layer Perceptron. These three algorithms 

are considered to be good starting points (in that they are the least complex) in 

their respective classes [8-10]: linear, tree-based, and neural networks. The code 

lines for Exploratory Data Analysis and Machine Learning models along with the 

database in a csv file freely available in GitHub repository at 

https://github.com/Saadiallakh/Manual_for_ISC_ITMO.  

The authors assume the readers to have some basic skills of the Python 

programming language (at least with its syntax), which is the main prerequisite 

for this tutorial. The authors also encourage the users to consult the official Python 

[11], Scikit-Learn [12,13], and TensorFlow [14,15] web-sites to get an idea of the 

recent updates on the programming language and the ML-specific libraries. To 

reproduce the workflow of this manual, the readers are recommended to have all 

the necessary libraries installed to keep them consistent with the versions, listed 

in the “requirements.txt” file in the GitHub repository.  

The manual can be useful for teaching Bachelor students of the 

“Infochemistry” educational program at ITMO University and is within the 

modules of the following courses: “Infochemistry”, “Artificial Intelligence and 

Machine Learning in Chemistry”.

https://github.com/Saadiallakh/Manual_for_ISC_ITMO
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1 DATABASE 

 

“Data.csv” file is a dataset that contains the energy values of dimers, 

calculated using two quantum chemical approximations (Table 1). It includes 500 

observations and 8 features, each of the latter representing one of the 4 molecular 

descriptors: Gibbs Energy, Electronic Energy, Enthalpy and Entropy. Dimers 

were generated manually from isolated molecules, selected from the QM9 

database [16,17]. All of them consist of non-conjugated cyclic and heterocyclic 

molecules with a neutral charge. The molecules feature a planar arrangement of 

rings parallel to each other, with their sizes ranging from 3 to 6 members (Fig. 

1A). Heterocyclic dimers contain only two types of heteroatoms: oxygen and 

nitrogen (Fig. 1B).  

 

Table 1  

Feature types: The “hf_” (Hartree-Fock) set was calculated using fast but 

inaccurate approximation, while “dft_” (Density Functional Theory) set was 

calculated using accurate yet resource-intensive approximation.  

 

Feature Type Level of theory 

dft_gibbs_free_energy_ev Target Gibbs free energy calculated using DFT  

dft_electronic_energy_ev Target Electronic energy calculated using DFT  

dft_entropy_ev Target Entropy calculated using DFT  

dft_enthalpy_ev Target Enthalpy calculated using DFT  

hf_gibbs_free_energy_ev Training Gibbs free energy calculated using HF  

hf_electronic_energy_ev Training Electronic energy calculated using HF  

hf_entropy_ev Training Entropy calculated using HF  

hf_enthalpy_ev Training Enthalpy calculated using HF  

 

  
  

A) Number of Systems by Unit Size 
B) Number of Systems by 

Heteroatoms in the ring 

  

Figure 1. A) Prevalence of systems with 4-membered cyclic dimers; B) 

Prevalence of systems with non-heterocyclic dimers  
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2 EXPLORATORY DATA ANALYSIS 

 

Exploratory Data Analysis (EDA) is a crucial phase in the data analysis 

process, focusing on understanding the dataset's structure, identifying patterns, 

and preparing the data for further analysis. EDA employs various techniques, 

including data visualization, summary statistics, and data cleaning, to uncover the 

insights and inform the subsequent analytical steps. It is an iterative process that 

helps analysts make informed decisions about the data and the appropriate 

statistical methods to apply. Statistics covered in this manual are given in Fig. 2. 

The key aspects of EDA are as follows: 

• Data quality assessment: EDA involves checking for errors, outliers, and 

missing data, which are all crucial for ensuring the dataset’s integrity [18,19]. 

• Descriptive statistics: Calculating summary statistics provides a basic 

understanding of the data’s central tendency, dispersion, and distribution [20,21]. 

• Data visualization: Visual tools including plots and graphs are used to 

identify patterns, trends, and relationships within the data, making complex 

datasets more comprehensible [22,23]. 

 

 
 

Figure 2. Statistics calculated for dataset analysis 

EDA

Distribution 
Histograms

Box-and-
Whiskers

Statistical 
significance 

Correlation 
matrix

Confidence 
intervals
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1) Correlation Matrix in Machine Learning is a table showing the correlation 

coefficients between variables. Each cell in the matrix represents the correlation 

between two variables, providing insights into their linear relationships [24]. 

2) Distribution Histograms visualize normal, skewed (left or right), bimodal, 

uniform or other distribution shapes. This visualization aids in understanding how 

the data are spread and can highlight the outliers or anomalies [25]. 

3) Box-and-Whiskers diagrams provide a concise summary of data 

characteristics, including central tendency, dispersion, and outliers, assuming no 

normal distribution. The outliers are plotted as individual points beyond the 

whiskers [26,27]. 

4) Statistical significance (p-value) is a measure used to determine the 

significance of the results in null hypothesis testing (reject if p < 0.05) [28,29]. 

5) Confidence Intervals provide a range within which a population 

parameter is expected to lie with a certain level of confidence [30].  

 

2.1 Confidence Intervals  

 

1) First of all, let us create a “EDA.ipynb” file and open it in the VSCode 

code editor. This file will contain all the code lines for EDA as well as the 

corresponding outputs (plots, graphs). Let us install and import the “Pandas” 

library to read our “Data.csv” file. Leave the first line commented (that is, do not 

delete the “#-#” symbols) if you have already installed “Pandas”.   

 

 

 

If you have successfully executed the code, then the file contents will be 

displayed right beneath the code lines (the so called “output”) 
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2) As we can see, our “data” variable contains 500 rows and 9 columns, 

which indeed reflects the contents of our “Data.csv” file. Now we have to install 

(“!pip install scipy”) and import the “Scipy” library to calculate the 95% 

confidence intervals.  
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CODE ANALYSIS  

 

1. Selecting columns 

• “dft_columns” filters “data” columns to include only those that start with 

“dft_”, storing their names in the list “dft_columns”. 

2. Setting confidence level 

• Lines 4 & 5 define a 95% confidence level, then calculate the corresponding 

z-score (1.96 for 95%) using “stats.norm.ppf()”. This z-score is used in the 

calculation of the margin of error for each interval.  

3. Calculating confidence intervals 

• Line 7 initializes an empty dictionary to store the results.  

• Lines 9-11 loop over each “dft_” column, calculate its mean, and determine 

the standard error (sample standard deviation divided by the square root of the 

sample size). 

4. Margin of error, Bounds, and Width 

• “margin_error” line calculates the margin of error for each column by 

multiplying the z-score by the standard error.  

• Lines 13-14 derive the lower and the upper bounds for the 95% confidence 

interval around the mean. 

• “width” – width of the confidence interval - is the difference between the 

upper and the lower bounds.  

5. Storing results  

• Lines 16-21 store the mean, the lower bound, the upper bound, and the width 

for each “dft_” column in the “confidence_intervals” dictionary. 

6. Converting to DataFrame 

• Lines 23-24 convert the dictionary to a DataFrame, making it easier to view 

and interpret each column’s statistics 

 

3) Our code will output the calculated intervals for the target features. 

Actually, we can use it to calculate the confidence intervals for the “hf_” features 

as well. For this purpose, we simply have to change the “dft_” in the 3rd column 

to the “hf_”. 
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Finally, we get our Confidence Intervals for both sets: HF (“hf_”) and DFT 

(“dft_”). 

 

2.2 Distribution Histograms  

 

1) We have to install and import the “Matplotlib” and “Seaborn” packages 

to plot the Distribution Histograms for our dataset. 
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CODE ANALYSIS  

 

1. Import libraries 

2. Define columns and titles  

• “dft_columns” specifies a list of column names in “data” that will be 

plotted 

• “titles” is a dictionary that assigns custom titles for each “dft_” column 

3. Setting up the plotting grid 

• Line 16 creates a grid layout to display all histograms in a single figure 

• “figsize” sets the overall size of the figure 

• “rows” determines the number of rows in the grid layout for the subplots, 

ensuring there are enough rows to fit all columns 

4. Looping and plotting each histogram 

• Loop iterates through each column in “dft_columns”, creating a subplot for 

each 

• Line 22 sets the title for each subplot using “titles[col]” 

• Lines 23 & 24 set the x-axis label to the “Energy, eV” and y-axis label to 

“Frequency”  

5. Adjust layout and display 

• “plt.tight_layout()” adjusts the layout to avoid overlap between subplots 

• “plt.show()” displays the plot 

 

2) The same code lines with some small adjustments can be used to plot the 

Distribution Histograms for the “hf_” values. As a result, you will get a plot with 

4 subplots illustrating the distribution of values in each set. 
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2.3 Correlation Matrix  

 

1) We will use the “Seaborn” and “Matplotlib” libraries to plot the 

Correlation Matrix between the “dft_” and “hf_” sets of values.    

 

 

 

CODE ANALYSIS 

 

1. Filter columns 

• “dft_columns” and “hf_columns” are the lists of columns in “data” that 

start with “dft_” and “hf_”, respectively. These are used to separate the 

columns for a correlation analysis.  

2. Calculate and subset Correlation Matrix  

• “correlation_matrix” calculates the correlation matrix for the selected 

columns and then subsets it so that the “dft_” columns are on the Y-axis and 

“hf_” are on the X-axis  
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3. Define custom labels for columns  

• “dft_labels” and “hf_labels” dictionaries are defined to provide more 

descriptive labels for the “dft_” and “hf_” columns 

4. Custom colors  

Lines 21 & 22 define color transitions in matrix 

5. Plot the Correlation Matrix with heatmap 

• “heatmap” creates a heatmap with “sns.heatmap()”.  

• Lines 26 & 29 set the text parameters for the plot. 

 

2) As a result, you get a 4×4 Correlation Matrix with the color scheme as 

follows: blue color for the negative, green for the positive and white as a neutral 

midpoint. 
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2.4 Statistical Significance (P-values)  

 

1) To calculate the p-values between the two sets of columns, we can use 

Pandas for a quick and straightforward calculation. Additionally, we have to 

import the “pearsonr” from “scipy.stats” 

 

 

 

CODE ANALYSIS 

 

1. Select columns  

• “dft_columns” is a list of columns in “data” that begin with “dft_”, 

indicating the features related to DFT (Density Functional Theory) 

• “hf_columns” is a list of columns in “data” that begin with “hf_”, 

indicating the features related to HF (Hartree-Fock) 

2. Create an empty DataFrame for the p-values 

• “p_values” is an empty DataFrame with the rows labeled by “dft_columns” 

and the columns labeled by “hf_columns”. This structure will store the p-

values for each pairwise correlation between the “dft_” and the “hf_” 

columns 

3. Calculate p-values 

• For each combination of a “dft_” column and “hf_” column, the code 

calculates the p-value related to their Pearson correlation using “pearsonr”. 

• “pearson(data[hf], data[dft])” returns the p-value “p_value”, which 

represents the statistical significance.  
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2) Code lines for p-values produce the following output 

 

 

 

2.5 Box-and-Whiskers 

 

1) To plot the Box-and-Whisker diagrams we use the “Matplotlib” and 

“Seaborn” libraries. Additionally, we import “Math” to properly arrange the 

plots  
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CODE ANALYSIS 

 

1. Column selection  

• Line 3 selects columns in “data” that begin with “dft_”, storing them in the 

“dft_columns” variable 

2. Custom titles 

• “dft_labels” is a dictionary that maps the “dft_” column names to custom 

titles, which are used as subplot titles for clarity 

3. Rows calculation 

• “n_rows” calculates the number of rows needed to fit all the box plots in a 

grid of 2 plots per row 

4. Plot settings 

• Line 11 sets a white grid background, a muted color palette, and a font 

scaling for the plot 

• Line 12 defines the figure size based on the number of rows needed, with a 

fixed width of 15 units and a height proportional to “n_rows”  

5. Plotting each column in a 2-column grid  

• Line 14 iterates through each “dft_” column 

• Line 15 creates a subplot with “n_rows” rows and 2 columns, positioning 

each box plot in the grid  

• “sns.boxplot()” creates the box plot for each “dft_” column with the 

specified parameters 

 

2) The same code lines can be used to plot the Box-and-Whiskers diagrams 

for the training set of values. The code outputs should look like plots illustrated 

below 
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2.6 EDA: Results 

 

1) Distribution histograms 

Generally, DFT and HF methods produce highly similar distributions across 

all properties, suggesting that both methods are in agreement on the general 

energetic and entropic characteristics of the system. The minor differences in the 

entropy and slight distribution widths suggest that HF might predict slightly more 

constrained states in terms of entropy, while DFT may allow for a somewhat 

higher variability.  

2) Box-and-Whiskers 

Overall, the DFT calculations show less variability and tend to have lower 

median values for most energy metrics compared to HF. This implies the DFT 

might offer more consistent and potentially more stable results. The HF, on the 

other hand, exhibits a wider range and more outliers, indicating a greater level of 

fluctuation in its calculations.  

3) Correlation Matrix  

The DFT and the HF methods agree on entropy calculations but diverge more 

on other properties. Within each method, properties are more consistently 

correlated.  

4) Confidence Intervals 

The DFT and the HF provide close but systematically offset energy 

predictions, while the entropy estimates are highly consistent between the 

methods. This consistency and the confidence interval widths suggest reliability 

in both methods but with a systematic preference for HF to predict slightly less 

negative energies.  

5) Statistical Significance (P-values) 

The results confirm that the systematic differences observed in the energy 

and entropy values between the DFT and the HF are statistically robust. This 

supports a consistent trend of HF predicting slightly higher (less negative) 

energies and slightly lower entropy compared to DFT, suggesting that the DFT 

and the HF yield meaningfully different results, which is likely to result from 

intrinsic methodological differences rather than from random variation.  
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3 MACHINE LEARNING 

 

After getting some insights into to the statistics of our database, we can move 

on to building Machine Learning models. In this manual we cover three 

algorithms: Linear Regression, Decision Tree, and Single Layer Perceptron. This 

section of the manual includes three subsections: Data Preprocessing and 

Splitting, Model Building and Visualization.  

 

3.1 Data Preprocessing and Splitting 

 

1) First of all, let us create a “Preprocessing.ipynb” file to start the data 

preparation. As usual, we need to import the “Pandas” library and read our 

“Data.csv” file. 

 

 

 

2) Next, we specify the data that will be used to train the model along with 

the data for testing the predictive accuracy of the model. We will use the “hf_” 

set of values (X) to train our model and the “dft_enthalpy_ev” as the target (y).  

 

 

 

3) Now we are ready to split our dataset into the training and testing sets. We 

allocate 80% of data for training and 20% for testing. For this purpose, we import 

“train_test_split” from the “Sklearn” library 
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4) After that we normalize our data using StandardScaler(). This process is 

crucial for ensuring that each feature contributes equally to the analysis [31,32]. 

Generally, it is a good idea to save the scalers to have a better future control on 

the models.  

 

 

 

3.2 Model Building and Visualization  

 

For the sake of simplicity, we will not mention the preprocessing steps again 

in this section. These steps are consistent across all the three models and are 

included in the respective “.ipynb” files. Note that the preprocessing code must 

be executed simultaneously with the model code. 

RMSE, MAE, R2 and MSE are the accuracy metrics that we will use to 

evaluate the performance of our models. Root Mean Squared Error (RMSE) 

measures the average magnitude of the error between the predicted and the 

observed values, providing a single value that represents the model’s prediction 

error [33,34]. Mean Absolute Error (MAE) measures the average magnitude of 

the errors in a set of predictions, without considering their direction [35,36]. R2, 

or the coefficient of determination, is a statistical measure in Machine Learning 

that quantifies the proportion of variance in the dependent variable that is 

predictable from independent variables [37-39]. Mean Squared Error (MSE) 

measures the average of the squares of the errors, that is, the average squared 

difference between the estimated values and the actual values [40].  
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3.2.1 Linear Regression 

 

1) Now we can make a copy of the “Preprocessing.ipynb” and rename it to 

the “LinearRegression.ipynb”. We have to import “LinearRegression” from 

the “Sklearn” library to build our model. After that we train our model on the 

training set. 

 

 

 

2) Let us save the model weights to be able to later make predictions without 

training process  

 

 

 

3) Make predictions on the test set and calculate the evaluation metrics  

 

 

 

4) The following results were obtained for the Linear Regression model 

• MSE: 2.7446 

• RMSE: 1.6567 

• MAE: 1.4099 

• R2: 1.0000 
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5) Visualize and save the results  

 

 

 

CODE ANALYSIS 

 

1. Set up the plot  

• Line 1 creates a new figure specified with dimensions 

• Line 2 plots a scatter plot of “y_test” (actual values) versus “y_pred” 

(predicted values) in blue with 60% transparency (“alpha=0.6”) 

• Lines 5 & 6 label the x-axis as “Actual” and the y-axis as “Predicted” 

• “plt.title” adds a title “Enthalpy, eV” with larger font size 

• Line 8 disables the grid to give the plot a cleaner look 

2. Adjust tick sizes 

• Lines 10 & 11 set the font size for both x-axis and y-axis ticks to 14 for 

consistency and readability 

3. Display model metrics on the plot  
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• “metrics_text” is a formatted string that displays model evaluation metrics 

(MSE, RMSE, MAE, R2), each with four decimal places 

• Lines 14 & 16 add this text to the upper left corner of the plot 

(“transform=plt.gca().transAxes” anchors it relative to the plot area, and to 

align the text at the top the “verticalalignment=’top’” is specified). “bbox” 

– sets light green box surrounding the text for readability (with a gray border). 

4. Save results to a csv  

• “results” contains the DataFrame of Actual and Predicted values, which is 

subsequently saved as “Linear_Regression(Act_vs_Pred).csv” file.  

 

The plot itself with the accuracy metrics looks as follows:  

 

 

 

3.2.2 Decision Tree 

 

1) Let us make one more copy of the “Preprocessing.ipynb” file and 

rename it to the “DecisionTree.ipynb”. Our models become more complex: now 
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we have to find the best hyperparameter values to train our model (that is, we have 

to perform the so called “hyperparameter tuning”).  

Hyperparameters in Machine Learning are the crucial elements that define 

the behavior and the performance of algorithms during the training process. 

Unlike the model parameters, which are learned from the data, hyperparameters 

are set before the learning process begins and can significantly influence the 

model’s ability to generalize to unseen data [41-43]. In this manual, we have given 

preference to the Optuna automatic hyperparameter optimization software 

framework. Optuna is considered superior to GridSearchCV for hyperparameter 

optimization due to its advanced features and its efficiency in exploring the 

hyperparameter space [44,45].  

We optimize the following hyperparameters:  

• max_depth 

• min_samples_split 

• min_samples_leaf 

• max_features 

All of them are the parameters of “DecisionTreeRegressor” of the 

“Sklearn” library, which we will import in our file. The “max_depth” controls 

the maximum depth of the tree. The “min_samples_split” specifies the minimum 

number of samples required to split an internal node. The “min_samples_leaf” is 

a minimum number of samples required to be at a leaf node. The “max_features” 

is the number of features to consider when looking for the best split. In this 

manual, we skip the theory behind these hyperparameters, thus to get a better idea 

about them we encourage readers to visit the official web-site of scikit-learn 

library and go through the “DecisionTreeRegressor” page [46]. 

First, let us import all the necessary libraries  

 

 

 

2) Now we have to create an “objective” function where we will specify all 

the hyperparameters and conditions for their optimization  
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CODE ANALYSIS 

 

1. Define hyperparameter grid  

• “trial.suggest_*” functions define the hyperparameter grid, which allows 

Optuna to sample various values during each trial  

2. Initialize the DecisionTreeRegressor 

• The model is created using “DecisionTreeRegressor” with the parameters 

suggested in the current trial, and “random_state=42” for reproducibility.  

3. Set up cross-validation  

• The “KFold” object performs 3-fold cross-validation (splitting the data into 

3 parts) and shuffles the data before splitting to ensure varied splits across the 

trials  

4. Run cross-validation  

• For each split of the data: 1) Data is divided into the training and validation 

sets; 2) The model is trained on the training fold (“model.fit()”); 3) 

Predictions are made on the validation fold; 4) MSE is calculated between the 
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predicted values (“y_pred_cv”) and actual values (“y_valid_cv”). This MSE 

is appended to the “mse_list”, which stores the MSE for each fold. 

5. Return the mean MSE  

• Finally, the function returns the mean of the MSE values across all folds.  

 

3) Run the optimization. For the sake of time, we run only 50 trials, but to 

get more accurate results, you would need to run from 1000 to 5000 trials.  

 

 

 

If everything has been done correctly, the code will output the optimization 

progress  

 

 

  

4) Print the best hyperparameters  

 

 

 

We get the following combination: 

• Best trial value: 2068.5881528457116 

• Best hyperparameters: {'max_depth': 12, 'min_samples_split': 7, 

'min_samples_leaf': 1, 'max_features': 0.8} 
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5) Let us save the optimization results  

 

 

 

6) Retrieve the best hyperparameters to pass them for model training  

 

 

 

7) Train the model with the best hyperparameters  

 

 

 

8) Save the model weights  

 

 

 

9) Make predictions on the test set and calculate the evaluation metrics  
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10) The following results were obtained for the Decision Tree model 

• MSE: 56.9403 

• RMSE: 7.5459 

• MAE: 1.1456 

• R2: 1.0000 

 

11) Visualize and save the results 

 

 

 

CODE ANALYSIS 

 

1. Set up the plot  

• Line 1 creates a new figure specified with dimensions 

• Line 2 plots a scatter plot of “y_test” (actual values) versus “y_pred” 

(predicted values) in blue with 60% transparency (“alpha=0.6”) 

• Lines 5 & 6 label the x-axis as “Actual” and the y-axis as “Predicted” 
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• “plt.title” adds a title “Enthalpy, eV” with a larger font size 

• Line 8 disables the grid to give the plot a cleaner look 

2. Adjust tick sizes 

• Lines 10 & 11 set the font size for both the x-axis and y-axis ticks to 14 for 

consistency and readability 

3. Display model metrics on the plot  

• “metrics_text” is a formatted string that displays the model evaluation 

metrics (MSE, RMSE, MAE, R2), each with four decimal places 

• Lines 14 & 16 add this text to the upper left corner of the plot 

(“transform=plt.gca().transAxes” anchors it relative to the plot area, and to 

align the text at the top the “verticalalignment=’top’” is specified). “bbox” 

– sets light green box surrounding the text for readability (with a gray border). 

4. Save results to a csv  

• “results” contains the DataFrame of Actual and Predicted values, which is 

subsequently saved as “Decision_Tree(Act_vs_Pred).csv” file. 

 

The plot for the Decision Tree with the accuracy metrics looks as follows:  
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3.2.3 Single Layer Perceptron  

 

Single Layer Perceptron is the simplest form of a neural network, primarily 

used for linear regression and binary classification tasks. It consists of a single 

layer of output nodes connected directly to the input features, without any hidden 

layers. This simplicity makes it a foundational model in neural network research 

[47].  

 We will use the TensorFlow library to build the model and the Optuna 

library to optimize the following hyperparameters:  

• optimizer_name 

• activation_function  

• learning_rate 

• num_neurons 

• l1_reg 

• l2_reg 

Optimizers in Machine Learning are the algorithms designed to adjust the 

parameters of the models to minimize the loss function, thereby improving the 

model performance (“optimizer_name”). They play a crucial role in training 

Neural Networks by determining the speed and the quality of convergence 

[48,49]. Activation functions are critical components in Neural Networks, serving 

as the decision-making elements that determine the output of a neural node 

(“activation_function”). They introduce non-linearity into the network, enabling 

it to learn some complex patterns and relationships within the data [50,51]. The 

“learning_rate” is a hyperparameter that determines the step size at each iteration 

while moving toward a minimum of the loss function [52]. Neurons in Neural 

Networks are computational units inspired by biological neurons, designed to 

process and transmit the information through the interconnected layers 

(“num_neurons”). These artificial neurons form the building blocks of Neural 

Networks, enabling them to perform some complex tasks including pattern 

recognition and predictive modelling [53]. Regularization in Machine Learning is 

a technique used to prevent overfitting by introducing some additional 

information or constraints into the model. It modifies the loss function to include 

the penalty term, which can help improve the model’s generalization to the unseen 

data [54,55]. Two common forms of regularization are L1 [56,57] and L2 [58,59] 

regularization, which are implemented the TensorFlow or similar frameworks.  

1) Let us create a “SingleLayerPerceptron.ipynb” file to build our model. 

This time we need to scale the “y” values as well. Single Layer Perceptron, like 

most Neural Networks, relies on gradient descent to iteratively update weights 
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to minimize the loss function [60-62]. Gradient descent can struggle if the scale 

of the target variable is too large or too different from the scale of the features. In 

contrast, Linear Regression and Decision Tree do not depend on gradient 

descent, so they can more easily handle varying scales in the target variable.  

Now we have to install and import all the necessary libraries and create the 

“objective” function for Optuna optimization, but before doing so let us scale 

the “y” values.  

 

 

 

2) After this we install and import libraries  

 

 

 

3) Create a function for optimization  
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CODE ANALYSIS 

 

1. Objective function for hyperparameter search  

• The function “objective(trial)” defines the task of finding the best 

combination of hyperparameters  

• It uses Optuna’s “trial” object to sample various hyperparameter values  

• The function returns the MSE across multiple folds of cross-validation, 

aiming to minimize this value  

2. Model definition with current hyperparameters  

• A simple feedforward neural network is created with: an input layer matching 

the shape of the input data; a single hidden layer with “num_neurons” and 

the chosen “activation_function”; a regularization function (L1 and L2 

regularization); an output layer with one neuron for regression. 

3. Optimizer selection  

• The optimizer is chosen based on the “optimizer_name”, and configured 

with the suggested “learning_rate”. 

4. Model compilation  

• The model is compiled with: the chosen “optimizer” and Mean Squared 

Error (“mean_squared_error”) as the loss function. 
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5. Cross-validation setup with KFold 

• The function uses 3-fold cross-validation (“KFold(n_splits=3”)) to ensure 

the model’s performance is tested on different subsets of the data.     

 

4) Run the optimization. For the sake of time, we run only 50 trials, but to 

get more accurate results, you would need to run from 1000 to 5000 trials. 

 

 

 

If everything has been done correctly, the code will output the optimization 

progress  

 

 

 

5) Print the best hyperparameters  

 

 

 

We get the following combination: 

• Best trial value: 2.221684143808076e-06 

• Best hyperparameters: {'optimizer': 'RMSprop', 'activation_function': 

'leaky_relu', 'learning_rate': 0.0002056507486431957, 'num_neurons': 199, 

'l1_reg': 2.3245876147791472e-05, 'l2_reg': 4.371907855050314e-08} 
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6) Save the optimization results  

 

 

 

7) Retrieve the best hyperparameters to pass them for model training  

 

 

 

8) Build and train the final model with the best hyperparameters  

 

 

 

9) Choose the best optimizer and implement “EarlyStopping” to prevent 

overfitting. After this compile the model  
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10) Train the model with the best hyperparameters  

 

 

 

11) Save the training and validation loss to the .txt file 

 

 

 

12) Plot the training and validation curves  
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You should get the following plot  

 

 

 

13) Save the model weights  

 

 

 

14) Make predictions on the test set  

 

 

 

15) Inverse the scaled data  
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16) Calculate the accuracy metrics  

 

 

 

17) The following results were obtained for the Single Layer Perceptron 

model 

• MSE: 16.2898 

• RMSE: 4.0361 

• MAE: 2.8663 

• R2: 1.0000 

 

18) Visualize the results and save the “Actual VS Predicted” values in csv 

format 
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CODE ANALYSIS 

 

1. Set up the plot  

• Line 1 creates a new figure with dimensions specified 

• Line 2 plots a scatter plot of “y_test” (actual values) versus “y_pred” 

(predicted values) in blue with 60% transparency (“alpha=0.6”) 

• Lines 5 & 6 label the x-axis as “Actual” and the y-axis as “Predicted” 

• “plt.title” adds the title “Enthalpy, eV” with a larger font size 

• Line 8 disables the grid to give the plot a cleaner look 

2. Adjust tick sizes 

• Lines 10 & 11 set the font size for both x-axis and y-axis ticks to 14 for 

consistency and readability 

3. Display model metrics on the plot  

• “metrics_text” is a formatted string that displays the model evaluation 

metrics (MSE, RMSE, MAE, R2), each with four decimal places 

• Lines 14 & 16 add this text to the upper left corner of the plot 

(“transform=plt.gca().transAxes” anchors it relative to the plot area, and to 

align the text at the top the “verticalalignment=’top’” is specified). “bbox” 

– sets light green box surrounding the text for readability (with a gray border). 

4. Save results to a csv  

• “results” contains the DataFrame of Actual and Predicted values, which is 

subsequently saved as “SLP(Act_vs_Pred).csv” file. 

 



 41 

The plot for Single Layer Perceptron with the accuracy metrics looks as 

follows:  

 

 

 

3.3 Machine Learning: Results  

 

After training and testing all the models, we can compare the accuracy 

metrics to determine the best-fitting model for our dataset (Table 2). 

 

Table 2 

Accuracy metrics across all models  

 

ML model MSE RMSE MAE R2 

Linear Regression 2.7446 1.6567 1.4099 1.0000 

Decision Tree 56.9403 7.5459 1.1456 1.0000 

Single Layer 

Perceptron 
16.2898 4.0361 2.8663 1.0000 
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• Mean Squared Error (MSE): The Linear Regression model has the lowest 

MSE at 2.7446, indicating it produces the least squared error on average. In 

contrast, the Decision Tree has a significantly higher MSE of 56.9403, suggesting 

it is less effective at predicting the target variable. The Single Layer Perceptron 

has a moderate MSE of 16.2898. 

• Root Mean Squared Error (RMSE): RMSE values further reinforce the 

above, with Linear Regression having an RMSE of 1.6567, indicating smaller 

errors compared to the Decision Tree (7.5459) and the Single Layer Perceptron 

(4.0361). RMSE is sensitive to larger errors and emphasizes larger discrepancies 

in predictions.  

• Mean Absolute Error (MAE): For MAE, the Decision Tree exhibits the 

lowest value (1.1456), indicating it may have fewer overall errors despite its 

higher MSE and RMSE. The Single Layer Perceptron has a higher MAE (2.8663) 

compared to Linear Regression (1.4099), suggesting a lower accuracy of its 

predictions. 

 • R-squared (R2): All models have an R2 value of 1.0000, indicating a perfect 

fit of the models to the training data. However, this metric alone can be 

misleading, particularly in cases of overfitting, as seen with the Decision Tree. 

In summary, while all models show a perfect fit with an R2 of 1.0000, the 

Linear Regression model is overall the most reliable based on MSE, RMSE, and 

MAE, suggesting it provides the best balance between the accuracy and the 

predictive performance. The Decision Tree, despite its lower MAE, performs 

poorly in terms of MSE and RMSE, indicating a potential overfitting. The Single 

Layer Perceptron, while not as effective as Linear Regression, performs better 

than the Decision Tree in terms of MSE and RMSE, but has a higher MAE. 

Therefore, for this particular dataset, Linear Regression would be the preferred 

model for making predictions. 
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