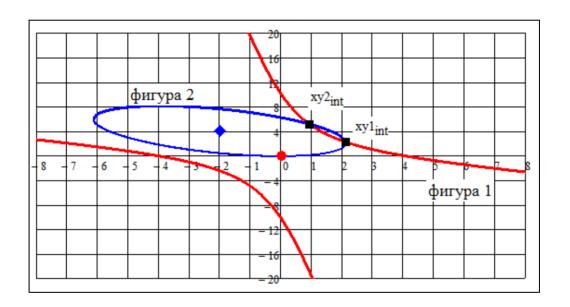
ИТМО

С.А. Рыков, И.В. Кудрявцева, С.В. Рыков, В.В. Пеленко

РЕШЕНИЕ СИСТЕМ УРАВНЕНИЙ В ПРИМЕРАХ В ПАКЕТЕ MATHCAD 15. Ч. II. НЕЛИНЕЙНЫЕ УРАВНЕНИЯ. ПЕРЕСЕЧЕНИЕ ФИГУР



Санкт-Петербург 2025

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

УНИВЕРСИТЕТ ИТМО

С.А. Рыков, И.В. Кудрявцева, С.В. Рыков, Пеленко В.В. РЕШЕНИЕ СИСТЕМ УРАВНЕНИЙ В ПРИМЕРАХ В ПАКЕТЕ МАТНСАО 15. Ч. II. НЕЛИНЕЙНЫЕ УРАВНЕНИЯ. ПЕРЕСЕЧЕНИЕ ФИГУР

УЧЕБНО-МЕТОДИЧЕСКОЕ ПОСОБИЕ

РЕКОМЕНДОВАНО К ИСПОЛЬЗОВАНИЮ В УНИВЕРСИТЕТЕ ИТМО по укрупненным группам направлений подготовки: 09.00.00, 12.00.00, 13.00.00, 15.00.00, 16.00.00, 18.00.00, 19.00.00, 24.00.00, 27.00.00 в качестве Учебно-методического пособия для реализации основных профессиональных образовательных программ высшего образования бакалавриата

ИІТМО

Санкт-Петербург 2025 Рыков С.А., Кудрявцева И.В., Рыков С.В., Пеленко В.В. Решение систем уравнений в примерах в пакете MathCAD 15. Ч. II. Нелинейные уравнения. Пересечение фигур – СПб: Университет ИТМО, 2025, – 104 с.

Рецензент(ы):

Тертычный Владимир Юрьевич, доктор физико-математических наук, профессор, доцент факультета информационных технологий и программирования, Университета ИТМО.

Пособие содержит сведения о решении систем нелинейных уравнений. Снабжено большим количеством примеров решения задач пересечения плоских фигур. В пособии приведены задачи для самостоятельного решения и тестовые вопросы с подробными пояснениями по изучаемому методу. Предназначено для обучения бакалавров по укрупненным группам направлений подготовки: 09.00.00, 12.00.00, 13.00.00, 15.00.00, 16.00.00, 18.00.00, 19.00.00, 24.00.00, 27.00.00

ИІТМО

ИТМО (Санкт-Петербург) — национальный исследовательский университет, научно-образовательная корпорация. Альма-матер победителей международных соревнований программированию. Приоритетные ПО и искусственный интеллект, фотоника, робототехника, направления: ІТ трансляционная Life Sciences, коммуникации, медицина, Art&Science, Science Communication.

Лидер федеральной программы «Приоритет-2030», в рамках которой реализовывается программа «Университет открытого кода». С 2022 ИТМО работает в рамках новой модели развития — научно-образовательной корпорации. В ее основе академическая свобода, поддержка начинаний студентов и сотрудников, распределенная система управления, приверженность открытому коду, бизнес-подходы к организации работы. Образование в университете основано на выборе индивидуальной траектории для каждого студента.

ИТМО пять лет подряд — в сотне лучших в области Automation & Control (кибернетика) Шанхайского рейтинга. По версии SuperJob занимает первое место в Петербурге и второе в России по уровню зарплат выпускников в сфере IT. Университет в топе международных рейтингов среди российских вузов. Входит в топ-5 российских университетов по качеству приема на бюджетные места. Рекордсмен по поступлению олимпиадников в Петербурге. С 2019 года ИТМО самостоятельно присуждает ученые степени кандидата и доктора наук.

© Университет ИТМО, 2025

© Рыков С.А., Кудрявцева И.В., Рыков С.В., Пеленко В.В., 2025

Содержание

Введение	4
1. Теоретическое описание фигур	
1.1. Общие положения	
1.2. Аффинные преобразования	6
1.2.1. Параллельное смещение фигуры	
1.2.2. Поворот прямой на заданный угол	
1.2.3. Одновременное смещение и поворот фигур вокруг точки	
1.3. Уравнения фигур и манипуляции с фигурами	8
1.3.1. Круг	8
1.3.2. Эллипс	
1.3.3. Гипербола	12
1.3.4. Парабола	14
2. Примеры расчета точек пересечения фигур	19
3. Контрольные вопросы	35
3.1. Круг	35
3.2. Эллипс	
3.3. Гипербола	45
3.4. Парабола	52
4. Задания для самостоятельной работы	61
Список литературы	66
Приложение А. Листинги программ расчета точек пресечения фигур	68
Приложение Б. Список примеров	103

ВВЕДЕНИЕ

Системы нелинейных уравнений нашли широкое применение при решении разнообразных технических задач, в том числе и оптимизационных. Решение систем нелинейных уравнений могут быть получено аналитическим способом (в редких случаях) и численно, с использованием пакетов прикладных программ, таких, как Mathematica, Maple, MathCAD, Matlab.

Студенты университета имеют возможность изучать и использовать все эти пакеты: Маthematica, Maple, MathCAD, Matlab. При обучении студентов линейной алгебре, аналитической геометрии, математическому анализу, теории вероятности, математической статистике, изучении численных методов часто предпочтение отдается пакету MathCAD. В данном пакете можно эффективно осуществлять численные расчеты и выполнять аналитические преобразования, используя символьный процессор от Maple. Поэтому пакет MathCAD востребован как исследователями, занимающими научными разработками, так и техническими специалистами, выполняющими сложные вычисления. Важным обстоятельством является наличие в репозитарии ИТМО значительного количества пособий, посвященных изучению применения пакета MathCad при решении различных вычислительных и оптимизационных задач в разных областях науки и техники. Поэтому в данном пособии для практического решения систем нелинейных уравнений использовался пакет MathCAD.

В качестве аналитических выражений, рассмотренных в пособии, использовались уравнения плоских фигур: прямая, круг, эллипс, парабола, гипербола в различных вариантах. Решением систем уравнений являлись точки пересечения фигур. Такой подход позволяет более наглядно проиллюстрировать рассмотренный в пособии тему.

В первой главе содержатся аналитические выражения, описывающие фигуры во всех модификациях. Во второй главе приведен расчет точек пересечения различных вариантов фигур в пяти примерах. В третьей главе

приведены около 70 контрольных вопросов по теории и практики рассматриваемой в пособии темы. Четвертая глава содержит 16 заданий для самостоятельной работы. Приложение содержит подробное с комментариями решение примеров, изложенных в главе 2, в пакете MathCAD. В примерах показана практика использования символьных инструментов MathCAD при упрощении и структурировании математических выражений.

Учебное пособие предназначено студентам для освоения методов линейной алгебры и аналитической геометрии. Оно может быть использовано для обучения в рамках дисциплин (модулей) "Линейная алгебра" в учебном процессе образовательных программах подготовки бакалавров: 09.00.00 (информатика и вычислительная техника); 12.00.00 (фотоника, приборостроение, оптические и биотехнические системы и технологии); 13.00.00 (электро- и теплоэнергетика); 15.00.00 (машиностроение); 16.00.00 (физико- технические науки и технологии) 18.00.00 (химические технологии); 19.00.00 (промышленная экология и биотехнологии); 24.00.00 (авиационная и ракетно-космическая техника); 27.00.00 (управление в технических системах).

1. ТЕОРЕТИЧЕСКОЕ ОПИСАНИЕ ФИГУР

1.1. Общие положения

При решении задачи нахождения точки пресечения фигур необходимо:

- рассчитать точки пресечения фигур;
- построить графики фигур, нанести опорные точки фигур и точки пересечения фигур.

Задача нахождения точек пересечения фигур сводится и решению системы нелинейных уравнений, в которой количество неизвестных равно количеству уравнений.

1.2. Аффинные преобразования

Аффинные преобразования используются для модификации исходных выражений, описывающих двумерные фигуры при их параллельном перемещение относительно осей координат и повороте вокруг точки на заданный угол. Возможные перемещения фигур относительно координатных осей:

- смещение параллельный перенос фигуры на Δx и Δy по осям 0X и 0Y, соответственно;
- поворот фигуры относительно на угол α;
- смещение и поворот фигуры одновременно.

Для получения расчетных выражений при манипуляции фигур вводится локальная система координат ($0^I X^I Y^I$), которая устанавливается таким образом, чтобы положение фигуры было тоже, что и у фигуры до перемещения (поворота) в глобальной системе координат. Затем производится пересчет координат из локальной системы координат ($0^I X^I Y^I$) в глобальную систему координат (0XY) с использование аффинных преобразований [21, 22].

1.2.1. Параллельное смещение фигуры

При параллельном переносе фигуры аффинные преобразования имеют вид:

$$\begin{cases} x^{I} = x - \Delta x; \\ y^{I} = y - \Delta y, \end{cases}$$
 (1.1)

где x^I — абсцисса точки в локальной системе координат, y^I — ордината точки в локальной системе координат, x, y — координаты точки в глобальной системе координат, Δx , Δy — расстояние по осям 0X и 0Y между началом глобальной и локальной систем координат.

В матричной форме аффинные преобразования примут вид:

$$XY^I = XY - \Delta XY \,, \tag{1.2}$$

где
$$XY^I = \begin{pmatrix} x^I \\ y^I \end{pmatrix}$$
 — координаты точки в локальной системе координат, $XY = \begin{pmatrix} x \\ y \end{pmatrix}$ —

координаты точки в глобальной системе координат, $\triangle XY = \begin{pmatrix} \triangle X \\ \triangle Y \end{pmatrix}$ — вектор параллельного смещения точек.

1.2.2. Поворот прямой на заданный угол

При повороте фигуры на угол α аффинные преобразования имеют вид:

$$\begin{cases} x' = x \cdot \cos(\alpha) + y \cdot \sin(\alpha); \\ y' = -x \cdot \sin(\alpha) + y \cdot \cos(\alpha), \end{cases}$$
 (1.3)

где x^{I} – абсцисса точки в локальной системе координат, y^{I} – ордината точки в локальной системе координат, x, y – координаты точки в глобальной системе координат, а – угол поворота фигуры относительно горизонтальной оси в локальной системе координат. Положительный угол а против часовой стрелки.

В матричной форме:

$$XY^{I} = M\alpha \cdot XY, \qquad (1.4)$$

где
$$XY^I = \begin{pmatrix} x^I \\ y^I \end{pmatrix}$$
 - координаты точки в локальной системе координат, $XY = \begin{pmatrix} x \\ y \end{pmatrix}$ - координаты точки в глобальной системе координат, $M\alpha = \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ -\sin(\alpha) & \cos(\alpha) \end{pmatrix}$ -

координаты точки в глобальной системе координат,
$$M\alpha = \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ -\sin(\alpha) & \cos(\alpha) \end{pmatrix}$$
 – матрица поворота.

1.2.3. Одновременное смещение и поворот фигур вокруг точки

При одновременном параллельном переносе на Δx , Δy и повороте фигуры на угол α аффинные преобразования имеют вид [21–23]:

$$\begin{cases} x' = (x - \Delta x) \cdot \cos(\alpha) + (y - \Delta y) \cdot \sin(\alpha); \\ y' = -(x - \Delta x) \cdot \sin(\alpha) + (y - \Delta y) \cdot \cos(\alpha), \end{cases}$$
 (1.5)

где x^{I} – абсцисса точки в локальной системе координат, y^{I} – ордината точки в локальной системе координат, х, у - координаты точки в глобальной системе координат, Δx , Δy — расстояние по осям 0X и 0Y между началом глобальной и локальной систем координат, а угол поворота фигуры относительно горизонтальной оси в локальной системе координат. Положительный угол а против часовой стрелки.

В матричной форме:

$$XY^{I} = M\alpha \cdot (XY - \Delta XY), \tag{1.6}$$

где $XY^I = \begin{pmatrix} x^I \\ y^I \end{pmatrix}$ — координаты точки в локальной системе координат, $XY = \begin{pmatrix} x \\ y \end{pmatrix}$ — координаты точки в глобальной системе координат, $M\alpha = \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ -\sin(\alpha) & \cos(\alpha) \end{pmatrix}$ — матрица поворота, $\Delta XY = \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix}$ — вектор параллельного смещения точек по осям 0X и 0Y.

1.3. Уравнения фигур и манипуляции с фигурами

Канонический вид уравнения круга

Уравнение круга с центром в начале координат:

$$\frac{x^2}{R^2} + \frac{y^2}{R^2} - 1 = 0, \tag{1.7}$$

где R — радиус круга.

Матричная форма записи:

$$XY^T \cdot AB3 \cdot XY - 1 = 0, \tag{1.8}$$

где $XY = \begin{pmatrix} x \\ y \end{pmatrix}$ — вектор переменных, $AB3 = \begin{pmatrix} 1/R^2 & 0 \\ 0 & 1/R^2 \end{pmatrix}$ — матрица коэффициентов круга.

Функция для построения графика имеет вид y = f(x) и равна

$$y = \pm \sqrt{R^2 - x^2} \,, \tag{1.9}$$

то есть график состоит из двух кривых.

Параллельный перенос круга

Уравнение круга со смещенным центром относительно начала координат с учетом (1.1) примет вид:

$$\frac{(x - \Delta x)^2}{R^2} + \frac{(y - \Delta y)^2}{R^2} - 1 = 0,$$
(1.10)

где Δx , Δy — смещение центра круга относительно начала координат по осям 0X и 0Y, соответственно.

Матричная форма записи:

$$(XY - \Delta XY)^T \cdot AB3 \cdot (XY - \Delta XY) - 1 = 0, \tag{1.11}$$

где $XY = \begin{pmatrix} x \\ y \end{pmatrix}$ — вектор переменных, $AB3 = \begin{pmatrix} 1/R^2 & 0 \\ 0 & 1/R^2 \end{pmatrix}$ — матрица

коэффициентов круга, $\Delta XY = \begin{pmatrix} \Delta X \\ \Delta Y \end{pmatrix}$ — смещение центра круга по осям координат.

Функция для построения графика имеет вид y = f(x) и равна:

$$y = \pm \sqrt{R^2 - \left(x - \Delta x\right)^2} + \Delta y, \tag{1.12}$$

то есть график состоит из двух кривых.

1.3.2. Эллипс

Канонический вид уравнения эллипса

Уравнение эллипса с центром в начале координат:

$$\frac{x^2}{A^2} + \frac{y^2}{B^2} - 1 = 0, \tag{1.13}$$

где A, B — полуоси эллипса.

коэффициентов эллипса.

Матричная форма записи:

$$XY^T \cdot AB3 \cdot XY - 1 = 0, \tag{1.14}$$

где $XY = \begin{pmatrix} x \\ y \end{pmatrix}$ — вектор переменных, $AB4 = \begin{pmatrix} 1/A^2 & 0 \\ 0 & 1/B^2 \end{pmatrix}$ — матрица

Функция для построения графика имеет вид y = f(x) и равна:

$$y = \pm \frac{B}{A} \sqrt{A^2 - x^2} \,, \tag{1.15}$$

то есть график состоит из двух кривых.

Параллельный перенос эллипса

Вид уравнения эллипса при параллельном смещении центра эллипса на Δx , Δy по осям 0X и 0Y относительно начала координат с учетом (1.1) имеет вид.

$$\frac{(x - \Delta x)^2}{A^2} + \frac{(y - \Delta y)^2}{B^2} - 1 = 0.$$
 (1.16)

Матричная форма записи:

$$(XY - \Delta XY)^{T} \cdot AB4 \cdot (XY - \Delta XY) - 1 = 0, \qquad (1.17)$$

где $XY = \begin{pmatrix} x \\ y \end{pmatrix}$ – вектор переменных, $AB4 = \begin{pmatrix} 1/A^2 & 0 \\ 0 & 1/B^2 \end{pmatrix}$ – матрица

коэффициентов эллипса, $\triangle XY = \begin{pmatrix} \triangle X \\ \triangle Y \end{pmatrix}$ — смещение центра эллипса по осям координат.

Функция для построения графика имеет вид y = f(x) и равна:

$$y = \pm \frac{B}{A} \sqrt{A^2 - (x - \Delta x)^2} + \Delta y,$$
 (1.18)

то есть график состоит из двух кривых.

Поворот эллипса

Вид уравнения при повороте эллипса в локальной системе координат:

$$\frac{x^{l^2}}{A^2} + \frac{y^{l^2}}{B^2} - 1 = 0. ag{1.19}$$

Вид уравнения при повороте эллипса в глобальной системе координат с учетом (1.3) имеет вид:

$$\left(\frac{\cos(\alpha)^{2}}{A^{2}} + \frac{\sin(\alpha)^{2}}{B^{2}}\right) \cdot x^{2} + \sin(2 \cdot \alpha) \cdot \left(\frac{1}{A^{2}} - \frac{1}{B^{2}}\right) \cdot x \cdot y + \dots + \left(\frac{\sin(\alpha)^{2}}{A^{2}} + \frac{\cos(\alpha)^{2}}{B^{2}}\right) \cdot y^{2} - 1 = 0.$$
(1.20)

Матричная форма записи с учетом (1.4) примет вид:

$$\left[\frac{\left(\left(\left(M\alpha\right)^{T}\right)^{<0>}\right)^{T}\cdot XY}{A1}\right]^{2} + \left[\frac{\left(\left(\left(M\alpha\right)^{T}\right)^{<1>}\right)^{T}\cdot XY}{B1}\right]^{2} - 1 = 0, \tag{1.21}$$

где $M\alpha = \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ -\sin(\alpha)\cos(\alpha) \end{pmatrix}$ — матрица поворота.

Функция для построения графика имеет вид y = f(x) и равна:

$$\begin{cases} y_{1} = \frac{A \cdot B \cdot \sqrt{A^{2} \cdot \cos(\alpha)^{2} + B^{2} \cdot \sin(\alpha)^{2} - x^{2}} + \frac{x}{2} \cdot \sin(2\alpha) \left(A^{2} - B^{2}\right)}{A^{2} \cdot \cos(\alpha)^{2} + B^{2} \cdot \sin(\alpha)^{2}}; \\ y_{2} = -\frac{A \cdot B \cdot \sqrt{A^{2} \cdot \cos(\alpha)^{2} + B^{2} \cdot \sin(\alpha)^{2} - x^{2}} - \frac{x}{2} \cdot \sin(2\alpha) \left(A^{2} - B^{2}\right)}{A^{2} \cdot \cos(\alpha)^{2} + B^{2} \cdot \sin(\alpha)^{2}}, \end{cases}$$
(1.22)

то есть график состоит из двух кривых.

Поворот и параллельный перенос эллипса

Вид уравнения при повороте эллипса в локальной системе координат:

$$\frac{x^{l^2}}{A1^2} + \frac{y^{l^2}}{B1^2} - 1 = 0. ag{1.23}$$

Вид уравнения при повороте эллипса в глобальной системе координат с учетом (1.5) имеет вид:

$$\frac{x_{\alpha_{\Delta}}^2}{A1^2} + \frac{y_{\alpha_{\Delta}}^2}{B1^2} - 1 = 0, \tag{1.24}$$

где $x_{\alpha_{\triangle}} = (x - \triangle x) \cdot \cos(\alpha) + (y - \triangle y) \cdot \sin(\alpha)$, $y_{\alpha_{\triangle}} = -(x - \triangle x) \cdot \sin(\alpha) + (y - \triangle y) \cdot \cos(\alpha)$. Матричная форма записи:

$$\left[\frac{\left(\left(\left(M\alpha\right)^{T}\right)^{<0>}\right)^{T}\left(XY-\triangle XY\right)}{A1}\right]^{2}+\left[\frac{\left(\left(\left(M\alpha\right)^{T}\right)^{<1>}\right)^{T}\left(XY-\triangle XY\right)}{B1}\right]^{2}-1=0. (1.25)$$

где $XY = \begin{pmatrix} x \\ y \end{pmatrix}$ — вектор переменных, $M\alpha = \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ -\sin(\alpha) & \cos(\alpha) \end{pmatrix}$ — матрица поворота, $\triangle XY = \begin{pmatrix} \triangle x \\ \triangle y \end{pmatrix}$ — вектор смещения.

Функция для построения графика имеет вид y = f(x) и равна:

$$\begin{cases} y_{1} = \frac{\left(A1^{2} - B1^{2}\right) \cdot \sin(2 \cdot \alpha)}{2 \cdot K1} \cdot \left(x - \Delta x\right) + \Delta y + \frac{A1 \cdot B1 \cdot \sqrt{K1 - \left(x - \Delta x\right)^{2}}}{K1}; \\ y_{2} = \frac{\left(A1^{2} - B1^{2}\right) \cdot \sin(2 \cdot \alpha)}{2 \cdot K1} \cdot \left(x - \Delta x\right) + \Delta y - \frac{A1 \cdot B1 \cdot \sqrt{K1 - \left(x - \Delta x\right)^{2}}}{K1}. \end{cases}$$
(1.26)

где $K1 = A^2 \cdot \cos(\alpha)^2 + B^2 \cdot \sin(\alpha)^2$, то есть график состоит из двух кривых.

1.3.3. Гипербола

Канонический вид уравнения гиперболы

Уравнение гиперболы с центром в начале координат:

$$\frac{x^2}{A1^2} - \frac{y^2}{B1^2} - 1 = 0, (1.27)$$

где A1 – расстояние до вершины гиперболы от начала координат, O(0,0); между вершинами полуфигур гиперболы и началом координат, O(0,0); $B1 = \sqrt{c^2 - A1^2}$ – положительное число, c – расстояние до фокуса гиперболы от точки O(0,0).

Матричная форма записи:

$$XY^T \cdot AB4 \cdot XY - 1 = 0, \tag{1.28}$$

где $XY = \begin{pmatrix} x \\ y \end{pmatrix}$ — вектор переменных, $AB4 = \begin{pmatrix} 1/A^2 & 0 \\ 0 & -1/B^2 \end{pmatrix}$ — матрица

коэффициентов гиперболы.

Функция для построения графика имеет вид y = f(x) и равна:

$$y = \pm \frac{B1}{A1} \sqrt{x^2 - A1^2} \,, \tag{1.29}$$

то есть график состоит из двух кривых.

Параллельный перенос гиперболы

Вид уравнения гиперболы при параллельном смещении центра гиперболы на Δx , Δy по осям 0X и 0Y относительно начала координат с учетом (1.1) имеет вид:

$$\frac{(x - \Delta x)^2}{A1^2} + \frac{(y - \Delta y)^2}{B1^2} - 1 = 0.$$
 (1.30)

Матричная форма записи:

$$(XY - \Delta XY)^{T} \cdot AB4 \cdot (XY - \Delta XY) - 1 = 0, \qquad (1.31)$$

где $XY = \begin{pmatrix} x \\ y \end{pmatrix}$ — вектор переменных, $AB4 = \begin{pmatrix} 1/A^2 & 0 \\ 0 & -1/B^2 \end{pmatrix}$ — матрица

коэффициентов эллипса, $\triangle XY = \begin{pmatrix} \triangle X \\ \triangle Y \end{pmatrix}$ — смещение центра эллипса по осям координат.

Функция для построения графика имеет вид y = f(x) и равна:

$$y = \pm \frac{B1}{A1} \sqrt{(x - \Delta x)^2 - A1^2} + \Delta y,$$
 (1.32)

то есть график состоит из двух кривых.

Поворот гиперболы

Вид уравнения при повороте эллипса в локальной системе координат:

$$\frac{x^{12}}{A1^2} - \frac{y^{12}}{B1^2} - 1 = 0, (1.33)$$

где $x^I = x \cdot \cos(\alpha) + y \cdot \sin(\alpha)$, $y^I = -x \cdot \sin(\alpha) + y \cdot \cos(\alpha)$.

Вид уравнения при повороте гиперболы в глобальной системе координат с учетом (1.3) имеет вид:

$$\left(\frac{\cos(\alpha)^{2}}{A^{2}} - \frac{\sin(\alpha)^{2}}{B^{2}}\right) \cdot x^{2} + \sin(2 \cdot \alpha) \cdot \left(\frac{1}{A^{2}} + \frac{1}{B^{2}}\right) \cdot x \cdot y + \dots + \left(\frac{\sin(\alpha)^{2}}{A^{2}} - \frac{\cos(\alpha)^{2}}{B^{2}}\right) \cdot y^{2} - 1 = 0.$$
(1.34)

Матричная форма записи с учетом (1.4) примет вид:

$$\left[\frac{\left(\left(\left(M\alpha\right)^{T}\right)^{<0>}\right)^{T}\cdot XY}{A1}\right]^{2} - \left[\frac{\left(\left(\left(M\alpha\right)^{T}\right)^{<1>}\right)^{T}\cdot XY}{B1}\right]^{2} - 1 = 0, \tag{1.35}$$

где
$$M\alpha = \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ -\sin(\alpha)\cos(\alpha) \end{pmatrix}$$
 — матрица поворота.

Функция для построения графика имеет вид y = f(x) и равна:

$$\begin{cases} y = \frac{\left(A^{2} + B^{2}\right)\sin(2\alpha)x}{2\left(B^{2}\sin(\alpha)^{2} - A^{2}\cos(\alpha)^{2}\right)} - \frac{2A \cdot B\sqrt{B^{2} \cdot \sin(\alpha)^{2} - A^{2}\cos(\alpha)^{2} + x^{2}}}{2\left(B^{2} \cdot \sin(\alpha)^{2} - A^{2}\cos(\alpha)^{2}\right)}; \\ y = \frac{\left(A^{2} + B^{2}\right)\sin(2\alpha)x}{2\left(B^{2}\sin(\alpha)^{2} - A^{2}\cos(\alpha)^{2}\right)} + \frac{2A \cdot B\sqrt{B^{2}\sin(\alpha)^{2} - A^{2}\cos(\alpha)^{2} + x^{2}}}{2\left(B^{2}\sin(\alpha)^{2} - A^{2}\cos(\alpha)^{2}\right)}, \end{cases} (1.36)$$

то есть график состоит из двух кривых.

Поворот и параллельный перенос гиперболы

Вид уравнения при повороте гиперболы в локальной системе координат:

$$\frac{x^{l^2}}{Al^2} - \frac{y^{l^2}}{Bl^2} - 1 = 0. ag{1.37}$$

Вид уравнения при повороте гиперболы и параллельном перtносе относительно осей 0X и 0Y в глобальной системе координат с учетом (1.5) имеет вид:

$$\frac{x_{\alpha_{\Delta}}^{2}}{A1^{2}} - \frac{y_{\alpha_{\Delta}}^{2}}{B1^{2}} - 1 = 0, \qquad (1.38)$$

где $x_{\alpha} = (x - \Delta x) \cdot \cos(\alpha) + (y - \Delta y) \cdot \sin(\alpha)$, $y_{\alpha} = -(x - \Delta x) \cdot \sin(\alpha) + (y - \Delta y) \cdot \cos(\alpha)$. Матричная форма записи:

$$\left[\frac{\left(\left(\left(M\alpha\right)^{T}\right)^{<0>}\right)^{T}\left(XY-\triangle XY\right)}{A1}\right]^{2}-\left[\frac{\left(\left(\left(M\alpha\right)^{T}\right)^{<1>}\right)^{T}\left(XY-\triangle XY\right)}{B1}\right]^{2}-1=0. (1.39)$$

где $XY = \begin{pmatrix} x \\ y \end{pmatrix}$ — вектор переменных, $M\alpha = \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ -\sin(\alpha) & \cos(\alpha) \end{pmatrix}$ — матрица поворота, $\triangle XY = \begin{pmatrix} \triangle X \\ \triangle Y \end{pmatrix}$ — вектор смещения.

Функция для построения графика имеет вид y = f(x) и равна:

$$\begin{cases} y_{1} = \frac{A1 \cdot B1\sqrt{K2 + (\triangle x - x)^{2}} + \left[-\triangle y \cdot K2 - \frac{\sin(2 \cdot \alpha)}{2}(\triangle x - x) \cdot (A1^{2} - B1^{2})\right]}{K2}; \\ K2 \\ y_{2} = \frac{A1 \cdot B1\sqrt{K2 + (\triangle x - x)^{2}} - \left[-\triangle y \cdot K2 - \frac{\sin(2 \cdot \alpha)}{2}(\triangle x - x) \cdot (A1^{2} - B1^{2})\right]}{K2}, \end{cases}$$
(1.40)

где $K2 = -A^2 \cdot \cos(\alpha)^2 + B^2 \cdot \sin(\alpha)^2$, то есть график состоит из двух кривых.

1.3.4. Парабола

Канонический вид уравнения параболы (как в высшей математике (ВМ)):

$$y^2 - 2 \cdot p \cdot x = 0, \tag{1.41}$$

где p — фокусный параметр, p/2 — фокусное расстояние, $A3=2\,p$ — ширина параболы.

Вершина параболы совпадает с началом координат, ветви параболы направлены вдоль положительной оси 0X.

Функция для построения графика имеет вид y = f(x) и равна:

$$y = \pm \sqrt{2 \cdot p \cdot x} \,, \tag{1.42}$$

то есть график состоит из двух кривых.

Канонический вид (*как в школе*). Ветви параболы расположены вдоль оси 0Y:

$$x^2 - 2 \cdot p \cdot y = 0, \tag{1.43}$$

Вершина параболы совпадает с началом координат, ветви параболы направлены вдоль положительной оси 0Y.

Функция для построения графика имеет вид y = f(x) и равна:

$$y = \frac{x^2}{2 \cdot p} \,. \tag{1.44}$$

Параллельный перенос параболы (как в ВМ)

Вид уравнения параболы (*как* в *BM*) при параллельном смещении вершины параболы на Δx , Δy по осям 0X и 0Y относительно начала координат с учетом (1.1) имеет вид:

$$(y - \Delta y)^2 - 2 \cdot p \cdot (x - \Delta x) = 0, \qquad (1.45)$$

Вершина параболы смещена от начала координат по осям 0X и 0Y на Δx , Δy , ветви параболы направлены вдоль положительной оси x.

Функция для построения графика имеет вид y = f(x) и равна:

$$y = \pm \sqrt{2 \cdot p \cdot (x - \Delta x)} + \Delta y, \qquad (1.46)$$

то есть график состоит из двух кривых.

Вид функции при параллельном смещении параболы (как в школе):

$$(x - \Delta x)^2 - 2 \cdot p \cdot (y - \Delta y) = 0. \tag{1.47}$$

Вершина параболы смещена Δx , Δy относительно начала координат.

Функция для построения графика имеет вид y = f(x) и равна:

$$y = \frac{\left(x - \Delta x\right)^2}{2 \cdot p} + \Delta y. \tag{1.48}$$

Поворот параболы

Вид уравнения при повороте параболы ($\kappa a \kappa \ B M$) вокруг центра на заданный угол в локальной системе координат:

$$y^{12} - 2 \cdot p \cdot x^{1} = 0, \tag{1.49}$$

где $x^I = x \cdot \cos(\alpha) + y \cdot \sin(\alpha)$, $y^I = -x \cdot \sin(\alpha) + y \cdot \cos(\alpha)$.

Вид уравнения при повороте параболы в глобальной системе координат с учетом (1.3) имеет вид:

$$(-x \cdot \sin(\alpha) + y \cdot \cos(\alpha))^2 - A_3(x \cdot \cos(\alpha) + y \cdot \sin(\alpha)) = 0.$$
 (1.50)

Матричная форма записи:

$$\left[\left(\left(\left(M\alpha\right)^{T}\right)^{<1>}\right)^{T}XY\right]^{2}-A3\left[\left(\left(\left(M\alpha\right)^{T}\right)^{<0>}\right)^{T}XY\right]=0,$$
(1.51)

где
$$M\alpha = \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ -\sin(\alpha)\cos(\alpha) \end{pmatrix}$$
 — матрица поворота, $XY = \begin{pmatrix} x \\ y \end{pmatrix}$ — вектор переменных,

A — ширина параболы.

Функция для построения графика имеет вид y = f(x) и равна:

$$\begin{cases} y_1 = \frac{\sqrt{A^2 \cdot \sin(\alpha)^2 + 4 \cdot A \cdot x \cdot \cos(\alpha) + \sin(\alpha) \cdot \left(A + 2 \cdot x \cdot \cos(\alpha)\right)}}{2 \cdot \cos(\alpha)^2}; \\ y_2 = \frac{-\sqrt{A^2 \cdot \sin(\alpha)^2 + 4 \cdot A \cdot x \cdot \cos(\alpha) + \sin(\alpha) \cdot \left(A + 2 \cdot x \cdot \cos(\alpha)\right)}}{2 \cdot \cos(\alpha)^2}, \end{cases}$$
(1.52)

то есть график состоит из двух кривых.

Вид функции при повороте параболы (*как в школе*) вокруг центра на заданный угол:

$$x^{I2} - 2 \cdot p \cdot y^{I} = 0, \tag{1.53}$$

где $x^I = x \cdot \cos(\alpha) + y \cdot \sin(\alpha)$, $y^I = -x \cdot \sin(\alpha) + y \cdot \cos(\alpha)$.

Вид уравнения при повороте параболы в глобальной системе координат с учетом (1.3) имеет вид:

$$(x \cdot \cos(\alpha) + y \cdot \sin(\alpha))^2 - A_3 \cdot (-x \cdot \sin(\alpha) + y \cdot \cos(\alpha)) = 0.$$
 (1.54)

Матричная форма записи:

$$\left(\left(\left(\left(M\alpha\right)^{T}\right)^{<0>}\right)^{T}\cdot XY\right)^{2}-A3\cdot\left(\left(\left(\left(M\alpha\right)^{T}\right)^{<1>}\right)^{T}\cdot XY\right)=0,$$
(1.55)

где
$$M\alpha = \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ -\sin(\alpha)\cos(\alpha) \end{pmatrix}$$
 — матрица поворота, $XY = \begin{pmatrix} x \\ y \end{pmatrix}$ — вектор переменных,

АЗ – ширина параболы.

Функция для построения графика имеет вид y = f(x) и равна:

$$\begin{cases} y_{1} = \frac{\sqrt{A \cdot \left(A \cdot \cos\left(\alpha\right)^{2} - 4 \cdot x \cdot \sin\left(\alpha\right)\right) + \cos\left(\alpha\right) \cdot \left(A - 2 \cdot x \cdot \sin\left(\alpha\right)\right)}}{2 \cdot \sin\left(\alpha\right)^{2}}; \\ y_{2} = -\frac{\sqrt{A \cdot \left(A \cdot \cos\left(\alpha\right)^{2} - 4 \cdot x \cdot \sin\left(\alpha\right)\right) + x \cdot \sin\left(2 \cdot \alpha\right) - A \cdot \cos\left(\alpha\right)}}{2 \cdot \sin\left(\alpha\right)^{2}}, \end{cases}$$

$$(1.56)$$

то есть график состоит из двух кривых.

Поворот и параллельный перенос параболы

Вид функции параболы, повернутый на угол α и смещенной на по осям координат (*как в ВМ*):

$$y^{I2} - 2 \cdot p \cdot x^{I} = 0, \tag{1.57}$$

где
$$x^I = (x - \Delta x) \cdot \cos(\alpha) + (y - \Delta y) \cdot \sin(\alpha)$$
, $y^I = -(x - \Delta x) \cdot \sin(\alpha) + (y - \Delta y) \cdot \cos(\alpha)$.

Вид уравнения при повороте параболы в глобальной системе координат с учетом (1.5) имеет вид:

$$(-(x - \Delta x) \cdot \sin(\alpha) + (y - \Delta y) \cdot \cos(\alpha))^{2} - \dots$$

$$\dots - A_{3} \cdot ((x - \Delta x) \cdot \cos(\alpha) + (y - \Delta y) \cdot \sin(\alpha)) = 0.$$
(15.8)

Функция для построения графика имеет вид $y = f(x, \alpha, \Delta x, \Delta y)$ и равна:

$$\begin{cases} y_{1} = \frac{\sqrt{A^{2}\sin(\alpha)^{2} + 4A\cos(\alpha)(x - \Delta x)} + \frac{\sin(2\alpha)}{2} \begin{bmatrix} 2(x - \Delta x) + \dots \\ +2\Delta y \frac{\cos(\alpha)}{\sin(\alpha)} + A \frac{\sin(\alpha)}{\cos(\alpha)} \end{bmatrix}; \\ -\sqrt{A^{2}\sin(\alpha)^{2} + 4A\cos(\alpha)(x - \Delta x)} + \frac{\sin(2\alpha)}{2} \begin{bmatrix} 2(x - \Delta x) + \dots \\ +2\Delta y \frac{\cos(\alpha)}{\sin(\alpha)} + A \frac{\sin(\alpha)}{\cos(\alpha)} \end{bmatrix}; \\ y_{2} = \frac{2\cos(\alpha)^{2}}{2\cos(\alpha)^{2}}, \end{cases}$$
(1.59)

то есть график состоит из двух кривых.

Вид функции повернутой на заданный угол вокруг центра параболы (как в школе):

$$x^{I2} - 2 \cdot p \cdot y^{I} = 0, \tag{1.60}$$

где
$$x^I = (x - \Delta x) \cdot \cos(\alpha) + (y - \Delta y) \cdot \sin(\alpha)$$
, $y^I = -(x - \Delta x) \cdot \sin(\alpha) + (y - \Delta y) \cdot \cos(\alpha)$.

Вид уравнения при повороте параболы в глобальной системе координат с учетом (1.5) имеет вид:

$$((x - \Delta x) \cdot \cos(\alpha) + (y - \Delta y) \cdot \sin(\alpha))^{2} - \dots$$

$$\dots - A_{3} \cdot (-(x - \Delta x) \cdot \sin(\alpha) + (y - \Delta y) \cdot \cos(\alpha)) = 0.$$
(1.61)

Функция для построения графика имеет вид y = f(x) и равна:

$$\begin{cases} y_{1} = \frac{\sqrt{A^{2}\cos(\alpha)^{2} - 4A\sin(\alpha)(x - \Delta x)} + \begin{bmatrix}\cos(\alpha)(A + 2\Delta y\cos(\alpha)) + \dots \\ -\sin(2\cdot\alpha)(x - \Delta x)\end{bmatrix}}{2\cdot\sin(\alpha)^{2}}; \\ y_{2} = \frac{-\sqrt{A^{2}\cos(\alpha)^{2} - 4A\sin(\alpha)(x - \Delta x)} + \begin{bmatrix}\cos(\alpha)(A + 2\Delta y\cos(\alpha)) + \dots \\ -\sin(2\cdot\alpha)(x - \Delta x)\end{bmatrix}}{2\sin(\alpha)^{2}}, \end{cases}$$
(1.62)

то есть график состоит из двух кривых.

2. ПРИМЕРЫ РАСЧЕТА ТОЧЕК ПЕРЕСЕЧЕНИЯ ФИГУР

При выполнении примеров и заданий студент должен знать следующие разделы MathCad:

- Ввод переменных, переменных с нижним индексом, сопроводительного текста.
- Размещение переменных в сопроводительном тексте.
- Просмотр результатов расчета и редактирование числа выводимых десятичных знаков.
- Определение однострочной функции и многострочной функций и их вызов.
- Векторизация.
- Доступ к столбцам и элементам массива.
- Функция *augment()*.
- Блок Given-Find.
- Символьные операции: simplify, solve, substitute, collect.
- Матричные операции.
- Дискретный аргумент.
- Построение и редактирование двумерных графиков. Нанесение на один график нескольких кривых.

Пример № 2.1. Найти точки пересечения прямой и круга.

1.Описание используемых объектов:

- Опорная прямая, проходящая через точки (x1, y1) и (x2, y2);
- Фигура 1: круг радиусом R с координатами центра $x_{\rm c}$, $y_{\rm c}$;
- Фигура 2: опорная прямая повернута на угол β и параллельно смещена в базовую точку (x_b, y_b) ;
- 2. Рассчитать координаты двух точек на фигуре 2 через которые она проходит, используя точки (x1, y1) и (x2, y2) на опорной прямой.
- 3. Получить аналитические выражения для построения фигур и опорной прямой.
- 4. Рассчитать точки пересечения двух фигур (прямой и круга). Форма представления уравнений аналитическая, использовать блок **Given-Find** при нахождении точек пересечения и численный метод Левенберга-Маркварда.
- 5. Построить графики фигур, опорные точки фигур, точки пересечения фигур, базовую точку, опорную прямую и точки, через которые она проходит.

Исходные данные

Опорная прямая: x1 = -1, y1 = -4, x2 = 2, y2 = 2.

Фигура 1: R = 5, $x_c = 2$, $y_c = 4$.

Фигура 2:
$$\beta = -25^{\circ}$$
, $xy_b = \begin{pmatrix} x_b \\ y_b \end{pmatrix} = \begin{pmatrix} 1 \\ 5 \end{pmatrix}$.

1. Функции для построения графиков

1.1. Опорная прямая:

$$y = \frac{y_1 - y_2}{x_1 - x_2} \cdot x + \frac{x1 \cdot y2 - x2 \cdot y1}{x1 - x2}$$

или после подстановки значений $y = 2 \cdot x - 2$.

Координаты точек, через которые проходит прямая:

точка 1
$$xy1 = \begin{pmatrix} x1 \\ y1 \end{pmatrix} = \begin{pmatrix} -1 \\ -4 \end{pmatrix}$$
, точка 2 $xy2 = \begin{pmatrix} x2 \\ y2 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$.

1.2. Фигура 1.

Аффинные преобразования при параллельном перемещении фигуры:

$$\begin{cases} x' = x - \triangle x; \\ y' = y - \triangle y. \end{cases}$$

Уравнение круга в локальной системе координат:

$$\frac{(x^I)^2}{R^2} + \frac{(y^I)^2}{R^2} - 1 = 0.$$

После подстановки выражений аффинных преобразований вместо x^I , y^I и решения уравнения относительно y получим два выражения для построения графика круга:

$$y = y_c \pm \sqrt{R^2 - (x - x_c)^2}$$
,

или после подстановки конкретных значений $y = 4 \pm \sqrt{25 - (x-2)^2}$.

Координаты центра круга:

$$xy_c = \begin{pmatrix} x_c \\ y_c \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \end{pmatrix}.$$

1.3. Фигура 2.

Аффинные преобразования при повороте фигуры на заданный угол и параллельное смещение прямой:

$$\begin{cases} x' = (x - \Delta x) \cdot \cos(\alpha) + (y - \Delta y) \cdot \sin(\alpha); \\ y' = -(x - \Delta x) \cdot \sin(\alpha) + (y - \Delta y) \cdot \cos(\alpha). \end{cases}$$

Уравнение прямой в локальной системе координат:

$$\frac{x^{I} - x_{1}}{x_{2} - x_{1}} - \frac{y^{I} - y_{1}}{y_{2} - y_{1}} = 0.$$

После подстановки выражений аффинных преобразований вместо x^I , y^I и решения уравнения относительно y и упрощения получим выражение для построения графика:

$$y = \frac{\sin(\alpha)(x1 - x2) + \cos(\alpha)(y1 - y2)}{\cos(\alpha)(x1 - x2) - \sin(\alpha)(y1 - y2)} (x - \Delta x) + \Delta y + \frac{x1y2 - x2y1}{\cos(\alpha)(x1 - x2) - \sin(\alpha)(y1 - y2)}.$$

Необходимо определить величины $\triangle XY = \begin{pmatrix} \triangle X \\ \triangle Y \end{pmatrix}$ исходя из положения, что прямая параллельно смещена (после поворота) и проходит через базовую точку (x_b, y_b) .

Заданы $XY^I = \begin{pmatrix} x^I \\ y^I \end{pmatrix} = \begin{pmatrix} x1 \\ y1 \end{pmatrix} = \begin{pmatrix} -1 \\ -4 \end{pmatrix}$ координаты первой точки на прямой (может быть взята любая точка на прямой) в локальной системе координат, $M\beta = \begin{pmatrix} \cos(\beta) & \sin(\beta) \\ -\sin(\beta) & \cos(\beta) \end{pmatrix} = \begin{pmatrix} 0.906 & -0.423 \\ 0.423 & 0.906 \end{pmatrix}$ — матрица поворота фигуры 2, $XY_b = \begin{pmatrix} x_b \\ y_b \end{pmatrix} = \begin{pmatrix} 1 \\ 5 \end{pmatrix}$ — базовая точка через которую проходит фигура 2. Тогда вектор $\Delta XY = \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix}$ определится по выражению [20]:

$$\triangle XY = XY_b - M\beta \cdot XY^I = \begin{pmatrix} 3.597 \\ 8.203 \end{pmatrix}.$$

После подстановки конкретных значений уравнение фигуры 2 примет вид $y = 0.794 \cdot x + 4.206$.

Координаты точек, через которые проходит прямая (фигура 2).

Пересчитать координаты точек на опорной прямой (x1, y1) и (x2, y2) в соответствующие координаты точек (xy3, xy4) на фигуре 2.

Пересчет координат первой точки (x1, y1) опорной прямой.

Точка 1 (xy3) на фигуре 2. Точка xy3 совпадает с базовой точкой, следовательно $xy3 = XY_b = \begin{pmatrix} 1 \\ 5 \end{pmatrix}$.

Пересчет координат второй точки (х2, у2) опорной прямой.

Точка 2 (xy4) на фигуре 2. Координаты точки xy4 рассчитываются по выражению [20]:

$$xy4 = M\beta^{-1} \cdot xy2 - \Delta XY = \begin{pmatrix} 6.255 \\ 9.17 \end{pmatrix},$$

где
$$M\beta = \begin{pmatrix} \cos(\beta) & \sin(\beta) \\ -\sin(\beta) & \cos(\beta) \end{pmatrix} = \begin{pmatrix} 0.906 & -0.423 \\ 0.423 & 0.906 \end{pmatrix}, \ xy4 = \begin{pmatrix} x2 \\ y2 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \end{pmatrix}, \ \Delta XY = \begin{pmatrix} 3.597 \\ 8.203 \end{pmatrix}.$$

2. Рассчитать точку пересечения прямой и круга.

Задача нахождения двух точек пересечения фигур (прямой и круга)

$$xy_{\text{int}}^T = \begin{bmatrix} x\mathbf{1}_{\text{int}} \\ x\mathbf{2}_{\text{int}} \end{bmatrix} \begin{pmatrix} y\mathbf{1}_{\text{int}} \\ y\mathbf{2}_{i\text{nt}} \end{pmatrix}$$
 сводится к решению системы двух нелинейных

уравнений численно с использованием блока *Given-Find* в MathCAD.

Система нелинейных уравнений имеет вид:

Система нелинейных уравнений имеет вид:
$$\begin{cases} \frac{\left[\left(x - \Delta x\right)\cos(\beta) + \left(y - \Delta y\right)\sin(\beta)\right] - x1}{x2 - x1} - \frac{\left[-\left(x - \Delta x\right)\cdot\sin(\beta) + \left(y - \Delta y\right)\cos(\beta)\right] - y1}{y2 - y1} = 0; \\ \left(\left(x - x_c\right)^2 + \left(y - y_c\right)^2 = R^2, \end{cases}$$

или после подстановки значений:

$$\begin{cases} 0.232 \cdot x - 0.292 \cdot y + 1.228 = 0; \\ (x - 2)^2 + (y - 4)^2 = 25. \end{cases}$$

Численное решение системы нелинейных уравнений методом Левенберга-Маркварда при начальных приближениях $x = \begin{pmatrix} -1 \\ 5 \end{pmatrix}$, $y = \begin{pmatrix} 1 \\ 5 \end{pmatrix}$ нашло две точки пересечения прямой и круга с координатами

$$xy_{\text{int}}^T = \begin{bmatrix} xl_{\text{int}} \\ x2_{\text{int}} \end{bmatrix} \begin{bmatrix} yl_{\text{int}} \\ y2_{\text{int}} \end{bmatrix} = \begin{bmatrix} -2.632 \\ 4.885 \end{bmatrix} \begin{bmatrix} 2.118 \\ 8.083 \end{bmatrix}.$$

Листинг программы приведен в MathCAD на Рис. А 1–Рис. А 6, стр. 68–73.

Пример № 2.2. Найти точки пересечения прямой и круга.

1. Описание используемых объектов:

Опорная прямая, проходящая через точки (x1, y1) и (x2, y2);

Фигура 1: круг радиусом R с координатами центра x_c , y_c ;

Фигура 2: опорная прямая повернута на угол β ;

- 2. Рассчитать координаты двух точек на фигуре 2, через которые она проходит, используя точки (x1, y1) и (x2, y2) на опорной прямой.
 - 3. Получить аналитические выражения для построения фигур.
- 4. Рассчитать точки пересечения прямой и круга, Форма представления уравнений – матричная, использовать блок Given-Find при нахождении точек пересечения и численный метод – Левенберга-Маркварда.
- 5. Построить графики фигур, опорные точки фигур, точку пересечения фигур, опорную прямую и точки, через которые она проходит.

Исходные данные

Опорная прямая: x1 = 3, y1 = 1, x2 = -1, y2 = -2.

Фигура 1: R = 5, $x_c = 1.5$, $y_c = 4$.

Фигура 2: $\beta = 30^{\circ}$.

1. Функции для построения графиков

1.1. Опорная прямая:

$$y = \frac{y_1 - y_2}{x_1 - x_2} \cdot x + \frac{x1 \cdot y2 - x2 \cdot y1}{x1 - x2}$$

или после подстановки значений $y = \frac{3}{4} \cdot x - \frac{5}{4}$.

Координаты точек, через которые проходит прямая:

точка 1
$$xy1 = \begin{pmatrix} x1 \\ y1 \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$$
, точка 2 $xy2 = \begin{pmatrix} x2 \\ y2 \end{pmatrix} = \begin{pmatrix} -1 \\ -2 \end{pmatrix}$.

1.2. Фигура 1 – круг.

Аффинные преобразования при параллельном перемещении фигуры 1:

$$\begin{cases} x' = x - \triangle x; \\ y' = y - \triangle y. \end{cases}$$

Уравнение круга в локальной системе координат:

$$\frac{(x^I)^2}{R^2} + \frac{(y^I)^2}{R^2} - 1 = 0.$$

После подстановки выражений аффинных преобразований вместо x^I , y^I и решения уравнения относительно y получим два выражения для построения графика круга:

$$y = y_c \pm \sqrt{R^2 - (x - x_c)^2}$$
,

или после подстановки конкретных значений $y = 4 \pm \sqrt{25 - \left(x - 1.5\right)^2}$.

Координаты центра круга:

$$xy_c = \begin{pmatrix} x_c \\ y_c \end{pmatrix} = \begin{pmatrix} 1.5 \\ 4 \end{pmatrix}.$$

1.3. Фигура 2 — опорная прямая повернута на угол β .

Аффинные преобразования при повороте фигуры на заданный угол:

$$\begin{cases} x' = x \cdot \cos(\alpha) + y \cdot \sin(\alpha); \\ y' = -x \cdot \sin(\alpha) + y \cdot \cos(\alpha). \end{cases}$$

Уравнение прямой в локальной системе координат:

$$\frac{x^{I} - x_{1}}{x_{2} - x_{1}} - \frac{y^{I} - y_{1}}{y_{2} - y_{1}} = 0.$$

После подстановки выражений аффинных преобразований вместо x^I , y^I и решения уравнения относительно y и упрощения получим выражение для построения графика:

$$y = -\frac{\sin(\alpha) \cdot (x1 - x2) + \cos(\alpha) \cdot (y1 - y2)}{\sin(\alpha) \cdot (y1 - y2) - \cos(\alpha) \cdot (x1 - x2)} \cdot x + \frac{x1 \cdot y2 - x2 \cdot y1}{\sin(\alpha) \cdot (y1 - y2) - \cos(\alpha) \cdot (x1 - x2)}$$

или после подстановки конкретных значений уравнение фигуры 2 примет вид $y = 2.34 \cdot x - 2.546$.

Координаты точек, через которые проходит прямая (фигура 2).

Пересчитать координаты точек на опорной прямой (x1, y1) и (x2, y2) в соответствующие координаты точек (xy3, xy4) на фигуре 2.

Пересчет координат первой точки (x1, y1) опорной прямой.

Точка 1 (*xy*3) на фигуре 2.

Координаты точки ху3 рассчитываются по выражению [20]:

$$xy3 = M\beta^{-1} \cdot xy1 = \begin{pmatrix} 2.098 \\ 2.366 \end{pmatrix},$$

где
$$M\beta = \begin{pmatrix} \cos(\beta) & \sin(\beta) \\ -\sin(\beta) & \cos(\beta) \end{pmatrix} = \begin{pmatrix} 0.906 & -0.423 \\ 0.423 & 0.906 \end{pmatrix}$$
, $xy1 = \begin{pmatrix} x1 \\ y1 \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$.

Пересчет координат второй точки (х2, у2) опорной прямой.

Точка 1 (*xy*3) на фигуре 2.

Координаты точки ху3 рассчитываются по выражению [20]:

$$xy4 = M\beta^{-1} \cdot xy2 = \begin{pmatrix} 0.134 \\ -2.232 \end{pmatrix},$$

где
$$xy2 = \begin{pmatrix} x2 \\ y2 \end{pmatrix} = \begin{pmatrix} -1 \\ -2 \end{pmatrix}$$
.

2. Рассчитать точку пересечения фигур (прямой и круга).

Для нахождения точек пересечения прямой и круга $xy1_{\text{int}} = \begin{pmatrix} x1_{\text{int}} \\ y1_{\text{int}} \end{pmatrix}$,

 $xy2_{\text{int}} = \begin{pmatrix} x2_{\text{int}} \\ y2_{\text{int}} \end{pmatrix}$ сводится к решению системы двух нелинейных уравнений

численно с использованием блока *Given-Find* в MathCAD.

Система нелинейных уравнений в матричной форме имеет вид:

$$\begin{cases} \left(AB^{T} \cdot M\beta\right) \cdot xy + c = 0; \\ \left(xy - xy_{c}\right)^{T} \cdot AB3 \cdot \left(xy - xy_{c}\right) - 1 = 0, \end{cases}$$

где

$$xy = \begin{pmatrix} x \\ y \end{pmatrix}, \ xy_c = \begin{pmatrix} x_c \\ y_c \end{pmatrix} = \begin{pmatrix} 1.5 \\ 4 \end{pmatrix}, \ AB3 = \begin{pmatrix} \frac{1}{R^2} & 0 \\ 0 & \frac{1}{R^2} \end{pmatrix} = \begin{pmatrix} 0.04 & 0 \\ 0 & 0.04 \end{pmatrix},$$

$$AB = \begin{pmatrix} \frac{-1}{x_1 - x_2} \\ \frac{1}{y_1 - y_2} \end{pmatrix} = \begin{pmatrix} -0.25 \\ 0.333 \end{pmatrix}, M\beta = \begin{pmatrix} \cos(\beta) & \sin(\beta) \\ -\sin(\beta) & \cos(\beta) \end{pmatrix} = \begin{pmatrix} 0.866 & 0.5 \\ -0.5 & 0.866 \end{pmatrix},$$

$$c = \frac{x1}{x1 - x2} - \frac{y1}{y1 - y2} = 0.417.$$

Численное решение системы нелинейных уравнений методом Левенберга-Маркварда при начальных приближениях $xy1 = \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ 9 \end{pmatrix}$ (для первой точки) и

 $xy2 = \binom{x}{y} = \binom{1}{-1}$ (для второй точки) нашло две точки пересечения прямой и круга

с координатами
$$xy1_{\text{int}} = \begin{pmatrix} x1_{\text{int}} \\ y1_{\text{int}} \end{pmatrix} = \begin{pmatrix} 4.504 \\ 7.997 \end{pmatrix}, \quad xy2_{\text{int}} = \begin{pmatrix} x2_{\text{int}} \\ y2_{\text{int}} \end{pmatrix} = \begin{pmatrix} 0.689 \\ -0.934 \end{pmatrix}.$$

Следует отметить, что при матричной форме задания уравнений оператор векторизации в MathCAD не может использоваться, поэтому каждая точка находится с использование отдельного блока *Given-Find*.

Листинг программы приведен в MathCAD на Рис. А 7-Рис. А 12, стр. 74-79.

Пример № 2.3. Найти точки пересечения прямой и эллипса.

1. Исследуемые объекты:

Опорная прямая: проходит через точки (x1, y1) и (x2, y2);

Фигура 1: Эллипс (A, B – полуоси) с координатами центра x_c , y_c повернут вокруг центра на угол β ;

Фигура 2: опорная прямая повернута на угол γ и параллельно смещена в базовую точку (x_b, y_b) ;

- 2. Рассчитать координаты двух точек на фигуре 2 через которые она проходит, используя точки (x1, y1) и (x2, y2) на опорной прямой.
 - 3. Получить аналитические выражения для построения фигур.

- 4. Рассчитать точки пересечения прямой и эллипса, Форма представления уравнений аналитическая, использовать блок **Given-Find** при нахождении точек пересечения и численный метод Квази-Ньютон.
- 5. Построить графики фигур, опорные точки фигур, точки пересечения фигур, базовую точку, опорную прямую и точки, через которые она проходит.

Исходные данные

Опорная прямая: x1 = -4, y1 = 3, x2 = -1, y2 = 2.

Фигура 1:
$$A=5$$
, $B=3$, $x_c=-2$, $y_c=4$, $\beta=45^0$.

Фигура 2:
$$\gamma = 45^{\circ}$$
, $xy_b = \begin{pmatrix} x_b \\ y_b \end{pmatrix} = \begin{pmatrix} -3 \\ 6 \end{pmatrix}$.

- 1. Функции для построения графиков
- 1.1. Опорная прямая:

$$y = \frac{y_1 - y_2}{x_1 - x_2} \cdot x + \frac{x1 \cdot y2 - x2 \cdot y1}{x1 - x2}$$

или после подстановки значений $y = \frac{5}{3} - \frac{1}{3} \cdot x$.

Координаты точек, через которые проходит прямая:

точка 1
$$xy1 = \begin{pmatrix} x1 \\ y1 \end{pmatrix} = \begin{pmatrix} -4 \\ 3 \end{pmatrix}$$
, точка 2 $xy2 = \begin{pmatrix} x2 \\ y2 \end{pmatrix} = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$.

1.2. Фигура 1.

Аффинные преобразования при повороте и параллельном перемещении фигуры имеют вид:

$$\begin{cases} x' = (x - x_c) \cdot \cos(\beta) + (y - y_c) \cdot \sin(\beta); \\ y' = -(x - x_c) \cdot \sin(\beta) + (y - y_c) \cdot \cos(\beta). \end{cases}$$

Уравнение эллипса в локальной системе координат:

$$\frac{(x^I)^2}{A^2} + \frac{(y^I)^2}{B^2} - 1 = 0.$$

После подстановки выражений аффинных преобразований вместо x^I , y^I и решения уравнения относительно у получим два выражения для построения графика эллипса:

$$\begin{cases} y_1 = \frac{\left(A^2 - B^2\right)\sin(2\beta)}{2\left(A^2\cos(\beta)^2 + B^2\sin(\beta)^2\right)} (x - x_c) + y_c + \frac{AB\sqrt{A^2\cos(\beta)^2 + B^2\sin(\beta)^2 - \left(x - x_c\right)^2}}{A^2\cos(\beta)^2 + B^2\sin(\beta)^2}; \\ y_2 = \frac{\left(A^2 - B^2\right)\sin(2\beta)}{2\left(A^2\cos(\beta)^2 + B^2\sin(\beta)^2\right)} (x - x_c) + y_c - \frac{AB\sqrt{A^2\cos(\beta)^2 + B^2\sin(\beta) - \left(x - x_c\right)^2}}{A^2\cos(\beta)^2 + B^2\sin(\beta)^2}, \end{cases}$$

или после подстановки конкретных значений получим:

$$\begin{cases} y1 = \frac{84 + 15 \cdot \sqrt{13 - 4 \cdot x - x^2} + 8 \cdot x}{17}, \\ y2 = \frac{84 - 15 \cdot \sqrt{13 - 4 \cdot x - x^2} + 8 \cdot x}{17}. \end{cases}$$

Координаты центра эллипса:

$$xy_c = \begin{pmatrix} x_c \\ y_c \end{pmatrix} = \begin{pmatrix} -2 \\ 4 \end{pmatrix}.$$

1.2. Фигура 2.

Аффинные преобразования при повороте фигуры на заданный угол и параллельное смещение прямой:

$$\begin{cases} x' = (x - \Delta x) \cdot \cos(\gamma) + (y - \Delta y) \cdot \sin(\gamma); \\ y' = -(x - \Delta x) \cdot \sin(\gamma) + (y - \Delta y) \cdot \cos(\gamma). \end{cases}$$

Уравнение прямой в локальной системе координат:

$$\frac{x^{I} - x_{1}}{x_{2} - x_{1}} - \frac{y^{I} - y_{1}}{y_{2} - y_{1}} = 0.$$

После подстановки выражений аффинных преобразований вместо x^I , y^I и решения уравнения относительно y и упрощения получим выражение для построения графика:

$$y = \frac{\sin(\alpha)(x1 - x2) + \cos(\alpha)(y1 - y2)}{\cos(\alpha)(x1 - x2) - \sin(\alpha)(y1 - y2)} \cdot (x - \Delta x) + \Delta y + \frac{x1y2 - x2y1}{\cos(\alpha)(x1 - x2) - \sin(\alpha)(y1 - y2)}.$$

Необходимо определить величины $\triangle XY = \begin{pmatrix} \triangle X \\ \triangle Y \end{pmatrix}$ исходя из положения, что прямая параллельно смещена (после поворота) и проходит через базовую точку (x_b, y_b) .

Заданы $XY^I = \begin{pmatrix} x^I \\ y^I \end{pmatrix} = \begin{pmatrix} x1 \\ y1 \end{pmatrix} = \begin{pmatrix} -3 \\ 6 \end{pmatrix}$ координаты первой точки на прямой (может быть взята любая точка на прямой) в локальной системе координат,

$$M\beta = \begin{pmatrix} \cos(\gamma) & \sin(\gamma) \\ -\sin(\gamma) & \cos(\gamma) \end{pmatrix} = \begin{pmatrix} 0.707 & 0.707 \\ -0.707 & 0.707 \end{pmatrix}$$
 — матрица поворота фигуры 2,

$$(-\sin(\gamma) \cos(\gamma)) (-0.707 - 0.707)$$
 $XY_b = \begin{pmatrix} x_b \\ y_b \end{pmatrix} = \begin{pmatrix} -4 \\ 3 \end{pmatrix}$ — базовая точка через которую проходит фигура 2. Тогда

вектор $\triangle XY = \begin{pmatrix} \triangle X \\ \triangle Y \end{pmatrix}$ определится выражению [20]:

$$\Delta XY = \begin{pmatrix} \Delta X \\ \Delta y \end{pmatrix} = XY_b - M\beta \cdot XY^I = \begin{pmatrix} 1.95 \\ 6.707 \end{pmatrix}.$$

или после подстановки конкретных значений функции для построения графика фигуры 2 $y = 0.5 \cdot x + 6.77$.

Координаты точек, через которые проходит прямая.

Пересчитать координаты точек на опорной прямой (x1, y1) и (x2, y2) в соответствующие координаты точек (xy3, xy4) на фигуре 2.

Пересчет координат первой точки (x1, y1) опорной прямой.

Точка 1 (xy3) на фигуре 2. Точка xy3 совпадает с базовой точкой, следовательно $xy3 = XY_b = \begin{pmatrix} -3 \\ 6 \end{pmatrix}$.

Пересчет координат второй точки (х2, у2) опорной прямой.

Точка 2 (xy4) на фигуре 2. Координаты точки xy4 рассчитываются по выражению [20]:

$$xy4 = M\beta^{-1} \cdot xy2 - \triangle XY = \begin{pmatrix} -0.172 \\ 7.414 \end{pmatrix},$$

где:

$$M\beta = \begin{pmatrix} \cos(\gamma) & \sin(\gamma) \\ -\sin(\gamma) & \cos(\gamma) \end{pmatrix} = \begin{pmatrix} 0.707 & 0.707 \\ -0.707 & 0.707 \end{pmatrix}, \quad xy2 = \begin{pmatrix} x2 \\ y2 \end{pmatrix} = \begin{pmatrix} -1 \\ 2 \end{pmatrix},$$
$$\Delta XY = \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix} = \begin{pmatrix} 1.95 \\ 6.707 \end{pmatrix}.$$

2. Рассчитать точку пересечения прямой и эллипса.

Нахождение точек пересечения гиперболы и эллипса $xy_{\text{int}}^{T} = \begin{bmatrix} x1_{\text{int}} \\ x2_{\text{int}} \end{bmatrix} \begin{pmatrix} y1_{\text{int}} \\ y2_{\text{int}} \end{pmatrix} \end{bmatrix} \quad \text{сводится} \quad \text{к} \quad \text{решению} \quad \text{системы} \quad \text{двух} \quad \text{нелинейных}$

уравнений численно с использованием блока Given-Find в MathCAD.

Система нелинейных уравнений имеет вид:

$$\begin{cases}
\frac{\left[\left(x-\Delta x\right)\cos(\gamma)+\left(y-\Delta y\right)\sin(\gamma)\right]-x1}{x2-x1}-\frac{\left[-\left(x-\Delta x\right)\sin(\gamma)+\left(y-\Delta y\right)\cos(\gamma)\right]-y1}{y2-y1}=0; \\
\frac{\left[\left(x-x_{c}\right)\cos(\beta)+\left(y-y_{c}\right)\sin(\beta)\right]^{2}}{A^{2}}+\frac{\left[-\left(x-x_{c}\right)\sin(\beta)+\left(y-y_{c}\right)\cos(\beta)\right]^{2}}{B^{2}}-1=0,
\end{cases}$$

или после подстановки значений:

$$\begin{cases} -0.472 \cdot x + 0.943 \cdot y - 7.071 = 0; \\ 0.076 \cdot x^2 + (-0.071 \cdot y + 0.587) \cdot x + 0.076 \cdot y^2 - 0.747 \cdot y + 1.08 = 0. \end{cases}$$

Численное решение системы нелинейных уравнений методом Квази-Ньютон при начальных приближениях $x = \begin{pmatrix} -1 \\ 5 \end{pmatrix}, y = \begin{pmatrix} 1 \\ 5 \end{pmatrix}$ нашло две точки пересечения гиперболы и эллипса с координатами:

$$xy_{\text{int}}^{T} = \left[\begin{pmatrix} x1_{\text{int}} \\ x2_{\text{int}} \end{pmatrix} \begin{pmatrix} y1_{\text{int}} \\ y2_{\text{int}} \end{pmatrix} \right] = \left[\begin{pmatrix} -5.09 \\ 0.901 \end{pmatrix} \begin{pmatrix} 4.955 \\ 7.95 \end{pmatrix} \right].$$

Листинг программы приведен в MathCAD на Рис. А 13-Рис. А 21, стр. 80-88.

Пример № 2.4. Найти точки пересечения гиперболы и эллипса.

1. Исследуемые объекты:

Фигура 1: гипербола (A1, B1 — параметры, ветви расположены вдоль оси 0X) повернута вокруг центра на угол β , с координатами центра $x1_c$, $y1_c$ совпадающими с началом координат;

Фигура 2: эллипс (A2, B2 — полуоси) с координатами центра $x2_c$, $y2_c$ повернут вокруг центра на угол γ ;

- 2. Получить аналитические выражения для построения фигур.
- 3. Рассчитать точки пересечения гиперболы и эллипса, Форма представления уравнений аналитическая, использовать блок **Given-Find** при нахождении точек пересечения и численный метод Квази-Ньютон.
- 5. Построить графики фигур, опорные точки фигур, точки пересечения фигур.

Исходные данные

Фигура 1 (гипербола): A1 = 3, B1 = 5, $x_c = 0$, $y_c = 0$, $\beta = 35^0$.

Фигура 2 (эллипс): A2=5, B2=3, $x2_c=-2$, $y2_c=4$, $\gamma=-45^0$.

- 1. Функции для построения графиков
- 1.2. Фигура 1 (гипербола).

Аффинные преобразования при повороте фигуры вокруг центра имеют вид:

$$\begin{cases} x' = x \cdot \cos(\beta) + y \cdot \sin(\beta); \\ y' = -x \cdot \sin(\beta) + y \cdot \cos(\beta). \end{cases}$$

Уравнение гиперболы в локальной системе координат:

$$\frac{\left(x^{I}\right)^{2}}{A1^{2}} - \frac{\left(y^{I}\right)^{2}}{B1^{2}} - 1 = 0.$$

После подстановки выражений аффинных преобразований вместо x^I , y^I и решения уравнения относительно у получим два выражения для построения графика гиперболы:

$$\begin{cases} y1 = \frac{\left(A1^{2} + B1^{2}\right) \cdot \sin(2 \cdot \beta) \cdot x}{2 \cdot \left(B1^{2} \cdot \sin(\beta)^{2} - A1^{2} \cdot \cos(\beta)^{2}\right)} - \frac{2 \cdot A1 \cdot B1 \cdot \sqrt{B1^{2} \cdot \sin(\beta)^{2} - A1^{2} \cdot \cos(\beta)^{2} + x^{2}}}{2 \cdot \left(B1^{2} \cdot \sin(\beta)^{2} - A1^{2} \cdot \cos(\beta)^{2}\right)}; \\ y2 = \frac{\left(A1^{2} + B1^{2}\right) \cdot \sin(2 \cdot \beta) \cdot x}{2 \cdot \left(B1^{2} \cdot \sin(\beta)^{2} - A1^{2} \cdot \cos(\beta)^{2} + x^{2}\right)} + \frac{2 \cdot A1 \cdot B1 \cdot \sqrt{B1^{2} \cdot \sin(\beta)^{2} - A1^{2} \cdot \cos(\beta)^{2} + x^{2}}}{2 \cdot \left(B1^{2} \cdot \sin(\beta)^{2} - A1^{2} \cdot \cos(\beta)^{2}\right)}, \end{cases}$$

или после подстановки конкретных значений получим:

$$\begin{cases} y1 = -(7.263 \cdot x + 6.818 \cdot \sqrt{x^2 + 2.2}); \\ y2 = -7.263 \cdot x + 6.818 \cdot \sqrt{x^2 + 2.2}. \end{cases}$$

Координаты центра эллипса:

$$xy_c = \begin{pmatrix} x1_c \\ y1_c \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

1.2. Фигура 2 (эллипс).

Аффинные преобразования при повороте фигуры на заданный угол и параллельном смещении центра эллипса имеют вид:

$$\begin{cases} x' = (x - x2_c) \cdot \cos(\gamma) + (y - y2_c) \cdot \sin(\gamma); \\ y' = -(x - x2_c) \cdot \sin(\gamma) + (y - y2_c) \cdot \cos(\gamma). \end{cases}$$

Уравнение эллипса в локальной системе координат:

$$\frac{\left(x^{I}\right)^{2}}{A2^{2}} + \frac{\left(y^{I}\right)^{2}}{B1^{2}} - 1 = 0.$$

После подстановки выражений аффинных преобразований вместо x^I , y^I и решения уравнения относительно у получим два выражения для построения графика эллипса:

$$\begin{cases} y_{1} = \frac{\left(A2^{2} - B2^{2}\right) \cdot \sin(2 \cdot \gamma)}{2 \cdot \left(A2^{2} \cdot \cos(\gamma)^{2} + B2^{2} \cdot \sin(\gamma)^{2}\right)} \cdot \left(x - x2_{c}\right) + \\ + y2_{c} + \frac{A2 \cdot B2 \cdot \sqrt{A2^{2} \cdot \cos(\gamma)^{2} + B2^{2} \cdot \sin(\gamma)^{2} - \left(x - x2_{c}\right)^{2}}}{A2^{2} \cdot \cos(\gamma)^{2} + B2^{2} \cdot \sin(\gamma)^{2}}; \\ y_{2} = \frac{\left(A2^{2} - B2^{2}\right) \cdot \sin(2 \cdot \gamma)}{2 \cdot \left(A2^{2} \cdot \cos(\gamma)^{2} + B2^{2} \cdot \sin(\gamma)^{2}\right)} \cdot \left(x - x2_{c}\right) + \\ + y2_{c} - \frac{A2 \cdot B2 \cdot \sqrt{A2^{2} \cdot \cos(\gamma)^{2} + B2^{2} \cdot \sin(\gamma)^{2}}}{A2^{2} \cdot \cos(\gamma)^{2} + B2^{2} \cdot \sin(\gamma)^{2}}, \end{cases}$$

или после подстановки конкретных значений получим:

$$\begin{cases} y1 = 3.059 + 0.883 \cdot \sqrt{16.995 - (x+2)^2} - 0.471 \cdot x; \\ y2 = 3.059 - 0.883 \cdot \sqrt{16.995 - (x+2)^2} - 0.471 \cdot x. \end{cases}$$

Координаты центра эллипса:

$$xy_c = \begin{pmatrix} x2_c \\ y2_c \end{pmatrix} = \begin{pmatrix} -2 \\ 4 \end{pmatrix}.$$

2. Рассчитать точку пересечения гиперболы и эллипса.

Для нахождения точек пересечения гиперболы и эллипса $xy_{\text{int}}^{T} = \begin{bmatrix} x1_{\text{int}} \\ x2_{\text{int}} \end{bmatrix} \begin{pmatrix} y1_{\text{int}} \\ y2_{\text{int}} \end{pmatrix} \end{bmatrix}$ сводится к решению системы двух нелинейных

уравнений численно с использованием блока Given-Find в MathCAD.

Система нелинейных уравнений имеет вид^

$$\begin{cases}
\frac{\left(x\cos(\beta) + y\sin(\beta)\right)^{2}}{A1^{2}} - \frac{\left(-x\sin(\beta) + y\cos(\beta)\right)^{2}}{B1^{2}} - 1 = 0; \\
\frac{\left(\left(x - x2_{c}\right)\cos(\gamma) + \left(y - y2_{c}\right)\sin(\lambda)\right)^{2}}{A2^{2}} + \frac{\left(-\left(x - x2_{c}\right)\sin(\gamma) + \left(y - y2_{c}\right)\cos(\gamma)\right)^{2}}{B2^{2}} - 1 = 0,
\end{cases}$$

или после подстановки значений:

$$\begin{cases} 0.061 \cdot x^2 + 0.142 \cdot x \cdot y + 9.778 \cdot 10^{-3} \cdot y^2 = 0; \\ 0.076 \cdot x^2 + (0.071 \cdot y + 0.018) \cdot x + 0.076 \cdot y^2 - 0.462 \cdot y - 0.058 = 0. \end{cases}$$

Численное решение системы нелинейных уравнений методом Квази-Ньютон при начальных приближениях $x = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, y = \begin{pmatrix} 1 \\ 4 \end{pmatrix}$ нашло две точки пересечения гиперболы и эллипса с координатами:

$$xy_{\text{int}}^T = \begin{bmatrix} x1_{\text{int}} \\ x2_{\text{int}} \end{bmatrix} \begin{pmatrix} y1_{\text{int}} \\ y2_{\text{int}} \end{bmatrix} = \begin{bmatrix} -5.09 \\ 0.901 \end{bmatrix} \begin{pmatrix} 4.955 \\ 7.95 \end{bmatrix}.$$

Листинг программы приведен в MathCAD на Рис. А 22–Рис. А 28, стр. 89–95.

Пример № 2.5. Найти точки пересечения параболы и гиперболы.

1. Исследуемые объекты:

Фигура 1: парабола (как в ВМ), (ветви параболы направлены в сторону отрицательных значений оси 0X), вершина смещена в точку $x1_p$, $y1_p$, парабола повернута вокруг вершины на угол β , A1 — ширина параболы.

Фигура 2: гипербола (A2, B2 — параметры, ветви расположены вдоль оси 0X) повернута вокруг центра на угол γ , с координатами центра $x1_g$, $y1_g$, совпадающими с началом координат.

- 2. Получить аналитические выражения для построения фигур.
- 3. Рассчитать точки пересечения гиперболы и эллипса, Форма представления уравнений аналитическая, использовать блок **Given-Find** при нахождении точек пересечения и численный метод Квази-Ньютон.
- 5. Построить графики фигур, опорные точки фигур, точки пересечения фигур.

Исходные данные

Фигура 1 (парабола): A1 = -1.5, $x1_p = 5$, $y1_p = 3$, $\beta = 45^0$.

Фигура 2(гипербола): A2=3, B2=4, $x1_g=0$, $y1_g=0$, $\gamma=45^0$.

- 1. Функции для построения графиков
- 1.1. Фигура 1 (парабола).

Аффинные преобразования при повороте фигуры 1 вокруг вершины на заданный угол и параллельном смещении центра параболы имеют вид:

$$\begin{cases} x' = (x - x1_p) \cdot \cos(\beta) + (y - y1_p) \cdot \sin(\beta); \\ y' = -(x - x1_p) \cdot \sin(\beta) + (y - y1_p) \cdot \cos(\beta). \end{cases}$$

Уравнение параболы в локальной системе координат:

$$\left(y^I\right)^2 - A1 \cdot x^I = 0.$$

После подстановки выражений аффинных преобразований вместо x^I , y^I и решения уравнения относительно y получим два выражения для построения графика параболы:

$$\begin{cases} y_{1} = \frac{\sqrt{A1^{2} \sin \beta^{2} + 4A1 \cos \beta (x - x1_{p})} + \frac{\sin 2\beta}{2} \left[2(x - x1_{p}) + 2y1_{p} \frac{\cos \beta}{\sin \beta} + A1 \frac{\sin \beta}{\cos \beta} \right]}{2\cos \beta^{2}}; \\ y_{2} = \frac{-\sqrt{A1^{2} \sin \beta^{2} + 4A1 \cos \beta (x - x1_{p})} + \frac{\sin 2\beta}{2} \left[2(x - x1_{p}) + 2y1_{p} \frac{\cos \beta}{\sin \beta} + A1 \frac{\sin \beta}{\cos \beta} \right]}{2\cos \beta^{2}}, \end{cases}$$

или после подстановки конкретных значений получим:

$$\begin{cases} y1 = -3.061 + 1.5 \cdot \sqrt{-1.886 \cdot x + 9.928} + x; \\ y2 = -3.061 - 1.5 \cdot \sqrt{-1.886 \cdot x + 9.928} + x. \end{cases}$$

Координаты центра параболы^

$$xy_p = \begin{pmatrix} x1_p \\ y1_p \end{pmatrix} = \begin{pmatrix} 5 \\ 3 \end{pmatrix}.$$

1.2. Фигура 2 (гипербола).

Аффинные преобразования при повороте фигуры вокруг центра имеют вид:

$$\begin{cases} x' = x \cdot \cos(\gamma) + y \cdot \sin(\gamma); \\ y' = -x \cdot \sin(\gamma) + y \cdot \cos(\gamma). \end{cases}$$

Уравнение гиперболы в локальной системе координат:

$$\frac{\left(x^{I}\right)^{2}}{A2^{2}} - \frac{\left(y^{I}\right)^{2}}{B2^{2}} - 1 = 0.$$

После подстановки выражений аффинных преобразований вместо x^I , y^I и решения уравнения относительно у получим два выражения для построения графика гиперболы:

$$\begin{cases} y1 = \frac{\left(A2^{2} + B2^{2}\right) \cdot \sin(2 \cdot \gamma) \cdot x}{2 \cdot \left(B2^{2} \cdot \sin(\gamma)^{2} - A2^{2} \cdot \cos(\gamma)^{2}\right)} - \frac{2 \cdot A2 \cdot B2 \cdot \sqrt{B2^{2} \cdot \sin(\gamma)^{2} - A2^{2} \cdot \cos(\gamma)^{2} + x^{2}}}{2 \cdot \left(B2^{2} \cdot \sin(\gamma)^{2} - A2^{2} \cdot \cos(\gamma)^{2}\right)}; \\ y2 = \frac{\left(A2^{2} + B2^{2}\right) \cdot \sin(2 \cdot \gamma) \cdot x}{2 \cdot \left(B2^{2} \cdot \sin(\gamma)^{2} - A2^{2} \cdot \cos(\gamma)^{2} + x^{2}\right)} + \frac{2 \cdot A2 \cdot B2 \cdot \sqrt{B2^{2} \cdot \sin(\gamma)^{2} - A2^{2} \cdot \cos(\gamma)^{2} + x^{2}}}{2 \cdot \left(B2^{2} \cdot \sin(\gamma)^{2} - A2^{2} \cdot \cos(\gamma)^{2}\right)}; \end{cases}$$

или после подстановки конкретных значений получим:

$$\begin{cases} y1 = -3.573 \cdot x + 3.43 \cdot \sqrt{x^2 + 3.499}; \\ y2 = -3.573 \cdot x - 3.43 \cdot \sqrt{x^2 + 3.499}. \end{cases}$$

Координаты центра гиперболы:

$$xy_g = \begin{pmatrix} x1_g \\ y1_g \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

2. Рассчитать точку пересечения гиперболы и параболы. Нахождение точек пересечения гиперболы и эллипса

$$xy_{\text{int}}^{T} = \begin{bmatrix} x1_{\text{int}} \\ x2_{\text{int}} \\ x3_{\text{int}} \\ x4_{\text{int}} \end{bmatrix} \begin{pmatrix} y1_{\text{int}} \\ y2_{\text{int}} \\ y3_{\text{int}} \\ y4_{\text{int}} \end{pmatrix}$$

сводится к решению системы двух нелинейных уравнений численно с использованием блока *Given-Find* в MathCAD.

Система нелинейных уравнений имеет вид:

$$\begin{cases}
\left(-(x-x1_p)\cdot\sin(\beta)+(y-y1_p)\cdot\cos(\beta)\right)^2-A1\cdot\left((x-x1_p)\cdot\cos(\beta)+(y-y1_p)\cdot\sin(\beta)\right)=0; \\
\frac{\left(x\cdot\cos(\gamma)+y\cdot\sin(\gamma)\right)^2}{A2^2}-\frac{\left(-x\cdot\sin(\gamma)+y\cdot\cos(\gamma)\right)^2}{B2^2}-1=0,
\end{cases}$$

или после подстановки значений:

$$\begin{cases}
-0.938 \cdot x + 3.06 \cdot y + 0.5 \cdot x^2 + 0.5 \cdot y^2 - x \cdot y - 6.485 = 0; \\
0.024 \cdot x^2 + 0.174 \cdot x \cdot y + 0.024 \cdot y^2 - 1 = 0.
\end{cases}$$

Численное решение системы нелинейных уравнений методом Квази-Ньютон при начальных приближениях:

$$x = \begin{pmatrix} 4 \\ -1 \\ -1 \\ 2 \end{pmatrix}, \quad y = \begin{pmatrix} 1 \\ -4 \\ 0 \\ 2 \end{pmatrix}$$

нашло четыре точки пересечения параболы и гиперболы с координатами:

$$xy_{\text{int}}^{T} = \begin{bmatrix} x1_{\text{int}} \\ x2_{\text{int}} \\ x3_{\text{int}} \\ x4_{\text{int}} \end{bmatrix} \begin{bmatrix} y1_{\text{int}} \\ y2_{\text{int}} \\ y3_{\text{int}} \\ y4_{\text{int}} \end{bmatrix} = \begin{bmatrix} 4.863 \\ 0.261 \\ -4.056 \\ 1.739 \end{bmatrix} \begin{bmatrix} 0.496 \\ -7.408 \\ -0.828 \\ 2.546 \end{bmatrix}.$$

Листинг программы приведен в MathCAD (Рис. A 29–Рис. A 35, стр. 96–102).

3. КОНТРОЛЬНЫЕ ВОПРОСЫ

3.1. Круг

1. Каноническое уравнение круга в аналитической форме имеет вид _____ (вписать выражение).

Otbet: $\frac{x^2}{R^2} + \frac{y^2}{R^2} - 1 = 0$.

2. Каноническое уравнение круга в аналитической форме имеет вид _____ (выбрать из списка).

Ответ: 3.

3. Уравнение круга с центром, смещенным в точку x_c , y_c в аналитической форме, имеет вид _____ (вписать выражение).

Otbet: $\frac{(x-x_c)^2}{R^2} + \frac{(y-y_c)^2}{R^2} - 1 = 0$.

4. Уравнение круга с центром в начале координат в матричной форме, имеет вид _____ (вписать выражение, развернуть входящие массивы).

35

OTBET: $XY^T \cdot AB \cdot XY - 1 = 0$, $XY = \begin{pmatrix} x \\ y \end{pmatrix}$, $AB = \begin{pmatrix} \frac{1}{R^2} & 0 \\ 0 & \frac{1}{R^2} \end{pmatrix}$.

5. Уравнение круга с центром, смещенным в точку x_c , y_c в аналитической форме, имеет вид _____ (выбрать из списка).

Ответ: 1.

6. Функция для построения графика круга с центром в начале координат имеет вид _____ (вписать выражение).

Otbet:
$$y = \pm \sqrt{R^2 - x^2}$$
.

7. Функция для построения графика круга с центром в начале координат имеет вид _____ (выбрать из списка).

1.
$$y = \sqrt{R^2 - x^2}$$

2.
$$y = \pm \sqrt{R^2 - x^2}$$

3.
$$y = \pm \sqrt{R^2 + x^2}$$

4.
$$y = \pm \sqrt{R + x}$$

5.
$$y = \sqrt{R^2 + x^2}$$

6. Нет выражения

Ответ: 2.

8. Функция для построения графика круга с центром, смещенным в точку $x_c,\ y_c,$ имеет вид _____ (вписать выражение).

Otbet:
$$y = \pm \sqrt{R^2 - (x - \Delta x)^2} + \Delta y$$
.

9. Уравнение круга центром в начале координат в матричной форме, имеет вид _____ (выбрать из списка).

1.
$$XY^{T} \cdot AB \cdot XY + 1 = 0$$
, $XY = \begin{pmatrix} x \\ y \end{pmatrix}$, $AB = \begin{pmatrix} \frac{1}{R} & 0 \\ 0 & \frac{1}{R} \end{pmatrix}$

2. $XY^{T} \cdot AB \cdot XY + 1 = 0$, $XY = \begin{pmatrix} x \\ y \end{pmatrix}$, $AB = \begin{pmatrix} R & 0 \\ 0 & R \end{pmatrix}$

3. $XY^{-1} \cdot AB \cdot XY - 1 = 0$, $XY = \begin{pmatrix} x \\ y \end{pmatrix}$, $AB = \begin{pmatrix} \frac{1}{R^{2}} & 0 \\ 0 & \frac{1}{R^{2}} \end{pmatrix}$

4. $XY^{T} \cdot AB \cdot XY - 1 = 0$, $XY = \begin{pmatrix} x \\ y \end{pmatrix}$, $AB = \begin{pmatrix} \frac{1}{R^{2}} & 0 \\ 0 & \frac{1}{R^{2}} \end{pmatrix}$

5. $XY^{T} \cdot AB \cdot XY - 1 = 0$, $XY = \begin{pmatrix} x \\ y \end{pmatrix}$, $AB = \begin{pmatrix} \frac{1}{R} & 0 \\ 0 & \frac{1}{R} \end{pmatrix}$

6. Нет выражения

Ответ: 4.

10. Функция для построения графика круга с центром, смещенным в точку x_c , y_c , имеет вид _____ (выбрать из списка).

1.
$$y = \pm \sqrt{R^2 - (x - \Delta x)^2 + \Delta y}$$
2. $y = \pm \sqrt{R^2 + (x + \Delta x)^2 + \Delta y}$
3. $y = \pm \sqrt{R^2 - (x - \Delta x)^2 + \Delta y}$
4. $y = \sqrt{R^2 - (x - \Delta x)^2 + \Delta y}$
5. $y = \sqrt{R^2 + (x + \Delta x)^2 + \Delta y}$
6. Нет выражения

Ответ: 3.

11. Уравнение круга с центром, смещенным относительно начала координат на $\triangle XY = \begin{pmatrix} \triangle X \\ \triangle Y \end{pmatrix}$, в матричной форме, имеет вид _____ (вписать выражение, развернуть входящие массивы).

Otbet:
$$(XY - \triangle XY)^T AB(XY - \triangle XY) - 1 = 0$$
, $XY = \begin{pmatrix} x \\ y \end{pmatrix}$, $AB = \begin{pmatrix} \frac{1}{R^2} & 0 \\ 0 & \frac{1}{R^2} \end{pmatrix}$, $\triangle XY = \begin{pmatrix} \triangle X \\ \triangle Y \end{pmatrix}$.

12. Уравнение круга с центром, смещенным относительно начала координат на $\triangle XY = \begin{pmatrix} \triangle X \\ \triangle Y \end{pmatrix}$, в матричной форме, имеет вид _____ (выбрать из списка).

1.
$$(XY + \triangle XY)^T \cdot AB \cdot (XY - \triangle XY) - 1 = 0$$
, $XY = \begin{pmatrix} x \\ y \end{pmatrix}$, $AB = \begin{pmatrix} \frac{1}{R} & 0 \\ 0 & \frac{1}{R} \end{pmatrix}$, $\triangle XY = \begin{pmatrix} \triangle X \\ \triangle Y \end{pmatrix}$

2. $(XY + \triangle XY)^T \cdot AB \cdot (XY - \triangle XY) - 1 = 0$, $XY = \begin{pmatrix} x \\ y \end{pmatrix}$, $AB = \begin{pmatrix} R^2 & 0 \\ 0 & R^2 \end{pmatrix}$, $\triangle XY = \begin{pmatrix} \triangle X \\ \triangle Y \end{pmatrix}$

3. $(XY + \triangle XY)^{-1} \cdot AB \cdot (XY - \triangle XY) - 1 = 0$, $XY = \begin{pmatrix} x \\ y \end{pmatrix}$, $AB = \begin{pmatrix} \frac{1}{R} & 0 \\ 0 & \frac{1}{R} \end{pmatrix}$, $\triangle XY = \begin{pmatrix} \triangle X \\ \triangle Y \end{pmatrix}$

4. $(XY - \triangle XY)^T \cdot AB3 \cdot (XY - \triangle XY) - 1 = 0$, $XY = \begin{pmatrix} x \\ y \end{pmatrix}$, $AB = \begin{pmatrix} \frac{1}{R^2} & 0 \\ 0 & \frac{1}{R^2} \end{pmatrix}$, $\triangle XY = \begin{pmatrix} \triangle X \\ \triangle Y \end{pmatrix}$

5. $(XY - \triangle XY)^T \cdot AB3 \cdot (XY - \triangle XY) + 1 = 0$, $XY = \begin{pmatrix} x \\ y \end{pmatrix}$, $AB = \begin{pmatrix} \frac{1}{R} & 0 \\ 0 & \frac{1}{R^2} \end{pmatrix}$, $\triangle XY = \begin{pmatrix} \triangle X \\ \triangle Y \end{pmatrix}$

6. Нет выражения

Ответ: 4.

3.2. Эллипс

13. Каноническое уравнение эллипса в аналитической форме имеет вид (вписать выражение).

Otbet:
$$\frac{x^2}{A^2} + \frac{y^2}{B^2} - 1 = 0$$
.

14. Каноническое уравнение эллипса в аналитической форме имеет вид (выбрать из списка).

Ответ: 1.

15. Уравнение эллипса с центром в начале координат в матричной форме, имеет вид ______ (вписать выражение, развернуть входящие массивы).

OTBET:
$$XY^T \cdot AB \cdot XY - 1 = 0$$
, $XY = \begin{pmatrix} x \\ y \end{pmatrix}$, $AB = \begin{pmatrix} \frac{1}{A^2} & 0 \\ 0 & \frac{1}{B^2} \end{pmatrix}$.

16. Уравнение эллипса с центром, смещенным в точку x_c , y_c в аналитической форме, имеет вид (вписать выражение).

Otbet:
$$\frac{(x-x_c)^2}{A^2} + \frac{(y-y_c)^2}{B^2} - 1 = 0$$
.

17. Уравнение эллипса центром в начале координат в матричной форме, имеет вид _____ (выбрать из списка).

1.
$$XY^{T} \cdot AB \cdot XY + 1 = 0$$
, $XY = \begin{pmatrix} x \\ y \end{pmatrix}$, $AB = \begin{pmatrix} \frac{1}{A} & 0 \\ 0 & \frac{1}{B} \end{pmatrix}$

2. $XY^{T} \cdot AB \cdot XY + 1 = 0$, $XY = \begin{pmatrix} x \\ y \end{pmatrix}$, $AB = \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$

3. $XY^{-1} \cdot AB \cdot XY - 1 = 0$, $XY = \begin{pmatrix} x \\ y \end{pmatrix}$, $AB = \begin{pmatrix} \frac{1}{A^{2}} & 0 \\ 0 & \frac{1}{B^{2}} \end{pmatrix}$

4. $XY^{T} \cdot AB \cdot XY - 1 = 0$, $XY = \begin{pmatrix} x \\ y \end{pmatrix}$, $AB = \begin{pmatrix} \frac{1}{A^{2}} & 0 \\ 0 & \frac{1}{B^{2}} \end{pmatrix}$

5. $XY^{T} \cdot AB \cdot XY - 1 = 0$, $XY = \begin{pmatrix} x \\ y \end{pmatrix}$, $AB = \begin{pmatrix} \frac{1}{A} & 0 \\ 0 & \frac{1}{B} \end{pmatrix}$

6. Нет выражения

Ответ: 4.

18. Уравнение эллипса с центром, смещенным в точку x_c , y_c в матричной форме, имеет вид _____ (вписать выражение, развернуть входящие массивы).

Otbet:
$$(XY - \triangle XY)^T AB(XY - \triangle XY) - 1 = 0, \triangle XY = \begin{pmatrix} x_c \\ y_c \end{pmatrix}, XY = \begin{pmatrix} x \\ y \end{pmatrix}, AB = \begin{pmatrix} \frac{1}{A^2} & 0 \\ 0 & \frac{1}{B^2} \end{pmatrix}.$$

19. Функция для построения графика эллипса имеет вид _____ (вписать выражение).

OTBET:
$$y = \pm \frac{B}{A} \sqrt{A^2 - x^2}$$
.

20. Уравнение эллипса с центром, смещенным в точку x_c , y_c в аналитической форме, имеет вид _____ (выбрать из списка).

$$1. \frac{\left(x-x_{c}\right)^{2}}{A^{2}} + \frac{\left(y-y_{c}\right)^{2}}{B^{2}} + 1 = 0$$

$$2. \frac{\left(x-x_{c}\right)^{2}}{A^{2}} - \frac{\left(y-y_{c}\right)^{2}}{B^{2}} + 1 = 0$$

$$3. \frac{\left(x+x_{c}\right)^{2}}{A^{2}} + \frac{\left(y+y_{c}\right)^{2}}{B^{2}} - 1 = 0$$

$$4. \frac{\left(x-x_{c}\right)^{2}}{A^{2}} + \frac{\left(y-y_{c}\right)^{2}}{B^{2}} - 1 = 0$$

$$5. \frac{\left(x-y_{c}\right)^{2}}{A} + \frac{\left(y-x_{c}\right)^{2}}{B} - 1 = 0$$

$$6. \text{ Нет выражения}$$

Ответ: 4.

21. Функция для построения графика эллипса имеет вид _____ (выбрать из списка).

1.
$$y = \pm \frac{B}{A} \sqrt{A^2 - x^2}$$

2. $y = \frac{B}{A} \sqrt{A^2 - x^2}$

3. $y = \pm \frac{B}{A} \sqrt{A^2 + x^2}$

4. $y = \pm \frac{A}{B} \sqrt{A^2 + x^2}$

5. $y = \pm \frac{B}{A} \sqrt{B^2 - x^2}$

6. Нет выражения

Ответ: 1.

22. Функция для построения графика эллипса с центром, смещенным в точку $x_c,\ y_c,$ имеет вид _____ (вписать выражение).

Otbet:
$$y = \pm \frac{B}{A} \sqrt{A^2 - (x - x_c)^2} + y_c$$
.

23. Уравнение эллипса с центром, смещенным в точку x_c , y_c в матричной форме, имеет вид _____ (выбрать из списка).

$$1. (XY - \triangle XY)^{-1} \cdot AB \cdot (XY - \triangle XY) + 1 = 0, \ \triangle XY = \begin{pmatrix} x_c \\ y_c \end{pmatrix}, \ XY = \begin{pmatrix} x \\ y \end{pmatrix}, \ AB = \begin{pmatrix} -\frac{1}{A^2} & 0 \\ 0 & \frac{1}{B^2} \end{pmatrix}$$

$$2. (XY + \triangle XY)^T \cdot AB \cdot (XY + \triangle XY) - 1 = 0, \ \triangle XY = \begin{pmatrix} x_c \\ y_c \end{pmatrix}, \ XY = \begin{pmatrix} x \\ y \end{pmatrix}, \ AB = \begin{pmatrix} \frac{1}{A^2} & 0 \\ 0 & \frac{1}{B^2} \end{pmatrix}$$

$$3. (XY - \triangle XY)^T \cdot AB \cdot (XY - \triangle XY) - 1 = 0, \ \triangle XY = \begin{pmatrix} x_c \\ y_c \end{pmatrix}, \ XY = \begin{pmatrix} x \\ y \end{pmatrix}, \ AB = \begin{pmatrix} \frac{1}{A^2} & 0 \\ 0 & \frac{1}{B^2} \end{pmatrix}$$

$$4. (XY - \triangle XY)^T \cdot AB \cdot (XY - \triangle XY) - 1 = 0, \ \triangle XY = \begin{pmatrix} x_c & 0 \\ 0 & y_c \end{pmatrix}, \ XY = \begin{pmatrix} x \\ y \end{pmatrix}, \ AB = \begin{pmatrix} B^2 & 0 \\ 0 & A^2 \end{pmatrix}$$

$$5. (XY - \triangle XY)^T \cdot AB \cdot (XY - \triangle XY) - 1 = 0, \ \triangle XY = \begin{pmatrix} x_c & 1 \\ 1 & y_c \end{pmatrix}, \ XY = \begin{pmatrix} x \\ y \end{pmatrix}, \ AB = \begin{pmatrix} -\frac{1}{A^2} & 0 \\ 0 & \frac{1}{B^2} \end{pmatrix}$$

$$6. \text{ Нет выражения}$$

Ответ: 3.

24. Уравнение эллипса с центром в начале координат при повороте на угол α , в матричной форме, имеет вид _____ (вписать выражение, развернуть входящие массивы).

Otbet:
$$\frac{\left(\left(\left(M\alpha\right)^{T}\right)^{<0>}\right)^{T} \cdot XY}{A1} + \frac{\left(\left(\left(M\alpha\right)^{T}\right)^{<1>}\right)^{T} \cdot XY}{B1} - 1 = 0,$$

$$M\alpha = \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ -\sin(\alpha)\cos(\alpha) \end{pmatrix}, \quad XY = \begin{pmatrix} x \\ y \end{pmatrix}.$$

25. Уравнение эллипса с центром в начале координат при повороте на угол α, в матричной форме, имеет вид _____ (выбрать из списка).

$$\frac{1}{1} \cdot \left[\frac{\left(\left((M\alpha)^T \right)^{<0>} \right)^{-1} \cdot XY}{A1} \right]^2 + \left[\frac{\left(\left((M\alpha)^T \right)^{<1>} \cdot XY}{B1} \right]^2 - 1 = 0, \\
M\alpha = \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ -\sin(\alpha) & \cos(\alpha) \end{pmatrix}, XY = \begin{pmatrix} x \\ y \end{pmatrix} \\
\frac{1}{2} \cdot \left[\frac{\left(\left((M\alpha)^{-1} \right)^{<0>} \right)^{-1} \cdot XY}{A1} \right]^2 + \left[\frac{\left(\left((M\alpha)^{-1} \right)^{<1>} \right)^{-1} \cdot XY}{B1} \right]^2 - 1 = 0, \\
M\alpha = \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ -\sin(\alpha) & \cos(\alpha) \end{pmatrix}, XY = \begin{pmatrix} x \\ y \end{pmatrix} \\
\frac{1}{3} \cdot \left[\frac{\left(\left((M\alpha)^T \right)^{<0>} \right)^T \cdot XY}{A1} \right]^2 + \left[\frac{\left(\left((M\alpha)^T \right)^{<1>} \right)^T \cdot XY}{B1} \right]^2 + 1 = 0, \\
M\alpha = \begin{pmatrix} -\cos(\alpha) & \sin(\alpha) \\ -\sin(\alpha) & \cos(\alpha) \end{pmatrix}, XY = \begin{pmatrix} x \\ y \end{pmatrix} \\
\frac{1}{3} \cdot \left[\frac{\left(\left((M\alpha)^T \right)^{<0>} \right)^T \cdot XY}{A1} \right]^2 - \left(\frac{\left(\left((M\alpha)^T \right)^{<1>} \right)^T \cdot XY}{B1} \right)^2 + 1 = 0, \\
M\alpha = \begin{pmatrix} -\cos(\alpha) & \sin(\alpha) \\ -\sin(\alpha) & \cos(\alpha) \end{pmatrix}, XY = \begin{pmatrix} x \\ y \end{pmatrix} \\
\frac{1}{3} \cdot \left[\frac{\left(\left((M\alpha)^T \right)^{<0>} \right)^T \cdot XY}{A1} \right]^2 + \left[\frac{\left(\left((M\alpha)^T \right)^{<1>} \right)^T \cdot XY}{B1} \right]^2 - 1 = 0, \\
\frac{1}{3} \cdot \left[\frac{\left((M\alpha)^T \right)^{<0>} \right)^T \cdot XY}{A1} \right]^2 + \left[\frac{\left((M\alpha)^T \right)^{<1>} \right)^T \cdot XY}{B1} \right]^2 - 1 = 0, \\
\frac{1}{3} \cdot \left[\frac{\left((M\alpha)^T \right)^{<0>} \right)^T \cdot XY}{A1} \right]^2 + \left[\frac{\left((M\alpha)^T \right)^{<1>} \right)^T \cdot XY}{B1} \right]^2 - 1 = 0, \\
\frac{1}{3} \cdot \left[\frac{\left((M\alpha)^T \right)^{<0>} \right)^T \cdot XY}{A1} \right]^2 - \frac{\left((M\alpha)^T \right)^{<1>} \cdot XY}{B1} \right]^2 - 1 = 0, \\
\frac{1}{3} \cdot \left[\frac{\left((M\alpha)^T \right)^{-1} \cdot XY}{A1} \right]^2 + \frac{\left((M\alpha)^T \right)^{-1} \cdot XY}{B1} \right]^2 - 1 = 0, \\
\frac{1}{3} \cdot \left[\frac{\left((M\alpha)^T \right)^{-1} \cdot XY}{A1} \right]^2 + \frac{\left(((M\alpha)^T \right)^{-1} \cdot XY}{B1} \right]^2 - 1 = 0, \\
\frac{1}{3} \cdot \left[\frac{\left((M\alpha)^T \right)^{-1} \cdot XY}{A1} \right]^2 + \frac{\left((M\alpha)^T \right)^{-1} \cdot XY}{B1} \right]^2 - 1 = 0, \\
\frac{1}{3} \cdot \left[\frac{\left((M\alpha)^T \right)^{-1} \cdot XY}{A1} \right]^2 + \frac{\left((M\alpha)^T \right)^{-1} \cdot XY}{B1} \right]^2 - 1 = 0, \\
\frac{1}{3} \cdot \left[\frac{\left((M\alpha)^T \right)^{-1} \cdot XY}{A1} \right]^2 + \frac{\left((M\alpha)^T \right)^{-1} \cdot XY}{B1} \right]^2 - 1 = 0, \\
\frac{1}{3} \cdot \left[\frac{\left((M\alpha)^T \right)^{-1} \cdot XY}{A1} \right]^2 + \frac{\left((M\alpha)^T \right)^{-1} \cdot XY}{B1} \right]^2 - 1 = 0, \\
\frac{1}{3} \cdot \left[\frac{\left((M\alpha)^T \right)^{-1} \cdot XY}{A1} \right]^2 + \frac{\left((M\alpha)^T \right)^{-1} \cdot XY}{B1} \right]^2 - 1 = 0, \\
\frac{1}{3} \cdot \left[\frac{\left((M\alpha)^T \right)^{-1} \cdot XY}{A1} \right]^2 + \frac{\left((M\alpha)^T \right)^{-1} \cdot XY}{B1} \right]^2 - 1 = 0, \\
\frac{1}{3} \cdot \left[\frac{\left((M\alpha)^T \right)^{-1} \cdot XY}{A1} \right]^2 + \frac{\left((M\alpha)^T \right)^{-1} \cdot XY}{B1} \right]^2 - \frac{\left((M\alpha)^T \right)^{-1} \cdot XY}{B1} \right]^2 - \frac{\left((M\alpha)^T$$

Ответ: 5.

26. Уравнение эллипса при повороте на угол α и параллельном смещении относительно начала координат на Δx , Δy , в матричной форме, имеет вид _____ (выбрать из списка).

Ответ: 3.

27. Функция для построения графика эллипса с центром, смещенным в точку $x_c,\ y_c,$ имеет вид _____ (выбрать из списка).

1.
$$y = \pm \frac{B}{A} \sqrt{A^2 - (x - x_c)^2} - y_c$$

2. $y = \pm \frac{B}{A} \sqrt{A^2 - (x - x_c)^2} + y_c$

3. $y = \pm \frac{B}{A} \sqrt{A^2 + (x + x_c)^2} + y_c$

4. $y = \frac{B}{A} \sqrt{A^2 - (x - x_c)^2} + y_c$

5. $y = \pm \frac{B}{A} \sqrt{B^2 - (x - x_c)^2} + y_c$

6. Нет выражения

Ответ: 2.

28. Уравнение эллипса при повороте на угол α и параллельном смещении относительно начала координат на Δx , Δy , в матричной форме, имеет вид _____ (вписать выражение, развернуть входящие массивы).

Otbet:
$$\frac{\left(\left(\left(M\alpha\right)^{T}\right)^{<0>}\right)^{T} \cdot (XY - \Delta XY)}{A1} + \frac{\left(\left(\left(M\alpha\right)^{T}\right)^{<1>}\right)^{T} \cdot (XY - \Delta XY)}{B1} - 1 = 0,$$

$$M\alpha = \begin{pmatrix} \cos(\alpha) \sin(\alpha) \\ -\sin(\alpha)\cos(\alpha) \end{pmatrix}, \ XY = \begin{pmatrix} x \\ y \end{pmatrix}, \ \Delta XY = \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix}.$$

3.3. Гипербола

29. Уравнение гиперболы с центром в начале координат в матричной форме, имеет вид _____ (вписать выражение, развернуть входящие массивы).

OTBET:
$$XY = \begin{pmatrix} x \\ y \end{pmatrix}$$
, $AB = \begin{pmatrix} \frac{1}{A^2} & 0 \\ 0 & -\frac{1}{B^2} \end{pmatrix}$.

30. Каноническое уравнение гиперболы в аналитической форме имеет вид (вписать выражение).

Otbet:
$$\frac{x^2}{A^2} - \frac{y^2}{B^2} - 1 = 0$$
.

- 31. Каноническое уравнение гиперболы в аналитической форме имеет вид (выбрать из списка).
- 1. $\frac{x^2}{A^2} + \frac{y^2}{B^2} 1 = 0$
- 2. $\frac{(x-x_c)^2}{A^2} + \frac{(y-y_c)^2}{B^2} + 1 = 0$
- 3. $\frac{x^2}{A^2} + \frac{y^2}{B^2} + 1 = 0$
- 4. $\frac{x^2}{A^2} \frac{y^2}{B^2} 1 = 0$
- 5. $\frac{x^2}{A^2} \frac{y^2}{B^2} + 1 = 0$
- 6. Нет выражения

Ответ: 4.

- 32. Уравнение гиперболы с центром, смещенным в точку x_c , y_c в аналитической форме, имеет вид _____ (выбрать из списка).
- 1. $\frac{(x-x_c)^2}{A^2} \frac{(y-y_c)^2}{B^2} + 1 = 0$
- 2. $\frac{(x-x_c)^2}{A^2} \frac{(y-y_c)^2}{B^2} 1 = 0$
- 3. $\frac{(x+x_c)^2}{A^2} + \frac{(y+y_c)^2}{B^2} 1 = 0$
- 4. $\frac{(x-x_c)^2}{A^2} + \frac{(y-y_c)^2}{B^2} 1 = 0$
- 5. $\frac{(x-y_c)^2}{A} \frac{(y-x_c)^2}{B} 1 = 0$
- 6. Нет выражения

Ответ: 2.

33. Уравнение гиперболы с центром, смещенным в точку x_c , y_c в аналитической форме, имеет вид _____ (вписать выражение).

Otbet:
$$\frac{(x-x_c)^2}{A^2} - \frac{(y-y_c)^2}{B^2} - 1 = 0$$
.

34. Уравнение гиперболы центром в начале координат в матричной форме, имеет вид _____ (выбрать из списка).

1.
$$XY^T \cdot AB \cdot XY + 1 = 0$$
, $XY = \begin{pmatrix} x \\ y \end{pmatrix}$, $AB = \begin{pmatrix} -\frac{1}{A} & 0 \\ 0 & \frac{1}{B} \end{pmatrix}$

2.
$$XY^T \cdot AB \cdot XY + 1 = 0$$
, $XY = \begin{pmatrix} x \\ y \end{pmatrix}$, $AB = \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$

3.
$$XY^{-T} \cdot AB \cdot XY - 1 = 0$$
, $XY = \begin{pmatrix} x \\ y \end{pmatrix}$, $AB = \begin{pmatrix} \frac{1}{A^2} & 0 \\ 0 & -\frac{1}{B^2} \end{pmatrix} XY^T \cdot AB \cdot XY - 1 = 0$

4.
$$XY^T \cdot AB \cdot XY - 1 = 0$$
, $XY = \begin{pmatrix} x \\ y \end{pmatrix}$, $AB = \begin{pmatrix} \frac{1}{A^2} & 0 \\ 0 & \frac{1}{B^2} \end{pmatrix}$

5.
$$XY^T \cdot AB \cdot XY - 1 = 0$$
, $XY = \begin{pmatrix} x \\ y \end{pmatrix}$, $AB = \begin{pmatrix} \frac{1}{A} & 0 \\ 0 & -\frac{1}{B} \end{pmatrix}$

6. Нет выражения

Ответ: 3.

35. Функция для построения графика гиперболы имеет вид _____ (вписать выражение).

Otbet:
$$y = \pm \frac{B}{A} \sqrt{x^2 - A^2}$$
.

36. Уравнение гиперболы с центром в начале координат при повороте на угол α , в матричной форме, имеет вид _____ (вписать выражение, развернуть входящие массивы).

Otbet:
$$\left[\frac{\left(\left(\left(M \alpha \right)^T \right)^{<0>} \right)^T \cdot XY}{A1} \right]^2 - \left[\frac{\left(\left(\left(M \alpha \right)^T \right)^{<1>} \right)^T \cdot XY}{B1} \right]^2 - 1 = 0,$$

$$M \alpha = \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ -\sin(\alpha)\cos(\alpha) \end{pmatrix}, \quad XY = \begin{pmatrix} x \\ y \end{pmatrix}.$$

37. Функция для построения графика гиперболы с центром, смещенным в точку x_c , y_c , имеет вид _____ (вписать выражение).

Otbet:
$$y = \pm \frac{B}{A} \sqrt{(x - x_c)^2 - A^2} + y_c$$
.

38. Функция для построения графика гиперболы имеет вид _____ (выбрать из списка).

1.
$$y = \pm \frac{B}{A} \sqrt{A^2 - x^2}$$

2. $y = \frac{B}{A} \sqrt{A^2 + x^2}$

3. $y = \frac{B}{A} \sqrt{x^2 - A^2}$

4. $y = \pm \frac{B}{A} \sqrt{x^2 + A^2}$

5. $y = \pm \frac{B}{A} \sqrt{x^2 - A^2}$

6. Нет выражения

Ответ: 5.

39. Уравнение гиперболы с центром, смещенным в точку x_c , y_c в матричной форме, имеет вид _____ (вписать выражение, развернуть входящие массивы).

Otbet:
$$(XY - \triangle XY)^T AB(XY - \triangle XY) - 1 = 0, \triangle XY = \begin{pmatrix} x_c \\ y_c \end{pmatrix}, XY = \begin{pmatrix} x \\ y \end{pmatrix}, AB = \begin{pmatrix} \frac{1}{A^2} & 0 \\ 0 & -\frac{1}{B^2} \end{pmatrix}$$
.

40. Уравнение гиперболы с центром, смещенным в точку x_c , y_c в матричной форме, имеет вид _____ (выбрать из списка).

$$1. (XY - \triangle XY)^{T} \cdot AB \cdot (XY - \triangle XY) - 1 = 0, \ \triangle XY = \begin{pmatrix} x_{c} \\ y_{c} \end{pmatrix}, \ XY = \begin{pmatrix} x \\ y \end{pmatrix}, \ AB = \begin{pmatrix} \frac{1}{A^{2}} & 0 \\ 0 & -\frac{1}{B^{2}} \end{pmatrix}$$

$$2. (XY + \triangle XY)^{T} \cdot AB \cdot (XY + \triangle XY) - 1 = 0, \ \triangle XY = \begin{pmatrix} x_{c} \\ y_{c} \end{pmatrix}, \ XY = \begin{pmatrix} x \\ y \end{pmatrix}, \ AB = \begin{pmatrix} \frac{1}{A^{2}} & 0 \\ 0 & \frac{1}{B^{2}} \end{pmatrix}$$

$$3. (XY - \triangle XY)^{T} \cdot AB \cdot (XY - \triangle XY) - 1 = 0, \ \triangle XY = \begin{pmatrix} x_{c} \\ y_{c} \end{pmatrix}, \ XY = \begin{pmatrix} x \\ y \end{pmatrix}, \ AB = \begin{pmatrix} \frac{1}{A^{2}} & 0 \\ 0 & \frac{1}{B^{2}} \end{pmatrix}$$

$$4. (XY - \triangle XY)^{T} \cdot AB \cdot (XY - \triangle XY) - 1 = 0, \ \triangle XY = \begin{pmatrix} x_{c} \\ 0 \\ y_{c} \end{pmatrix}, \ XY = \begin{pmatrix} x \\ y \end{pmatrix}, \ AB = \begin{pmatrix} B^{2} & 0 \\ 0 & A^{2} \end{pmatrix}$$

$$5. (XY - \triangle XY)^{T} \cdot AB \cdot (XY - \triangle XY) + 1 = 0, \ \triangle XY = \begin{pmatrix} x_{c} \\ 1 \\ 1 \end{pmatrix}, \ XY = \begin{pmatrix} x \\ y \end{pmatrix}, \ AB = \begin{pmatrix} \frac{1}{A^{2}} & 0 \\ 0 & \frac{1}{B^{2}} \end{pmatrix}$$

$$6. \text{ Het выражения}$$

Ответ: 1.

41. Уравнение гиперболы при повороте на угол α и параллельном смещении относительно начала координат на Δx , Δy , в матричной форме, имеет вид _____ (вписать выражение, развернуть входящие массивы).

Otbet:
$$\left[\frac{\left(\left(\left(M\alpha\right)^{T}\right)^{<0>}\right)^{T}\cdot\left(XY-\triangle XY\right)}{A1}\right]^{2}-\left[\frac{\left(\left(\left(M\alpha\right)^{T}\right)^{<1>}\right)^{T}\cdot\left(XY-\triangle XY\right)}{B1}\right]^{2}-1=0,$$

$$M\alpha=\left(\frac{\cos(\alpha)\,\sin(\alpha)}{-\sin(\alpha)\cos(\alpha)}\right),\;XY=\left(\frac{x}{y}\right),\;\triangle XY=\left(\frac{\triangle x}{\triangle y}\right).$$

42. Уравнение гиперболы с центром в начале координат при повороте на угол α, в матричной форме, имеет вид _____ (выбрать из списка).

$$1. \left[\frac{\left(\left(\left(M\alpha \right)^{T} \right)^{<0>} \right)^{-1} \cdot XY}{A1} \right]^{2} + \left[\frac{\left(\left(\left(M\alpha \right)^{T} \right)^{<1>} \right)^{-1} \cdot XY}{B1} \right]^{2} - 1 = 0,$$

$$M\alpha = \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ -\sin(\alpha) & \cos(\alpha) \end{pmatrix}, XY = \begin{pmatrix} x \\ y \end{pmatrix}$$

$$2. \left[\frac{\left(\left(\left(M\alpha \right)^{-1} \right)^{<0>} \right)^{-1} \cdot XY}{A1} \right]^{2} + \left[\frac{\left(\left(\left(M\alpha \right)^{-1} \right)^{<1>} \right)^{-1} \cdot XY}{B1} \right]^{2} - 1 = 0,$$

$$M\alpha = \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ -\sin(\alpha) & \cos(\alpha) \end{pmatrix}, XY = \begin{pmatrix} x \\ y \end{pmatrix}$$

$$3. \left[\frac{\left(\left(\left(M\alpha \right)^{T} \right)^{<0>} \right)^{T} \cdot XY}{A1} \right]^{2} = \left[\frac{\left(\left(\left(M\alpha \right)^{T} \right)^{<1>} \right)^{T} \cdot XY}{B1} \right]^{2} + 1 = 0,$$

$$M\alpha = \begin{pmatrix} -\cos(\alpha) & \sin(\alpha) \\ -\sin(\alpha) & \cos(\alpha) \end{pmatrix}, XY = \begin{pmatrix} x \\ y \end{pmatrix}$$

$$4. \left[\frac{\left(\left(\left(M\alpha \right)^{T} \right)^{<0>} \right)^{T} \cdot XY}{A1} \right]^{2} - \left[\frac{\left(\left(\left(M\alpha \right)^{T} \right)^{<1>} \right)^{T} \cdot XY}{B1} \right]^{2} - 1 = 0,$$

$$M\alpha = \begin{pmatrix} -\cos(\alpha) & \sin(\alpha) \\ -\sin(\alpha) & \cos(\alpha) \end{pmatrix}, XY = \begin{pmatrix} x \\ y \end{pmatrix}$$

$$5. \left[\frac{\left(\left((M\alpha)^T \right)^{<0>} \right)^T \cdot XY}{A1} \right]^2 + \left[\frac{\left(\left((M\alpha)^T \right)^{<1>} \right)^T \cdot XY}{B1} \right]^2 - 1 = 0, \ XY = \begin{pmatrix} x \\ y \end{pmatrix},$$

$$M\alpha = \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ -\sin(\alpha)\cos(\alpha) \end{pmatrix}$$
6. Нет выражения

о. нет выражени

Ответ: 4.

43. Уравнение гиперболы при повороте на угол α и параллельном смещении относительно начала координат на Δx , Δy , в матричной форме, имеет вид _____ (выбрать из списка).

$$\frac{1}{1} \left[\frac{\left(\left((M\alpha)^T \right)^{<0>} \right)^T \cdot (XY + \triangle XY)}{A1} \right]^2 + \left[\frac{\left(\left((M\alpha)^T \right)^{<1>} \right)^T \cdot (XY + \triangle XY)}{B1} \right]^2 - 1 = 0,$$

$$M\alpha = \begin{pmatrix} \cos(\alpha) \sin(\alpha) \\ -\sin(\alpha)\cos(\alpha) \end{pmatrix}, XY = \begin{pmatrix} x \\ y \end{pmatrix}, \triangle XY = \begin{pmatrix} \triangle x \\ \triangle y \end{pmatrix}$$

$$\frac{1}{2} \left[\frac{\left((M\alpha)^T \right)^{<0>} \right)^T \cdot (XY - \triangle XY)}{A1} \right]^2 - \left[\frac{\left((M\alpha)^T \right)^{<1>} \right)^T \cdot (XY - \triangle XY)}{B1} \right]^2 - 1 = 0,$$

$$M\alpha = \begin{pmatrix} \cos(\alpha) \sin(\alpha) \\ -\sin(\alpha)\cos(\alpha) \end{pmatrix}, XY = \begin{pmatrix} x \\ y \end{pmatrix}, \triangle XY = \begin{pmatrix} \triangle x \\ \triangle y \end{pmatrix}$$

$$\frac{1}{3} \left[\frac{\left((M\alpha)^T \right)^{<0>} \right)^T \cdot (XY - \triangle XY)}{A1} \right]^2 + \left[\frac{\left((M\alpha)^T \right)^{<1>} \right)^T \cdot (XY - \triangle XY)}{B1} \right]^2 - 1 = 0,$$

$$M\alpha = \begin{pmatrix} \cos(\alpha) \sin(\alpha) \\ -\sin(\alpha)\cos(\alpha) \end{pmatrix}, XY = \begin{pmatrix} x \\ y \end{pmatrix}, \triangle XY = \begin{pmatrix} \triangle x \\ \triangle y \end{pmatrix}$$

$$\frac{1}{3} \left[\frac{\left((M\alpha)^T \right)^{<0>} \right)^T \cdot (XY - \triangle XY)}{A1} \right]^2 - \left[\frac{\left((M\alpha)^T \right)^{<1>} \right)^T \cdot (XY - \triangle XY)}{B1} \right]^2 - 1 = 0,$$

$$M\alpha = \begin{pmatrix} \cos(\alpha) \sin(\alpha) \\ -\sin(\alpha)\cos(\alpha) \end{pmatrix}, XY = \begin{pmatrix} x \\ y \end{pmatrix}, \triangle XY = \begin{pmatrix} \triangle x \\ \triangle y \end{pmatrix}$$

$$\frac{1}{3} \left[\frac{\left((M\alpha)^{-1} \right)^{<0>} \right)^T \cdot (XY - \triangle XY)}{A1} \right]^2 - \left[\frac{\left((M\alpha)^{-1} \right)^{<1>} \right)^T \cdot (XY - \triangle XY)}{B1} \right]^2 - 1 = 0,$$

$$\frac{1}{3} \left[\frac{\left((M\alpha)^{-1} \right)^{<0>} \right)^T \cdot (XY - \triangle XY)}{A1} \right]^2 - \left[\frac{\left((M\alpha)^{-1} \right)^{<1>} \right)^T \cdot (XY - \triangle XY)}{B1} \right]^2 - 1 = 0,$$

$$\frac{1}{3} \left[\frac{\left((M\alpha)^{-1} \right)^{<0>} \right)^T \cdot (XY - \triangle XY)}{A1} \right]^2 - \left[\frac{\left((M\alpha)^{-1} \right)^{<1>} \right)^T \cdot (XY - \triangle XY)}{B1} \right]^2 - 1 = 0,$$

Ответ: 2.

44. Функция для построения графика гиперболы с центром, смещенным в точку x_c , y_c , имеет вид _____ (выбрать из списка).

1.
$$y = \pm \frac{B}{A} \sqrt{(x - x_c)^2 - A^2} - y_c$$

2. $y = \pm \frac{B}{A} \sqrt{A^2 - (x - x_c)^2} + y_c$

3. $y = \pm \frac{B}{A} \sqrt{(x + x_c)^2 + A^2} + y_c$

4. $y = \frac{B}{A} \sqrt{A^2 - (x - x_c)^2} + y_c$

5. $y = \pm \frac{B}{A} \sqrt{(x - x_c)^2 - A^2} + y_c$

6. Нет выражения

Ответ: 5.

3.4. Парабола

45. Каноническое уравнение параболы (как в ВМ) в аналитической форме имеет вид _____ (вписать выражение).

Other: $y^2 - 2 \cdot p \cdot x = 0$.

46. Каноническое уравнение параболы (как в школе) в аналитической форме имеет вид _____ (вписать выражение).

Otbet: $x^2 - 2 \cdot p \cdot y = 0$.

47. Каноническое уравнение параболы (как в ВМ) в аналитической форме имеет вид _____ (выбрать из списка).

1.
$$y^2 - 2 \cdot p \cdot x - 1 = 0$$

2.
$$x^2 - 2 \cdot p \cdot y = 0$$

2.
$$x^2 - 2 \cdot p \cdot y = 0$$

3. $\frac{x^2}{A^2} - \frac{y^2}{B^2} - 1 = 0$

4.
$$y^2 - 2 \cdot p \cdot x^2 = 0$$

5.
$$y^2 - 2 \cdot p \cdot x = 0$$

6. Нет выражения

Ответ: 5.

48. Каноническое уравнение параболы (как в школе) в аналитической форме имеет вид (выбрать из списка).

1.
$$y^2 - 2 \cdot p \cdot x - 1 = 0$$

$$2. x^2 - 2 \cdot p \cdot y = 0$$

3.
$$\frac{x^2}{A^2} - \frac{y^2}{B^2} - 1 = 0$$

4.
$$y^2 - 2 \cdot p \cdot x^2 = 0$$

5.
$$y^2 - 2 \cdot p \cdot x = 0$$

6. Нет выражения

Ответ: 2.

49. Уравнение параболы (как в ВМ) с вершиной в начале координат в матричной форме, имеет вид (вписать выражение, развернуть входящие массивы).

OTBET:
$$XY1^T \cdot AB \cdot XY = 0$$
, $XY1 = \begin{pmatrix} x \\ 1 \end{pmatrix}$, $XY = \begin{pmatrix} x \\ y \end{pmatrix}$, $AB = \begin{pmatrix} 1 & 0 \\ 0 & -2 \cdot p \end{pmatrix}$.

50. Уравнение параболы (как в школе) с вершиной в начале координат в матричной форме, имеет вид (вписать выражение, развернуть входящие массивы).

OTBET:
$$XY^T \cdot AB \cdot XY1 = 0$$
, $XY = \begin{pmatrix} x \\ y \end{pmatrix}$, $XY1 = \begin{pmatrix} x \\ 1 \end{pmatrix}$, $AB = \begin{pmatrix} 1 & 0 \\ 0 & -2 \cdot p \end{pmatrix}$.

51. Уравнение параболы (как в ВМ) с вершиной, смещенной в точку x_c , y_c в аналитической форме, имеет вид _____ (вписать выражение).

Otbet:
$$(y - y_c)^2 - 2 \cdot p \cdot (x - x_c) = 0$$
.

52. Уравнение параболы (как в школе) с вершиной, смещенной в точку x_c , y_c в аналитической форме, имеет вид _____ (вписать выражение).

Otbet:
$$(x - x_c)^2 - 2 \cdot p \cdot (y - y_c) = 0$$
.

53. Уравнение параболы (как в школе) с вершиной в начале координат в матричной форме, имеет вид _____ (выбрать из списка).

1.
$$XY1^{T} \cdot AB \cdot XY = 0$$
, $XY1 = \begin{pmatrix} x \\ 1 \end{pmatrix}$, $XY = \begin{pmatrix} x \\ y \end{pmatrix}$, $AB = \begin{pmatrix} 1 & 0 \\ 0 & -2 \cdot p \end{pmatrix}$

2. $XY^{T} \cdot AB \cdot XY1 = 0$, $XY = \begin{pmatrix} x \\ y \end{pmatrix}$, $XY1 = \begin{pmatrix} x \\ 1 \end{pmatrix}$, $AB = \begin{pmatrix} A & 0 \\ 0 & -2 \cdot p \end{pmatrix}$

3. $XY^{T} \cdot AB \cdot XY1 = 0$, $XY = \begin{pmatrix} x \\ y \end{pmatrix}$, $XY1 = \begin{pmatrix} x \\ 1 \end{pmatrix}$, $AB = \begin{pmatrix} 1 & 0 \\ 0 & 2 \cdot p \end{pmatrix}$

4. $XY^{T} \cdot AB \cdot XY1 = 0$, $XY = \begin{pmatrix} x \\ y \end{pmatrix}$, $XY1 = \begin{pmatrix} x \\ 1 \end{pmatrix}$, $AB = \begin{pmatrix} 1 & 0 \\ 0 & -2 \cdot p \end{pmatrix}$

5. $XY^{T} \cdot AB \cdot XY1 - 1 = 0$, $XY = \begin{pmatrix} x \\ y \end{pmatrix}$, $XY1 = \begin{pmatrix} x \\ 1 \end{pmatrix}$, $AB = \begin{pmatrix} 1 & 0 \\ 0 & -2 \cdot p \end{pmatrix}$

6. Нет выражения

Ответ: 1.

54. Уравнение параболы (как в школе) с вершиной в начале координат в матричной форме, имеет вид (выбрать из списка).

1.
$$XY1^{T} \cdot AB \cdot XY = 0$$
, $XY1 = \begin{pmatrix} x \\ 1 \end{pmatrix}$, $XY = \begin{pmatrix} x \\ y \end{pmatrix}$, $AB = \begin{pmatrix} 1 & 0 \\ 0 & -2 \cdot p \end{pmatrix}$
2. $XY^{T} \cdot AB \cdot XY1 = 0$, $XY = \begin{pmatrix} x \\ y \end{pmatrix}$, $XY1 = \begin{pmatrix} x \\ 1 \end{pmatrix}$, $AB = \begin{pmatrix} A & 0 \\ 0 & -2 \cdot p \end{pmatrix}$
3. $XY^{T} \cdot AB \cdot XY1 - 1 = 0$, $XY = \begin{pmatrix} x \\ y \end{pmatrix}$, $XY1 = \begin{pmatrix} x \\ 1 \end{pmatrix}$, $AB = \begin{pmatrix} 1 & 0 \\ 0 & -2 \cdot p \end{pmatrix}$
4. $XY^{T} \cdot AB \cdot XY1 = 0$, $XY = \begin{pmatrix} x \\ y \end{pmatrix}$, $XY1 = \begin{pmatrix} x \\ 1 \end{pmatrix}$, $AB = \begin{pmatrix} 1 & 0 \\ 0 & -2 \cdot p \end{pmatrix}$

5.
$$XY^T \cdot AB \cdot XY1 = 0$$
, $XY = \begin{pmatrix} x \\ y \end{pmatrix}$, $XY1 = \begin{pmatrix} x \\ 1 \end{pmatrix}$, $AB = \begin{pmatrix} 1 & 0 \\ 0 & -2 \cdot p \end{pmatrix}$

6. Нет выражения

Ответ: 4.

55. Уравнение параболы (как в ВМ) с вершиной, смещенной в точку x_c , y_c в аналитической форме, имеет вид _____ (выбрать из списка).

1.
$$(x + x_c)^2 - 2 \cdot p \cdot (y + y_c) = 0$$

2.
$$(x - x_c)^2 - 2 \cdot p \cdot (y - y_c) = 0$$

3.
$$(y-y_c)^2 - 2 \cdot p \cdot (x-x_c) = 0$$

4.
$$(y-y_c)^2 - 2 \cdot p \cdot (x-x_c) = 0$$

5.
$$(x - x_c)^2 + 2 \cdot p \cdot (y - y_c) = 0$$

6. Нет выражения

Ответ: 4.

56. Уравнение параболы (как в ВМ) с вершиной, смещенной в точку x_c , y_c в аналитической форме, имеет вид (выбрать из списка).

1.
$$(x - x_c)^2 + 2 \cdot p \cdot (y - y_c) = 0$$

2.
$$(x-x_c)^2 - 2 \cdot p \cdot (y-y_c) = 0$$

3.
$$(x + x_c)^2 - 2 \cdot p \cdot (y + y_c) = 0$$

4.
$$(y - y_c)^2 - 2 \cdot p \cdot (x - x_c) = 0$$

5.
$$(y - y_c)^2 + 2 \cdot p \cdot (x - x_c) = 0$$

6. Нет выражения

Ответ: 2.

57. Функция для построения графика параболы (как в ВМ) имеет вид (вписать выражение).

Otbet: $y = \pm \sqrt{2 \cdot p \cdot x}$.

58. Функция для построения графика параболы (как в школе) имеет вид (вписать выражение).

OTBET:
$$y = \frac{x^2}{2 \cdot p}$$
.

59. Функция для построения графика параболы (как в ВМ) имеет вид ___ (выбрать из списка).

$1. \ y = \pm \sqrt{2 \cdot p \cdot x}$
$2. \ y = \frac{x^2}{2 \cdot p}$
$3. y = \frac{B}{A}\sqrt{x^2 - A^2}$
$4. \ y = \frac{\left(x - \Delta x\right)^2}{2 \cdot p} + \Delta y$
$5. \ y = \pm \sqrt{2 \cdot p \cdot (x - \triangle x)} + \triangle y$
6. Нет выражения

Ответ: 1.

60. Функция для построения графика параболы (как в школе) имеет вид (выбрать из списка).

$1. \ y = \pm \sqrt{2 \cdot p \cdot x}$
$2. \ y = \frac{x^2}{2 \cdot p}$
$3. y = \frac{B}{A}\sqrt{x^2 - A^2}$
$4. \ y = \frac{\left(x - \Delta x\right)^2}{2 \cdot p} + \Delta y$
$5. \ y = \pm \sqrt{2 \cdot p \cdot (x - \triangle x)} + \triangle y$
6. Нет выражения

Ответ: 2.

61. Функция для построения графика параболы (как в ВМ) с вершиной, смещенной в точку x_c , y_c имеет вид _____ (вписать выражение).

Otbet: $y = \pm \sqrt{2 \cdot p \cdot (x - x_c)} + y_c$.

62. Функция для построения графика параболы (как в ВМ) с вершиной, смещенной в точку x_c , y_c имеет вид _____ (выбрать из списка).

1.
$$y = \pm \sqrt{2 \cdot p \cdot x}$$
2.
$$y = \frac{x^2}{2 \cdot p}$$
3.
$$y = \frac{B}{\sqrt{x^2 - A^2}}$$

3.
$$y = \frac{B}{A}\sqrt{x^2 - A^2}$$
4.
$$y = \frac{(x - \Delta x)^2}{2 \cdot p} + \Delta y$$

5.
$$y = \pm \sqrt{2 \cdot p \cdot (x - \Delta x)} + \Delta y$$

6. Нет выражения

Ответ: 5.

63. Функция для построения графика параболы (как в школе) с вершиной, смещенной в точку x_c , y_c имеет вид _____ (вписать выражение).

Otbet:
$$y = \frac{(x - \Delta x)^2}{2 \cdot p} + \Delta y$$
.

64. Функция для построения графика параболы (как в школе) с вершиной, смещенной в точку x_c , y_c имеет вид _____ (выбрать из списка).

1.
$$y = \pm \sqrt{2 \cdot p \cdot x}$$

2. $y = \frac{x^2}{2 \cdot p}$

3.
$$y = \frac{B}{A} \sqrt{x^2 - A^2}$$

3.
$$y = \frac{B}{A} \sqrt{x^2 - A^2}$$
4.
$$y = \frac{(x - \Delta x)^2}{2 \cdot p} + \Delta y$$

5.
$$y = \pm \sqrt{2 \cdot p \cdot (x - \Delta x)} + \Delta y$$

6. Нет выражения

Ответ: 4.

65. Уравнение параболы (как в ВМ) с центром в начале координат при повороте на угол α , в матричной форме, имеет вид _____ (выбрать из списка).

$$1. \left[\left(\left(\left(M\alpha \right)^{T} \right)^{<1>} \right)^{T} \cdot XY \right]^{2} - A \cdot \left[\left(\left(\left(M\alpha \right)^{T} \right)^{<0>} \right)^{T} \cdot XY \right] = 0, \ M\alpha = \begin{pmatrix} \cos(\alpha) \sin(\alpha) \\ -\sin(\alpha)\cos(\alpha) \end{pmatrix},$$

$$XY = \begin{pmatrix} x \\ y \end{pmatrix}$$

$$2. \left[\frac{\left(\left(\left(M\alpha \right)^{-1} \right)^{<0>} \right)^{-1} \cdot XY}{A1} \right]^{2} + \left[\frac{\left(\left(\left(M\alpha \right)^{-1} \right)^{<1>} \cdot XY}{B1} \right]^{2} - 1 = 0,$$

$$M\alpha = \begin{pmatrix} \cos(\alpha) \sin(\alpha) \\ -\sin(\alpha) \cos(\alpha) \end{pmatrix}, \ XY = \begin{pmatrix} x \\ y \end{pmatrix}$$

$$3. \left[\left(\left(\left(M\alpha \right)^{T} \right)^{<1>} \right)^{T} \cdot XY \right]^{2} + A \cdot \left[\left(\left(\left(M\alpha \right)^{T} \right)^{<0>} \right)^{T} \cdot XY \right] = 0, \ M\alpha = \begin{pmatrix} \cos(\alpha) \sin(\alpha) \\ -\sin(\alpha) \cos(\alpha) \end{pmatrix},$$

$$XY = \begin{pmatrix} x \\ y \end{pmatrix}$$

$$1. \left[\left(\left(\left(M\alpha \right)^{T} \right)^{<0>} \right)^{T} \cdot XY \right]^{2} - A \cdot \left[\left(\left(\left(M\alpha \right)^{T} \right)^{<1>} \right)^{T} \cdot XY \right] = 0, \ M\alpha = \begin{pmatrix} \cos(\alpha) \sin(\alpha) \\ -\sin(\alpha) \cos(\alpha) \end{pmatrix},$$

$$XY = \begin{pmatrix} x \\ y \end{pmatrix}$$

$$5. \left[\left(\left(\left(M\alpha \right)^{T} \right)^{<1>} \right)^{-1} \cdot XY \right]^{2} + A \cdot \left[\left(\left(\left(M\alpha \right)^{T} \right)^{<0>} \right)^{-1} \cdot XY \right] + 1 = 0,$$

$$M\alpha = \begin{pmatrix} \cos(\alpha) \sin(\alpha) \\ -\sin(\alpha) \cos(\alpha) \end{pmatrix}, \ XY = \begin{pmatrix} x \\ y \end{pmatrix}$$

Ответ: 1.

6. Нет выражения

66. Уравнение параболы (как в школе) с центром в начале координат при повороте на угол α, в матричной форме, имеет вид_______ (выбрать из списка).

$$\begin{aligned}
&1. \left[\left(\left(\left(M\alpha \right)^{T} \right)^{<1>} \right)^{T} \cdot XY \right]^{2} - A \cdot \left[\left(\left(\left(M\alpha \right)^{T} \right)^{<0>} \right)^{T} \cdot XY \right] = 0, \quad M\alpha = \begin{pmatrix} \cos(\alpha) \sin(\alpha) \\ -\sin(\alpha)\cos(\alpha) \end{pmatrix}, \\
&XY = \begin{pmatrix} x \\ y \end{pmatrix}. \\
&2. \left[\frac{\left(\left(\left(M\alpha \right)^{-1} \right)^{<0>} \right)^{-1} \cdot XY}{A1} \right]^{2} + \left[\frac{\left(\left(\left(M\alpha \right)^{-1} \right)^{<1>} \right)^{-1} \cdot XY}{B1} \right]^{2} - 1 = 0, \\
&M\alpha = \begin{pmatrix} \cos(\alpha) \sin(\alpha) \\ -\sin(\alpha) \cos(\alpha) \end{pmatrix}, \quad XY = \begin{pmatrix} x \\ y \end{pmatrix} \\
&3. \left[\left(\left(\left(M\alpha \right)^{T} \right)^{<1>} \right)^{T} \cdot XY \right]^{2} + A \cdot \left[\left(\left(\left(M\alpha \right)^{T} \right)^{<0>} \right)^{T} \cdot XY \right] = 0, \quad M\alpha = \begin{pmatrix} \cos(\alpha) \sin(\alpha) \\ -\sin(\alpha) \cos(\alpha) \end{pmatrix}, \\
&XY = \begin{pmatrix} x \\ y \end{pmatrix}. \\
&4. \left[\left(\left(\left(M\alpha \right)^{T} \right)^{<0>} \right)^{T} \cdot XY \right]^{2} - A \cdot \left[\left(\left(\left(M\alpha \right)^{T} \right)^{<1>} \right)^{T} \cdot XY \right] = 0, \quad M\alpha = \begin{pmatrix} \cos(\alpha) \sin(\alpha) \\ -\sin(\alpha) \cos(\alpha) \end{pmatrix}, \\
&XY = \begin{pmatrix} x \\ y \end{pmatrix}. \\
&5. \left[\left(\left(\left(M\alpha \right)^{T} \right)^{<1>} \right)^{-1} \cdot XY \right]^{2} + A \cdot \left[\left(\left(\left(M\alpha \right)^{T} \right)^{<0>} \right)^{-1} \cdot XY \right] + 1 = 0, \\
&M\alpha = \begin{pmatrix} \cos(\alpha) \sin(\alpha) \\ -\sin(\alpha) \cos(\alpha) \end{pmatrix}, \quad XY = \begin{pmatrix} x \\ y \end{pmatrix}. \end{aligned}
\end{aligned}$$

Ответ: 4.

6. Нет выражения

67. Уравнение параболы (как в школе) с центром в начале координат при повороте на угол α, в матричной форме, имеет вид _____ (вписать выражение, развернуть входящие массивы).

Ответ:
$$\left[\left(\left(\left(M \alpha \right)^T \right)^{<0>} \right)^T \cdot XY \right]^2 - A \cdot \left[\left(\left(\left(M \alpha \right)^T \right)^{<1>} \right)^T \cdot XY \right] = 0,$$

$$M\alpha = \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ -\sin(\alpha)\cos(\alpha) \end{pmatrix} - \text{матрица поворота, } XY = \begin{pmatrix} x \\ y \end{pmatrix} - \text{вектор переменных, } A - \text{ширина параболы.}$$

68. Уравнение параболы (как в ВМ) с центром в начале координат при повороте на угол α , в матричной форме, имеет вид _____ (вписать выражение, развернуть входящие массивы).

Ответ:
$$\left[\left(\left(\left(M \alpha \right)^T \right)^{<1>} \right)^T \cdot XY \right]^2 - A \cdot \left[\left(\left(\left(M \alpha \right)^T \right)^{<0>} \right)^T \cdot XY \right] = 0,$$

$$M \alpha = \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ -\sin(\alpha) & \cos(\alpha) \end{pmatrix} - \text{матрица поворота, } XY = \begin{pmatrix} x \\ y \end{pmatrix} - \text{вектор переменных, } A - \text{ширина параболы.}$$

4. ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

Задание 4.1. Найти точку пересечения прямой и круга.

Фигура 1: прямая проходит через точки $(x_1 = -1, y_1 = -2)$ и $(x_2 = 5, y_2 = 3)$. Фигура 2: круг радиусом R = 6 с координатами центра $x_c = 1, y_c = -2$.

- 2. Получить аналитические зависимости для построения графиков фигур.
- 3. Рассчитать точки пересечения фигур, используя блок *Given-Find*.
- 4. Построить графики фигур и опорные точки, указать точки пересечения фигур.

Задание 4.2. Найти точку пересечения прямой и эллипса.

Фигура 1: прямая пересекает ось 0X в точке x = 5, ось 0Y в точке y = 2.

Фигура 2: эллипс (A=7, B=5 — параметры) повернута на угол $\beta=40^{0}$ относительно центра. Центр эллипса $x_{e}=-2, y_{e}=0$.

- 2. Получить аналитические зависимости для построения графиков фигур.
- 3. Рассчитать точку пересечения фигур, используя блок *Given-Find*.
- 4. Построить графики фигур и опорные точки, указать точки пересечения фигур.

Задание 4.3. Найти точку пересечения круга и гиперболы.

Фигура 1: гипербола ($A=2,\,B=3$ — параметры, ветви расположены вдоль оси 0X) повернута на угол $\beta=20^{0}$ относительно центра. Центр гиперболы $x_{g}=-1,\,y_{g}=-2$.

Фигура 2: круг радиусом R=4 с координатами центра $x_c=1,\ y_c=-2$.

- 2. Получить аналитические зависимости для построения графиков фигур.
- 3. Рассчитать точку пересечения фигур, используя блок *Given-Find*.
- 4. Построить графики фигур и опорные точки, указать точки пересечения фигур.

Задание 4.4. Найти точку пересечения круга и эллипса.

Фигура 1: эллипс ($A=7,\ B=5$ — параметры) повернута на угол $\beta=-30^{0}$ относительно центра. Центр эллипса $x_{e}=-2,\ y_{e}=-3$.

Фигура 2: круг радиусом R=5 с координатами центра $x_c=-1,\ y_c=2$.

- 2. Получить аналитические зависимости для построения графиков фигур.
- 3. Рассчитать точку пересечения фигур, используя блок Given-Find.
- 4. Построить графики фигур и опорные точки, указать точки пересечения фигур.

Задание 4.5. Найти точку пересечения двух кругов.

Фигура 1: круг радиусом R = 6 с центров в начале координат.

Фигура 2: круг радиусом R1 = 5 с координатами центра $x1_c = 3$, $y1_c = 2$.

- 2. Получить аналитические зависимости для построения графиков фигур.
- 3. Рассчитать точку пересечения фигур, используя блок *Given-Find*.
- 4. Построить графики фигур и опорные точки, указать точки пересечения фигур.

Задание 4.6. Найти точку пересечения эллипса и гиперболы.

Фигура 1: гипербола (A1=3, B1=3 — параметры, ветви расположены вдоль оси 0X) повернута на угол $\beta=-45^{0}$ относительно центра. Центр гиперболы $x_{g}=-2$, $y_{g}=-3$.

Фигура 2: эллипс (A2=6, B2=4 — параметры) с центром в точке $x_c=-3, y_c=1.$

- 2. Получить аналитические зависимости для построения графиков фигур.
- 3. Рассчитать точку пересечения фигур, используя блок *Given-Find*.
- 4. Построить графики фигур и опорные точки, указать точки пересечения фигур.

Задание 4.7. Найти точку пересечения двух эллипсов.

Фигура 1: эллипс ($A1=4,\ B1=3$ — параметры) повернут на угол $\beta=45^{0}$ относительно центра. Центр эллипса $x1_{e}=1,\ y_{c}=1.$

Фигура 2: эллипс (A2=6, B2=4 — параметры) с центром в точке $x2_e=-3$, $y2_e=1$.

- 2. Получить аналитические зависимости для построения графиков фигур.
- 3. Рассчитать точку пересечения фигур, используя блок Given-Find.
- 4. Построить графики фигур и опорные точки, указать точки пересечения фигур.

Задание 4.8. Найти точку пересечения эллипса и гиперболы.

Фигура 1: гипербола (A1=3, B1=5 — параметры, ветви расположены вдоль оси 0X) повернута на угол $\beta=35^{0}$ относительно центра. Центр гиперболы совпадает с началом координат.

Фигура 2: эллипс (A2=5, B2=3 — параметры) с центром в точке $x_c=-2$, $y_c=4$, повернут вокруг центра на угол $\gamma=55^0$.

- 2. Получить аналитические зависимости для построения графиков фигур.
- 3. Рассчитать точку пересечения фигур, используя блок *Given-Find*.
- 4. Построить графики фигур и опорные точки, указать точки пересечения фигур.

Задание 4.9. Найти точку пересечения эллипса и круга.

Фигура 1: круг R = 5. Центр круга $x_c = 2$, $y_c = 0$.

Фигура 2: эллипс (A2=5, B2=3 — параметры) с центром в точке $x1_c=-2$, $y1_c=4$, повернут вокруг центра на угол $\gamma=55^0$.

- 2. Получить аналитические зависимости для построения графиков фигур.
- 3. Рассчитать точку пересечения фигур, используя блок *Given-Find*.
- 4. Построить графики фигур и опорные точки, указать точки пересечения фигур.

Задание 4.10. Найти точку пересечения эллипса и параболы (как в ВМ).

Фигура 1: парабола (как в ВМ) (A1 = -1.5 — ширина параболы, ветви параболы направлены в сторону отрицательных значений оси 0X) повернута на угол $\beta = 45^{0}$ вокруг вершины. Вершина параболы расположен в точке $x_{p} = 5$, $y_{p} = 3$.

Фигура 2: эллипс (A2=20, B2=4 — параметры) с центром в точке $x_c=-2$, $y_c=4$, повернут вокруг центра на угол $\gamma=-90^{\circ}$.

- 2. Получить аналитические зависимости для построения графиков фигур.
- 3. Рассчитать точку пересечения фигур, используя блок *Given-Find*.
- 4. Построить графики фигур и опорные точки, указать точки пересечения фигур.

Задание 4.11. Найти точку пересечения двух гипербол.

Фигура 1: гипербола (A1=3, B1=5 — параметры, ветви расположены вдоль оси 0X) повернута на угол $\beta=35^{0}$ относительно центра. Центр гиперболы совпадает с началом координат.

Фигура 2: гипербола (A2=2, B2=3 — параметры, ветви расположены вдоль оси 0X) с центром в точке $x_c=2$, $y_c=-3$.

- 2. Получить аналитические зависимости для построения графиков фигур.
- 3. Рассчитать точку пересечения фигур, используя блок *Given-Find*.
- 4. Построить графики фигур и опорные точки, указать точки пересечения фигур.

Задание 4.12. Найти точку пересечения гиперболы и параболы.

Фигура 1: парабола (как в ВМ) (ветви параболы направлены в сторону отрицательных значений оси 0X) повернута на угол $\beta = 45^{\circ}$ относительно центра. Вершина параболы расположена в точке с координатами $x_c = 5, \ y_c = 3$.

Фигура 2: гипербола (A2=3, B2=4 — параметры, ветви расположены вдоль оси 0X) с центром, совпадающим с началом координат.

- 2. Получить аналитические зависимости для построения графиков фигур.
- 3. Рассчитать точку пересечения фигур, используя блок *Given-Find*.

4. Построить графики фигур и опорные точки, указать точки пересечения фигур.

Задание 4.13. Найти точку пересечения круга и гиперболы.

Фигура 1: круг (R = 6) с центром в точке $x_c = 1$, $y_c = -1$.

Фигура 2: гипербола (A2=2, B2=3 — параметры, ветви расположены вдоль оси 0X) с центром в точке $x1_c=2$, $y1_c=-3$, повернута на угол $\beta=25^0$ относительно центра.

- 2. Получить аналитические зависимости для построения графиков фигур.
- 3. Рассчитать точку пересечения фигур, используя блок *Given-Find*.
- 4. Построить графики фигур и опорные точки, указать точки пересечения фигур.

Задание 4.14. Найти точку пересечения двух параболы.

Фигура 1: парабола (как в ВМ) (ветви параболы направлены в сторону отрицательных значений оси 0X) повернута на угол $\beta = 45^{\circ}$ относительно вершины. Вершина параболы расположена в точке с координатами $x_c = -1$, $y_c = 1$.

Фигура 2: парабола (как в школе) (ветви параболы направлены в сторону отрицательных значений оси 0Y) повернута на угол $\chi = -15^{\circ}$ относительно вершины. Вершина параболы расположена в точке с координатами $x1_c = -1$, $y1_c = 13$

- 2. Получить аналитические зависимости для построения графиков фигур.
- 3. Рассчитать точку пересечения фигур, используя блок *Given-Find*.
- 4. Построить графики фигур и опорные точки, указать точки пересечения фигур.

Задание 4.15. Найти точку пересечения двух эллипсов.

Фигура 1: эллипс (A1 = 5, B1 = 3 — параметры) с центром в начале координат, повернут вокруг центра на угол $\gamma = 65^{\circ}$.

Фигура 2: эллипс (A2=5, B2=3 — параметры) с центром в точке $x1_c=-2$, $y1_c=2$.

- 2. Получить аналитические зависимости для построения графиков фигур.
- 3. Рассчитать точку пересечения фигур, используя блок *Given-Find*.
- 4. Построить графики фигур и опорные точки, указать точки пересечения фигур.

Задание 4.16 Найти точку пересечения прямой и параболы.

Фигура 1: прямая пересекает ось 0X в точке x = 5, ось 0Y в точке y = 2.

Фигура 2: парабола (как в ВМ) (ветви параболы направлены в сторону положительных значений оси 0X) повернута на угол $\beta = 45^{\circ}$ относительно вершины. Вершина параболы расположена в точке с координатами $x1_c = -13$, $y1_c = -1$.

- 2. Получить аналитические зависимости для построения графиков фигур.
- 3. Рассчитать точку пересечения фигур, используя блок Given-Find.
- 4. Построить графики фигур и опорные точки, указать точки пересечения фигур.

СПИСОК ЛИТЕРАТУРЫ

- 1. Васильков Ю.В., Василькова Н.Н. Компьютерные технологии вычислений в математическом моделировании: Учеб. пособие. М.: Финансы и статистика, 1999. 256 с.
- 2. Дьяконов В.П. MathCAD 11/12/13 в математике: Справ. М.: Горячая линия Телеком, 2007. 958 с.
- 3. Использование MathCAD в теории матриц: Метод. указания / И.В. Кудрявцева, В.А. Рыков, С.А. Рыков, С.В. Рыков. СПб.: СПбГУНиПТ, 2011. 50 с.
- 4. Охорзин В.А. Прикладная математика в системе MathCAD: Учеб. пособие. 2-е изд., испр. и доп. СПб.: Лань, 2008. 352 с.
- 5. Пантелеев А.В., Летова Т.А. Методы оптимизации в примерах и задачах: Учеб. пособие. 2-е изд., испр. М.: Высш. шк., 2005. 544 с.
- 6. Практические занятия в пакете MathCAD по исследованию систем линейных алгебраических уравнений: Пособие / В.А. Рыков, С.А. Рыков, И.В. Кудрявцева, С.В. Рыков. СПб.: СПбГУНиПТ, 2009. 107 с.
- 7. Реклейтис Γ ., Рейвиндран А., Рэгстел К. Оптимизация в технике. В 2 кн. Кн. 1. М.: Мир, 1986. 349 с.
- 8. Хаммельблау Д. Прикладное нелинейное программирование. М.: изд. «МИР», 1975. 534 с.
- 9. Методы оптимизации в примерах в пакете MathCAD 15. Ч. І: Учеб. пособие / И.В. Кудрявцева, С.А. Рыков, С.В. Рыков, Е.Д. Скобов. СПб.: НИУ ИТМО, ИХиБТ, 2014.-166 с.
- 10. Методы оптимизации в примерах в пакете MathCAD 15. Ч. II: Учеб. пособие / И.В. Кудрявцева, С.А. Рыков, С.В. Рыков. СПб.: НИУ ИТМО, ИХиБТ, 2015.-178 с.
- 11. Практикум по работе в математическом пакете MathCAD: Пособие / С.В. Рыков, И.В. Кудрявцева, С.А. Рыков, В.А. Рыков. СПб.: НИУ ИТМО, ИХиБТ, 2015. 84 с.
- 12. Некоторые главы MathCAD необходимые для освоения дисциплины «Методы оптимизации». Основы программирования, массивы, графики: учеб. пособие / И.В. Кудрявцева, П.С. Поцелуева, С.А. Рыков, С.В. Рыков. СПб.: СПбГМТУ, 2023. 286 с.
- 13. Некоторые главы MathCAD необходимые для освоения дисциплины «Методы оптимизации». Решение уравнений, собственные функции, символьные расчеты: учеб. пособие / Д.Э. Гуськова, И.В. Кудрявцева, С.А. Рыков, С.В. Рыков. СПб.: СПбГМТУ, 2023. 181 с.
- 14. Рыков С.А., Кудрявцева И.В., Рыков С.В., Рыков В.А., Старков К.А., Методы оптимизации в примерах в пакете MathCAD 15. Часть VII. Многомерная оптимизация. Численный метод нулевого порядка. Метод наилучшей пробы. СПб: Университет ИТМО, 2020, 91 с.

- 15. Рыков С.В., Кудрявцева И.В., Рыков С.А., Рыков В.А. Методы оптимизации в примерах в пакете MathCAD 15. Часть 3. Многомерная оптимизация. Аналитические методы: Учебное пособие. СПб.: Университет ИТМО, 2018. 164 с.
- 16. Рыков С.В., Кудрявцева И.В., Рыков С.А., Рыков В.А. Методы оптимизации в примерах в пакете MathCAD 15. Часть 4. Методы оптимизации. Тесты с ответами: Учебное пособие. СПб.: Университет ИТМО, 2018. 85 с.
- 17. Рыков С.В., Кудрявцева И.В., Рыков С.А., Рыков В.А. Методы оптимизации в примерах в пакете MathCAD 15. Часть 5 Многомерная оптимизация. Численные методы. Метод случайного поиска с возвратом при неудачном шаге. Учебное пособие. СПб.: Университет ИТМО, 2020. 109 с.
- 18. Гуськова Д.Э., Кудрявцева И.В., Рыков С.А., Рыков С.В. Некоторые главы Mathcad необходимые для освоения дисциплины «Методы оптимизации». Решение уравнений, собственные функции, символьные расчеты: Учебное пособие. СПб.: СПбГМТУ, 2023. 266 с.
- 19. Кудрявцева И.В., Поцелуева П.С., Рыков С.А., Рыков С.В. Некоторые главы Mathcad необходимые для освоения дисциплины «Методы оптимизации». Основы программирования, массивы, графики: Учебное пособие. СПб.: СПбГМТУ. 2023. 285 с.
- 20. Рыков С.А., Кудрявцева И.В., Рыков С.В. Решение систем уравнений в примерах в пакете MathCAD 15. Ч. І. Линейные уравнения. Пересечение прямых: Учебное пособие. СПб: Университет ИТМО, 2024, 75 с.
- 21. Кузнецова С.Н., Лукина М.В. Конспект лекций для студентов экономических специальностей. І курс (модуль 1–2). Линейная алгебра и аналитическая геометрия. СПб.: СПбГУ ИТМО, 2010.-72 с.
- 22. Макаров Е.М. Линейные и афинные пространства в компьютерной геометрии. Учебно-методическое пособие. Нижний Новгород: Нижегородский госуниверситет, 2019. 36 с.
- 23. Игнатьев Ю.Г., Агафонов А.А. Аналитическая геометрия евклидового пространства. Учебное пособие. І–ІІ семестры. Казань: Казанский университет, 2014.-204 с.

ПРИЛОЖЕНИЕ А. ЛИСТИНГИ ПРОГРАММ РАСЧЕТА ТОЧЕК ПРЕСЕЧЕНИЯ ФИГУР

Пример № 2.1 Найти точки пересечения прямой и круга

1. Используемые объекты:

Опорная прямая: прямая проходит через точки (x1,y1) и (x2,y2).

Фигура 1: круг радиусом R с координатами центра х_с, у_с.

Фигура 2: опорная прямая повернута на угол β и праллельно смещена и проходит

через базовую точку XY0 := $\begin{pmatrix} x_b \\ y_b \end{pmatrix}$.

- 2. Рассчитать координаты точек через которые проходит фигура 2 с использованием точек (x1,y1) и (x2,y2) опорной прямой.
- 3. Получить аналитические выражения для построения фигур.
- Рассчитать точки пересечения фигур. Форма представления уравнений аналитическая, использовать блок Given-Find при нахождении точек пересечения и численный метод - Левенберга- Маркварда.
- 5. Построить графики и опроные точки фигур, точки пересечения фигур, базовую точку и нанести опорную прямую (шриховой линией) с точками через которые она проходит.

Исходные данные

Фигура 1

R1 := 5 радиус круга

 ${\bf x_c} \coloneqq 2 \qquad {\bf y_c} \coloneqq 4 \qquad$ смещение центра фигуры 1 относительно начала кординат

Опорная прямая

Координаты двух точек через которые проходит опорная прямая

x11 := -1 y11 := -4 координаты первой точки (опорная прямая)

Фигура 2

β1 := -25° угол поворота (в градусах) фигуры 2 отностельно порной

 $XY_b := \begin{pmatrix} 1 \\ 5 \end{pmatrix}$ координаты точки (базовая точка) через которую проходит фигура 2 после поворота

1. Получить аналитические выражения для построения графиков рассатриваемых объеков и опорных точек

Опорная прямая:

<u>Аналитическое уравнение</u> $\frac{x-x1}{x2-x1} - \frac{y-y1}{y2-y1} = 0$

Рис. А 1. Листинг программы расчета точек пересечения прямой и круга. Часть 1 (Пример № 2.1)

Решить уравнение относительно переменной у

$$\frac{x-x1}{x2-x1} - \frac{y-y1}{y2-y1} \quad \begin{vmatrix} \text{solve}, y \\ \text{collect}, x \end{vmatrix} \rightarrow \frac{y1-y2}{x1-x2} \cdot x + \frac{x1 \cdot y2 - x2 \cdot y1}{x1-x2}$$

Скопировать полученное выражение в функцию f0(x,x1,y1,x2,y2)

Функция для построения гарфика опорной прямой

$$f0(x,x1,y1,x2,y2) := \frac{y1-y2}{x1-x2} \cdot x + \frac{x1 \cdot y2 - x2 \cdot y1}{x1-x2}$$

Координаты точек через которые проходит опорная прямая

$$t1(x1,y1) := \begin{pmatrix} x1 \\ y1 \end{pmatrix} \qquad \qquad t2(x2,y2) := \begin{pmatrix} x2 \\ y2 \end{pmatrix}$$

1.1 Фигура 1 - круг радиуса R с центром x1c, y1c

Вид уравнения круга $(x - x_c)^2 + (y - y_c)^2 - R^2 = 0$

Решить уравнение относительно переменной у

$$\left(x-x1_c\right)^2 + \left(y-y1_c\right)^2 - R^2 \text{ solve }, y \rightarrow \begin{pmatrix} y1_c + \sqrt{R+x-x1_c} \cdot \sqrt{R-x+x1_c} \\ y1_c - \sqrt{R+x-x1_c} \cdot \sqrt{R-x+x1_c} \end{pmatrix}$$

Скопировать полученное выражение в функцию $f1(x,R,x_c,y_c)$, $f2(x,R,x_c,y_c)$

$$\begin{split} f1 \Big(x\,,R\,,x1_{_{\textstyle C}}\,,y1_{_{\textstyle C}} \Big) &:= y1_{_{\textstyle C}} + \sqrt{R\,+\,x\,-\,x1_{_{\textstyle C}}} \cdot \sqrt{R\,-\,x\,+\,x1_{_{\textstyle C}}} \\ f2 \Big(x\,,R\,,x1_{_{\textstyle C}}\,,y1_{_{\textstyle C}} \Big) &:= y1_{_{\textstyle C}} - \sqrt{R\,+\,x\,-\,x1_{_{\textstyle C}}} \cdot \sqrt{R\,-\,x\,+\,x1_{_{\textstyle C}}} \\ \\ XY10 &:= \begin{pmatrix} x1_{_{\textstyle C}} \\ y1_{_{\textstyle C}} \end{pmatrix} & \text{Координаты центра круга} \end{split}$$

функции для построения графика фигуры 1

1.2. Фигура 2 - опоная прямая повернута на угол β и параллельно смещена и проходит через базовую точку XY0 := $\begin{pmatrix} x_b \\ y_b \end{pmatrix}$

Аффинные преобразования при повороте и параллельном переносе координат имеют вид

$$X1(x,y,\alpha,\Delta x,\Delta y) := (x - \Delta x) \cdot cos(\alpha) + (y - \Delta y) \cdot sin(\alpha)$$

 $Y1(x, y, \alpha, \Delta x, \Delta y) := -(x - \Delta x) \cdot \sin(\alpha) + (y - \Delta y) \cdot \cos(\alpha)$

Рис. А 2. Листинг программы расчета точек пересечения прямой и круга. Часть 2 (Пример N 2.1)

$$\frac{\underline{\Phi uzypa\ 2\ aнaлиmuческое\ onucanue}}{\frac{X1(x,y,\alpha,\Delta x,\Delta y)-x1}{x2-x1}} - \frac{\frac{Y1(x,y,\alpha,\Delta x,\Delta y)-y1}{y2-y1}}{y2-y1} = 0$$

Решить уравнение относительно переменной у.

$$\frac{X1(x,y,\alpha,\Delta x,\Delta y)-x1}{x2-x1} = \frac{Y1(x,y,\alpha,\Delta x,\Delta y)-(x1,y1) \text{ if } (x2,y2)y1}{y2-y1} = \begin{cases} \text{solve}, y \\ \text{simplify} \\ \text{collect}, x, \cos(\alpha), \sin(\alpha) \\ \text{collect}, \Delta x, \Delta y \end{cases}$$

Аналитическое выражение очень длинное, поэтому скопировано и приведено ниже.

В MathCAD перенос выражения на следующую строку производится только по знаку "+". Необходимо нажать клавиши "Ctrl"+"Enter"

$$\begin{bmatrix} -\frac{\sin(\alpha)\cdot(x1-x2)+\cos(\alpha)\cdot(y1-y2)}{\cos(\alpha)\cdot(x1-x2)-\sin(\alpha)\cdot(y1-y2)} \end{bmatrix} \cdot \Delta x + \Delta y + \frac{x1\cdot y2-x2\cdot y1}{\cos(\alpha)\cdot(x1-x2)-\sin(\alpha)\cdot(y1-y2)} \dots \\ +\frac{x\cdot[\sin(\alpha)\cdot(x1-x2)+\cos(\alpha)\cdot(y1-y2)]}{\cos(\alpha)\cdot(x1-x2)-\sin(\alpha)\cdot(y1-y2)} \end{bmatrix} \cdot \Delta x + \Delta y + \frac{x1\cdot y2-x2\cdot y1}{\cos(\alpha)\cdot(x1-x2)-\sin(\alpha)\cdot(y1-y2)} \dots$$

Обозначить

$$fK(x1,y1,x2,y2,\alpha) := \frac{\cos(\alpha) \cdot (y1-y2) + \sin(\alpha) \cdot (x1-x2)}{\cos(\alpha) \cdot (x1-x2) - \sin(\alpha) \cdot (y1-y2)}$$

$$fK1(x1,y1,x2,y2,\alpha) := \frac{x1 \cdot y2 - x2 \cdot y1}{\cos(\alpha) \cdot (x1 - x2) - \sin(\alpha) \cdot (y1 - y2)}$$

функция для построения фигуры 2

$$f3(x,x_1,y_1,x_2,y_2,\alpha,\Delta x,\Delta y) := fK(x_1,y_1,x_2,y_2,\alpha) \cdot (x-\Delta x) + \Delta y + fK1(x_1,y_1,x_2,y_2,\alpha)$$

Небходимо определить величины Δx , Δy исходя из положения, что прямая параллельно смещена после поворота и проходит через точку x_b , y_b

$$XY_b = \begin{pmatrix} 1 \\ 5 \end{pmatrix}$$
 базовая точка через которую проходит фигура 2 (задается)

$$M\beta \coloneqq \begin{pmatrix} \cos(\beta 1) & \sin(\beta 1) \\ -\sin(\beta 1) & \cos(\beta 1) \end{pmatrix}$$
 матрица поворота фгуры 2

$$XY1 := \begin{pmatrix} x11 \\ y11 \end{pmatrix} = \begin{pmatrix} -1 \\ -4 \end{pmatrix}$$
 координаты точки фигуры 2 в локальной системе координаты точек в локалной системе координат совпадают с координатами точек опорной прямой)

$$\Delta XY \coloneqq XY_b - M\beta^{-1} \cdot XY1 = \begin{pmatrix} 3.597 \\ 8.203 \end{pmatrix}$$
 величины Δx , Δy

Рис. А 3. Листинг программы расчета точек пересечения прямой и круга. Часть 3 (Пример № 2.1)

Координаты точек через которые пройдет фигура 2

Первая точка ($t1\alpha\Delta$) совмещена с базовой точкой (x0,y0).

Осталось определить координаты второй точки ($t2\alpha\Delta$).

$$t1 \alpha \Delta := XY_b = \begin{pmatrix} 1 \\ 5 \end{pmatrix}$$
 координаты первой точки фигуры 2

$$XY2 := {x21 \choose y21} = {2 \choose 2}$$
 координаты второй точки фигуры 2 в локальной системе координат

$$t2\alpha\Delta:=\mathrm{M}\beta^{-1}\cdot\mathrm{XY2}+\Delta\mathrm{XY}$$
 $t2\alpha\Delta=\begin{pmatrix}6.255\\9.17\end{pmatrix}$ координаты второй точки фигуры 2

2. Рассчитать точку пересечения фигуры 1 и фигуры 2 с использованием аналитического описания фигур

2.1. Использовать блок Given-Find

$$x_c = 2$$
 $y_c = 4$ $R1 = 5$ фигура 1

$$\beta 1 = -25$$
·° $\Delta x 1 := \Delta X Y_0 = 3.597$ $\Delta y 1 := \Delta X Y_1 = 8.203$ фигура 2

начальные приближения

$$\operatorname{xn} := \begin{pmatrix} -1 \\ 5 \end{pmatrix} \qquad \operatorname{yn} := \begin{pmatrix} 1 \\ 5 \end{pmatrix}$$

Given

$$\begin{split} &\left(xn - x_{c}\right)^{2} + \left(yn - y_{c}\right)^{2} - R1^{2} = 0 \\ &\frac{\left[\left(xn - \Delta x1\right) \cdot \cos(\beta 1) \dots\right] - x11}{x(21 - x11)} - \frac{x11}{x(21 - x11)} - \frac{\left[-\left(xn - \Delta x1\right) \cdot \sin(\beta 1) \dots\right] - y11}{y(21 - y11)} = 0 \\ &XY1int := Find(xn, yn) & XY1int^{T} = \begin{bmatrix} -2.632 \\ 4.885 \end{bmatrix} \begin{pmatrix} 2.118 \\ 8.083 \end{bmatrix} \end{split}$$

Вывод: координаты точек пересечения фигур XY1int^T = $\begin{bmatrix} -2.632 \\ 4.885 \end{bmatrix} \begin{pmatrix} 2.118 \\ 8.083 \end{bmatrix}$ -

блочный вектор из дух элементов. Первый элемент х -координаты двух точек, второй элемент у- координаты двух точек.

Точки пересечения фигур:

Рис. А 4. Листинг программы расчета точек пересечения прямой и круга. Часть 4 (Пример № 2.1)

3. Расчет значений функций, описывающих графики фигур 1 и 2, координат точек через которые они проходят

3.1. Расчет векторов для построения графиков фигур

 $x_{min} := -7$ $x_{max} := 15$ $\Delta x := 0.01$ минимум, максимум и шаг расчета

$$N1 := \frac{x_{max} - x_{min}}{\Delta x} \quad \text{количество точек расчета} \quad i := 0 ... N1$$

 $xx_i \coloneqq x_{min} + i \cdot \Delta x$ вектор абсцисс графиков для всех фигур

$$\begin{array}{ll} yy1:=\overrightarrow{f1\big(xx\,,R1\,,x_{c}\,,y_{c}\big)} & yy2:=\overrightarrow{f2\big(xx\,,R1\,,x_{c}\,,y_{c}\big)} & \text{ ординаты фигуры 1} \\ yy3:=f3\big(xx\,,x11\,,y11\,,x21\,,y21\,,\beta1\,,\Delta XY_{0}\,,\Delta XY_{1}\big) & \text{ ординаты фигуры 2} \end{array}$$

3.2. Координы точек через которые проходят фигуры

Функция для создания блочного вектора из двух элементов: первый элемент х-координаты двух точек, второй элемент - у - координаты двух точек. на входе: координаты двух точек в виде двух отдельных векторов

$$\begin{aligned} \text{bl_v}(\text{f1},\text{f2}) &\coloneqq & \text{vx} \leftarrow \begin{pmatrix} \text{f1}_0 \\ \text{f2}_0 \end{pmatrix} \\ \text{vy} \leftarrow \begin{pmatrix} \text{f1}_1 \\ \text{f2}_1 \end{pmatrix} \\ \text{vxy} \leftarrow \begin{pmatrix} \text{vx} \\ \text{vy} \end{pmatrix} \end{aligned}$$

Опорная прямая

$$XY12 := bl_v(t1(x11, y11), t2(x21, y21)) XY12^T = \begin{bmatrix} -1 \\ 2 \end{bmatrix} \begin{pmatrix} -4 \\ 2 \end{bmatrix}$$

Фигура 1 (круг)
$$x_c = 2$$
 $y_c = 4$

Фигура 2 (прямая)

$$XY12\Delta\beta := bl_v(t1\alpha\Delta, t2\alpha\Delta) \qquad XY12\Delta\beta^{T} = \begin{bmatrix} 1 \\ 6.255 \end{bmatrix} \begin{pmatrix} 5 \\ 9.17 \end{bmatrix}$$

Рис. А 5. Листинг программы расчета точек пересечения прямой и круга. Часть 5 (Пример № 2.1)

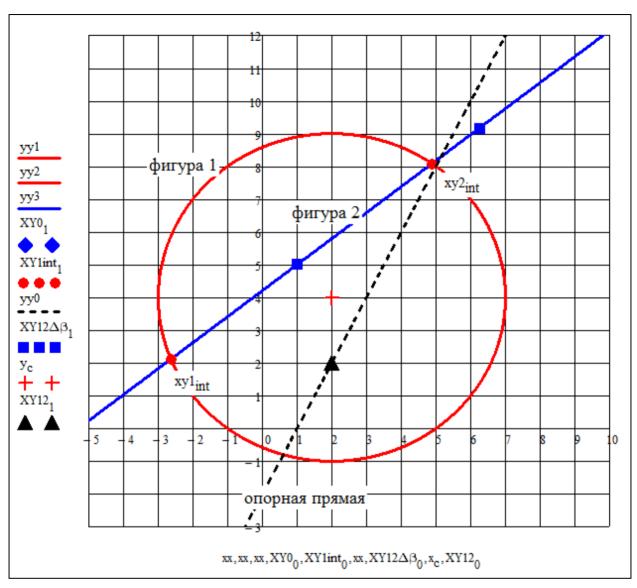


Рис. А 6. Листинг программы расчета точек пересечения прямой и круга. Часть 6 (Пример № 2.1)

Пример № 2.2. Найти точку пересечения прямой и круга

1. Используемые объекты:

Опорная прямая: прямая проходит через точки (x1,y1) и (x2,y2)

Фигура 1: круг радиусом R с координатами центра x_c, y_c;

Фигура 2: прямая повернута на угол β относительно опорной прямой;

- 2. Пересчитать координаты (x1,y1) и (x2,y2) опорной прямой в соответствующие координаты фигуры 2.
- 3. Получить аналитические выражения для построения графиков фигур.
- 4. Рассчитать точки пересечения фигур. Форма представления уравнений матричная. Использовать блок Given-Find при нахождении точек пересечения и численный метод Левенберга- Маркварда
- Построить графики и опроные точки фигур, точки пересечения фигур, нанести опорную прямую (шриховой линией) с точками через которые она проходит.

Исходные данные

Фигура 1

$$R1 := 5$$
 радиус круга $x_c := 1.5$ $y_c := 4$ центра круга

Опорная прямая

Координаты двух точек через которые проходит опорная прямая

$$x21 := -1$$
 $y21 := -2$ координаты второй точки (опорная прямая)

Фигура 2

β1 := 30° угол поворота (в градусах) фигуры 2 относительно опорной прямой

1. Получить аналитические выражения для построения графиков фигур и опорных точек

Опорная прямая:

Аналитическое описание
$$\frac{x-x1}{x2-x1} - \frac{y-y1}{y2-y1} = 0$$

Решить уравнение относительно переменной у и структурировать его

$$\frac{x-x1}{x2-x1} - \frac{y-y1}{y2-y1} \quad \begin{vmatrix} \text{solve}, y \\ \text{collect}, x \end{vmatrix} \xrightarrow{y1-y2} \cdot x + \frac{x1 \cdot y2 - x2 \cdot y1}{x1-x2}$$

Скопировать полученное выражение в функцию f0(x,x1,y1,x2,y2)

Функция для построения графика опорной прямой

$$f0(x, x1, y1, x2, y2) := \frac{y1 - y2}{x1 - x2} \cdot x + \frac{x1 \cdot y2 - x2 \cdot y1}{x1 - x2}$$

Рис. А 7. Листинг программы расчета точек пересечения прямой и круга. Часть 1 (Пример N 2.2)

Координаты точек через которые проходит опорная прямая

$$t1(x1,y1) := \begin{pmatrix} x1\\y1 \end{pmatrix} \qquad \qquad t2(x2,y2) := \begin{pmatrix} x2\\y2 \end{pmatrix}$$

1.1 Фигура 1 - круг радиуса R смещен относительно начала координат по осям X и Y на x1_C, y1_C

Вид уравнения круга $(x - x_c)^2 + (y - y_c)^2 - R^2 = 0$

Решить уравнение относительно переменной у

$$\left(x-x\mathbf{1}_{c}\right)^{2}+\left(y-y\mathbf{1}_{c}\right)^{2}-R^{2} \text{ solve }, y \rightarrow \begin{pmatrix} y\mathbf{1}_{c}+\sqrt{R+x-x\mathbf{1}_{c}}\cdot\sqrt{R-x+x\mathbf{1}_{c}}\\ y\mathbf{1}_{c}-\sqrt{R+x-x\mathbf{1}_{c}}\cdot\sqrt{R-x+x\mathbf{1}_{c}} \end{pmatrix}$$

Скопировать полученное выражение в функцию $f1(x,R,x_c,y_c)$, $f2(x,R,x_c,y_c)$

$$\begin{array}{ll} fl\big(x\,,R\,,x1_{_{\scriptstyle C}}\,,y1_{_{\scriptstyle C}}\big)\coloneqq y1_{_{\scriptstyle C}}\,+\,\sqrt{R\,+\,x\,-\,x1_{_{\scriptstyle C}}}\cdot\sqrt{R\,-\,x\,+\,x1_{_{\scriptstyle C}}} & \text{функция для построения} \\ f2\big(x\,,R\,,x1_{_{\scriptstyle C}}\,,y1_{_{\scriptstyle C}}\big)\coloneqq y1_{_{\scriptstyle C}}\,-\,\sqrt{R\,+\,x\,-\,x1_{_{\scriptstyle C}}}\cdot\sqrt{R\,-\,x\,+\,x1_{_{\scriptstyle C}}} & \text{графика фигуры 2} \end{array}$$

Координаты центра круга

$$XY10 := \begin{pmatrix} x_c \\ y_c \end{pmatrix} = \begin{pmatrix} 1.5 \\ 4 \end{pmatrix}$$

1.2. Фигура 2 - прямая повернута на угол β относительно опорной прямой.

Аффинные преобразования при повороте имеют вид

$$X1(x,y,\alpha) := x \cdot \cos(\alpha) + y \cdot \sin(\alpha) \qquad Y1(x,y,\alpha) := -x \cdot \sin(\alpha) + y \cdot \cos(\alpha)$$

$$\underline{\Phi u z y p a \ 2 \ a + a \pi u m u u e c κ o e o n u c a + u e} \qquad \underline{X1(x,y,\alpha) - x1}_{x2 - x1} - \underline{Y1(x,y,\alpha) - y1}_{y2 - y1} = 0$$

Решить уравнение относительно переменной у.

$$\frac{X1(x,y,\alpha)-x1}{x2-x1}-\frac{Y1(x,y,\alpha)-y1}{y2-y1} \quad \begin{vmatrix} solve,y\\ collect,x,sin(\alpha),cos(\alpha) \end{vmatrix} \\ -\frac{sin(\alpha)\cdot(x1-x2)+cos(\alpha)\cdot(y1-y2)}{sin(\alpha)\cdot(y1-y2)-cos(\alpha)\cdot(x1-x2)}$$

Аналитическое выражение очень длинное, поэтому скопировано и прведено ниже

$$\left[-\frac{\sin(\alpha)\cdot(x1-x2)+\cos(\alpha)\cdot(y1-y2)}{\sin(\alpha)\cdot(y1-y2)-\cos(\alpha)\cdot(x1-x2)}\right]\cdot x - \frac{x1\cdot y2-x2\cdot y1}{\sin(\alpha)\cdot(y1-y2)-\cos(\alpha)\cdot(x1-x2)}$$

Рис. А 8. Листинг программы расчета точек пересечения прямой и круга. Часть 2 (Пример \mathfrak{N}_{2} 2.2)

Скопировать полученное выражение в функцию $f3(x,x1,y1,x2,y2,\alpha)$

$$f3(x\,,x1\,,y1\,,x2\,,y2\,,\alpha) := \left[-\frac{\sin(\alpha)\cdot(x1-x2) + \cos(\alpha)\cdot(y1-y2)}{\sin(\alpha)\cdot(y1-y2) - \cos(\alpha)\cdot(x1-x2)} \right] \cdot x \\ -\frac{x1\cdot y2 - x2\cdot y1}{\sin(\alpha)\cdot(y1-y2) - \cos(\alpha)\cdot(x1-x2)} \cdot x \\ -\frac{x1\cdot y2 - x2\cdot y1}{\sin(\alpha)\cdot(y1-y2) - \cos(\alpha)\cdot(x1-x2)} \cdot x \\ -\frac{x1\cdot y2 - x2\cdot y1}{\sin(\alpha)\cdot(y1-y2) - \cos(\alpha)\cdot(x1-x2)} \cdot x \\ -\frac{x1\cdot y2 - x2\cdot y1}{\sin(\alpha)\cdot(y1-y2) - \cos(\alpha)\cdot(x1-x2)} \cdot x \\ -\frac{x1\cdot y2 - x2\cdot y1}{\sin(\alpha)\cdot(y1-y2) - \cos(\alpha)\cdot(x1-x2)} \cdot x \\ -\frac{x1\cdot y2 - x2\cdot y1}{\sin(\alpha)\cdot(y1-y2) - \cos(\alpha)\cdot(x1-x2)} \cdot x \\ -\frac{x1\cdot y2 - x2\cdot y1}{\sin(\alpha)\cdot(y1-y2) - \cos(\alpha)\cdot(x1-x2)} \cdot x \\ -\frac{x1\cdot y2 - x2\cdot y1}{\sin(\alpha)\cdot(y1-y2) - \cos(\alpha)\cdot(x1-x2)} \cdot x \\ -\frac{x1\cdot y2 - x2\cdot y1}{\sin(\alpha)\cdot(y1-y2) - \cos(\alpha)\cdot(x1-x2)} \cdot x \\ -\frac{x1\cdot y2 - x2\cdot y1}{\sin(\alpha)\cdot(y1-y2) - \cos(\alpha)\cdot(x1-x2)} \cdot x \\ -\frac{x1\cdot y2 - x2\cdot y1}{\sin(\alpha)\cdot(y1-y2) - \cos(\alpha)\cdot(x1-x2)} \cdot x \\ -\frac{x1\cdot y2 - x2\cdot y1}{\sin(\alpha)\cdot(y1-y2) - \cos(\alpha)\cdot(x1-x2)} \cdot x \\ -\frac{x1\cdot y2 - x2\cdot y1}{\sin(\alpha)\cdot(y1-y2) - \cos(\alpha)\cdot(x1-x2)} \cdot x \\ -\frac{x1\cdot y2 - x2\cdot y1}{\sin(\alpha)\cdot(y1-y2) - \cos(\alpha)\cdot(x1-x2)} \cdot x \\ -\frac{x1\cdot y2 - x2\cdot y1}{\sin(\alpha)\cdot(y1-y2) - \cos(\alpha)\cdot(x1-x2)} \cdot x \\ -\frac{x1\cdot y2 - x2\cdot y1}{\sin(\alpha)\cdot(y1-y2) - \cos(\alpha)\cdot(x1-x2)} \cdot x \\ -\frac{x1\cdot y2 - x2\cdot y1}{\sin(\alpha)\cdot(y1-y2) - \cos(\alpha)\cdot(x1-x2)} \cdot x \\ -\frac{x1\cdot y2 - x2\cdot y1}{\sin(\alpha)\cdot(y1-y2) - \cos(\alpha)\cdot(x1-x2)} \cdot x \\ -\frac{x1\cdot y2 - x2\cdot y1}{\sin(\alpha)\cdot(x1-x2) - \cos(\alpha)\cdot(x1-x2)} \cdot x \\ -\frac{x1\cdot y2 - x2\cdot y1}{\sin(\alpha)\cdot(x1-x2) - \cos(\alpha)\cdot(x1-x2)} \cdot x \\ -\frac{x1\cdot y2 - x2\cdot y1}{\sin(\alpha)\cdot(x1-x2) - \cos(\alpha)\cdot(x1-x2)} \cdot x \\ -\frac{x1\cdot y2 - x2\cdot y1}{\sin(\alpha)\cdot(x1-x2) - \cos(\alpha)\cdot(x1-x2)} \cdot x \\ -\frac{x1\cdot y2 - x2\cdot y1}{\sin(\alpha)\cdot(x1-x2) - \cos(\alpha)\cdot(x1-x2)} \cdot x \\ -\frac{x1\cdot y2 - x2\cdot y1}{\sin(\alpha)\cdot(x1-x2) - \cos(\alpha)\cdot(x1-x2)} \cdot x \\ -\frac{x1\cdot y2 - x2\cdot y1}{\sin(\alpha)\cdot(x1-x2) - \cos(\alpha)\cdot(x1-x2)} \cdot x \\ -\frac{x1\cdot y2 - x2\cdot y1}{\sin(\alpha)\cdot(x1-x2) - \cos(\alpha)\cdot(x1-x2)} \cdot x \\ -\frac{x1\cdot y2 - x2\cdot y1}{\sin(\alpha)\cdot(x1-x2) - \cos(\alpha)\cdot(x1-x2)} \cdot x \\ -\frac{x1\cdot y2 - x2\cdot y1}{\sin(\alpha)\cdot(x1-x2) - \cos(\alpha)\cdot(x1-x2)} \cdot x \\ -\frac{x1\cdot y2 - x2\cdot y1}{\sin(\alpha)\cdot(x1-x2) - \cos(\alpha)\cdot(x1-x2)} \cdot x \\ -\frac{x1\cdot y2 - x2\cdot y1}{\sin(\alpha)\cdot(x1-x2)} \cdot x \\ -\frac{x1\cdot y2 - x2\cdot y1}{\sin(\alpha)\cdot(x1$$

Координаты двух точек через которые пройдет фигура 2 (пересчет (x1,y1) и (x2,y2) координат опорной прямой)

$$M\beta := \begin{pmatrix} \cos(\beta 1) & \sin(\beta 1) \\ -\sin(\beta 1) & \cos(\beta 1) \end{pmatrix} = \begin{pmatrix} 0.866 & 0.5 \\ -0.5 & 0.866 \end{pmatrix} \qquad XY11 := \begin{pmatrix} x11 \\ y11 \end{pmatrix} \quad$$
 координат первой точки опорной прямой

$$xy\beta1 := M\beta^{-1} \cdot XY11$$
 $xy\beta1 = \begin{pmatrix} 2.098 \\ 2.366 \end{pmatrix}$ координата первой точки фигуры 2

$$XY22 := {x21 \choose y21}$$
 координат второй точки опорной прямой

$$xy\beta 2 := M\beta^{-1} \cdot XY22$$
 $xy\beta 2 = \begin{pmatrix} 0.134 \\ -2.232 \end{pmatrix}$ координата второй точки фигуры 2

2. Рассчитать точку пересечения фигуры 1 и фигуры с использованием аналитического описания фигур

Матричная форма, описания фигуры 1 - $(xy - \Delta XY)^T \cdot AB3 \cdot (xy - \Delta XY) - 1 = 0$, где

AB3 :=
$$\begin{bmatrix} \frac{1}{R^2} & 0 \\ 0 & \frac{1}{R^2} \end{bmatrix}$$
 $xy := \begin{pmatrix} x \\ y \end{pmatrix}^{\bullet}$ $\Delta XY := \begin{pmatrix} x_c \\ y_c \end{pmatrix}^{\bullet}$

Матричная форма, описания фигуры 2 - $\left(AB^T\cdot M\beta\right)\cdot xy+c=0$, где $AB:=\begin{pmatrix} a\\b \end{pmatrix}$, a,b,c - коэффициенты уравнения фигуры 2 в локальной системе координат в форме $a\cdot x+b\cdot y+c=0$, т.е. в виде уравнения опорной прямой.

Приведем уравнение фигуры 2 к указанному выше виду

$$\frac{X1(x,y,\alpha)-x1}{x2-x1}-\frac{Y1(x,y,\alpha)-y1}{y2-y1} \text{ collect}, x,y \rightarrow \left(-\frac{\cos(\alpha)}{x1-x2}-\frac{\sin(\alpha)}{y1-y2}\right) \cdot x + \left(\frac{\cos(\alpha)}{y1-y2}-\frac{\sin(\alpha)}{x1-x2}\right) \cdot y + \frac{\cos(\alpha)}{x1-x2} \cdot y + \frac{\cos(\alpha)}{$$

Аналитическое выражение очень длинное, поэтому скопировано и прведено ниже.

$$\left(-\frac{\cos(\alpha)}{x1-x2} - \frac{\sin(\alpha)}{y1-y2}\right) \cdot x + \left(\frac{\cos(\alpha)}{y1-y2} - \frac{\sin(\alpha)}{x1-x2}\right) \cdot y + \frac{x1}{x1-x2} - \frac{y1}{y1-y2}$$

Рис. А 9. Листинг программы расчета точек пересечения прямой и круга. Часть 3 (Пример № 2.2)

тогда в матичном виде выражение примет вид

уравнени прямой в локальной системе координат (совпадает с уравнением базовой прямой) примет вид

$$\frac{x-x1}{x2-x1} - \frac{y-y1}{y2-y1} \text{ collect}, x, y \rightarrow \left(-\frac{1}{x1-x2}\right) \cdot x + \frac{y}{y1-y2} + \frac{x1}{x1-x2} - \frac{y1}{y1-y2}$$

$$a := -\frac{1}{x1 - x2} \qquad b := \frac{1}{y1 - y2} \qquad M\alpha := \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ -\sin(\alpha) & \cos(\alpha) \end{pmatrix}$$

$$\begin{bmatrix} \begin{pmatrix} a \\ b \end{pmatrix}^T \cdot M\alpha \end{bmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} \rightarrow -x \cdot \left(\frac{\cos(\alpha)}{x1-x2} + \frac{\sin(\alpha)}{y1-y2} \right) - y \cdot \left(\frac{\sin(\alpha)}{x1-x2} - \frac{\cos(\alpha)}{y1-y2} \right) \quad \text{ т.е. матричная форма записи фигуры 2 првильна}$$

Исходные данные для расчета

фигура 1

$$x_c = 1.5$$
 $y_c = 4$ $R1 = 5$

$$AB3 := \begin{pmatrix} \frac{1}{R1^2} & 0 \\ 0 & \frac{1}{R1^2} \end{pmatrix} = \begin{pmatrix} 0.04 & 0 \\ 0 & 0.04 \end{pmatrix} \qquad \Delta XY := \begin{pmatrix} x_c \\ y_c \end{pmatrix} = \begin{pmatrix} 1.5 \\ 4 \end{pmatrix}$$

фигура 2

$$AB := \begin{pmatrix} \frac{-1}{x11 - x21} \\ \frac{1}{y11 - y21} \end{pmatrix} = \begin{pmatrix} -0.25 \\ 0.333 \end{pmatrix} \quad c := \frac{x11}{x11 - x21} - \frac{y11}{y11 - y21} = 0.417 \qquad M\beta = \begin{pmatrix} 0.866 & 0.5 \\ -0.5 & 0.866 \end{pmatrix}$$

<u>Блок Given-Find</u>

Расчет координат первой точки

$$xy_{in} := \begin{pmatrix} 1 \\ 9 \end{pmatrix}$$
 Given $\left(xy_{in} - \Delta XY\right)^T \cdot AB3 \cdot \left(xy_{in} - \Delta XY\right) - 1 = 0$ $\left(AB^T \cdot M\beta\right) \cdot xy_{in} + c = 0$ XY1int := Find $\left(xy_{in}\right)$ XY1int = $\begin{pmatrix} 4.504 \\ 7.997 \end{pmatrix}$ координата первой точки

Расчет координат второй точки

$$xy_{in} := \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$
 Given $\left(xy_{in} - \Delta XY\right)^T \cdot AB3 \cdot \left(xy_{in} - \Delta XY\right) - 1 = 0$ $\left(AB^T \cdot M\beta\right) \cdot xy_{in} + c = 0$ $XY2int := Find\left(xy_{in}\right)$ $XY2int = \begin{pmatrix} 0.689 \\ -0.934 \end{pmatrix}$ координата второй точки

Вывод: координаты точки пересечения фигур XY1int = $\binom{4.504}{7.997}$ и XY2int = $\binom{0.689}{-0.934}$.

Рис. А 10. Листинг программы расчета точек пересечения прямой и круга. Часть 4 (Пример № 2.2)

3. Расчет значений функций, описывающих графики фигур 1 и 2, опорной прямой, координат точек через которые они проходят

3.1. Расчет векторов для построения графиков фигур

$$x_{min} := -5$$
 $x_{max} := 10$ $\Delta x := 0.01$ минимум, максимум и шаг расчета

$$N1 := \frac{x_{max} - x_{min}}{\Delta x}$$
 количество точек расчета $i := 0...N1$

 $xx_i \coloneqq x_{min} + i \cdot \Delta x$ вектор абсцисс графиков для всех фигур

$$yy0 := \overrightarrow{f0(xx, x11, y11, x21, y21)}$$
 ордината опорной прямой

$$yy1 := \overrightarrow{f1(xx,R1,x_c,y_c)}$$
 $yy2 := \overrightarrow{f2(xx,R1,x_c,y_c)}$ ординаты фигуры 1 $yyy1 := stack(yy1,yy2)$ $xxx := stack(xx,xx)$

$$yy3 := f3(xx, x11, y11, x21, y21, \beta1)$$

ординаты фигуры 2

3.2. Координы точек через которые проходят фигуры и опорная прямая

Функция для создания блочного вектора из двух элементов: первый элемент х-координаты двух точек, второй элемент - у - координаты двух точек. на входе: координаты двух точек в виде двух отдельных векторов

$$\begin{aligned} \text{bl_v}(\text{f1},\text{f2}) &\coloneqq & \text{vx} \leftarrow \begin{pmatrix} \text{f1}_0 \\ \text{f2}_0 \end{pmatrix} \\ \text{vy} \leftarrow \begin{pmatrix} \text{f1}_1 \\ \text{f2}_1 \end{pmatrix} \\ \text{vxy} \leftarrow \begin{pmatrix} \text{vx} \\ \text{vy} \end{pmatrix} \end{aligned}$$

Опорная прямая

$$XY12 := bl_v(t1(x11, y11), t2(x21, y21)) \quad XY12^T = \begin{bmatrix} 3 \\ -1 \end{bmatrix} \begin{pmatrix} 1 \\ -2 \end{bmatrix}$$

Фигура 1 (круг)
$$x_c = 1.5$$
 $y_c = 4$

Фигура 2 (прямая)

$$XY12\beta := bl_v(xy\beta1, xy\beta2) \qquad XY12\beta^T = \begin{bmatrix} 2.098 \\ 0.134 \end{bmatrix} \begin{pmatrix} 2.366 \\ -2.232 \end{bmatrix}$$

Рис. А 11. Листинг программы расчета точек пересечения прямой и круга. Часть 5 (Пример № 2.2)

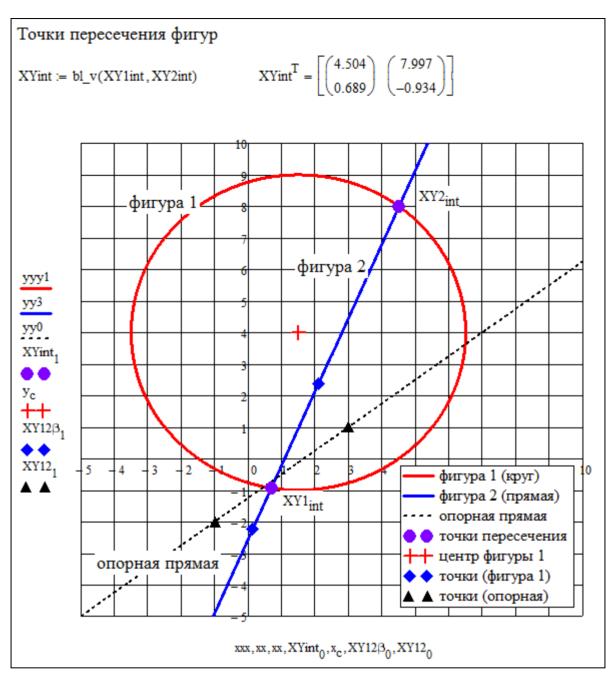


Рис. А 12. Листинг программы расчета точек пересечения прямой и круга. Часть 6 (Пример № 2.2)

Пример № 2.3. Найти точку пересечения прямой и эллипса

1. Используемые фигуры.

Опорная прямая: прямая проходит через точки (x1,y1) и (x2,y2)

Фигура 1: эллипс (A, B - полуоси) с координатами центра x_c , y_c повернут вокруг цента на угол β ;

Фигура 2: прямая повернута относительно опоной прямой на угол β , праллельно смещена и проходит через опорную точку $XY_b := \begin{pmatrix} x_b \\ y_b \end{pmatrix}^{\blacksquare}$;

- 2. Получить аналитические выражения (в общем виде) для построения графиков фигур и опорной прямой.
- 3. Пересчитать координаты точек (x1,y1) и (x2,y2) опорной прямой в координаты точек фигуры 2.
- Рассчитать точки пересечения фигур. Форма представления уравнений аналитическая. Использовать блок Given-Find при нахождении точек пересечения и численный метод - Сопряженных градиентов.
- 5. Построить графики фигур, точки через которые они проходят, точки пересечения фигур, базовую точку и нанести опорную прямую (шриховой линией) с точками через которые она проходит.

Исходные данные

Фигура 1 Эллипс

A1 := 5 В1 := 3 размер полуосей эллипса

 $x1_c := -2$ $y1_c := 4$ координаты центра эллипса

 β 1 := 45° угол поворта эллипса вокруг центра относительно оси X (положительный угол против часовой стрелки)

Опорная прямая

Координаты двух точек через которые проходит опорная прямая

x21 := -1 y21 := 2 координаты второй точки (опорная прямая)

Фигура 2 опорная прямая повернута на угол у и смещена параллельно в точку

$$(XY_b := \begin{pmatrix} x_b \\ y_b \end{pmatrix})$$

$$\begin{pmatrix} x_b \\ y_b \end{pmatrix} := \begin{pmatrix} -3 \\ 6 \end{pmatrix}$$
 $XY_b := \begin{pmatrix} x_b \\ y_b \end{pmatrix} = \begin{pmatrix} -3 \\ 6 \end{pmatrix}$ координаты точки базовая точка) через которую проходит фигура 2

 $\gamma 1 \coloneqq 45^\circ$ угол поворота фигуры 2 относительно оси X

Рис. А 13. Листинг программы расчета точек пересечения прямой и эллипса. Часть 1 (Пример № 2.3)

1. Получить аналитические выражения для построения графиков фигур и опорных точек

Опорная прямая:

Аналитическое уравнение
$$\frac{x-x1}{x2-x1} - \frac{y-y1}{y2-y1} = 0$$

Решить уравнение относительно переменной у

$$\frac{x-x1}{x2-x1} - \frac{y-y1}{y2-y1} \begin{vmatrix} solve, y \\ collect, x \end{vmatrix} \xrightarrow{y1-y2} \cdot x + \frac{x1 \cdot y2 - x2 \cdot y1}{x1-x2}$$

Скопировать полученное выражение в функцию f0(x,x1,y1,x2,y2)

Функция для построения гарфика опорной прямой

$$f0(x,x1,y1,x2,y2) := \frac{y1-y2}{x1-x2} \cdot x + \frac{x1 \cdot y2 - x2 \cdot y1}{x1-x2}$$

Координаты точек через которые проходит опорная прямая

$$\mathsf{t1}(\mathsf{x1},\mathsf{y1}) \coloneqq \begin{pmatrix} \mathsf{x1} \\ \mathsf{y1} \end{pmatrix} \qquad \qquad \mathsf{t2}(\mathsf{x2},\mathsf{y2}) \coloneqq \begin{pmatrix} \mathsf{x2} \\ \mathsf{y2} \end{pmatrix}$$

1.1 Фигура 1 - эллирс (A, B - размер полуосей) с центром x1_c,y1_c, повернутый на угол β относительно оси X

Аффинные преобразования при повороте и параллельном переносе координат имеют вид

$$\begin{split} & \text{X1}\big(\textbf{x}\,,\textbf{y}\,,\boldsymbol{\alpha}\,,\textbf{x}_{\textbf{c}}\,,\textbf{y}_{\textbf{c}}\big) \coloneqq \big(\textbf{x}-\textbf{x}_{\textbf{c}}\big) \cdot \text{cos}(\boldsymbol{\alpha}) + \big(\textbf{y}-\textbf{y}_{\textbf{c}}\big) \cdot \text{sin}(\boldsymbol{\alpha}) \\ & \text{Y1}\big(\textbf{x}\,,\textbf{y}\,,\boldsymbol{\alpha}\,,\textbf{x}_{\textbf{c}}\,,\textbf{y}_{\textbf{c}}\big) \coloneqq -\big(\textbf{x}-\textbf{x}_{\textbf{c}}\big) \cdot \text{sin}(\boldsymbol{\alpha}) + \big(\textbf{y}-\textbf{y}_{\textbf{c}}\big) \cdot \text{cos}(\boldsymbol{\alpha}) \end{split}$$

Вид уравнения эллипса
$$\frac{\left(\mathrm{X1}\left(\mathrm{x}\,,\mathrm{y}\,,\alpha\,,\mathrm{x}_{\mathrm{c}}\,,\mathrm{y}_{\mathrm{c}}\right)\right)^{2}}{\mathrm{A}^{2}} + \frac{\left(\mathrm{Y1}\left(\mathrm{x}\,,\mathrm{y}\,,\alpha\,,\mathrm{x}_{\mathrm{c}}\,,\mathrm{y}_{\mathrm{c}}\right)\right)^{2}}{\mathrm{B}^{2}} - 1 = 0$$

Решить уравнение относительно переменной у

$$\frac{\left(X1\left(x\,,y\,,\alpha\,,x_{\text{\tiny C}}\,,y_{\text{\tiny C}}\right)\right)^{2}}{A^{2}} + \frac{\left(Y1\left(x\,,y\,,\alpha\,,x_{\text{\tiny C}}\,,y_{\text{\tiny C}}\right)\right)^{2}}{B^{2}} - 1 \quad \begin{vmatrix} \text{solve}\,,y\\ \text{simplify}\\ \text{collect}\,,x\,,x_{\text{\tiny C}}\,,y_{\text{\tiny C}}\,,\sin(2\alpha) \end{vmatrix} \rightarrow \underbrace{\begin{vmatrix} A^{2} + B^{2} + A^{2} \cdot C \\ A^{2} + B^{2} + A^{2} \cdot C \\ A^{2} + B^{2} + A^{2} \cdot C \end{vmatrix}}_{A^{2} + B^{2} + A^{2} \cdot C}$$

Рис. А 14. Листинг программы расчета точек пересечения прямой и эллипса. Часть 2 (Пример № 2.3)

Аналитическое выражение очень длинное, поэтому скопировано и прведено ниже.

$$\begin{bmatrix} A^2 - B^2 \\ A^2 + B^2 + A^2 \cdot \cos(2 \cdot \alpha) - B^2 \cdot \cos(2 \cdot \alpha) \\ + \frac{2 \cdot A^2 - 2 \cdot A^2 \cdot \sin(\alpha)^2 + 2 \cdot B^2 \cdot \sin(\alpha)^2}{A^2 + B^2 + A^2 \cdot \cos(2 \cdot \alpha)} \cdot y_c + \frac{A \cdot B \cdot \sqrt{4 \cdot A^2 - 4 \cdot A^2 \cdot \sin(\alpha)^2 + 4 \cdot B^2 \cdot \sin(\alpha)^2 - 4 \cdot x^2 + 8 \cdot x \cdot x_c - 4 \cdot x_c^2}}{A^2 + B^2 + A^2 \cdot \cos(2 \cdot \alpha) - B^2 \cdot \cos(2 \cdot \alpha)} \end{bmatrix} \\ \begin{bmatrix} \frac{A^2 - B^2}{A^2 + B^2 + A^2 \cdot \cos(2 \cdot \alpha) - B^2 \cdot \cos(2 \cdot \alpha)} \cdot \sin(2 \cdot \alpha) \cdot x + \left(-\frac{A^2 - B^2}{A^2 + B^2 + A^2 \cdot \cos(2 \cdot \alpha) - B^2 \cdot \cos(2 \cdot \alpha)} \right) \cdot \sin(2 \cdot \alpha) \cdot x_c \dots \\ + \frac{2 \cdot A^2 - 2 \cdot A^2 \cdot \sin(\alpha)^2 + 2 \cdot B^2 \cdot \sin(\alpha)^2}{A^2 + B^2 + A^2 \cdot \cos(2 \cdot \alpha)} \cdot y_c - \frac{A \cdot B \cdot \sqrt{4 \cdot A^2 - 4 \cdot A^2 \cdot \sin(\alpha)^2 + 4 \cdot B^2 \cdot \sin(\alpha)^2 - 4 \cdot x^2 + 8 \cdot x \cdot x_c - 4 \cdot x_c^2}}{A^2 + B^2 + A^2 \cdot \cos(2 \cdot \alpha) - B^2 \cdot \cos(2 \cdot \alpha)} \end{bmatrix} \end{bmatrix}$$

Упростить первый элемент вектора

$$\begin{bmatrix} \frac{A^2 - B^2}{A^2 + B^2 + A^2 \cdot \cos(2 \cdot \alpha) - B^2 \cdot \cos(2 \cdot \alpha)} \cdot \sin(2 \cdot \alpha) \cdot x + \left(-\frac{A^2 - B^2}{A^2 + B^2 + A^2 \cdot \cos(2 \cdot \alpha) - B^2 \cdot \cos(2 \cdot \alpha)} \right) \cdot \sin(2 \cdot \alpha) \cdot x_c \dots \\ + \frac{2 \cdot A^2 - 2 \cdot A^2 \cdot \sin(\alpha)^2 + 2 \cdot B^2 \cdot \sin(\alpha)^2}{A^2 + B^2 + A^2 \cdot \cos(2 \cdot \alpha)} \cdot y_c + \frac{A \cdot B \cdot \sqrt{4 \cdot A^2 - 4 \cdot A^2 \cdot \sin(\alpha)^2 + 4 \cdot B^2 \cdot \sin(\alpha)^2 - 4 \cdot x^2 + 8 \cdot x \cdot x_c - 4 \cdot x_c^2}}{A^2 + B^2 + A^2 \cdot \cos(2 \cdot \alpha) - B^2 \cdot \cos(2 \cdot \alpha)} \end{bmatrix}$$

Упростить первый и второй элемент

$$\frac{A^2 - B^2}{A^2 + B^2 + A^2 \cdot \cos(2 \cdot \alpha) - B^2 \cdot \cos(2 \cdot \alpha)} \cdot \sin(2 \cdot \alpha)$$

$$A^2 + A^2 \cdot \cos(2 \cdot \alpha) \text{ simplify } \rightarrow 2 \cdot A^2 \cdot \cos(\alpha)^2 \\ B^2 - B^2 \cdot \cos(2 \cdot \alpha) \text{ simplify } \rightarrow 2 \cdot B^2 \cdot \sin(\alpha)^2$$

тогда первые два элемента примут вид

$$\frac{\left(A^2-B^2\right)\cdot\sin(2\cdot\alpha)}{2\cdot\left(A^2\cdot\cos(\alpha)^2+B^2\cdot\sin(\alpha)^2\right)}\cdot\left(x+x_c\right)\quad \text{if}\qquad \qquad -\frac{\left(A^2-B^2\right)\cdot\sin(2\cdot\alpha)}{2\cdot\left(A^2\cdot\cos(\alpha)^2+B^2\cdot\sin(\alpha)^2\right)}\cdot\left(x+x_c\right)$$

Упростить третий элемент

$$\frac{2 \cdot A^2 - 2 \cdot A^2 \cdot \sin(\alpha)^2 + 2 \cdot B^2 \cdot \sin(\alpha)^2}{A^2 + B^2 + A^2 \cdot \cos(2 \cdot \alpha) - B^2 \cdot \cos(2 \cdot \alpha)} \cdot y_c \text{ simplify } \rightarrow y_c$$

Рис. А 15. Листинг программы расчета точек пересечения прямой и эллипса. Часть 3 (Пример № 2.3)

Упростить четвертый элемент

$$\frac{A \cdot B \cdot \sqrt{4 \cdot A^2 - 4 \cdot A^2 \cdot \sin(\alpha)^2 + 4 \cdot B^2 \cdot \sin(\alpha)^2 - 4 \cdot x^2 + 8 \cdot x \cdot x_c - 4 \cdot x_c^2}}{A^2 + B^2 + A^2 \cdot \cos(2 \cdot \alpha) - B^2 \cdot \cos(2 \cdot \alpha)}$$

Подкоренное выражение

$$4 \cdot A^2 - 4 \cdot A^2 \cdot \sin(\alpha)^2 + 4 \cdot B^2 \cdot \sin(\alpha)^2 - 4 \cdot x^2 + 8 \cdot x \cdot x_c - 4 \cdot x_c^2 \text{ factor } \rightarrow -4 \cdot \left(A^2 \cdot \sin(\alpha)^2 - A^2 - B^2 \cdot \sin(\alpha)^2 + 4 \cdot A^2 \cdot \sin(\alpha)^2 - A^2 - B^2 \cdot \sin(\alpha)^2 + 4 \cdot A^2 \cdot \sin(\alpha)^2 + 4 \cdot A^2 \cdot \sin(\alpha)^2 - A^2 \cdot \sin(\alpha)^2 + 4 \cdot A^2 \cdot \sin(\alpha)^2 - A^2 \cdot \sin(\alpha)^2 + 4 \cdot A^2 \cdot \sin(\alpha)^2 - A^2 \cdot \sin(\alpha)^2 + 4 \cdot A^2 \cdot \sin(\alpha)^2 - A^2 \cdot \sin(\alpha)^2 -$$

Аналитическое выражение очень длинное, поэтому скопировано и прведено ниже.

$$-4 \cdot \left(A^2 \cdot \sin(\alpha)^2 - A^2 - B^2 \cdot \sin(\alpha)^2 + x^2 - 2 \cdot x \cdot x_c + x_c^2 \right)$$

$$\begin{array}{ll} A^2 \cdot \sin(\alpha)^2 - A^2 \text{ simplify } \rightarrow A^2 \cdot \left(\sin(\alpha)^2 - 1\right) & \sin(\alpha)^2 - 1 \text{ simplify } \rightarrow -\cos(\alpha)^2 \\ x^2 - 2 \cdot x \cdot x_c + x_c^2 \text{ factor } \rightarrow \left(x - x_c\right)^2 \end{array}$$

в итоге подкоренное выражение примет вид

$$-4 \cdot \left[-A^2 \cdot \cos(\alpha)^2 - B^2 \cdot \sin(\alpha)^2 + \left(x - x_c\right)^2 \right]$$

или

$$4 \cdot \left[\left(A^2 \cdot \cos(\alpha)^2 + B^2 \cdot \sin(\alpha)^2 \right) - \left(x - x_c \right)^2 \right]$$

тогда первый элемент вектора примет вид

$$\frac{\left(A^2-B^2\right)\cdot\sin(2\cdot\alpha)}{2\cdot\left(A^2\cdot\cos(\alpha)^2+B^2\cdot\sin(\alpha)^2\right)}\cdot\left(x-x_c\right)+y_c+\frac{A\cdot B\cdot\sqrt{\left(A^2\cdot\cos(\alpha)^2+B^2\cdot\sin(\alpha)^2\right)-\left(x-x_c\right)^2}}{\left(A^2\cdot\cos(\alpha)^2+B^2\cdot\sin(\alpha)^2\right)}$$

обозначим

$$fp(A,B,\alpha) := (A^2 \cdot cos(\alpha)^2 + B^2 \cdot sin(\alpha)^2)$$

и тогда

$$\frac{\left(\text{A}^2-\text{B}^2\right)\cdot\sin(2\cdot\alpha)}{2\cdot\text{fp}(\text{A},\text{B},\alpha)}\cdot\left(\text{x}+\text{x}_{\text{c}}\right)+\text{y}_{\text{c}}+\frac{\text{A}\cdot\text{B}\cdot\sqrt{\text{fp}(\text{A},\text{B},\alpha)-\left(\text{x}-\text{x}_{\text{c}}\right)^2}}{\text{fp}(\text{A},\text{B},\alpha)}$$

Скопировать полученное выражение в функции f1(x,A,B, α , x_c, y_c), f2(x,A,B, α , x_c, y_c) (изменив знак перед последним членом)

функции для построения графика фигуры 1

$$f1\!\left(x\,,A\,,B\,,\alpha\,,x_{c}\,,y_{c}\right) := \frac{\left(A^{2}-B^{2}\right)\cdot sin(2\cdot\alpha)}{2\cdot fp(A\,,B\,,\alpha)}\cdot\left(x-x_{c}\right) + y_{c} + \frac{A\cdot B\cdot\sqrt{fp(A\,,B\,,\alpha)-\left(x-x_{c}\right)^{2}}}{fp(A\,,B\,,\alpha)}$$

Рис. А 16. Листинг программы расчета точек пересечения прямой и эллипса. Часть 4 (Пример № 2.3)

$$\mathrm{f2}\big(x\,,A\,,B\,,\alpha\,,x_{_{\boldsymbol{C}}}\,,y_{_{\boldsymbol{C}}}\big) \coloneqq \frac{\left(A^2-B^2\right)\cdot\sin(2\cdot\alpha)}{2\cdot\mathrm{fp}(A\,,B\,,\alpha)}\cdot\big(x-x_{_{\boldsymbol{C}}}\big) + 1\cdot y_{_{\boldsymbol{C}}} - \frac{A\cdot B\cdot\sqrt{\mathrm{fp}(A\,,B\,,\alpha)-\big(x-x_{_{\boldsymbol{C}}}\big)^2}}{\mathrm{fp}(A\,,B\,,\alpha)}$$

Координаты центра эллипса

$$XY_{el} := \begin{pmatrix} x1_c \\ y1_c \end{pmatrix} = \begin{pmatrix} -2 \\ 4 \end{pmatrix}$$

1.2. Фигура 2 - прямая повернута на угол у относительно опорной

прямой, параллельно смещена и проходит через точку $XY_b := \begin{pmatrix} x_b \\ y_b \end{pmatrix}^{\blacksquare}$

Аффинные преобразования при повороте и параллельном переносе координат имеют вид

$$X2(x, y, \alpha, \Delta x, \Delta y) := (x - \Delta x) \cdot \cos(\alpha) + (y - \Delta y) \cdot \sin(\alpha)$$

$$Y2(x,y,\alpha,\Delta x,\Delta y) := -(x - \Delta x) \cdot \sin(\alpha) + (y - \Delta y) \cdot \cos(\alpha)$$

$$\frac{X2(x,y,\alpha,\Delta x,\Delta y) - x1}{x2 - x1} - \frac{Y2(x,y,\alpha,\Delta x,\Delta y) - y1}{v2 - v1} = 0$$

Решить уравнение относительно переменной у.

$$\frac{X2(x,y,\alpha,\Delta x,\Delta y)-x1}{x2-x1}-\frac{Y2(x,y,\alpha,\Delta x,\Delta y)-y1}{y2-y1} \quad \begin{vmatrix} \text{solve},y\\\\\\\text{simplify}\\\\\text{collect},x,\cos(\alpha),\sin(\alpha) \end{vmatrix} \rightarrow \begin{bmatrix} -\frac{\sin(\alpha)\cdot(x)}{\cos(\alpha)\cdot(x)}\\\\\frac{\sin(\alpha)\cdot(x)}{\cos(\alpha)\cdot(x)}$$

Аналитическое выражение очень длинное, поэтому скопировано и приведено ниже.

В MathCAD перенос выражения на следующую строку производится только по знаку "+". Необходимо нажать клавиши "Ctrl"+"Enter"

$$\begin{bmatrix} -\frac{\sin(\alpha)\cdot(x1-x2)+\cos(\alpha)\cdot(y1-y2)}{\cos(\alpha)\cdot(x1-x2)-\sin(\alpha)\cdot(y1-y2)} \end{bmatrix} \cdot \Delta x + \Delta y + \frac{x1\cdot y2-x2\cdot y1}{\cos(\alpha)\cdot(x1-x2)-\sin(\alpha)\cdot(y1-y2)} \dots \\ +\frac{x\cdot[\sin(\alpha)\cdot(x1-x2)+\cos(\alpha)\cdot(y1-y2)]}{\cos(\alpha)\cdot(x1-x2)-\sin(\alpha)\cdot(y1-y2)} \end{bmatrix}$$

Обозначить

$$fK(x1,y1,x2,y2,\alpha) := \frac{\cos(\alpha) \cdot (y1 - y2) + \sin(\alpha) \cdot (x1 - x2)}{\cos(\alpha) \cdot (x1 - x2) - \sin(\alpha) \cdot (y1 - y2)}$$

Рис. А 17. Листинг программы расчета точек пересечения прямой и эллипса. Часть 5 (Пример № 2.3)

$$fK1(x1,y1,x2,y2,\alpha) := \frac{x1 \cdot y2 - x2 \cdot y1}{\cos(\alpha) \cdot (x1 - x2) - \sin(\alpha) \cdot (y1 - y2)}$$

функция для построения фигуры 2

$$f3(x,x1,y1,x2,y2,\alpha,\Delta x,\Delta y) := fK(x1,y1,x2,y2,\alpha) \cdot (x - \Delta x) + \Delta y + fK1(x1,y1,x2,y2,\alpha)$$

Небходимо определить величины Δx , Δy исходя из положения, что прямая параллельно смещена после поворота и проходит через точку хь, уь

$$XY_b = \begin{pmatrix} -3 \\ 6 \end{pmatrix}$$
 базовая точка через которую проходит фигура 2 (задается)

$$M\beta := \begin{pmatrix} \cos(\beta 1) & \sin(\beta 1) \\ -\sin(\beta 1) & \cos(\beta 1) \end{pmatrix}$$
 матрица поворота фгуры 2

$$XY1 := {x11 \choose y11} = {-4 \choose 3}$$
 координаты точки фигуры 2 в локальной системе координат

тогда искомая величина параллельного смещения по осям координат равна

$$\Delta XY := XY_b - M\beta^{-1} \cdot XY1 = \begin{pmatrix} 1.95 \\ 6.707 \end{pmatrix}$$
 величины Δx , Δy

Координаты точек через которые пройдет фигура 2

Первая точка ($t1\alpha\Delta$) совмещена с базовой точкой (x0,y0).

Осталось определить координаты второй точки ($t2\alpha\Delta$).

$$t1\alpha\Delta:=XY_{b}=\begin{pmatrix} -3\\ 6 \end{pmatrix}$$
 координаты первой точки фигуры 2

$$XY2 := {x21 \choose y21} = {-1 \choose 2}$$
 координаты второй точки фигуры 2 в локальной системе координат

$$t2\alpha\Delta:=\mathrm{M}\beta^{-1}\cdot\mathrm{XY2}+\Delta\mathrm{XY}\qquad t2\alpha\Delta=\begin{pmatrix}-0.172\\7.414\end{pmatrix}\quad координаты второй точки фигуры 2$$

2. Рассчитать точку пересечения фигуры 1 и фигуры с использованием аналитического описания фигур

2.1. Использовать блок Given-Find

$$x1_c = -2$$
 $y1_c = 4$ $A1 = 5$ $B1 = 3$ $\beta1 = 45.$ ° фигура 1 (эллипс)

фигура 2 (прямая)

фигура 2 (прямая)
$$\gamma 1 = 45 \cdot ^{\circ} \quad \Delta XY = \begin{pmatrix} 1.95 \\ 6.707 \end{pmatrix}$$
 смещение фигуры 2 в опорную точку $XY_b = \begin{pmatrix} -3 \\ 6 \end{pmatrix}$

Рис. А 18. Листинг программы расчета точек пересечения прямой и эллипса. Часть 6 (Пример № 2.3)

начальные приближения

$$xn := \begin{pmatrix} -5 \\ 6 \end{pmatrix}$$
 $yn := \begin{pmatrix} 1 \\ 8 \end{pmatrix}$

Given

$$\frac{\left[\left(xn-x1_{c}\right)\cdot\cos(\beta1)+\left(yn-y1_{c}\right)\cdot\sin(\beta1)\right]^{2}}{A1^{2}}+\frac{\left[-\left(xn-x1_{c}\right)\cdot\sin(\beta1)+\left(yn-y1_{c}\right)\cdot\cos(\beta1)\right]^{2}}{B1^{2}}-1=0$$

$$\frac{\begin{bmatrix} \left(xn-\Delta XY_0\right)\cdot\cos(\gamma 1) \ \dots \\ +\left(yn-\Delta XY_1\right)\cdot\sin(\gamma 1)-x11\end{bmatrix}}{x21-x11} - \frac{\begin{bmatrix} -\left(xn-\Delta XY_0\right)\cdot\sin(\gamma 1) \ \dots \\ +\left(yn-\Delta XY_1\right)\cdot\cos(\gamma 1)-y11\end{bmatrix}}{y21-y11} = 0$$

$$XYint := Find(xn, yn) XYint^{T} = \begin{bmatrix} -5.09 \\ 0.901 \end{bmatrix} \begin{pmatrix} 4.955 \\ 7.95 \end{bmatrix}$$

Для **использования** нелинейного **метода сопряженных градиентов** при решени системы нелинейных уранений необходимо:

- щелкнуть правой кнопкой мышки на функции Find(xn,yn);
- из контексного списка выбрать строку Нелинейные;
- из списка выбрать строку Метод сопряженных градиентов

Вывод: координаты точки пересечения фигур $XYint^T = \begin{bmatrix} -5.09 \\ 0.901 \end{bmatrix} \begin{pmatrix} 4.955 \\ 7.95 \end{bmatrix}$.

Точки пересечения фигур:

$$xy1_{int} := \begin{bmatrix} \left(XYint_0\right)_0 \\ \left(XYint_1\right)_0 \end{bmatrix} = \begin{pmatrix} -5.09 \\ 4.955 \end{pmatrix} \qquad \qquad xy2_{int} := \begin{bmatrix} \left(XYint_0\right)_1 \\ \left(XYint_1\right)_1 \end{bmatrix} = \begin{pmatrix} 0.901 \\ 7.95 \end{pmatrix}$$

- 3. Расчет значений функций, описывающих графики фигур 1 и 2, координат точек через которые они проходят
 - 3.1. Расчет векторов для построения графиков фигур

$$x_{min} \coloneqq -15$$
 $x_{max} \coloneqq 5$ $\Delta x \coloneqq 0.01$ минимум, максимум и шаг расчета

 $N1 := \frac{x_{max} - x_{min}}{\Delta x}$ количество точек расчета i := 0...N1

Рис. А 19. Листинг программы расчета точек пересечения прямой и эллипса. Часть 7 (Пример № 2.3)

$$xx_i \coloneqq x_{min} + i \cdot \Delta x$$
 вектор абсцисс графиков для всех фигур

$$yy1 \coloneqq \overrightarrow{f1\big(xx\,,A1\,,B1\,,\beta1\,,x1_{\textbf{c}}\,,y1_{\textbf{c}}\big)} \qquad yy2 \coloneqq \overrightarrow{f2\big(xx\,,A1\,,B1\,,\beta1\,,x1_{\textbf{c}}\,,y1_{\textbf{c}}\big)} \qquad \text{ординаты фигуры 1}$$

$$\Delta XY = \begin{pmatrix} 1.95 \\ 6.707 \end{pmatrix}$$

$$yy3 := f3(xx, x11, y11, x21, y21, \gamma1, \Delta XY_0, \Delta XY_1)$$

ординаты фигуры 2

3.2. Координы точек через которые проходят фигуры

Функция для создания блочного вектора из двух элементов: первый элемент х-координаты двух точек, второй элемент - у - координаты двух точек. на входе: координаты двух точек в виде двух отдельных векторов

$$bl_v(f1, f2) := \begin{cases} vx \leftarrow \begin{pmatrix} f1_0 \\ f2_0 \end{pmatrix} \\ vy \leftarrow \begin{pmatrix} f1_1 \\ f2_1 \end{pmatrix} \\ vxy \leftarrow \begin{pmatrix} vx \\ vy \end{pmatrix} \end{cases}$$

Опорная прямая

$$XY12 := bl_v(t1(x11, y11), t2(x21, y21))$$
 $XY12^T = \begin{bmatrix} -4 \\ -1 \end{bmatrix} \begin{pmatrix} 3 \\ 2 \end{bmatrix}$

Фигура 1 (эллипс)
$$XY_{el} = \begin{pmatrix} -2\\4 \end{pmatrix}$$

Фигура 2 (прямая)

$$XY12\Delta := bl_v(t1\alpha\Delta, t2\alpha\Delta) \qquad XY12\Delta^T = \begin{bmatrix} -3 \\ -0.172 \end{bmatrix} \begin{bmatrix} 6 \\ 7.414 \end{bmatrix}$$

Рис. А 20. Листинг программы расчета точек пересечения прямой и эллипса. Часть 8 (Пример № 2.3)

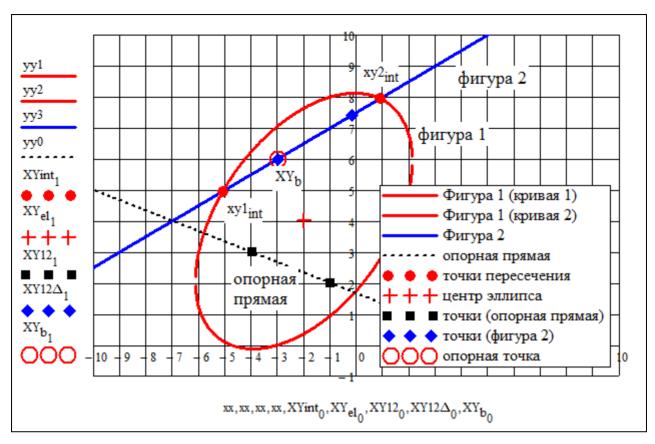


Рис. А 21. Листинг программы расчета точек пересечения прямой и эллипса. Часть 9 (Пример № 2.3)

Пример № 2.4. Найти точку пересечения эллипса и гиперболы

1. Используемые фигуры.

Фигура 1: гипербола (A1, B1 - параметры, ветви расположены вдоль оси X) повернута на угол β относительно центрта. Центр гиперболы $x1_c$, $y1_c$ совпадает с началом координат.

Фигура 2: эллипс (A2, B2- полуоси) с координатами центра x_{2c} , y_{2c} повернут вокруг цента на угол γ ;

- 2. Получить аналитические выражения (в общем виде) для построения графиков фигур.
- Рассчитать точки пересечения фигур. Форма представления уравнений аналитическая. Использовать блок Given-Find при нахождении точек пересечения и численный метод - Квази- Ньютон.
- 4. Построить графики фигур и опорные точки, точки пересечения фигур.

Исходные данные

A2 := 5 B2 := 3 размер полуосей эллипса

 $x2_c := -2$ $y2_c := 4$ координаты центра эллипса

 $\gamma_1 := -45^\circ$ угол поворта эллипса вокруг центра относительно оси X (положительный угол против часовой стрелки)

1. Получить аналитические выражения для построения графиков фигур и опорных точек

1.1 Фигура 1 - гипербола

Аффинные преобразования при повороте и параллельном переносе координат имеют вид

$$X2(x,y,\alpha) := x \cdot \cos(\alpha) + y \cdot \sin(\alpha)$$

$$Y2(x,y,\alpha) := -x \cdot \sin(\alpha) + y \cdot \cos(\alpha)$$

Решить уравнение относительно переменной у

$$\frac{X2(x,y,\alpha)^2}{A^2} - \frac{Y2(x,y,\alpha)^2}{B^2} - 1 \quad \begin{vmatrix} \text{solve},y\\ \text{simplify}\\ \text{collect},x \end{vmatrix} \rightarrow \begin{bmatrix} \left(\frac{\sin(2\cdot\alpha)\cdot A^2 + \sin(2\cdot\alpha)\cdot B^2}{2\cdot A^2 \cdot \sin(\alpha)^2 - 2\cdot A^2 + 2\cdot B^2 \cdot \sin(\alpha)^2} \right) \cdot x - \frac{A \cdot B \cdot \sqrt{4 \cdot A^2}}{2\cdot A^2 \cdot \sin(\alpha)^2 - 2\cdot A^2 + 2\cdot B^2 \cdot \sin(\alpha)^2} \cdot x - \frac{A \cdot B \cdot \sqrt{4 \cdot A^2}}{2\cdot A^2 \cdot \sin(\alpha)^2 - 2\cdot A^2 + 2\cdot B^2 \cdot \sin(\alpha)^2} \right) \cdot x + \frac{A \cdot B \cdot \sqrt{4 \cdot A^2}}{2\cdot A^2 \cdot \sin(\alpha)^2 - 2\cdot A^2 + 2\cdot B^2 \cdot \sin(\alpha)^2} \cdot x + \frac{A \cdot B \cdot \sqrt{4 \cdot A^2}}{2\cdot A^2 \cdot \sin(\alpha)^2 - 2\cdot A^2 + 2\cdot B^2 \cdot \sin(\alpha)^2} \cdot x + \frac{A \cdot B \cdot \sqrt{4 \cdot A^2}}{2\cdot A^2 \cdot \sin(\alpha)^2 - 2\cdot A^2 + 2\cdot B^2 \cdot \sin(\alpha)^2} \cdot x + \frac{A \cdot B \cdot \sqrt{4 \cdot A^2}}{2\cdot A^2 \cdot \sin(\alpha)^2 - 2\cdot A^2 + 2\cdot B^2 \cdot \sin(\alpha)^2} \cdot x + \frac{A \cdot B \cdot \sqrt{4 \cdot A^2}}{2\cdot A^2 \cdot \sin(\alpha)^2 - 2\cdot A^2 + 2\cdot B^2 \cdot \sin(\alpha)^2} \cdot x + \frac{A \cdot B \cdot \sqrt{4 \cdot A^2}}{2\cdot A^2 \cdot \sin(\alpha)^2 - 2\cdot A^2 + 2\cdot B^2 \cdot \sin(\alpha)^2} \cdot x + \frac{A \cdot B \cdot \sqrt{4 \cdot A^2}}{2\cdot A^2 \cdot \sin(\alpha)^2 - 2\cdot A^2 + 2\cdot B^2 \cdot \sin(\alpha)^2} \cdot x + \frac{A \cdot B \cdot \sqrt{4 \cdot A^2}}{2\cdot A^2 \cdot \sin(\alpha)^2 - 2\cdot A^2 + 2\cdot B^2 \cdot \sin(\alpha)^2} \cdot x + \frac{A \cdot B \cdot \sqrt{4 \cdot A^2}}{2\cdot A^2 \cdot \sin(\alpha)^2 - 2\cdot A^2 + 2\cdot B^2 \cdot \sin(\alpha)^2} \cdot x + \frac{A \cdot B \cdot \sqrt{4 \cdot A^2}}{2\cdot A^2 \cdot \sin(\alpha)^2 - 2\cdot A^2 + 2\cdot B^2 \cdot \sin(\alpha)^2} \cdot x + \frac{A \cdot B \cdot \sqrt{4 \cdot A^2}}{2\cdot A^2 \cdot \sin(\alpha)^2 - 2\cdot A^2 + 2\cdot B^2 \cdot \sin(\alpha)^2} \cdot x + \frac{A \cdot B \cdot \sqrt{4 \cdot A^2}}{2\cdot A^2 \cdot \sin(\alpha)^2 - 2\cdot A^2 + 2\cdot B^2 \cdot \sin(\alpha)^2} \cdot x + \frac{A \cdot B \cdot \sqrt{4 \cdot A^2}}{2\cdot A^2 \cdot \sin(\alpha)^2 - 2\cdot A^2 + 2\cdot B^2 \cdot \sin(\alpha)^2} \cdot x + \frac{A \cdot B \cdot \sqrt{4 \cdot A^2}}{2\cdot A^2 \cdot \sin(\alpha)^2 - 2\cdot A^2 + 2\cdot B^2 \cdot \sin(\alpha)^2} \cdot x + \frac{A \cdot B \cdot \sqrt{4 \cdot A^2}}{2\cdot A^2 \cdot \sin(\alpha)^2 - 2\cdot A^2 + 2\cdot B^2 \cdot \sin(\alpha)^2} \cdot x + \frac{A \cdot B \cdot \sqrt{4 \cdot A^2}}{2\cdot A^2 \cdot \sin(\alpha)^2 - 2\cdot A^2 + 2\cdot B^2 \cdot \sin(\alpha)^2} \cdot x + \frac{A \cdot B \cdot \sqrt{4 \cdot A^2}}{2\cdot A^2 \cdot \sin(\alpha)^2 - 2\cdot A^2 + 2\cdot B^2 \cdot \sin(\alpha)^2} \cdot x + \frac{A \cdot B \cdot \sqrt{4 \cdot A^2}}{2\cdot A^2 \cdot \sin(\alpha)^2 - 2\cdot A^2 + 2\cdot B^2 \cdot \sin(\alpha)^2} \cdot x + \frac{A \cdot B \cdot \sqrt{4 \cdot A^2}}{2\cdot A^2 \cdot \sin(\alpha)^2 - 2\cdot A^2 + 2\cdot B^2 \cdot \sin(\alpha)^2} \cdot x + \frac{A \cdot B \cdot \sqrt{4 \cdot A^2}}{2\cdot A^2 \cdot \sin(\alpha)^2 - 2\cdot A^2 + 2\cdot B^2 \cdot \sin(\alpha)^2} \cdot x + \frac{A \cdot B \cdot \sqrt{4 \cdot A^2}}{2\cdot A^2 \cdot \sin(\alpha)^2 - 2\cdot A^2 \cdot \cos(\alpha)^2} \cdot x + \frac{A \cdot B \cdot \sqrt{4 \cdot A^2}}{2\cdot A^2 \cdot \sin(\alpha)^2 - 2\cdot A^2 \cdot \cos(\alpha)^2} \cdot x + \frac{A \cdot B \cdot \sqrt{4 \cdot A^2}}{2\cdot A^2 \cdot \sin(\alpha)^2 - 2\cdot A^2 \cdot \cos(\alpha)^2} \cdot x + \frac{A \cdot B \cdot \sqrt{4 \cdot A^2}}{2\cdot A^2 \cdot \cos(\alpha)^2 - 2\cdot A^2 \cdot \cos(\alpha)^2} \cdot x + \frac{A \cdot B \cdot \sqrt{4 \cdot A^2}}{2\cdot A$$

Рис. А 22. Листинг программы расчета точек пересечения эллипса и гиперболы. Часть 1 (Пример № 2.4)

Аналитическое выражение очень длинное, поэтому скопировано и прведено ниже.

$$\begin{bmatrix} \left(-\frac{\sin(2\cdot\alpha)\cdot A^2+\sin(2\cdot\alpha)\cdot B^2}{2\cdot A^2\cdot \sin(\alpha)^2-2\cdot A^2+2\cdot B^2\cdot \sin(\alpha)^2}\right)\cdot x - \frac{A\cdot B\cdot \sqrt{4\cdot A^2\cdot \sin(\alpha)^2-4\cdot A^2+4\cdot B^2\cdot \sin(\alpha)^2+4\cdot x^2}}{2\cdot A^2\cdot \sin(\alpha)^2-2\cdot A^2+2\cdot B^2\cdot \sin(\alpha)^2} \\ \left(-\frac{\sin(2\cdot\alpha)\cdot A^2+\sin(2\cdot\alpha)\cdot B^2}{2\cdot A^2\cdot \sin(\alpha)^2-2\cdot A^2+2\cdot B^2\cdot \sin(\alpha)^2}\right)\cdot x + \frac{A\cdot B\cdot \sqrt{4\cdot A^2\cdot \sin(\alpha)^2-4\cdot A^2+4\cdot B^2\cdot \sin(\alpha)^2+4\cdot x^2}}{2\cdot A^2\cdot \sin(\alpha)^2-2\cdot A^2+2\cdot B^2\cdot \sin(\alpha)^2} \end{bmatrix}$$

Упростить первый элемент вектора

$$\left(-\frac{\sin(2\cdot\alpha)\cdot A^2+\sin(2\cdot\alpha)\cdot B^2}{2\cdot A^2\cdot\sin(\alpha)^2-2\cdot A^2+2\cdot B^2\cdot\sin(\alpha)^2}\right)\cdot x-\frac{A\cdot B\cdot \sqrt{4\cdot A^2\cdot\sin(\alpha)^2-4\cdot A^2+4\cdot B^2\cdot\sin(\alpha)^2+4\cdot x^2}}{2\cdot A^2\cdot\sin(\alpha)^2-2\cdot A^2+2\cdot B^2\cdot\sin(\alpha)^2}$$

Упростить первй элемент первого элемента вектора

$$\left(-\frac{\sin(2\cdot\alpha)\cdot A^2+\sin(2\cdot\alpha)\cdot B^2}{2\cdot A^2\cdot\sin(\alpha)^2-2\cdot A^2+2\cdot B^2\cdot\sin(\alpha)^2}\right) \text{ collect }, \sin(2\alpha) , 2A^2 \rightarrow \left[-\frac{A^2+B^2}{2\cdot B^2\cdot\sin(\alpha)^2+2\cdot A^2\cdot\left(\sin(\alpha)^2-1\right)}\right] \cdot \sin(2\cdot\alpha) + \left[-\frac{A^2+B^2\cdot\sin(\alpha)^2+2\cdot A^2\cdot\left(\sin(\alpha)^2-1\right)}{2\cdot B^2\cdot\sin(\alpha)^2+2\cdot A^2\cdot\left(\sin(\alpha)^2-1\right)}\right] \cdot \sin(2\cdot\alpha) + \left[-\frac{A^2+A^2\cdot(\sin(\alpha)^2+2\cdot A^2\cdot(\sin(\alpha)^2+2\cdot A^2$$

$$\sin(\alpha)^2 - 1$$
 simplify $\rightarrow -\cos(\alpha)^2$

первый элемент примет вид

$$\left(-\frac{A^2 + B^2}{2 \cdot B^2 \cdot \sin(\alpha)^2 - 2 \cdot A^2 \cdot \cos(\alpha)^2}\right) \cdot \sin(2 \cdot \alpha)$$

Подкоренное выражение второго элемента

$$4 \cdot A^2 \cdot \sin(\alpha)^2 - 4 \cdot A^2 + 4 \cdot B^2 \cdot \sin(\alpha)^2 + 4 \cdot x^2 \text{ collect}, 4 \cdot A^2 \rightarrow \left(\sin(\alpha)^2 - 1\right) \cdot \left(4 \cdot A^2\right) + 4 \cdot B^2 \cdot \sin(\alpha)^2 + 4 \cdot x^2$$
или
$$-4 \cdot A^2 \cdot \cos(\alpha)^2 + 4 \cdot B^2 \cdot \sin(\alpha)^2 + 4 \cdot x^2$$

в результате первый элемент вектора примет вид

$$\left[-\frac{A^2 + B^2}{2 \cdot \left(B^2 \cdot \sin(\alpha)^2 - A^2 \cdot \cos(\alpha)^2\right)} \right] \cdot \sin(2 \cdot \alpha) \cdot x - \frac{2 \cdot A \cdot B \cdot \sqrt{B^2 \cdot \sin(\alpha)^2 - A^2 \cdot \cos(\alpha)^2 + x^2}}{2 \cdot \left(B^2 \cdot \sin(\alpha)^2 - A^2 \cdot \cos(\alpha)^2\right)}$$

Выражения для построения графиков примут вид ($f1(x,A,B,\alpha)$, $f2(x,A,B,\alpha)$)

$$f1(x,A,B,\alpha) := \left[-\frac{A^2 + B^2}{2 \cdot \left(B^2 \cdot \sin(\alpha)^2 - A^2 \cdot \cos(\alpha)^2\right)} \right] \cdot \sin(2 \cdot \alpha) \cdot x - \frac{2 \cdot A \cdot B \cdot \sqrt{B^2 \cdot \sin(\alpha)^2 - A^2 \cdot \cos(\alpha)^2 + x^2}}{2 \cdot \left(B^2 \cdot \sin(\alpha)^2 - A^2 \cdot \cos(\alpha)^2\right)} \cdot \sin(2 \cdot \alpha) \cdot x - \frac{2 \cdot A \cdot B \cdot \sqrt{B^2 \cdot \sin(\alpha)^2 - A^2 \cdot \cos(\alpha)^2 + x^2}}{2 \cdot \left(B^2 \cdot \sin(\alpha)^2 - A^2 \cdot \cos(\alpha)^2\right)} \cdot \sin(2 \cdot \alpha) \cdot x - \frac{2 \cdot A \cdot B \cdot \sqrt{B^2 \cdot \sin(\alpha)^2 - A^2 \cdot \cos(\alpha)^2 + x^2}}{2 \cdot \left(B^2 \cdot \sin(\alpha)^2 - A^2 \cdot \cos(\alpha)^2\right)} \cdot \sin(2 \cdot \alpha) \cdot x - \frac{2 \cdot A \cdot B \cdot \sqrt{B^2 \cdot \sin(\alpha)^2 - A^2 \cdot \cos(\alpha)^2 + x^2}}{2 \cdot \left(B^2 \cdot \sin(\alpha)^2 - A^2 \cdot \cos(\alpha)^2\right)} \cdot \sin(2 \cdot \alpha) \cdot x - \frac{2 \cdot A \cdot B \cdot \sqrt{B^2 \cdot \sin(\alpha)^2 - A^2 \cdot \cos(\alpha)^2 + x^2}}{2 \cdot \left(B^2 \cdot \sin(\alpha)^2 - A^2 \cdot \cos(\alpha)^2\right)} \cdot \sin(2 \cdot \alpha) \cdot x - \frac{2 \cdot A \cdot B \cdot \sqrt{B^2 \cdot \sin(\alpha)^2 - A^2 \cdot \cos(\alpha)^2 + x^2}}{2 \cdot \left(B^2 \cdot \sin(\alpha)^2 - A^2 \cdot \cos(\alpha)^2\right)} \cdot \sin(2 \cdot \alpha) \cdot x - \frac{2 \cdot A \cdot B \cdot \sqrt{B^2 \cdot \sin(\alpha)^2 - A^2 \cdot \cos(\alpha)^2 + x^2}}{2 \cdot \left(B^2 \cdot \sin(\alpha)^2 - A^2 \cdot \cos(\alpha)^2\right)} \cdot \sin(2 \cdot \alpha) \cdot x - \frac{2 \cdot A \cdot B \cdot \sqrt{B^2 \cdot \sin(\alpha)^2 - A^2 \cdot \cos(\alpha)^2 + x^2}}{2 \cdot \left(B^2 \cdot \sin(\alpha)^2 - A^2 \cdot \cos(\alpha)^2\right)} \cdot \sin(2 \cdot \alpha) \cdot x - \frac{2 \cdot A \cdot B \cdot \sqrt{B^2 \cdot \sin(\alpha)^2 - A^2 \cdot \cos(\alpha)^2 + x^2}}{2 \cdot \left(B^2 \cdot \sin(\alpha)^2 - A^2 \cdot \cos(\alpha)^2\right)} \cdot \sin(2 \cdot \alpha) \cdot x - \frac{2 \cdot A \cdot B \cdot \sqrt{B^2 \cdot \sin(\alpha)^2 - A^2 \cdot \cos(\alpha)^2 + x^2}}{2 \cdot \left(B^2 \cdot \sin(\alpha)^2 - A^2 \cdot \cos(\alpha)^2\right)} \cdot \sin(2 \cdot \alpha) \cdot x - \frac{2 \cdot A \cdot B \cdot \sqrt{B^2 \cdot \sin(\alpha)^2 - A^2 \cdot \cos(\alpha)^2}}{2 \cdot \left(B^2 \cdot \sin(\alpha)^2 - A^2 \cdot \cos(\alpha)^2\right)} \cdot \sin(2 \cdot \alpha) \cdot x - \frac{2 \cdot A \cdot B \cdot \sqrt{B^2 \cdot \sin(\alpha)^2 - A^2 \cdot \cos(\alpha)^2}}{2 \cdot \left(B^2 \cdot \sin(\alpha)^2 - A^2 \cdot \cos(\alpha)^2\right)} \cdot \sin(2 \cdot \alpha) \cdot x - \frac{2 \cdot A \cdot B \cdot \sqrt{B^2 \cdot \sin(\alpha)^2 - A^2 \cdot \cos(\alpha)^2}}{2 \cdot \left(B^2 \cdot \sin(\alpha)^2 - A^2 \cdot \cos(\alpha)^2\right)} \cdot \sin(2 \cdot \alpha) \cdot x - \frac{2 \cdot A \cdot B \cdot \sqrt{B^2 \cdot \sin(\alpha)^2 - A^2 \cdot \cos(\alpha)^2}}{2 \cdot \left(B^2 \cdot \cos(\alpha)^2 - A^2 \cdot \cos(\alpha)^2\right)} \cdot x - \frac{2 \cdot A \cdot B \cdot \sqrt{B^2 \cdot \cos(\alpha)^2}}{2 \cdot \left(B^2 \cdot \cos(\alpha)^2 - A^2 \cdot \cos(\alpha)^2\right)} \cdot x - \frac{2 \cdot A \cdot B \cdot \sqrt{B^2 \cdot \cos(\alpha)^2}}{2 \cdot \left(B^2 \cdot \cos(\alpha)^2 - A^2 \cdot \cos(\alpha)^2\right)} \cdot x - \frac{2 \cdot A \cdot B \cdot \sqrt{B^2 \cdot \cos(\alpha)^2}}{2 \cdot \left(B^2 \cdot \cos(\alpha)^2 - A^2 \cdot \cos(\alpha)^2\right)} \cdot x - \frac{2 \cdot A \cdot B \cdot \sqrt{B^2 \cdot \cos(\alpha)^2}}{2 \cdot \left(B^2 \cdot \cos(\alpha)^2 - A^2 \cdot \cos(\alpha)^2\right)} \cdot x - \frac{2 \cdot A \cdot B \cdot \sqrt{B^2 \cdot \cos(\alpha)^2}}{2 \cdot \left(B^2 \cdot \cos(\alpha)^2 - A^2 \cdot \cos(\alpha)^2\right)} \cdot x - \frac{2 \cdot A \cdot B \cdot \sqrt{B^2 \cdot \cos(\alpha)^2}}{2 \cdot \left(B^2 \cdot \cos(\alpha)^2 - A^2 \cdot \cos(\alpha)^2\right)} \cdot x - \frac{2 \cdot A \cdot B \cdot \sqrt{B^2 \cdot \cos(\alpha)^2}}{2 \cdot \left(B^2 \cdot \cos(\alpha)^2 - A^2 \cdot \cos(\alpha)$$

Рис. А 23. Листинг программы расчета точек пересечения эллипса и гиперболы. Часть 2 (Пример № 2.4)

$$f2(x,A,B,\alpha) := \left[-\frac{A^2 + B^2}{2 \cdot \left(B^2 \cdot \sin(\alpha)^2 - A^2 \cdot \cos(\alpha)^2\right)} \right] \cdot \sin(2 \cdot \alpha) \cdot x + \frac{2 \cdot A \cdot B \cdot \sqrt{B^2 \cdot \sin(\alpha)^2 - A^2 \cdot \cos(\alpha)^2 + x^2}}{2 \cdot \left(B^2 \cdot \sin(\alpha)^2 - A^2 \cdot \cos(\alpha)^2\right)}$$

Координаты центра гиперболы

$$XY_g := \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

1.1 Фигура 2 - эллирс (A, B - размер полуосей) с центром x2_c, y2_c повернутый на угол у относительно оси Х

Аффинные преобразования при повороте и параллельном переносе координат эллипса имеют вид

$$\begin{split} & \text{X1}\big(x\,,y\,,\alpha\,,x_{\text{\tiny C}}\,,y_{\text{\tiny C}}\big) \coloneqq \big(x-x_{\text{\tiny C}}\big) \cdot \cos(\alpha) \, + \big(y-y_{\text{\tiny C}}\big) \cdot \sin(\alpha) \\ & \text{Y1}\big(x\,,y\,,\alpha\,,x_{\text{\tiny C}}\,,y_{\text{\tiny C}}\big) \coloneqq -\big(x-x_{\text{\tiny C}}\big) \cdot \sin(\alpha) \, + \big(y-y_{\text{\tiny C}}\big) \cdot \cos(\alpha) \end{split}$$

Вид уравнения эллипса
$$\frac{\left(X1\left(x,y,\alpha,x_{c},y_{c}\right)\right)^{2}}{\Delta^{2}} + \frac{\left(Y1\left(x,y,\alpha,x_{c},y_{c}\right)\right)^{2}}{B^{2}} - 1 = 0$$

Решить уравнение относительно переменной у

Решить уравнение относительно переменной у
$$\frac{\left(\text{X1}\left(\mathbf{x},\mathbf{y},\alpha,\mathbf{x_{c}},\mathbf{y_{c}}\right)\right)^{2}}{\mathbf{A}^{2}} + \frac{\left(\text{Y1}\left(\mathbf{x},\mathbf{y},\alpha,\mathbf{x_{c}},\mathbf{y_{c}}\right)\right)^{2}}{\mathbf{B}^{2}} - 1 \begin{vmatrix} \text{solve},\mathbf{y} \\ \text{simplify} \\ \text{collect},\mathbf{x},\mathbf{x_{c}},\mathbf{y_{c}},\sin(2\alpha) \end{vmatrix} \rightarrow \underbrace{\begin{vmatrix} \mathbf{A}^{2} - \mathbf{B}^{2} \\ \mathbf{A}^{2} + \mathbf{B}^{2} + \mathbf{A}^{2} \cdot \cos(2 \cdot \alpha) - \mathbf{B}^{2} \cdot \cos(2 \cdot \alpha) \\ \mathbf{A}^{2} - \mathbf{B}^{2} \end{vmatrix}}_{\mathbf{A}^{2} + \mathbf{B}^{2} + \mathbf{A}^{2} \cdot \cos(2 \cdot \alpha) - \mathbf{B}^{2} \cdot \cos(2 \cdot \alpha)}$$

Аналитическое выражение очень длинное, поэтому скопировано и приведено

$$\begin{bmatrix} \frac{A^2 - B^2}{A^2 + B^2 + A^2 \cdot \cos(2 \cdot \alpha) - B^2 \cdot \cos(2 \cdot \alpha)} \cdot \sin(2 \cdot \alpha) \cdot x + \left(\frac{A^2 - B^2}{A^2 + B^2 + A^2 \cdot \cos(2 \cdot \alpha) - B^2 \cdot \cos(2 \cdot \alpha)} \right) \cdot \sin(2 \cdot \alpha) \cdot x_c \dots \\ + \frac{2 \cdot A^2 - 2 \cdot A^2 \cdot \sin(\alpha)^2 + 2 \cdot B^2 \cdot \sin(\alpha)^2}{A^2 + B^2 + A^2 \cdot \cos(2 \cdot \alpha)} \cdot y_c + \frac{A \cdot B \cdot \sqrt{4 \cdot A^2 - 4 \cdot A^2 \cdot \sin(\alpha)^2 + 4 \cdot B^2 \cdot \sin(\alpha)^2 - 4 \cdot x^2 + 8 \cdot x \cdot x_c - 4 \cdot x_c^2}}{A^2 + B^2 + A^2 \cdot \cos(2 \cdot \alpha) - B^2 \cdot \cos(2 \cdot \alpha)} \end{bmatrix} \\ \begin{bmatrix} \frac{A^2 - B^2}{A^2 + B^2 + A^2 \cdot \cos(2 \cdot \alpha) - B^2 \cdot \cos(2 \cdot \alpha)} \cdot \sin(2 \cdot \alpha) \cdot x + \left(-\frac{A^2 - B^2}{A^2 + B^2 + A^2 \cdot \cos(2 \cdot \alpha) - B^2 \cdot \cos(2 \cdot \alpha)} \right) \cdot \sin(2 \cdot \alpha) \cdot x_c \dots \\ + \frac{2 \cdot A^2 - 2 \cdot A^2 \cdot \sin(\alpha)^2 + 2 \cdot B^2 \cdot \sin(\alpha)^2}{A^2 + B^2 + A^2 \cdot \cos(2 \cdot \alpha) - B^2 \cdot \cos(2 \cdot \alpha)} \cdot y_c - \frac{A \cdot B \cdot \sqrt{4 \cdot A^2 - 4 \cdot A^2 \cdot \sin(\alpha)^2 + 4 \cdot B^2 \cdot \sin(\alpha)^2 - 4 \cdot x^2 + 8 \cdot x \cdot x_c - 4 \cdot x_c^2}}{A^2 + B^2 + A^2 \cdot \cos(2 \cdot \alpha) - B^2 \cdot \cos(2 \cdot \alpha)} \end{bmatrix} \end{bmatrix}$$

Рис. А 24. Листинг программы расчета точек пересечения эллипса и гиперболы. Часть 3 (Пример № 2.4)

Упростить первый элемент вектора

$$\begin{bmatrix} \frac{A^2-B^2}{A^2+B^2+A^2\cdot\cos(2\cdot\alpha)-B^2\cdot\cos(2\cdot\alpha)} \cdot \sin(2\cdot\alpha)\cdot x + \left(-\frac{A^2-B^2}{A^2+B^2+A^2\cdot\cos(2\cdot\alpha)-B^2\cdot\cos(2\cdot\alpha)} \right) \cdot \sin(2\cdot\alpha)\cdot x_c \dots \\ + \frac{2\cdot A^2-2\cdot A^2\cdot\sin(\alpha)^2+2\cdot B^2\cdot\sin(\alpha)^2}{A^2+B^2+A^2\cdot\cos(2\cdot\alpha)-B^2\cdot\cos(2\cdot\alpha)} \cdot y_c + \frac{A\cdot B\cdot \sqrt{4\cdot A^2-4\cdot A^2\cdot\sin(\alpha)^2+4\cdot B^2\cdot\sin(\alpha)^2-4\cdot x^2+8\cdot x\cdot x_c-4\cdot x_c^2}}{A^2+B^2+A^2\cdot\cos(2\cdot\alpha)-B^2\cdot\cos(2\cdot\alpha)} \end{bmatrix}$$

Упростить первый и второй элемент

$$\frac{A^2 - B^2}{A^2 + B^2 + A^2 \cdot \cos(2 \cdot \alpha) - B^2 \cdot \cos(2 \cdot \alpha)} \cdot \sin(2 \cdot \alpha)$$

$$A^2 + A^2 \cdot \cos(2 \cdot \alpha) \text{ simplify } \rightarrow 2 \cdot A^2 \cdot \cos(\alpha)^2 \\ B^2 - B^2 \cdot \cos(2 \cdot \alpha) \text{ simplify } \rightarrow 2 \cdot B^2 \cdot \sin(\alpha)^2$$

тогда первые два элемента примут вид

$$\frac{\left(\mathsf{A}^2-\mathsf{B}^2\right)\cdot\sin(2\cdot\alpha)}{2\cdot\left(\mathsf{A}^2\cdot\cos(\alpha)^2+\mathsf{B}^2\cdot\sin(\alpha)^2\right)}\cdot\left(\mathsf{x}+\mathsf{x}_\mathsf{c}\right)\quad\mathbf{u}\qquad\qquad -\frac{\left(\mathsf{A}^2-\mathsf{B}^2\right)\cdot\sin(2\cdot\alpha)}{2\cdot\left(\mathsf{A}^2\cdot\cos(\alpha)^2+\mathsf{B}^2\cdot\sin(\alpha)^2\right)}\cdot\left(\mathsf{x}+\mathsf{x}_\mathsf{c}\right)$$

Упростить третий элемент

$$\frac{2 \cdot A^2 - 2 \cdot A^2 \cdot \sin(\alpha)^2 + 2 \cdot B^2 \cdot \sin(\alpha)^2}{A^2 + B^2 + A^2 \cdot \cos(2 \cdot \alpha) - B^2 \cdot \cos(2 \cdot \alpha)} \cdot y_c \text{ simplify } \rightarrow y_c$$

Упростить четвертый элемент

$$\frac{A \cdot B \cdot \sqrt{4 \cdot A^2 - 4 \cdot A^2 \cdot \sin(\alpha)^2 + 4 \cdot B^2 \cdot \sin(\alpha)^2 - 4 \cdot x^2 + 8 \cdot x \cdot x_c - 4 \cdot x_c^2}}{A^2 + B^2 + A^2 \cdot \cos(2 \cdot \alpha) - B^2 \cdot \cos(2 \cdot \alpha)}$$

Подкоренное выражение

$$\begin{array}{ll} 4\cdot A^2 - 4\cdot A^2\cdot \sin(\alpha)^2 \dots & \\ + 4\cdot B^2\cdot \sin(\alpha)^2 - 4\cdot x^2 + 8\cdot x\cdot x_c - 4\cdot x_c^2 \end{array} \quad \text{factor} \quad \rightarrow -4\cdot \left(A^2\cdot \sin(\alpha)^2 - A^2 - B^2\cdot \sin(\alpha)^2 + x^2 - 2\cdot x\cdot x_c + x_c^2\right)$$

Аналитическое выражение очень длинное, поэтому скопировано и прведено ниже.

$$\begin{aligned} &-4\cdot\left(A^2\cdot\sin(\alpha)^2-A^2-B^2\cdot\sin(\alpha)^2+x^2-2\cdot x\cdot x_c+x_c^2\right)\\ &A^2\cdot\sin(\alpha)^2-A^2\text{ simplify }\to A^2\cdot\left(\sin(\alpha)^2-1\right) &\sin(\alpha)^2-1\text{ simplify }\to-\cos(\alpha)^2\\ &x^2-2\cdot x\cdot x_c+x_c^2\text{ factor }\to\left(x-x_c\right)^2\end{aligned}$$

в итоге подкоренное выражение примет вид $-4\cdot\left[-A^2\cdot\cos(\alpha)^2-B^2\cdot\sin(\alpha)^2+\left(x-x_c\right)^2\right]$

Рис. А 25. Листинг программы расчета точек пересечения эллипса и гиперболы. Часть 4 (Пример № 2.4)

ипи

$$4 \cdot \left[\left(A^2 \cdot \cos(\alpha)^2 + B^2 \cdot \sin(\alpha)^2 \right) - \left(x - x_c \right)^2 \right]$$

тогда первый элемент вектора примет вид

$$\frac{\left(A^2-B^2\right)\cdot\sin(2\cdot\alpha)}{2\cdot\left(A^2\cdot\cos(\alpha)^2+B^2\cdot\sin(\alpha)^2\right)}\cdot\left(x-x_c\right)+y_c+\frac{A\cdot B\cdot\sqrt{\left(A^2\cdot\cos(\alpha)^2+B^2\cdot\sin(\alpha)^2\right)-\left(x-x_c\right)^2}}{\left(A^2\cdot\cos(\alpha)^2+B^2\cdot\sin(\alpha)^2\right)}$$

обозначим

$$fp(A,B,\alpha) := (A^2 \cdot cos(\alpha)^2 + B^2 \cdot sin(\alpha)^2)$$

и тогда

$$\frac{\left(A^2-B^2\right)\cdot\sin(2\cdot\alpha)}{2\cdot\operatorname{fp}(A,B,\alpha)}\cdot\left(x+x_c\right)+y_c+\frac{A\cdot B\cdot\sqrt{\operatorname{fp}(A,B,\alpha)-\left(x-x_c\right)^2}}{\operatorname{fp}(A,B,\alpha)}$$

Скопировать полученное выражение в функцию $f3(x,A,B,\alpha,x_c,y_c)$ и $f4(x,A,B,\alpha,x_c,y_c)$.

Функции для построения графика фигуры 2

$$f3\left(x,A,B,\alpha,x_{c},y_{c}\right):=\frac{\left(A^{2}-B^{2}\right)\cdot\sin(2\cdot\alpha)}{2\cdot\operatorname{fp}(A,B,\alpha)}\cdot\left(x-x_{c}\right)+y_{c}+\frac{A\cdot B\cdot\sqrt{\operatorname{fp}(A,B,\alpha)-\left(x-x_{c}\right)^{2}}}{\operatorname{fp}(A,B,\alpha)}$$

Функция $f4(x,A,B,\alpha,x_c,y_c)$ после небольшого преобразания примет вид

$$f4(x,A,B,\alpha,x_c,y_c) := \frac{\left(A^2 - B^2\right) \cdot \sin(2 \cdot \alpha)}{2 \cdot fp(A,B,\alpha)} \cdot \left(x - x_c\right) + 1 \cdot y_c - \frac{A \cdot B \cdot \sqrt{fp(A,B,\alpha) - \left(x - x_c\right)^2}}{fp(A,B,\alpha)}$$

Координаты центра эллипса

$$XY_{el} := \begin{pmatrix} x2_c \\ y2_c \end{pmatrix} = \begin{pmatrix} -2 \\ 4 \end{pmatrix}$$

2. Рассчитать точки пересечения фигуры 1 и фигуры 2 с использованием аналитического описания фигур и метода Квази- Ньютон

Использовать блок Given-Find

Исходные параметры фигур

$$A1 = 3$$
 $B1 = 5$ $\beta 1 = 35$. $XY_g = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ фигура 1 (гипербола)

Рис. А 26. Листинг программы расчета точек пересечения эллипса и гиперболы. Часть 5 (Пример № 2.4)

$$\begin{array}{lll} A2 = 5 & B2 = 3 & \gamma 1 = -45 \cdot ^{\circ} & XY_{el} = \begin{pmatrix} -2 \\ 4 \end{pmatrix} & \text{фигуру 2 (прямая)} \\ & xn := \begin{pmatrix} 0 \\ 0 \end{pmatrix} & yn := \begin{pmatrix} 1 \\ 4 \end{pmatrix} & \text{начальные приближения} \\ & & \\ \hline \frac{\left(xn \cdot \cos \left(\beta 1\right) + yn \cdot \sin \left(\beta 1\right)\right)^2}{A1^2} - \frac{\left(-xn \cdot \sin \left(\beta 1\right) + yn \cdot \cos \left(\beta 1\right)\right)^2}{B1^2} - 1 = 0 \\ & & \\ \hline \frac{\left[\left(xn - x2_c\right) \cdot \cos \left(\gamma 1\right) + \left(yn - y2_c\right) \cdot \sin \left(\gamma 1\right)\right]^2}{A2^2} + \frac{\left[-\left(xn - x2_c\right) \cdot \sin \left(\gamma 1\right) + \left(yn - y2_c\right) \cdot \cos \left(\gamma 1\right)\right]^2}{B2^2} - 1 = 0 \end{array}$$

$$XYint := Find(xn, yn) XYint^{T} = \begin{bmatrix} 2.118 \\ 0.934 \end{bmatrix} \begin{pmatrix} 2.247 \\ 5.176 \end{bmatrix}$$

Для использования нелинейного метода Квази- Ньютон при решении системы нелинейных уранений необходимо:

- щелкнуть правой кнопкой мышки на функции Find(xn,yn);
- из контексного списка выбрать строку Нелинейные;
- из списка выбрать строку Метод Квази- Ньютон

Вывод: координаты точек пересечения фигур
$$XYint^T = \begin{bmatrix} 2.118 \\ 0.934 \end{bmatrix} \begin{pmatrix} 2.247 \\ 5.176 \end{bmatrix}$$

Первый элемент блочного векторы x - координаты двух точек, второй элемент - y- координаты двух точек.

Точки пересечения фигур:

$$xy1_{int} := \begin{bmatrix} \left(XYint_0\right)_0 \\ \left(XYint_1\right)_0 \end{bmatrix} = \begin{pmatrix} 2.118 \\ 2.247 \end{pmatrix} \qquad xy2_{int} := \begin{bmatrix} \left(XYint_0\right)_1 \\ \left(XYint_1\right)_1 \end{bmatrix} = \begin{pmatrix} 0.934 \\ 5.176 \end{pmatrix}$$

3. Расчет значений функций, описывающих графики фигур 1 и 2, координат точек через которые они проходят

3.1. Расчет векторов для построения графиков фигур

$$x_{min}:=-10$$
 $x_{max}:=10$ $\Delta x:=0.01$ минимум, максимум и шаг расчета
$$N1:=\frac{x_{max}-x_{min}}{\Delta x}$$
 количество точек расчета $i:=0..N1$
$$xx_i:=x_{min}+i\cdot\Delta x$$
 вектор абсцисс графиков для всех фигур

Рис. А 27. Листинг программы расчета точек пересечения эллипса и гиперболы. Часть 6 (Пример № 2.4)

$$\begin{array}{ll} yy1:=\overrightarrow{f1(xx,A1,B1,\beta1)} & yy2:=\overrightarrow{f2(xx,A1,B1,\beta1)} & \text{ ординаты фигуры 1} \\ yy3:=\overrightarrow{f3(xx,A2,B2,\gamma1,x2_c,y2_c)} & yy4:=\overrightarrow{f4(xx,A2,B2,\gamma1,x2_c,y2_c)} & \text{ ординаты фигуры 2} \end{array}$$

3.2. Координы точек через которые проходят фигуры

Функция для создания блочного вектора из двух элементов: первый элемент х-координаты двух точек, второй элемент - у - координаты двух точек. на входе: координаты двух точек в виде двух отдельных векторов

$$\begin{array}{c} \text{bl_v}(\text{f1},\text{f2}) \coloneqq & \text{vx} \leftarrow \begin{pmatrix} \text{f1}_0 \\ \text{f2}_0 \end{pmatrix} \\ \text{vy} \leftarrow \begin{pmatrix} \text{f1}_1 \\ \text{f2}_1 \end{pmatrix} \\ \text{vxy} \leftarrow \begin{pmatrix} \text{vx} \\ \text{vy} \end{pmatrix} \end{array}$$

Фигура 1 (гипербола)
$$XY_g = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Фигура 2 (эллипс)
$$XY_{el} = \begin{pmatrix} -2\\4 \end{pmatrix}$$

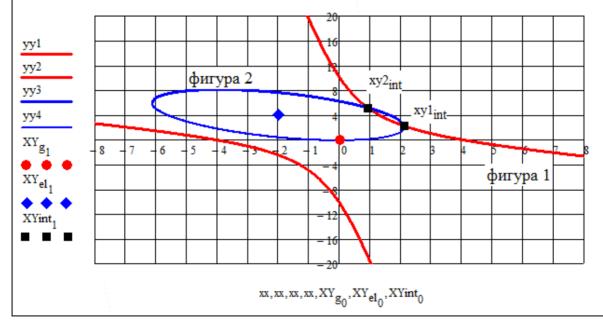


Рис. А 28. Листинг программы расчета точек пересечения эллипса и гиперболы. Часть 7 (Пример № 2.4)

Пример № 2.5. Найти точку пересечения гиперболы и параболы

1. Используемые фигуры.

Фигура 1: парабола (как в ВМ) (ветви параболы направлены в сторону отрицательных значений оси 0X), вершина смещена в точку х_с, у_с, парабола повернута вокруг вершины на угол β;.

Фигура 2: гипербола (A2, B2- параметры, ветви гиперболы направлены вдоль оси X) повернута вокруг начала координат на угол γ;

- Получить аналитические выражения (в общем виде) для построения графиков фигур.
- 3. Рассчитать точки пересечения фигур. Форма представления уравнений аналитическая. Использовать блок Given-Find при нахождении точек пересечения и численный метод Квази- Ньютон.
- 4. Построить графики фигур и опорные точки, точки пересечения фигур.

Исходные данные

Фигура 1 (парабола)

А1 := -1.5 ширина параболы

$$x1_p := 5$$
 $y1_p := 3$ вершина фигуры 1

β1 := 45.° угол поворота параболы вокруг вершины

Фигура 2 (гипербола)

$$x1_g := 0$$
 $y1_g := 0$ центр гиперболы

γ1 := 45° угол поворта гиперболы вокруг центра (положительный угол против часовой стрелки)

1. Получить аналитические выражения для построения графиков фигур и опорных точек

1.1 Фигура 1 - парабла (ширина А)с центром x1_c, y1_c

Аффинные преобразования при повороте и параллельном переносе координат имеют вид

$$X(x,y,\alpha,x_c,y_c) \coloneqq (x-x_c) \cdot \cos(\alpha) + (y-y_c) \cdot \sin(\alpha)$$

$$Y(x, y, \alpha, x_c, y_c) := -(x - x_c) \cdot \sin(\alpha) + (y - y_c) \cdot \cos(\alpha)$$

Вид уравнения параболы $(y - y_c)^2 - A \cdot (x - x_c) = 0$

Решить уравнение относительно переменной у

$$\left(\mathbf{Y} \big(\mathbf{x}, \mathbf{y}, \alpha, \mathbf{x}_{\mathbf{c}}, \mathbf{y}_{\mathbf{c}} \big) \right)^2 - \mathbf{A} \cdot \left(\mathbf{X} \big(\mathbf{x}, \mathbf{y}, \alpha, \mathbf{x}_{\mathbf{c}}, \mathbf{y}_{\mathbf{c}} \big) \right) \\ = \left(\mathbf{y} \left(\mathbf{x}, \mathbf{y}, \alpha, \mathbf{x}_{\mathbf{c}}, \mathbf{y}_{\mathbf{c}} \right) \right)^2 - \mathbf{A} \cdot \left(\mathbf{X} \left(\mathbf{x}, \mathbf{y}, \alpha, \mathbf{x}_{\mathbf{c}}, \mathbf{y}_{\mathbf{c}} \right) \right) \\ = \left(\mathbf{y} \left(\mathbf{x}, \mathbf{y}, \alpha, \mathbf{x}_{\mathbf{c}}, \mathbf{y}_{\mathbf{c}} \right) \right)^2 - \mathbf{A} \cdot \left(\mathbf{X} \left(\mathbf{x}, \mathbf{y}, \alpha, \mathbf{x}_{\mathbf{c}}, \mathbf{y}_{\mathbf{c}} \right) \right) \\ = \left(\mathbf{y} \left(\mathbf{x}, \mathbf{y}, \alpha, \mathbf{x}_{\mathbf{c}}, \mathbf{y}_{\mathbf{c}} \right) \right)^2 - \mathbf{A} \cdot \left(\mathbf{X} \left(\mathbf{x}, \mathbf{y}, \alpha, \mathbf{x}_{\mathbf{c}}, \mathbf{y}_{\mathbf{c}} \right) \right) \\ = \left(\mathbf{y} \left(\mathbf{x}, \mathbf{y}, \alpha, \mathbf{x}_{\mathbf{c}}, \mathbf{y}_{\mathbf{c}} \right) \right)^2 - \mathbf{A} \cdot \left(\mathbf{x} \left(\mathbf{x}, \mathbf{y}, \alpha, \mathbf{x}_{\mathbf{c}}, \mathbf{y}_{\mathbf{c}} \right) \right) \\ = \left(\mathbf{y} \left(\mathbf{x}, \mathbf{y}, \alpha, \mathbf{x}_{\mathbf{c}}, \mathbf{y}_{\mathbf{c}} \right) \right)^2 - \mathbf{A} \cdot \left(\mathbf{x} \left(\mathbf{x}, \mathbf{y}, \alpha, \mathbf{x}_{\mathbf{c}}, \mathbf{y}_{\mathbf{c}} \right) \right) \\ = \left(\mathbf{y} \left(\mathbf{x}, \mathbf{y}, \alpha, \mathbf{x}_{\mathbf{c}}, \mathbf{y}_{\mathbf{c}} \right) \right)^2 - \mathbf{A} \cdot \left(\mathbf{x} \left(\mathbf{x}, \mathbf{y}, \alpha, \mathbf{x}_{\mathbf{c}}, \mathbf{y}_{\mathbf{c}} \right) \right) \\ = \left(\mathbf{y} \left(\mathbf{x}, \mathbf{y}, \alpha, \mathbf{x}_{\mathbf{c}}, \mathbf{y}_{\mathbf{c}} \right) \right)^2 - \mathbf{A} \cdot \left(\mathbf{x} \left(\mathbf{x}, \mathbf{y}, \alpha, \mathbf{x}_{\mathbf{c}}, \mathbf{y}_{\mathbf{c}} \right) \right) \\ = \left(\mathbf{y} \left(\mathbf{x}, \mathbf{y}, \alpha, \mathbf{x}_{\mathbf{c}}, \mathbf{y}_{\mathbf{c}} \right) \right)^2 - \mathbf{A} \cdot \left(\mathbf{x} \left(\mathbf{x}, \mathbf{y}, \alpha, \mathbf{x}_{\mathbf{c}}, \mathbf{y}_{\mathbf{c}} \right) \right) \\ = \left(\mathbf{y} \left(\mathbf{x}, \mathbf{y}, \alpha, \mathbf{x}_{\mathbf{c}}, \mathbf{y}_{\mathbf{c}} \right) \right)^2 - \mathbf{A} \cdot \left(\mathbf{x} \left(\mathbf{x}, \mathbf{y}, \alpha, \mathbf{x}_{\mathbf{c}}, \mathbf{y}_{\mathbf{c}} \right) \right) \\ = \left(\mathbf{y} \left(\mathbf{x}, \mathbf{y}, \alpha, \mathbf{x}_{\mathbf{c}}, \mathbf{y}_{\mathbf{c}} \right) \right) \\ = \left(\mathbf{y} \left(\mathbf{x}, \mathbf{y}, \alpha, \mathbf{x}_{\mathbf{c}}, \mathbf{y}_{\mathbf{c}} \right) \right) \\ = \left(\mathbf{y} \left(\mathbf{x}, \mathbf{y}, \alpha, \mathbf{x}_{\mathbf{c}}, \mathbf{y}_{\mathbf{c}} \right) \right) \\ = \left(\mathbf{y} \left(\mathbf{y}, \mathbf{y}, \alpha, \mathbf{y}_{\mathbf{c}}, \mathbf{y}_{\mathbf{c}} \right) \right) \\ = \left(\mathbf{y} \left(\mathbf{y}, \mathbf{y}, \alpha, \mathbf{y}_{\mathbf{c}}, \mathbf{y}_{\mathbf{c}} \right) \right) \\ = \left(\mathbf{y} \left(\mathbf{y}, \mathbf{y}, \alpha, \mathbf{y}_{\mathbf{c}}, \mathbf{y}_{\mathbf{c}} \right) \right) \\ = \left(\mathbf{y} \left(\mathbf{y}, \mathbf{y}, \alpha, \mathbf{y}_{\mathbf{c}}, \mathbf{y}_{\mathbf{c}} \right) \right) \\ = \left(\mathbf{y} \left(\mathbf{y}, \mathbf{y}, \alpha, \mathbf{y}_{\mathbf{c}}, \mathbf{y}_{\mathbf{c}} \right) \right) \\ = \left(\mathbf{y} \left(\mathbf{y}, \mathbf{y}, \alpha, \mathbf{y}_{\mathbf{c}}, \mathbf{y}_{\mathbf{c}} \right) \right) \\ = \left(\mathbf{y} \left(\mathbf{y}, \mathbf{y}, \alpha, \mathbf{y}_{\mathbf{c}}, \mathbf{y}_{\mathbf{c}} \right) \right) \\ = \left(\mathbf{y} \left(\mathbf{y}, \mathbf{y}, \alpha, \mathbf{y}_{\mathbf{c}}, \mathbf{y}_{\mathbf{c}} \right) \right) \\ = \left(\mathbf{y} \left(\mathbf{y}, \mathbf{y}, \alpha, \mathbf{y}_{\mathbf{c}}, \mathbf{y}_{\mathbf{c}} \right) \right) \\ = \left(\mathbf{y} \left(\mathbf{y}, \mathbf{y}$$

Рис. А 29. Листинг программы расчета точек пересечения параболы и гиперболы. Часть 1 (Пример № 2.5)

Скопировать аналитическое выражение

$$\begin{bmatrix} \frac{\sin(\alpha)}{\cos(\alpha)} \cdot x + \left(-\frac{\sin(\alpha)}{\cos(\alpha)} \right) \cdot x_c + y_c + \frac{\sqrt{A^2 - A^2 \cdot \cos(\alpha)^2 + 4 \cdot A \cdot x \cdot \cos(\alpha) - 4 \cdot A \cdot x_c \cdot \cos(\alpha) + A \cdot \sin(\alpha)}}{2 \cdot \cos(\alpha)^2} \\ \frac{\sin(\alpha)}{\cos(\alpha)} \cdot x + \left(-\frac{\sin(\alpha)}{\cos(\alpha)} \right) \cdot x_c + y_c - \frac{\sqrt{A^2 - A^2 \cdot \cos(\alpha)^2 + 4 \cdot A \cdot x \cdot \cos(\alpha) - 4 \cdot A \cdot x_c \cdot \cos(\alpha) - A \cdot \sin(\alpha)}}{2 \cdot \cos(\alpha)^2} \end{bmatrix}$$

Скорировать числить первый элемента вектора

$$\frac{\sin(\alpha)}{\cos(\alpha)} \cdot x + \left(-\frac{\sin(\alpha)}{\cos(\alpha)} \right) \cdot x_C + y_C + \frac{\sqrt{A^2 - A^2 \cdot \cos(\alpha)^2 + 4 \cdot A \cdot x \cdot \cos(\alpha) - 4 \cdot A \cdot x_C \cdot \cos(\alpha)}}{2 \cdot \cos(\alpha)^2} + A \cdot \sin(\alpha) + A \cdot \cos(\alpha) + A \cdot \cos(\alpha$$

упростить подкоренное выражение

$$A^2 - A^2 \cdot \cos(\alpha)^2 + 4 \cdot A \cdot x \cdot \cos(\alpha) - 4 \cdot A \cdot x_c \cdot \cos(\alpha)$$

$$A^2 - A^2 \cdot \cos(\alpha)^2$$
 simplify $\rightarrow A^2 \cdot \sin(\alpha)^2$

$$4 \cdot A \cdot x \cdot \cos(\alpha) - 4 \cdot A \cdot x_{\text{C}} \cdot \cos(\alpha) \text{ simplify } \rightarrow 4 \cdot A \cdot \cos(\alpha) \cdot \left(x - x_{\text{C}}\right)$$

итог

$$A \cdot \sqrt{\sin(\alpha)^2 + \frac{4 \cdot \cos(\alpha)}{A} \cdot \left(x - x_c\right)}$$

в результате первый крмпонент

$$\frac{\sin(\alpha)}{\cos(\alpha)} \cdot x + \left(-\frac{\sin(\alpha)}{\cos(\alpha)} \right) \cdot x_{c} + y_{c} + \frac{A \cdot \sqrt{\sin(\alpha)^{2} + \frac{4 \cdot \cos(\alpha)}{A} \cdot \left(x - x_{c}\right)} + A \cdot \sin(\alpha)}{2 \cdot \cos(\alpha)^{2}}$$

Скопировать полученное выражение в функцию $f1(x,A,\alpha,x_c,y_c)$, $f2(x,A,\alpha,x_c,y_c)$ (в $f2(x,A,\alpha,x_c,y_c)$ поменять знак перед вторым элементом)

$$f1\Big(x\,,A\,,\alpha\,,x_{_{\textstyle C}}\,,y_{_{\textstyle C}}\Big) \coloneqq \frac{\sin(\alpha)}{\cos(\alpha)}\cdot\Big(x-x_{_{\textstyle C}}\Big) + y_{_{\textstyle C}} - \frac{A\cdot\sqrt{\sin(\alpha)^2 + \frac{4\cdot\cos(\alpha)}{A}\cdot\Big(x-x_{_{\textstyle C}}\Big)} - A\cdot\sin(\alpha)}{2\cdot\cos(\alpha)^2}$$

$$\mathrm{f2}\big(x\,,A\,,\alpha\,,x_{_{\textstyle C}}\,,y_{_{\textstyle C}}\big) \coloneqq \frac{\sin(\alpha)}{\cos(\alpha)}\cdot\big(x-x_{_{\textstyle C}}\big) + y_{_{\textstyle C}} + \frac{A\cdot\sqrt{\sin(\alpha)^2 + \frac{4\cdot\cos(\alpha)}{A}\cdot\big(x-x_{_{\textstyle C}}\big)} + A\cdot\sin(\alpha)}{2\cdot\cos(\alpha)^2}$$

Рис. А 30. Листинг программы расчета точек пересечения параболы и гиперболы. Часть 2 (Пример № 2.5)

Координаты вершины параболы

$$XY_p := \begin{pmatrix} x1_p \\ y1_p \end{pmatrix} = \begin{pmatrix} 5 \\ 3 \end{pmatrix}$$

1.1 Фигура 2 - гипербла (A, B - параметры) повернута на угол у вокруг центра

Аффинные преобразования при повороте координат имеют вид

$$X1(x,y,\alpha) := x \cdot \cos(\alpha) + y \cdot \sin(\alpha)$$

$$Y1(x,y,\alpha) := -x \cdot \sin(\alpha) + y \cdot \cos(\alpha)$$

Вид уравнения эллипса
$$\frac{(X1(x,y,\alpha))^2}{A^2} - \frac{(Y1(x,y,\alpha))^2}{B^2} - 1 = 0$$

Решить уравнение относительно переменной у

$$\frac{\left(\mathrm{X1}(\mathrm{x},\mathrm{y},\alpha)\right)^{2}}{\mathrm{A}^{2}} - \frac{\left(\mathrm{Y1}(\mathrm{x},\mathrm{y},\alpha)\right)^{2}}{\mathrm{B}^{2}} - 1 \quad \begin{vmatrix} \mathrm{solve}\,,\mathrm{y} \\ \mathrm{simplify} \\ \mathrm{collect}\,,\mathrm{x}\,,\sin(2\alpha) \end{vmatrix} \rightarrow \begin{bmatrix} -\frac{\mathrm{A}^{2} + \mathrm{B}^{2}}{2 \cdot \mathrm{A}^{2} \cdot \sin(\alpha)^{2} - 2 \cdot \mathrm{A}^{2} + 2 \cdot \mathrm{B}^{2} \cdot \sin(\alpha)^{2}} \\ -\frac{\mathrm{A}^{2} + \mathrm{B}^{2}}{2 \cdot \mathrm{A}^{2} \cdot \sin(\alpha)^{2} - 2 \cdot \mathrm{A}^{2} + 2 \cdot \mathrm{B}^{2} \cdot \sin(\alpha)^{2}} \end{vmatrix}$$

Аналитическое выражение очень длинное, поэтому скопировано и приведено ниже

$$\begin{bmatrix} \left(-\frac{A^2+B^2}{2\cdot A^2\cdot \sin(\alpha)^2-2\cdot A^2+2\cdot B^2\cdot \sin(\alpha)^2}\right)\cdot \sin(2\cdot \alpha)\cdot x - \frac{A\cdot B\cdot \sqrt{4\cdot A^2\cdot \sin(\alpha)^2-4\cdot A^2+4\cdot B^2\cdot \sin(\alpha)^2+4\cdot x^2}}{2\cdot A^2\cdot \sin(\alpha)^2-2\cdot A^2+2\cdot B^2\cdot \sin(\alpha)^2} \\ \left(-\frac{A^2+B^2}{2\cdot A^2\cdot \sin(\alpha)^2-2\cdot A^2+2\cdot B^2\cdot \sin(\alpha)^2}\right)\cdot \sin(2\cdot \alpha)\cdot x + \frac{A\cdot B\cdot \sqrt{4\cdot A^2\cdot \sin(\alpha)^2-4\cdot A^2+4\cdot B^2\cdot \sin(\alpha)^2+4\cdot x^2}}{2\cdot A^2\cdot \sin(\alpha)^2-2\cdot A^2+2\cdot B^2\cdot \sin(\alpha)^2} \end{bmatrix}$$

Упростить первый элемент вектора

$$\left(-\frac{A^2+B^2}{2\cdot A^2\cdot \sin(\alpha)^2-2\cdot A^2+2\cdot B^2\cdot \sin(\alpha)^2}\right)\cdot \sin(2\cdot\alpha)\cdot x - \frac{A\cdot B\cdot \sqrt{4\cdot A^2\cdot \sin(\alpha)^2-4\cdot A^2+4\cdot B^2\cdot \sin(\alpha)^2+4\cdot x^2}}{2\cdot A^2\cdot \sin(\alpha)^2-2\cdot A^2+2\cdot B^2\cdot \sin(\alpha)^2}$$

Упростить первую часть первого элемента вектора

$$\left(-\frac{A^2 + B^2}{2 \cdot A^2 \cdot \sin(\alpha)^2 - 2 \cdot A^2 + 2 \cdot B^2 \cdot \sin(\alpha)^2}\right) \cdot \sin(2 \cdot \alpha) \cdot x$$

Рис. А 31. Листинг программы расчета точек пересечения параболы и гиперболы. Часть 3 (Пример № 2.5)

упростить знаменатель

$$-\left(2\cdot A^2\cdot \sin(\alpha)^2 - 2\cdot A^2 + 2\cdot B^2\cdot \sin(\alpha)^2\right) \text{ simplify } \rightarrow 2\cdot A^2\cdot \cos(\alpha)^2 + 2\cdot B^2\cdot \cos(\alpha)^2 - 2\cdot B^2$$

$$2\cdot B^2\cdot \cos(\alpha)^2 - 2\cdot B^2 \text{ simplify } \rightarrow 2\cdot B^2\cdot \left(\cos(\alpha)^2 - 1\right) \quad \cos(\alpha)^2 - 1 \text{ simplify } \rightarrow -\sin(\alpha)^2$$

$$\frac{\left(A^2 + B^2\right) \cdot \sin(2 \cdot \alpha)}{2 \cdot \left(A^2 \cdot \cos(\alpha)^2 - B^2 \cdot \sin(\alpha)^2\right)} \cdot x$$

Упростить вторую часть первого элемента

$$\frac{A \cdot B \cdot \sqrt{4 \cdot A^2 \cdot \sin(\alpha)^2 - 4 \cdot A^2 + 4 \cdot B^2 \cdot \sin(\alpha)^2 + 4 \cdot x^2}}{2 \cdot A^2 \cdot \sin(\alpha)^2 - 2 \cdot A^2 + 2 \cdot B^2 \cdot \sin(\alpha)^2}$$

Подкоренное выражение

$$4 \cdot A^2 \cdot \sin(\alpha)^2 - 4 \cdot A^2 + 4 \cdot B^2 \cdot \sin(\alpha)^2 + 4 \cdot x^2$$

Упростить

$$4 \cdot A^2 \cdot \sin(\alpha)^2 - 4 \cdot A^2 \text{ simplify } \rightarrow 4 \cdot A^2 \cdot \left(\sin(\alpha)^2 - 1\right) \qquad \sin(\alpha)^2 - 1 \text{ simplify } \rightarrow -\cos(\alpha)^2$$

тогда

$$\frac{2 \cdot A \cdot B \cdot \sqrt{-A^2 \cdot \cos(\alpha)^2 + B^2 \cdot \sin(\alpha)^2 + x^2}}{2 \cdot \left(A^2 \cdot \cos(\alpha)^2 - B^2 \cdot \sin(\alpha)^2\right)}$$

тогда первый элемент вектора примет вид

$$\frac{\left(A^2+B^2\right)\cdot\sin(2\cdot\alpha)}{2\cdot\left(A^2\cdot\cos(\alpha)^2-B^2\cdot\sin(\alpha)^2\right)}\cdot x-\frac{A\cdot B\cdot\sqrt{-A^2\cdot\cos(\alpha)^2+B^2\cdot\sin(\alpha)^2+x^2}}{A^2\cdot\cos(\alpha)^2-B^2\cdot\sin(\alpha)^2}$$

обозначим

$$fp(A,B,\alpha) := \left(A^2 \cdot \cos(\alpha)^2 + B^2 \cdot \sin(\alpha)^2\right)$$

$$\frac{\left(\text{A}^2-\text{B}^2\right)\cdot\sin(2\cdot\alpha)}{2\cdot\text{fp}(\text{A},\text{B},\alpha)}\cdot\left(\text{x}+\text{x}_{\text{c}}\right)+\text{y}_{\text{c}}+\frac{\text{A}\cdot\text{B}\cdot\sqrt{\text{fp}(\text{A},\text{B},\alpha)-\left(\text{x}-\text{x}_{\text{c}}\right)^2}}{\text{fp}(\text{A},\text{B},\alpha)}$$

Рис. А 32. Листинг программы расчета точек пересечения параболы и гиперболы. Часть 4 (Пример № 2.5)

Скопировать полученное выражение в функцию $f3(x,A,B,\alpha)$, $f4(x,A,B,\alpha)$ (в $f4(x,A,B,\alpha)$ поменять знак перед вторым элеменом)

функции для построения графика фигуры 2 (гиперболы)

$$f3(x\,,A\,,B\,,\alpha) := \frac{\left(A^2+B^2\right)\cdot\sin(2\cdot\alpha)}{2\cdot\left(A^2\cdot\cos(\alpha)^2-B^2\cdot\sin(\alpha)^2\right)}\cdot x - \frac{A\cdot B\cdot\sqrt{-A^2\cdot\cos(\alpha)^2+B^2\cdot\sin(\alpha)^2+x^2}}{A^2\cdot\cos(\alpha)^2-B^2\cdot\sin(\alpha)^2}$$

$$f4(x,A,B,\alpha) := \frac{\left(A^2 + B^2\right) \cdot \sin(2 \cdot \alpha)}{2 \cdot \left(A^2 \cdot \cos(\alpha)^2 - B^2 \cdot \sin(\alpha)^2\right)} \cdot x + \frac{A \cdot B \cdot \sqrt{-A^2 \cdot \cos(\alpha)^2 + B^2 \cdot \sin(\alpha)^2 + x^2}}{A^2 \cdot \cos(\alpha)^2 - B^2 \cdot \sin(\alpha)^2}$$

Координаты центра гиперболы

$$XY_g := \begin{pmatrix} x1_g \\ y1_g \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

2. Рассчитать точки пересечения фигуры 1 и фигуры 2 с использованием аналитического описания фигур и метода Квази- Ньютон

Использовать блок Given-Find

Исходные параметры фигур
$$A1 = -1.5 \qquad \beta1 = 45.^{\circ} \qquad \qquad XY_p = \binom{5}{3} \qquad \text{фигура 1 (парабола)}$$

$$A2 = 3$$
 $B2 = 4$ $\gamma 1 = 45.$ ° $XY_g = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ фигуру 2 (гипербола)

$$xn := \begin{pmatrix} 4 \\ -1 \\ -3 \\ 2 \end{pmatrix} \qquad yn := \begin{pmatrix} 1 \\ -4 \\ 0 \\ 2 \end{pmatrix}$$

Given

$$\left[-\left(xn-x1_p\right)\cdot\sin(\beta1)+\left(yn-y1_p\right)\cdot\cos(\beta1)\right]^2-A1\cdot\left[\left(xn-x1_p\right)\cdot\cos(\beta1)+\left(yn-y1_p\right)\cdot\sin(\beta1)\right]=0$$

$$\frac{\left(xn\cdot\cos(\gamma 1)+yn\cdot\sin(\gamma 1)\right)^2}{A2^2}-\frac{\left(-xn\cdot\sin(\gamma 1)+yn\cdot\cos(\gamma 1)\right)^2}{B2^2}-1=0$$

Рис. А 33. Листинг программы расчета точек пересечения параболы и гиперболы. Часть 5 (Пример № 2.5)

XYint := Find(xn, yn)
$$XYint^{T} = \begin{bmatrix} 4.863 \\ 0.261 \\ -4.056 \\ 1.739 \end{bmatrix} \begin{pmatrix} 0.496 \\ -7.408 \\ -0.828 \\ 2.546 \end{pmatrix}$$

Для использования нелинейного метода Квази- Ньютон при решении системы нелинейных уранений необходимо:

- щелкнуть правой кнопкой мышки на функции Find(xn,yn);
- из контексного списка выбрать строку Нелинейные;
- из списка выбрать строку Метод Квази- Ньютон

Вывод: координаты точек пересечения фигур
$$XYint^T = \begin{bmatrix} 4.863 \\ 0.261 \\ -4.056 \\ 1.739 \end{bmatrix} \begin{bmatrix} 0.496 \\ -7.408 \\ -0.828 \\ 2.546 \end{bmatrix}$$

Первый элемент блочного векторы x - координаты двух точек, второй элемент - y- координаты двух точек.

Точки пересечения фигур:

3. Расчет значений функций, описывающих графики фигур 1 и 2, координат точек через которые они проходят

3.1. Расчет векторов для построения графиков фигур

$$x_{min} := -10$$
 $x_{max} := 10$ $\Delta x := 0.01$ минимум, максимум и шаг расчета
$$N1 := \frac{x_{max} - x_{min}}{\Delta x}$$
 количество точек расчета $i := 0...N1$

 $xx_i \coloneqq x_{min} + i \cdot \Delta x$ вектор абсцисс графиков для всех фигур

Рис. А 34. Листинг программы расчета точек пересечения параболы и гиперболы. Часть 6 (Пример № 2.5)

$$yy1 := \overrightarrow{f1}(xx, A1, \beta1, x1_p, y1_p) \qquad yy2 := \overrightarrow{f2}(xx, A1, \beta1, x1_p, y1_p) \qquad \text{ординаты фигуры 1}$$

$$yy3 := \overrightarrow{f3}(xx, A2, B2, \gamma1) \qquad yy4 := \overrightarrow{f4}(xx, A2, B2, \gamma1) \qquad \text{ординаты фигуры 2}$$

$$\textbf{3.2. Koopдины точек через которые проходят фигуры}$$

$$\textbf{Функция для создания блочного вектора из двух элементов: первый элемент х-координаты двух точек, второй элемент - у - координаты двух точек. на входе: координаты двух точек в виде двух отдельных векторов
$$\textbf{b} \bot \textbf{v}(\textbf{f1}, \textbf{f2}) := \begin{array}{c} \textbf{vx} \leftarrow \begin{pmatrix} f1_0 \\ f2_0 \end{pmatrix} \\ \textbf{vy} \leftarrow \begin{pmatrix} vx \\ yy \end{pmatrix} \\ \textbf{vxy} \leftarrow \begin{pmatrix} vx \\ vy \end{pmatrix} \\ \textbf{vy} = \begin{pmatrix} 0 \\ 3 \end{pmatrix} \qquad \textbf{Фигура 2 гипербола} \qquad XY_g = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\textbf{Фигура 1} \qquad \textbf{4} \qquad \textbf{4} \qquad \textbf{4} \qquad \textbf{4} \qquad \textbf{4} \qquad \textbf{4} \\ \textbf{3} \qquad \textbf{4} \qquad \textbf{4} \qquad \textbf{4} \\ \textbf{4} \qquad \textbf{4} \qquad \textbf{4} \\ \textbf{4} \qquad \textbf{4} \qquad \textbf{4} \\ \textbf{4} \qquad \textbf{4} \\ \textbf{4} \qquad \textbf{4} \\ \textbf{5} \qquad \textbf{5} \qquad \textbf{5} \qquad \textbf{5} \qquad \textbf{5} \qquad \textbf{5} \\ \textbf{5} \qquad \textbf{5} \\ \textbf{5} \qquad \textbf{5} \\ \textbf{5} \qquad \textbf{5} \\ \textbf{5} \qquad \textbf{5} \\ \textbf{5} \qquad \textbf{5} \qquad$$$$

Рис. А 35. Листинг программы расчета точек пересечения параболы и гиперболы. Часть 7 (Пример № 2.5)

ПРИЛОЖЕНИЕ Б. СПИСОК ПРИМЕРОВ

Іример № 2.1. Найти точки пересечения прямой и круга	19	
Пример № 2.2. Найти точки пересечения прямой и круга		
Пример № 2.3. Найти точки пересечения прямой и эллипса		
Пример № 2.4. Найти точки пересечения гиперболы и эллипса		
Пример № 2.5. Найти точки пересечения параболы и гиперболы		

Рыков Сергей Алексеевич Кудрявцева Ирина Владимировна Рыков Сергей Владимирович Пеленко Валерий Викторович

Решение систем уравнений в примерах в пакете MathCAD 15. Ч. II. Нелинейные уравнения. Пересечение фигур

Учебно-методическое пособие

В авторской редакции Редакционно-издательский отдел Университета ИТМО Зав. РИО Н.Ф. Гусарова Подписано к печати Заказ N_{\odot} Тираж Отпечатано на ризографе

Редакционно-издательский отдел Университета ИТМО

197101, Санкт-Петербург, Кронверкский пр., 49, литер А