# МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

# САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

Кафедра Мехатронки

В.Д.Брицкий, Б.П.Тимофеев

# КИНЕМАТИЧЕСКИЙ И ДИНАМИЧЕСКИЙ АНАЛИЗ МАНИПУЛЯЦИОННОЙ СИСТЕМЫ РОБОТА

Методические указания к выполнению курсового проекта



Санкт- Петербург 2004

УДК 621,865; 621,882

Брицкий В.Д., Тимофеев Б.П. Кинематический и динамический анализ манипуляционной системы робота /Методические указания к выполнению курсового проекта. – СПб: СПбГУ ИТМО, 2004. - 19 с.

Методические указания содержат сведения по решения задач, возникающих при кинематическом и динамическом анализе и синтезе мехатронных систем на примере манипуляционной системы робота, используя матричные методы исследования. Расчет дифференциальных уравнений движения звеньев робота представлен в форме Аппеля. Матричные преобразования формализовали процесс определения скоростей и ускорений звеньев и точек манипуляционной системы робота.

Методические указания адресованы студентам специальностей направления «652000 — Мехатроника и робототехника», изучающим дисциплину «Проектирование мехатронных систем».

© Санкт-Петербургский государственный университет информационных технологий, механики и оптики 2004

© В.Д.Брицкий Б.П.Тимофеев 2004

#### ЦЕЛЬ И ОБЪЕМ РАБОТЫ

Цель курсового проекта - изучение методик и получение навыков решения - задач, возникающих при кинематическом и динамическом анализе и синтезе - мехатронных систем на примере исследования манипуляционной системы робота.

Содержание пояснительной записки.

- 1. Описание манипуляционной системы робота.
- 2. Кинематическое исследование.
- 2.1. Выбор систем координат и обобщенных параметров движения.
- 2.2. Функции положения робота.
- 2.3. Матрицы аналога скорости.
- 2.4. Матрицы аналога ускорения.
- 2.5. Угловые скорости и ускорения исполнительных звеньев.
- 2.6. Скорости и ускорения точек звеньев робота.
- 3. Динамическое исследование.
- 3.1. Тензоры инерции звеньев.
- 3.2. Частные производные энергии ускорения звеньев.
- 3.3. Составляющие обобщенных сил.
- 3.4. Уравнения движения звеньев робота.
- 4. Расчет параметров движения звеньев
- 4.1. Расчет тензоров инерции звеньев.
- 4.2. Расчет периодов движения звеньев.
- 4.3. Выбор двигателей.
- 5. Исследование парциальных движений.
- 5.1. Вывод и расчет параметров уравнений парциального движения.
- 5.2. Расчет динамических ошибок.

Проект оформляется как текстовый конструкторский документ по правилам ЕСКД с титульным листом, содержанием и списком литературы.

Техническое задание проекта оформляется отдельным листом и вставляется в пояснительную записку перед содержанием как страница 2.

При выполнении проекта рекомендуется использовать матричные методы исследования [1]. В приложении 1 приведены основные векторные матричные операции.

# 1. ОПИСАНИЕ МАНИПУЛЯЦИОННОЙ СИСТЕМЫ РОБОТА

Вычертить в соответствии с техническим заданием кинематическую схему - манипуляционной системы робота, соблюдая пропорциональность его конструктивных размеров. Описать робот.

# 2. КИНЕМАТИЧЕСКОЕ ИССЛЕДОВАНИЕ

#### 2.1. Выбор систем координат и обобщенных параметров движения

Манипуляционная система робота состоит из п звеньев, последовательно соединенных вращательной или поступательной кинематической парой. На рис. 1 условно изображена кинематическая схема робота, где в точках О, А, В,..., F могут быть вращательная или поступательная пары, произвольно расположенные относительно друг друга. Звено 1 соединено со стойкой робота (неподвижное звено). Захват робота установлен на п-ом звене, центр захвата (полюс) - точка М.

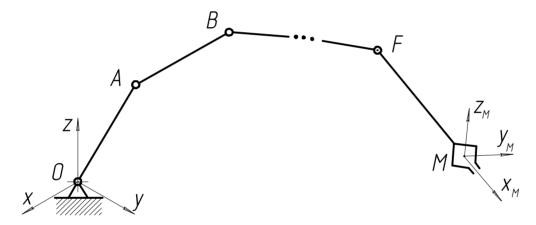



Рис. 1. Кинематическая схема робота

С каждым звеном связывается трехгранник (локальная система координат). Вершина трехгранника определяет положение звена, ребра трехгранника (оси системы координат) - его ориентацию. То есть реальное движение звена можно однозначно представить движением локальной системы координат, связанной жестко со звеном.

Кинематическая схема манипуляционной системы робота вычерчивается в изометрии, с каждым звеном связать локальную систему координат и задать параметры (обобщенные координаты)  $q_j$ , j=1,...,n, определяющие положение двух последовательно соединенных звеньев. Здесь n- число степеней подвижности робота ( $n \le 6$ ).

Составить прямые  $A_{j(j-1)}(q_j)$  и обратные  $A_{(j-1)j}(q_j)$  матрицы связи между системами координат двух последовательно соединенных звеньев j=1,...,n (см. приложение 1).

#### 2.2. Функции положения робота

Робот предназначен для управляемого перемещения объектов. Следовательно, в данный момент времени и для данного положения робота нам известно положение и ориентация объекта, которые задаются в неподвижной системе координат  $S_c$  координатами  $x_d$ ,  $y_d$ ,  $z_d$  и углами Эйлера  $\phi_d$ ,  $\Theta_d$ ,  $\phi_d$ . Через данные параметры устанавливается матрица связи между неподвижной системой  $S_c$  и системой координат  $S_m$ , связанной с центром M схвата робота .

$$A_{cM} = A_{cM}(x_d, y_d, z_d, \phi_d, \Theta_d, \phi_d)$$

С другой стороны эту связь можно установить через локальные системы координат робота

$$A_{cM} = A_{c1}(q_1)A_{12}(q_2)...A_{(n-1)n}(q_n)A_{nM} = A_{cM}(q_1, q_2, ..., q_n).$$

Приравняв данные матрицы, получим систему уравнений для определения функций положения робота

$$q_j = q_j(x_d, \ y_d, \ z_d \ , \ \phi_d \ , \ \Theta_d \ , \ \phi_d), \qquad \qquad j = 1,...,n.$$

В общем случае из сравнения матриц получим 9 уравнений, но независимых уравнений будет равно n.

#### 2.3. Матрицы аналога скорости

Рассмотрим произвольную точку К звено j, будем считать, что координаты ее радиуса-вектора  $\bar{r}_i^{Kj}$  в локальной системе координат звена нам известны (см.

Приложении 1. Векторные матричные операции). Проекции радиусавектора этой точки в неподвижной системе координат  $S_{\rm c}$ 

$$\bar{r}^{Kj} = A_{c1}(q_1)A_{12}(q_2)...A_{(j-1)j}(q_j)\bar{r}_j^{Kj} = A_{cj}(q_1, q_2, ..., q_j)\bar{r}_j^{Kj}.$$

Обратное преобразование имеет вид

$$\bar{r}_{i}^{Kj} = A_{i(j-1)}(q_{i})...A_{21}(q_{2})A_{1c}(q_{1})\bar{r}^{Kj} = A_{ic}(q_{1},q_{2},...,q_{j})\bar{r}^{Kj}$$
.

Скорость точки K звена j в неподвижной системе координат  $S_{c}$ 

$$\overline{V}^{\,\mathit{K}\!\mathit{j}} = \sum_{i=1}^{j} \dot{q}_{\,i} L_{V,i} \overline{r}^{\,\mathit{K}\!\mathit{j}} \ ,$$

где  $L_{V,i}=rac{\partial A_{ci}}{\partial q_i}\,A_{ic}$  – матрица аналога скорости, блочная структура которой

$$L_{V,i} = \begin{bmatrix} L_{\omega,i} & \overline{V}^{Oi} \\ 0 & 0 \end{bmatrix}$$
.

Матрица  $L_{\omega,i}$  - матрица аналога угловой скорости системы координат S  $_i$  , а  $\overline{V}^{Oi}$  - матрица аналога скорости перемещения этой системы координат.

# 2.4. Матрицы аналога ускорения

Ускорение точки K звена j в неподвижной системе координат S<sub>c</sub>

$$\overline{a}^{Kj} = \frac{\partial \overline{V}^{Kj}}{\partial t} = \sum_{i=1}^{j} \left( \ddot{q}_i L_{V,i} + \dot{q}_i \dot{q}_i L_{n,i} + \sum_{k=1}^{i-1} \dot{q}_i \dot{q}_c 2L_{c,ik} \right) \overline{r}^{Kj} ,$$

где матрица аналога нормального ускорения

$$L_{n,i} = L_{V,i} L_{V,i} ,$$

матрица аналога кариолиссова ускорения

$$2L_{c,ik} = \frac{\partial L_{V,i}}{\partial q_k} + L_{V,i}L_{V,k} + L_{V,k}L_{V,i}$$
 .

# 2.5. Угловые скорости и ускорения исполнительных звеньев

Угловую скорость звена j задавать в скалярной и векторной формах (см. приложение 1)

$$\begin{split} &\overline{\Omega}^{j} = \begin{bmatrix} \Omega_{x}^{j} \\ \Omega_{y}^{j} \\ \Omega_{z}^{j} \end{bmatrix} = \sum_{i=1}^{j} \dot{q}_{i} \overline{\omega}_{i} = \sum_{i=1}^{j} \dot{q}_{i} \begin{bmatrix} \omega_{ix} \\ \omega_{iy} \\ \omega_{iz} \end{bmatrix}, \\ &L_{\overline{\Omega}j} = \begin{bmatrix} 0 & -\Omega_{z}^{j} & \Omega_{y}^{j} \\ \Omega_{z}^{j} & 0 & -\Omega_{x}^{j} \\ -\Omega_{y}^{j} & \Omega_{x}^{j} & 0 \end{bmatrix} = \sum_{i=1}^{j} \dot{q}_{i} L_{\omega,i} = \sum_{i=1}^{j} \dot{q}_{i} \begin{bmatrix} 0 & -\omega_{iz} & \omega_{iy} \\ \omega_{iz} & 0 & \omega_{iz} \\ -\omega_{iy} & \omega_{ix} & 0 \end{bmatrix}. \end{split}$$

Матрица  $L_{\omega,i}$  определяется из матрицы аналога скорости L  $_{\mathrm{V},\mathrm{i}}$  (см. ее блочную структуру).

Угловое ускорение звена ј

$$\overline{E}^{j} = \frac{\partial \overline{\Omega}^{j}}{\partial t} = \sum_{i=1}^{j} \left( \ddot{q}_{i} \overline{\omega}_{i} + \sum_{k=1}^{j-1} \dot{q}_{i} \dot{q}_{k} \overline{e}_{ik} \right), \qquad \overline{e}_{ik} = \frac{\partial \overline{\omega}_{i}}{\partial q_{k}},$$

# 2.6. Скорости и ускорения точек звеньев робота

При динамическом исследовании требуется определить скорости и ускорения конструктивных точек робота, к которым относятся:

- центры С масс звеньев,
- точек К приложения внешних сил,
- центр М захвата робота.

# 3. ДИНАМИЧЕСКОЕ ИССЛЕДОВАНИЕ

#### 3.1. Тензоры инерции звеньев

Тензор инерции твердого тела

$$\begin{split} \Theta &= \begin{bmatrix} J_{x} & -J_{xy} & -J_{xz} \\ -J_{yx} & J_{y} & -J_{yz} \\ -J_{zx} & -J_{zy} & J_{z} \end{bmatrix}, \\ J_{x} &= \int (y^{2} + z^{2}) dm, \qquad J_{xy} = J_{yx} = \int xy dm, \\ J_{y} &= \int (z^{2} + x^{2}) dm, \qquad J_{xz} = J_{zx} = \int xz dm, \\ J_{z} &= \int (x^{2} + y^{2}) dm, \qquad J_{yz} = J_{zy} = \int yz dm. \end{split}$$

Тензор инерции звена j относительно осей, проходящих через центр масс звена и параллельных осям локальной системы координат  $S_j$ , принимать в виде (только для упрощения расчетов в данном курсовом проекте считаем эти оси главными центральными осями инерции звена)

$$\Theta_{j}^{Cj} = \begin{bmatrix} J_{xj} & 0 & 0 \\ 0 & J_{yj} & 0 \\ 0 & 0 & J_{zj} \end{bmatrix}.$$

Тензор инерции звена j относительно осей, параллельных осям неподвижной системы координат  $S_c$  и проходящих через центр масс звена -

$$\Theta^{Cj} = H_{cj}\Theta_j^{Cj}H_{jc}.$$

(см. структуру матрицы связи между системами координат, приложение 1).

# 3.2. Частные производные энергии ускорения звена

Энергия ускорения звена ј как твердого тела

$$S_{j} = \frac{1}{2} m_{j} \overline{a}^{CJ^{\mathsf{T}}} \overline{a}^{CJ} + \frac{1}{2} \overline{E}^{j^{\mathsf{T}}} \Theta^{Cj} \overline{E}^{j} + \overline{E}^{j^{\mathsf{T}}} \left( L_{\Omega j} \Theta^{Cj} \overline{\Omega}^{j} \right),$$

где  $m_j$  -масса звена,  $\Theta^{Cj}$  -тензор инерции звена,  $\overline{a}^{Cj}$  - ускорение центра масс звена,  $\overline{\Omega}^{\,j}$  - угловая скорость звена,  $\overline{E}^{\,j}$  - угловое ускорение. Все параметры задаются в неподвижной системе координат.

Частная производная энергии ускорения звена ј

$$\frac{\partial S_{j}}{\partial \ddot{q}_{k}} = m_{j} \left( L_{V,k} \bar{r}^{Cj} \right)^{\mathrm{T}} \bar{a}^{Cj} + \overline{\omega}_{k}^{\mathrm{T}} \left( \Theta^{Cj} \overline{E}^{j} \right) + \overline{\omega}_{k}^{\mathrm{T}} \left( L_{\Omega j} \Theta^{Cj} \overline{\Omega}^{j} \right).$$

#### 3.3. Составляющие обобщенных сил

Каждой обобщенной координате  $q_k$  (k=1,...,n) манипуляционной системы соответствует своя обобщенная сила  $F_k$ , которую представим в виде

$$F_k = Q_k + \sum_{k=1}^j F_{kj} ,$$

где  $Q_k$  -обобщенная движущая сила звена k,  $F_{kj}$  - составляющая обобщенной силы от внешних сил, действующих на звено j.

Внешние силы и моменты сил, действующие на звено j, заменяются - главным вектором силы  $\overline{F}^{\ j}$ , главным моментом сил  $\overline{M}^{\ j}$ , приведенные к произвольно выбранной точке  $K_j$ . Составляющая обобщенной силы от данных сил

$$F_{kj} = \left(L_{V,k} \bar{r}^{Kj}\right)^{\mathrm{T}} \bar{F}^{j} + \bar{\omega}_{k}^{\mathrm{T}} \bar{M}^{j},$$

где проекции векторов сил и радиуса-вектора  $\bar{r}^{Pj}$  точки  $P_j$  задаются в неподвижной системе координат  $S_c$ .

## 3.4. Уравнения движения звеньев

Уравнения движения исполнительных звеньев манипуляционной системы робота запишем в форме Аппеля

$$rac{\partial S}{\partial \ddot{q}_k} = F_k$$
 ,

которое преобразуется к виду

$$Q_k = \sum_{j=k}^n \left( \frac{\partial S_j}{\partial \dot{q}_k} - F_{kj} \right)$$
 k=1,..., n.

Данные дифференциальные уравнения тождественны уравнениям, полученным из уравнений Лагранжа второго рода.

# 4. РАСЧЕТ ПАРАМЕТРОВ ДВИЖЕНИЯ ЗВЕНЬВ

#### 4.1 Расчет тензоров инерции звеньев

Исполнительные звенья принимать как стержни круглого или

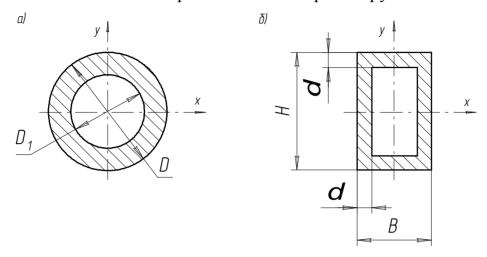



Рис. 2. Поперечное сечение исполнительного звена

прямоугольного сечения длиной l (рис. 2), момент инерции которого относительно осей x и y

$$J_x = J_y = \frac{1}{12}ml^2$$
.

Момент инерции относительно оси z (перпендикулярной плоскости чертежа) для стержней

а) круглого сечения

$$J_z = \frac{\pi}{32} \gamma \left( D^4 - D_1^4 \right) \cdot l ,$$

б) прямоугольного сечения

$$J_z = \frac{1}{12} \gamma \Big[ HB \Big( H^2 + B^2 \Big) - hb \Big( h^2 + b^2 \Big) \Big] \cdot l ,$$

$$h=H-2\delta$$
,  $b=B-2\delta$ ,

где ү - плотность материала звена, т - масса звена.

Размеры поперечного сечения звена определить из условия прочности и жесткости или задать конструктивно.

# 4.2. Расчет периодов движения звеньев

В курсовом проекте решается задача позиционирования. В момент времени  $t=t_0$  задается начальное положение переносимого объекта, в момент времени  $t=t_1$  - конечное положение. Перемещение совершается за период  $T=t_1-t_0$ .

Используя функции положения робота, определить интервал изменения каждой обобщенной координаты

$$q_j \in [q_{j0}, q_{j1}],$$
  $j=1,..., n.$ 

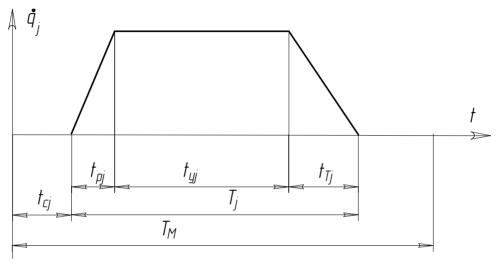



Рис. 3. Закон изменения скорости

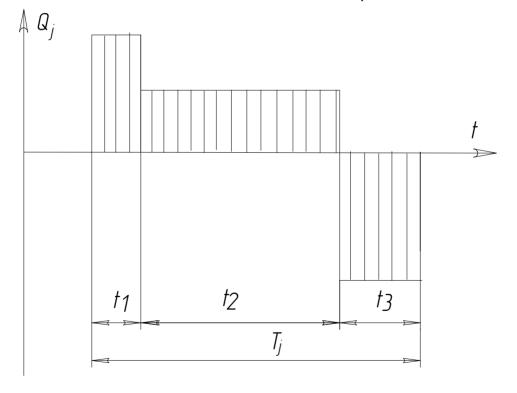



Рис. 4. Закон изменения обобщенной движущей силы

Движение по каждой координате совершается при следующих исходных данных

$$\dot{q}_{i}(t_{0}) = \dot{q}(t_{1}) = 0$$
,  $\ddot{q}_{i}(t_{0}) = \ddot{q}_{i}(t_{1}) = 0$ .

Время  $T_j$  перемещения звена j складывается из времени разгона  $t_{pj}$ , времени  $t_{yj}$  установившего движения с номинальной скоростью  $\dot{q}_{j0}$  (задается в исходных данных) и времени торможения  $t_{tj}$  (рис. 3).

Выбрать траекторию перемещения объекта, т.е. установить последовательность перемещения исполнительных звеньев и задать для каждого звена время смещения  $t_{ci}$  начала движения относительно времени  $t_0$ .

# 4.3. Выбор двигателей

По уравнениям движения исполнительных звеньев рассчитать обобщенные движущие  $Q_j$  (j=1,...,n) и построить графики их изменения (рис. 4). При расчете не требуется высокая точность, поэтому при разгоне и торможении принять линейный закон изменения скорости ( $\ddot{q}_j = \dot{q}_{j0} / t_{pj} = const$ ).

Эквивалентная обобщенная сила

$$\mathbf{Q}_{\mathrm{j}\; \scriptscriptstyle \mathrm{9KB}} \! = \sqrt{{Q_{j,i}}^2 t_i \;\; /T_j} \;\; . \label{eq:Qj}$$

Эквивалентная мощность на исполнительном звене

$$P_{i \ni KB} = Q_{i \ni KB} \dot{q}_{i0}$$
.

Номинальная мощность двигателя

$$P_{j H} = (1,0...1,6) P_{j 3KB} / \eta_{j},$$

где  $\eta_i$  - коэффициент полезного действия передаточного механизма.

По номинальной мощности выбрать тип двигателя и определить его характеристики: мощность  $P_{jH}$ , номинальная частота вращения  $\omega_{jH}$ , номинальный движущий момент  $D_{jH}$ , пусковой движущий момент  $D_{jP}$  (частота вращения холостого хода  $\omega_{jX}$ ), момент инерции ротора  $J_{jd}$ , электромеханическая постоянная времени  $\tau_i$ .

Передаточное отношение передаточного механизма  $i_{im} = \omega_{iH}/\dot{q}_{i0}$  .

Коэффициент крутизны статической характеристики двигателя  $k_i = (D_{iP} - D_{iH})/\omega_{iH}$  или  $k = D_{iH}/(\omega_{iX} - \omega_{iH})$ .

# 5. ИССЛЕДОВАНИЕ ПАРЦИАЛЬНЫХ ДВИЖЕНИЙ

#### 5.1. Вывод и расчет параметров уравнений парциального движения

Парциальное движение - программное движение робота, при котором изменяется только одна из обобщенных координат

 $q_j = q_j(t)$ ,

 $q_i$ =Const, i=1,...,(j-1),(j+1),...,n.

Это движение можно представить как движение механизма, состоящего из двигателя 1, передаточного механизма 2 и исполнительного звена 3 (рис. 5).

Движущую силу Q звена (см. уравнения движения звеньев) представим в виде  $Q=J_q\ddot{q}_i+F_0+F_v(q,\ \dot{q}_i)$ .

Уравнение движения механизма

 $J_m \ddot{\varphi} = D - Q/i_m$ 

 $D+\tau \dot{D}=S\cdot u-k\dot{\phi}$ ,

 $\varphi = i_m q$ ,

где  $J_m$ = $J_0$ + $J_\pi$ ,  $J_0$  - момент инерции ротора двигателя,  $J_\pi$  - приведенный момент инерции передаточного механизма.

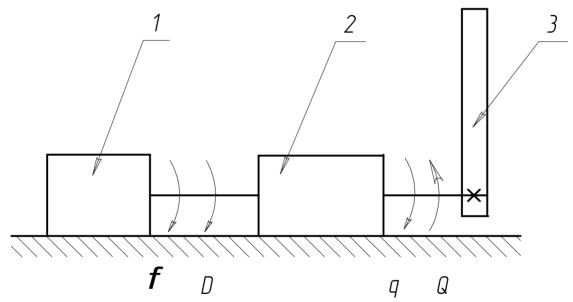



Рис. 5. Структурная схема привода исполнительного звена

Вращающий момент двигателя представим как сумму постоянной и переменной составляющих

 $D=D_0+D_v$ 

и примем  $D_0=F_0/i_m$ .

Будем считать, что задан закон программного парциального движения вена

 $q_{\Pi}=q_{\Pi}(t)$ 

и требуется определить динамическую ошибку парциального движения  $\phi=q-q_{\pi}$ .

Принять закон управления двигателем  $Su=ki_m \ \dot{q}_\pi + F_0/i_b.$  Введя обозначения  $J=J_q+J_m.i_mi_m.$   $g=\dot{\phi}\ .$  представим уравнения движения в форме Коши  $D_v=-[D_v+i_m \ k\, \mathcal{G}\ ]/\tau$   $\dot{\mathcal{G}}=[D_vi_m-Q_v]/J-q_\pi$   $\Psi=\mathcal{G}\ .$ 

#### 5.2. Расчет динамических ошибок

Цель исследования - из решения дифференциальных уравнений движения определить закон изменения

- переменной составляющей вращающего момента двигателя  $D_v = D_v(t)$ ,
- динамическую ошибку скорости движения исполнительного звена 9=9 (t),
- динамическую ошибку положения исполнительного звена  $\phi = \phi(t)$ , за время  $t \in [0, T]$  при различных законах программного парциального лвижения.

Исходные данные для расчета:

- момент инерции J механизма приведенный к исполнительному звену,
- передаточное отношение i<sub>m</sub> механизма,
- коэффициент крутизны к статической характеристики двигателя,
- электромеханическая постоянная времени т двигателя.

В таблице приведены "стандартные" законы изменения ускорения и законы движения. Расчет провести для каждого из приведенных законов движения и оценить влияние жестких и мягких ударов на динамические ошибки.

В приложении 2 приведена инструкция исследования парциальных движений с помощью пакета MATLAB.

Таблица. Законы изменения ускорения и законы движения.

| N.C. | Таблица. Законы изменения ускорения и законы движения                                                                              |                                                                                                                                            |  |  |
|------|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| №    | Расчетные формулы и параметры                                                                                                      |                                                                                                                                            |  |  |
| ПП   | Разгон                                                                                                                             | Торможение                                                                                                                                 |  |  |
| 1    | $\ddot{q} = a_1$                                                                                                                   | $\ddot{q} = -a_1$                                                                                                                          |  |  |
|      |                                                                                                                                    | $\dot{q} = \dot{q}_0 - a_1 t$ , $a_1 = \dot{q}_0 / t_0$                                                                                    |  |  |
|      | $q = a_1 t^2 / 2$ , $q_0 = \dot{q}_0 t_0 / 2$                                                                                      | $q = \dot{q}_0 t - a_1 t^2 / 2$ , $q_0 = \dot{q}_0 t_0 / 2$                                                                                |  |  |
| 2    | $\ddot{q} = a_2 \cos\left(\frac{\pi}{2t_0}t\right), \qquad a_2 = \frac{q_0}{t_0}\frac{\pi}{2}$                                     | $\ddot{q} = -a_2 \cos\left(\frac{\pi}{2t_0}t\right),  a_2 = \frac{q_0}{t_0}\frac{\pi}{2}$                                                  |  |  |
|      | $\dot{q} = \dot{q}_0 \cdot \sin\left(\frac{\pi}{2t_0}t\right), \qquad q_{0x} = \dot{q}_0 t_{00} \cdot \frac{2}{\pi}$               | $\dot{q} = \dot{q}_0 \left[ 1 - \sin \left( \frac{\pi}{2t_0} t \right) \right],$                                                           |  |  |
|      |                                                                                                                                    | $q_{0x} = \dot{q}_0 t_{\cdot 0} \frac{2}{\pi}$                                                                                             |  |  |
|      | $q_0 = q_{0x} \left[ 1 - \cos \left( \frac{\pi}{2t_0} t \right) \right],  q_0 = q_{0x}$                                            | $q_0 = \dot{q}_o t - q_{0x} \left[ 1 - \cos \left( \frac{\pi}{2t_0} t \right) \right],$                                                    |  |  |
|      |                                                                                                                                    | $q_0 = \dot{q}_0 t - q_{0x}$                                                                                                               |  |  |
| 3    | $\ddot{q} = a_3 \sin\left(\frac{\pi}{t_0}t\right),$                                                                                | $\ddot{q} = -a_3 \sin\left(\frac{\pi}{t_0}t\right)$                                                                                        |  |  |
|      | $ \dot{q} = \frac{\dot{q}_0}{2} \left[ 1 - \cos\left(\frac{\pi}{t_0}t\right) \right],  a_3 = \frac{\dot{q}_0}{t_0} \frac{\pi}{2}$  | $\dot{q} = \frac{\dot{q}_0}{2} \left[ 1 + \cos\left(\frac{\pi}{t_0}t\right) \right], \qquad a_3 = \frac{\dot{q}_0}{t_0} \frac{\pi}{2}$     |  |  |
|      | $q = \frac{\dot{q}_0}{2} \left[ t - \frac{t_0}{\pi} \sin \left( \frac{\pi}{t_0} t \right) \right],  q_0 = \frac{\dot{q}_0 t_0}{2}$ | $q = \frac{\dot{q}_0}{2} \left[ t + \frac{t_0}{\pi} \sin \left( \frac{\pi}{t_0} t \right) \right],  q_0 = \frac{\dot{q}_0 t_0}{2}$         |  |  |
| 4    | $\ddot{q} = \frac{a_4}{2} \left[ 1 - \cos\left(\frac{2\pi}{t_0}t\right) \right]$                                                   | $\ddot{q} = -\frac{a_4}{2} \left[ 1 - \cos\left(\frac{2\pi}{t_0}t\right) \right]$                                                          |  |  |
|      | $\dot{q} = \dot{q}_0 \left[ \frac{t}{t_0} - \frac{1}{2\pi} \sin\left(\frac{2\pi}{t_0}t\right) \right],$                            | $\dot{q} = \dot{q}_0 \left[ 1 - \frac{t}{t_0} + \frac{1}{2\pi} \sin\left(\frac{2\pi}{t_0}t\right) \right],$                                |  |  |
|      | $a_4 = \frac{\dot{q}_0}{t_0} 2$                                                                                                    | $a_4 = \frac{\dot{q}_0}{t_0} 2$                                                                                                            |  |  |
|      | $q = \frac{\dot{q}_0 t^2}{2t_0} - \frac{\dot{q}_0 t_0}{(2\pi)^2} \left[ 1 - \cos\left(\frac{2\pi}{t_0}t\right) \right],$           | $q = \dot{q}_0 t \left( 1 - \frac{t}{2t_0} \right) - \frac{\dot{q}_0 t_0}{(2\pi)^2} \left[ 1 - \cos\left(\frac{2\pi}{t_0}t\right) \right]$ |  |  |
|      | $q_0 = \frac{\dot{q}_0 t_0}{2}$                                                                                                    |                                                                                                                                            |  |  |

#### ЛИТЕРАТУРА

- 1. Коловский М.З., Слоуш А.В. Основы динамики промышленных роботов. М., Наука, 1988.
- 2. Лурье А.И Аналитическая механика. -М., Физмат гиз, 1961.
- 3. Механика промышленных роботов: Учеб. пособие для вузов. / Под ред. К.В. Фролова, Е.И. Воробьева. Кн. 1: Кинематика и динамика /. М.; Высш. шк., 1988.

#### **ПРИЛОЖЕНИЕ**

#### 1. ВЕКТОРНЫЕ МАТРИЧНЫЕ ОПЕРАЦИИ

Координаты радиуса-вектора г точки и проекции вектора V в системе координат S(x, y, z)

$$ar{r_i} = egin{bmatrix} x_i \ y_i \ z_i \ 1 \end{bmatrix}$$
 ,  $ar{V_i} = egin{bmatrix} V_{xi} \ V_{yi} \ V_{zi} \ 0 \end{bmatrix}$  .

Скалярное произведение векторов  $c = \overline{a} \cdot \overline{b}$ :

$$c = \overline{a}^{\mathrm{T}} \cdot \overline{b} = \begin{bmatrix} a_x & a_y & a_z & 0 \end{bmatrix} \cdot \begin{bmatrix} b_x \\ b_y \\ b_z \\ 0 \end{bmatrix} = a_x b_x + a_y b_y + a_z b_z.$$

$$\overline{c} = L_a \overline{b} = \begin{bmatrix} 0 & -a_z & a_y \\ a_z & 0 & -a_x \\ -a_y & a_x & 0 \end{bmatrix} \cdot \begin{bmatrix} b_x \\ b_y \\ b_z \end{bmatrix} = \begin{bmatrix} a_y b_z - a_z b_y \\ a_z b_x - a_x b_z \\ a_x b_y - a_y b_x \end{bmatrix}.$$

Векторное произведение векторов  $f = [\overline{e}, \overline{a}, \overline{b}]$ :

$$f = [\overline{e}^{T} L_{a} \overline{b}] = [e_{x} \quad e_{y} \quad e_{z}] \begin{bmatrix} 0 & -a_{z} & a_{y} \\ a_{z} & 0 & -a_{x} \\ -a_{y} & a_{x} & 0 \end{bmatrix} \cdot \begin{bmatrix} b_{x} \\ b_{y} \\ b_{z} \end{bmatrix} = \begin{bmatrix} e_{x} (a_{y} b_{z} - a_{z} b_{y}) + \\ + e_{y} (a_{z} b_{x} - a_{x} b_{z}) + \\ + e_{z} (a_{x} b_{y} - a_{y} b_{x}) \end{bmatrix}.$$

Координаты радиуса-вектора точки и проекции вектора в системе координат  $\mathbf{S}_{\mathbf{j}}$   $(\mathbf{x}_{\mathbf{j}}\;,\;\mathbf{y}_{\mathbf{j}}\;,\;\mathbf{z}_{\mathbf{j}})$   $\overline{V}_{\mathbf{j}}=A_{\mathbf{j}i}\overline{V}_{\mathbf{i}}$  .

$$\bar{r}_j = A_{ji}\bar{r}_i$$
 ,  $\bar{V}_j = A_{ji}\bar{V}_i$ 

Матрица связи  $A_{ji}$  между системами координат, записанная в блочной форме

$$A_{ji} = \begin{bmatrix} H_{ji} & \overline{R}_{j}^{Oi} \\ O & 1 \end{bmatrix},$$

где  $\overline{R}_{i}^{oi}$  - радиус-вектор начала координат  $O_{i}$  системы  $S_{i}$  в системе  $S_{j}$ , [O]=[0]0 0] - нулевая строчная матрица.

Матрица Ніі имеет вид

$$H_{ji} = \begin{bmatrix} \cos(x_j \wedge x_i) & \cos(x_j \wedge y_i) & \cos(x_j \wedge z_i) \\ \cos(y_j \wedge x_i) & \cos(y_j \wedge y_i) & \cos(y_j \wedge z_i) \\ \cos(z_j \wedge x_i) & \cos(z_j \wedge y_i) & \cos(z_j \wedge z_i) \end{bmatrix}.$$

Матрица  $H_{ji}$  описывает ориентацию систем  $S_j$  и  $S_i$  относительно друг друга, вектор  $\overline{R}_i^{\mathit{Oi}}$  - смещение системы  $S_i$  относительно системы  $S_j$ .

## 2. ИССЛЕДОВАНИЕ ПАРЦИАЛЬНЫХ ДВИЖЕНИЙ РОБОТА С ПОМОЩЬЮ ПАКЕТА МАТLAB

## Инструкция пользователя

- 1. Запустить командную систему управления пакета MATLAB
- 2.Ввести команды
- » addpath s:\BVD\Mlab
- » edit pardvig.m
- 3.В файле-сценарии pardvig.m скорректировать значения элементов матриц A и B в соответствии с параметрами исследуемой системы

- 4. Coxpанить файл pardvig.m «FILE SAVE »
- 5. Запустить файл pardvig.m на выполнение « TOOL RUN»
- 6. Распечатать полученные графики «FILE-PRINT»

| No     | Закон изменения ускорения при |
|--------|-------------------------------|
| Figure | переходном режиме             |
| 1      | A=a <sub>0</sub> =const       |
| 2      | $A=a_0\cos(0.5\pi t/t_0)$     |
| 3      | $A=a_0\sin(\pi t/t_0)$        |
| 4      | $A=a_0[1-\cos(2\pi t/t_0)]$   |

#### СОДЕРЖАНИЕ

| Цель и объем работы                        |    |  |
|--------------------------------------------|----|--|
| 1. Описание манипуляционной системы робота | 4  |  |
| 2. Кинематическое исследование             | 4  |  |
| 3. Динамическое исследование               | 7  |  |
| 4. Расчет параметров движения звеньев      | 9  |  |
| 5. Исследование парциальных движений       | 12 |  |
| Литература                                 |    |  |
| Приложение                                 |    |  |
| 1.Векторные матричные операции             | 16 |  |
| 2. Исследование парциальных движений       | 17 |  |
| робота с помощью пакета MATLAB             |    |  |

# Виталий Давыдович Брицкий Борис Павлович Тимофеев КИНЕМАТИЧЕСКИЙ И ДИНАМИЧЕСКИЙ АНАЛИЗ МАНИПУЛЯЦИОННОЙ СИСТЕМЫ РОБОТА

Методические указания к выполнению курсового проекта

В авторской редакции

Комплексный набор, верстка, дизайн

В.Д.Брицкий

Редакционно-издательский отдел Санкт-Петербургского государственного университета информационных технологий, механики и оптики.

Зав. редакционно-издательским отделом

Н.Ф.Гусарова

Лицензия ИД № 00408 от 05.11.99

Подписано к печати 10.03.04

Отпечатано на ризографе

Заказ № 739

Тираж 100 экз.



# История кафедры

Кафедра Мехатроники, одна из старейших кафедр СПбГУ ИТМО, история которой начинается с 30-х годов XX века. Первое упоминание о прародительнице кафедры Мехатроники содержится в приказе № 18 от 3.10.1930 по Учебному комбинату точной механики и оптики: "доцент Замыцкий Н.Н. назначен с 1.10.1930 заведующим кафедрой Детали машин института точной механики и оптики". Важным этапом было существование в 30-х годах кафедры «Сопротивление материалов и детали машин», поскольку речь шла уже не только о выборе схемы устройства (машины, прибора), но и об определении размеров и формы деталей при прочностном расчете. Руководил кафедрой в то время виднейший ученый в области строительной механики Ягн Юлий Иванович.

С 1945 г. руководство кафедрой осуществляет Николай Иоасафович Колчин, крупнейший ученый механик в самом широком смысле этого слова. Он расширил и обогатил исследовательскую и преподавательскую деятельность кафедры методами Теории машин и механизмов. Нельзя не сказать, что Н.И. Колчин был в той или иной мере учителем трех последующих заведующих кафедрой – Ф.Л. Литвина, К.И. Гуляева и ныне возглавляющего кафедру Мехатроники Б.П. Тимофеева.

С 1951 года, заведующим кафедрой Теории механизмов и деталей машин, становится Рифтин Л.П. Именно в этот момент учебная и научная деятельность кафедры приобрела черты синтетической научной дисциплины, где выбор схем машины, прибора, устройства сопровождался учетом не только геометро-кинематических, но и динамических, прочностных характеристик.

1964 год: "Ректорат и Совет ЛИТМО поручили профессору Литвину Ф.Л. провести реорганизацию кафедры Теории механизмов и деталей машин в кафедру приборостроительного типа, закладывающую основы конструкторской подготовки специалистов, выпускаемых ЛИТМО". Во время заведования кафедрой Литвиным Ф.Л. была создана лабораторная база с оригинальными лабораторными установками, написаны многочисленные методические пособия, разработаны и изготовлены учебные стенды, макеты устройств и прозрачные модели, отвечающие современным требованиям учебного процесса в высшей школе.

В начале 1979 года заведующим кафедрой становится профессор Гуляев К.И. По своей направленности, кафедра остается общеинженерной.

В 1989 году Тимофеев Б.П. приступил к заведыванию общеинженерной кафедрой Теории механизмов и деталей приборов, преобразовав её в 1991 году в выпускающую кафедру Мехатроники. Мы были первыми на территории бывшего СССР. Лишь в 1994 году специальность 071800 «Мехатроника» появилась в официальном списке специальностей. Первый Государственный стандарт специальности (1995 г.) был во многом основан на нашем учебном плане. С 2000 года университет имеет лицензию на образовательную деятельность по специальности «Мехатроника».

В 2000 году было образовано научное направление «Мехатроника и робототехника».

"Мехатроника - это область науки и техники, основанная на синергетическом объединении узлов точной механики с электронными, электротехническими и компьютерными компонентами, обеспечивающими проектирование и производство качественно новых модулей, систем, машин и систем с интеллектуальным управлением их функциональными движениями".